Status Report: Marionnet

How to Implement a Virtual Network Laboratory in Six Months an d Be Happy

Jean-Vincent Loddo Luca Saiu
Laboratoire d'Informatique de I'Univer&tParis Nord Laboratoire d'Informatique de I'Univer&tParis Nord
France France
loddo@lipn.univ-paris13.fr saiu@lipn.univ-paris13.fr
Abstract cumbersome and expensive, particularly in a crowded classroom

environment where the availability of devices such as computers,
switches or routers is limited.

It is also completely unrealistic to expect that students are able to
do exercises at home on their own, when they typically only have
access to a single Internet-connected computer.

The possibility of a direct “hands-on” experience with network
protocols is also impaired by the same difficulties, and may end up
being undeservedly neglected in a traditional teaching setting.

A virtual network laboratory —allowing to emulate a physical net-
work of computers and network devices such as switches or routers
in software— represents a valuable tool for students, and may also
be useful to researchers and system administrators. A tool of this
kind, particularly if it aims at being usable by inexperienced stu-
dents, should offer the same opportunities of configuring and ex-
perimenting with components as a physical network, providing also
an intuitive graphical user interface fdynamicallymanipulating

the network topology and each individual virtual device.

Building such an inherently concurrent system is nontrivial, re-
quiring the integration of many different components written in dif-
ferent languages and a complex control logic. Indeed some projects
with similar purposes have been existing for years, and typically
use scripting languages suchRghonandBash by contrast our
system,Marionnet, has been implemented using the functional
language OCaml in just six man-months and yet providing several
important features still missing in more mature projects.

We seize the occasion of describing Marionnet to discuss the
relevance of the functional style and of advanced type systems for?2. Introduction
dramatically cutting development time.

A straightforward solution to solve this pedagogical problem con-
sists in emulatin§ja whole computer network on a single machine.

Moreover, the scope of such an application may extend well
beyond our initial didactic motivation, and a system of this kind
can prove itself to be valuable also as a testing tool for network
administrators and computer scientists interested in security: many
network attacks can be easily and safely emulated, without any
need for hardware setup.

As a first approximation, nesting a whole network into a single

Categories and Subject Descriptors D.1.1 [Applicative (Func- computer essentially amounts to:

tional) Programming; D.1.3 [Concurrent Programminlg D.1.5

[Object-oriented Programmig D.3.3 [Language Constructs e emulating single machinesing one among the several already
and Featurep Polymorphism. Classes and objects. Inheritance; existing technical solutioiswithout any pretense of exhaus-
C.2.m Miscellaneou C.2.m Miscellaneoul 1.6.3 [Applica- tivity we cannot but cite some free software projects as Bochs
tiong; 1.6.7 [Simulation Support SysteinsK.3.2 [Computer and ([2€]), QEmu ([6]), UML ([14, 15, 16]) and Xen (#]), and the
Information Science EducatiinComputer science education; proprietary product VMWare {6)).

K.3.1 [Computer Uses in EducatigrCollaborative learning. e emulating network devicesich as cables, hubs, switches and

General Terms Design, Languages, Experimentation IP routers; this second problem can also be solved in a vari-
ety of ways, all of them consisting in some functionality —of
widely varying complexity— built on inter-process communi-
cation and operating system features suchhas/tap inter-

f .
1. Motivations aces (p9])

Enabling students to practice on network configuration and dis- 1he differences among all the possible approaches above are

tributed application development using physical components is N0t particularly significant for our purposes, although they may in-
fluence the performance and applicability of a certain solution.

Keywords OCaml, static typing, emulation, virtual machine,
GUI, User Mode Linux

1 Marionnetis supported as aglearningproject by Universi Paris Nord.

2Here we take the term “emulation” in a very broad sense, irefd
solutions as different &sill hardware simulationparavirtualization user-

o .) : mode kernelsand so on.
Permission to make digital or hard copies of all or part of this work for persmnal 3 . . . i . .
classroom use is granted without fee provided that copies are not made owtkstrib Such S_0|Ut|0n$ g_reatly differ |n‘the|r scope and 'mplemeﬂmﬂtyle: as-
for profit or commercial advantage and that copies bear this notice and the fubiwitati ~ sSembly instructiorinterpretervs. incremental compilerhardware emula-

on the first page. To copy otherwise, to republish, to post on servers or tuitedis tion vs. operating system virtualizatiorm he original intents of them were
to lists, requires prior specific permission and/or a fee. also varying, including the concurrent use of different ragiag systems
ML07, October 5, 2007, Freiburg, Germany. on the same machine, and security applications sudfoasypottingand

Copyright(© 2007 ACM 978-1-59593-676-9/07/0010. . . $5.00 sandboxing

We choose UML as a platform because of its maturity, documenta- devices, turning on and ofiidividual components, and connect or
tion, relatively simple installability and good performance. disconnect virtual cables, all of thighile the network is running

UML allows one to manage several kernels as standard userspace
processes, and in its turn this enables us to emulate GNU/Linux ma-GU! layer. At the top level the user could be exposed to a user
chines —very suitable to networks— on commonly availablex86 interface, providing an intuitive view of the network and allowing
hardware. to easily interact with the control layer.

This choice is by no means the “only” possible one: other tech- It may be worthy to emphasize that, on one hand, our main target

nologies like Xen would also have been reasonable alternatives. USers are inexperienced first- or second-year students, unaccus-
tomed to complex interfaces and still without a deep understanding

2.1 An high level architecture: network emulation layers of how networks work; on the other hand, a full network configu-
As shown in Figurel, the network emulation problem can be ration is quite complex a state, and requires some sophistication in
abstractly modeled into four layers, all of them nontrivial. Each the interface to be presented in a readily understandable way.

layer depends on the layers below it for its implementation, and as ;I;]he_n:ae?l to b;la_nce am(t)r_lg tlk.lesedtwo CO{]ﬂICtIrE)g nef?s rtnakes also
usual the level of abstraction grows upward. e interface design nontrivial; and a vast number of features (see

section3) might make the use of a GUI nearly a necessity.

/\ Some applications explicitly aimed at didactics in this field already
Interactive Friendly Interface exist, but to our knowledge none of them implements dynamic

GUI LAYER control; two project support GUIs, but their sophistication in this

aspect is limited by their laying uporstaticcontrol layer. See sec-
Network Design and Manangemen

tion 6 for more information and a detailed comparison with related
CONTROL LAYER v

projects.
net
Device (Hub/Switch/..) Emulation

2.2 Contributions
Our applicationMarionnet is anOCamP ([28, 9]) implementation

MARIONNET
OCaml, ~12,000 lines

COMMUNICATION LAYER _ uite® Iof the topmost two levels, fully dynamic control layeand aGUI
2 o ayer.
S E . .) N The emulation platform consists WML, by Jeff Dike et al.,
2z Single Machine Emulation and the communication layer¥&DE, by Renzo Davoli et al. ([3]).
g EMULATION PLATFORM o UML and VDE —both written in C— have also been patched for
5= Marionnet (see subsubsectiah9.1and4.9.2, but the very limited
W scope of such changes makes unreasonable to talk about a mixed
HOST MACHINE OCaml / C implementation: the C components have been re-used

essentially as they were.

Our GTK+ ([42)) user interface (see Figui® is very simple
to use: in our tests “on the field” most students have started to be
productive with it in a matter of minutes.

Figure 1. Emulation layers for a virtual network

Emulation platform. At the bottom level aremulation platform The static part of the interface has been mostly built with Glade
allows one to create several independent virtual computers running([45]), and the dynamic part with LablGTK Zp]), the OCaml
on a single —possibly not even networkediestcomputer. Virtual GTK+ binding.

machines should realistically replicate real machines’ behavior,

allowing to execute user software with no modification, and to Our OCamlimplementation amounts to just 12,000 lines of manu-
normally read and write a locairtual filesystem ally written code, which testifies in favor of the language concise-

o] ness and suitability for rapid development: the whole application
Communication layer. Virtual machines must be able to commu- \yas built by the authors in just abasik man-months.
nicate with one another in some way, employing real network pro- Even if not yet polished the application has proved to be solid,
tocols; in practice supporting at least Ethernet is imperative, due to gngd a preliminary version has already been used by one author in

its ubiquity. _ _ occasion of thePractice of Network Protocolsxam at IUT of
Virtual network devicesuch as switches, hubs and IP routers yniversié Paris Nord in June 2007.

should also be available. Such virtual network devices should be

running as host processes, but replicating in the closest possiblenjarionnet is free software built on free software, distributed under

way the behavior of their physical counterparts. We call this inter- the GNU General Public Licenseld]). We have taken advantage

mediate level theommunication layer of the possibility of modifying the source code of some of our com-
This layer might also provide some mean to observe the network ponents (the Linux kernel and VDE), and in the true spirit of free

as the emulation of communication among machines and devicespthers to build upon.

already requires to work with protocols at a low level.

Control layer. A control layer allows one to define a virtual 3 Qbjectives

network and run it, reasoning with emulated components at a very . . . L .
high level. As a bare minimum a control layer should provide e are now going to briefly list application requirements as per-

means tostatically define, then startup and shutdown a whole ceivgd user expectations, teacher needs and implementation con-
virtual network. straints.
A more flexible layer may allow one aynamicallydefine network

5The reasons for our choice of OCaml are discussed in se¢tion
4We did not test the application on PowerPC yet. 6“Institut Universitaire Technologique”.

= Marionnet SICIES Gateways: an emulated network gateway connects the virtual

Brojet Options Debug Aide network and thdnostnetwork, and routes the traffic between them,
Matériel | Logiciel | Historique | Enoncé making possible even Internet access for emulated computers. The
- R — only specified parameter for gateways is thBieddress
= a §

‘U‘ 3.2 Port and cable defects

Just as physical hardware can fail (and discovering and working
around such faults can provide an interesting, if sometimes unfore-
seen, learning opportunity), it should also be possible to defre

x5

{
I
m
o
a
@
@

4 add ¥ fectsin any port or cable of the emulated network, with the gran-
Sl properties > &t »> ularity of eachdirection left-to-right / right-to-left for cables, or
=/Bemove ’ ’ R in-to-out/ out-to-infor ports. The suppprted defects aeday per-
& startup > (] centage ofost packetspercentage oflipped bitsand bandwidth
@5“3 upper limit
[[}, e ’ spy - As for theclouddevice, the user should be able to set some param-
Shutdown > __G1 Labels - > h !
ElPoweroff > \ . &g. eters of the involved probability density functions.
ws \ - U . -
\\ @@; T T 3.3 Dynamic network reconfiguration
 Network |, \ etho © . .
X] ‘ﬂ‘ In order to enable users to perform the same kind of experimenta-
@; = tion possible with physical networks it was decided from the be-
s \.:‘____g ginning to allow one to tunsingle devicesndependently from the
— rest of the network. The user should be able to change the network
imoge |TDEBE topology by adding or removing componentgile other compo-

nents are running
Each cable can be temporarily disconnected so that the user can
observe how the network works in its absence, and then recon-
nected; this is particularly useful to experiment with routing pro-
tocols.
- — - - - As a useful “extension” of physical networks behavior it would
Figure 2. The main window ofMarionnetshowing a simple net- 350 be desirable to generalize temporary disconnection to other
work with three computers, a switch, a hub and an Internet gateway. gevyices, enabling users sospendhem and themesumei.
Statefuldevices such as machines can be turned off in a clean
way or by simply interrupting powér
)) o) “Hot” reconfiguration was deemed essential even if it inevitably
It was decided since the beginning that the network devices to be complicates the implementation, raising the level of concurrency.
emulated would have been user-configurable at a very fine level of
detail. 3.4 Filesystem history

Computers. for each computer the user should be able to specify A further extension to what would be possible with a real network
theamount of RAMthenumber of Ethernet cards and serial ports consists in —at leadbgically— saving the complete filesystem

—

& $
El‘% Récupérer

‘ [C] Tout arréter

7>
Diffuser

‘ |> Tout démarrer

3.1 Emulated network components

(serial ports are also used as network devices), the partierlael image at shutdown time for machines and routers. This allows the
and GNU/Linux distributionto run, and the way to ruiX ([40Q]) user to freely experiment with configuration, with the possibility of
clients on the emulated machine: either connecting to the host X returning at any moment to a known “working” state.

server, or to a differenXnest per machine, or without any support This feature may also be useful to the teacher, who may wish to
for graphics. inspect a student “configuration history”.

Hubs and switches: for each hub or switch the user can specify 35 GUJ-related functionalities

the number of ports, and —for switches— whether it should sup- . . .
port theSTPprotocol (35]). Of course the interface should offer the usual functionalities of a

GUI program such as the possibility of opening and saving projects;
Routers: emulated routers should replicate in a close way the g project includes a network graph, the filesystem states forest and,
behavior of physical Cisco routers; their configuration is complex gptionally, textual problem statements for students.
and mostly happens at runtime, except for the specification of the ~ This feature is important because a Marionnet project file is also
number of ports. thought as amterchange formatparticularly to enable teachers to

Cables: anEthernetcable can be eithestraight-thruor crossover cooperate exchanging exercises

Serialcables have also to be supported. Network graph image. An up-to-date graphical representation of
Clouds. acloudrepresents a slow and noisy IP connection (or a the whole network graph should be available at any time. Such rep-
whole network the user has no control upon), with two endpoints: resentation should be automatically generated in an understandable
packets enter into one end and (possibly) exit from the other end, form, to spare users the irrelevant burden of placing nodes in a
generally out of order, with a randodelayand theirttl decreased
by a random amount. The user can specify several parameters of And of course, as it happens with physical machines this mayelea
the involved probability density functions. filesystems in a messy state.

9This practice happens to be surprisingly less frequent ane mumber-
7In this case Xnest processes run on virtual machinesder as X clients some than it should, because of hardware and software incinitiias
they however require a connection to thestX server; hence the problems among the machines of different classes. We hope Marionnett roggh

to solve are essentially the same. tribute to alleviate such problems.

two-dimensional space; however a toolbar should also be provided
to fine-tune some representation parameters such asghtble im-

age sizethe distance from each node to its labaind theicons
sizé®. Different kind of cables (straight-thru vs. crossover vs. se-
rial) should be drawn as arcs of different colors; detached cables
should also be portrayed as such.

Virtual computer interface. For each computer a console should
be visible for users to log in and enter commands. Machines should
also be able to run graphical X applications, and particularly elab-
orate network applications such as the graphical snifi¢hereal
andWireshark

Virtual deviceinterface. Inthe same spirit, other network devices
should have a simulatezbntrol panelshowing a grid of blinking
LED lights representing port activity, in close resemblance to phys-
ical devices. This functionality provides a simple and intuitive way
to observe network traffic. See Figue

- S1 S=11E3

Control panel
01234567

Switch® & ® & & & TX/RX

Figure 3. A virtual eight-port switchLED grid, with cables con-
nected to the ports 0, 1 and 7.

Filesystem history interface. An interface based on &eeview
widget should allow one to easily navigate in the filesystem history
displayed as a forest, showing which state is derived from which
other state for each machine and router, allowindetete uninter-
esting statesto add textual commentsnd toboot a device from
any saved statdike in Figure4.

Marionnet

Projet Options Debug Aide

Matériel Logiciel Historique Enonce |

Name Type Activation scenaric Date Check Comment

< Rl {no scenario) 2007-05-12 15:22:51 [not configured yet

~ Rl (no scenario) 2007-05-12 15:23:17 (no comment)

is this correct?

R1

(no scenario) 2007-05-12 15:23:36

(no scenaria) clean

(no scenario) clean

(no scenaria) 2007-05-12 15:19:55 this is working

Export as variant

(no scenario) clean

Browse

Apply script
(no comment)

Startup in this state.
(o cormmandl

just another test Delete state

(no scenario) 2007-05-12 15:19:57 (no comment)

(no scenaria) 2007-05-12 15:21:27

(no scenario) 2007-05-12 15:21:49

Oooooglo oood

(no scenaria) 2007-05-12 15:22:17

| |

‘m‘f‘

D@ Récupérer

’ [F] Tout arréter

[z
Diffuser

]
‘ [> Tout démarrer

Figure 4. Filesystem history interface

10Figure2 shows a network graph image automatically generated without
any fine tuning.

3.6 Classroom functionalities

Some more advanced functionalities for working in a classroom
are desirable: for example a teacher should be able to broadcast
a project to all the students’ computendiffusior), and students

in their turn should be able to send modified projects back to the
teacher fetrieving).

When inexam modehe application should also automatically run
analysis scripts on all the students’ virtual machines at shutdown
time; the output of such scripts should be easily available to the
teacher.

3.7

The user interface should be fully internationalized, and support
some universal character set likd'F-8 as theexternalrepresen-
tation for strings. Our short-term plans are mainly centered around
French localization, but there is no reason why Marionnet should
not be usable also in different locales.

Internationalization

3.8 Development time constraints

The bulk of the development effort had to be spent in implementing
the two topmost layers of Figurkin the shortest possible time.
This challenging requirement was motivated by the fact that the
authors could not be full-time developers or maintainers, and the
application had to be at least usable by the end of the second
semester of 2007, in order to be employed for exams at the IUT
of Universig Paris Nord.

These constraints essentially dictated the need of reusing ex-
isting software whenever possible, and using a high-productivity
language for all the new code.

4. The solution
4.1 Language choice

We made the choice of using a functional language fairly early,
because of our long positive experiences, in one case for teaching
and in the other in large implementation projec&9].

OCaml was preferred over other functional languages such as
Haskell (86]) because of its natural support for mixed program-
ming styles (B2]). Because of the importance of the imperative
side of our project and in the light of our past experiences, we
have some doubts about how Haskabnadswvould “match” our
problem. Despite their mathematical beauty, we feel that monads
leave to be desired as a practical programming construct: intro-
ducing some stateful computation or 1/0 within some code which
was initially written as functional invariably implies the need for a
cascade of changes in the typessafroundingexpressions. Said
in other words, introducing a monadic construct dscal change
tends to havglobal effects. While side effects do indeed introduce
problems, they appear to function better as@an of abstraction
in the sense ofl]], section 1.1. This theme is touched B].

4.2

In spite of the prevalence of the functional style (subsecti@and
subsubsectiod.8.4show interesting examples) our use of OCaml
also takes advantage of thbject-orientedstyle, particularly in the
control layer (see subsectidm), where “objects” in the OO sense
tend to represent theghysicalobjects to be emulated.

Concurrency makes the implementation substantially more
complex, but it is unavoidable to support our dynamic control layer.
Anyway our use of threads is controlled and restricted to just a few
cases (see subsectid, subsubsectiod.8.3and especially the
code in subsectioB.3), in order to keep the complexity manage-
able and the development time short.

Implementation guidelines

4.3 Network structure: user-level vs. emulation-level

Due to the strict time constraints forcing us to reuse an existing
communication layer we decided fairly soon to U&BE, to our
knowledge the most powerful way to interconnect UML virtual
machine&’.
VDE allows one to createirtual switches and hubsonnected
to the Ethernet interfaces of UML machifésnd virtual wires
All virtual switch and hub ports are implemented via Unix sockets
([41]) or tun/tap interfaces 25]. Wires can be destroyed and re-
created at runtime without affecting virtual machines. Such func-
tionality may apparently look like a perfect match for our problem.
Unfortunately, however, a couple of implementation choices
in VDE and UML prevent a direct application of VDE devices
to emulate the devices specified by the user in Marionnet. The
first problem is thatwhen a network interface is defined for
an UML machine, a switch or hub where to connect it can be
specified, butnot a wire: in other words, some virtual cables are
not directly represented as cables in VDE, and are left implicit.
This risks to force us to introduce gratuitous asymmetries and

particular cases in our code but, more importantly, also creates

problems with dynamicity: destroying the virtual hub or switch to

which a virtual Ethernet interface is connected makes the interface

unusable; by contrast we ne&dable endpoints”to which we can
dynamically connect and disconnect cables which on their turn may
be connected to other devices.

VDE also implements defects as we need thebut only in
cables whereas we require the same functionality also for ports.

To overcome such problems we devised a two-level emulation
approach whereach device in theuser-level network is repre-
sented, in general, byseveral UML and VDE processes, making
up the emulation-level network.

Such dichotomy is of course completely invisible to the user.

Our mapping fromuser-levelinto emulation leveimay be most
easily understood with an example:
a virtual computer witl Ethernet cards is represented by:

e oneUML process connected to

e n two-port VDE hub processesHtlblet$ in our jargon and
code), in their turn connected to

Such a solution allows for great flexibility, and also makes the
implementation modular and consistent: a virtual switch with four
ports, for example, is always represented by the same number and
type of processes, wherever it occurs in the user-level network.
This convenience comest a negligible costin runtime perfor-
mance: traversing one or two switches more has no observable
delay, and average locgling time between two virtual machines
has consistently been measured as well below one millisecond on
all our test machinés,

We adopt the same strategy also for emulating serial ports and
cables: in this case we simply map virtual machine serial ports to
host ptys —which is supported by UML— so that we case
ptys as stable endpoints for serial connectiondVe simply em-
ploy cat processes with input/output redirection to emulate serial
cables, dynamically spawning and killing them as needed.

Figure5 shows how each element of a very simple network is
represented atser-levelandemulation level

Two distinct levels of emulation exist, and this is clearly reflected
by the structure of our OCaml code. On one hand a hierarchy of
classes represenpsocesseson the other a second distinct hierar-
chy implementglevices using processes as building blocks. Both
processes and devices internally represent the current emulation
state as a DFA state (including for exampleandoff for a device,
andrunningandsuspendetbr a process: see Figuéeand the code

in subsectiorb.1). In both cases methods are provided for follow-
ing existing DFA transitions, interacting with the external UML,
VDE andcat processes and updating the emulation state.

4.3.1 Translation of virtual devices into processes

What follows is a quick description of the mapping from the user-
level network to the emulation-level network for each kind of
device.

Virtual computer with n Ethernet cards and m serial ports: A
UML processu is connected ta hubletsh;i, and eachh;; is
connected to another hublgt, via a cablec; incorporating the
defect of the Ethernet poetthi. Each user-levedthi —seen as a
connection endpoint— is represented by the hubjet

Each serial porj of u is connected to a dynamically allocated

e n VDE cable processes incorporating port defects, connected topty, which representsty; as a connection endpoint.

e n hublet processes, representing user-level Ethernet ports to

which virtual wires can be connected at any time.

Figure5 shows, among other things, how a machine with two
Ethernet interface at user-level is represented at emulation level.

Hublets are used as thestable endpoints we need for Ether-
net connections they are only destroyed when a virtual device is

destroyed or the number of its ports is changed. Virtual cables can

be connected or disconnected from hublets at any moment.

11The simpleunl_switch by Jeff Dike et al. (L6]) also allows a set

of UML machines to communicate, but it does not allow one to link
several switches to one another, and especially does npodupedynamic
behavior we neediml _switch2 by Felix Muri ([31]) improves Jeff Dike’s
uml_switch at least by allowing to cascade devices, but does not allow
dynamic control. By contrast VDE allows one to cascade virswatches
and hubs, and the possibility of creating and destroyiinyal wires at
runtime is another of its main feature4).

12\DE can also be used as a communication layer for QEmu and host
machines, but this is not important for our purpose.

13We modified the “defect” functionality of VDE only in a triviavay: see
subsectiort.9.2

The special Ethernet interfaeeh42® is also always emulated
to allow graphical applications to communicate with the host X
server.eth4?2 is ghostified and connected to a hosap interface
rather than to a hublet: see subsecto®.1for information about
what this means and implies.

Virtual Ethernet cable connecting any pair of Ethernet ports:
The two endpoints are simply connected by a VDE cable process.
No distinction is needed betwesaitraight-thruand crossoverca-

140ur smallest test machine was a Pentium Il 800MHz with 512MIVRA
Marionnet itself is quite lightweight for a graphical apgaition; most pro-
cessor time, and especially memory, is consumed by UML procedes
found that a minimum of 50Mb per UML instance is needed for com-
fortably running graphical applications on virtual compet¢1l6Mb are
enough for many typical non-graphical applications). Htsknd cables
have not a significant overhead because they are idle for mase dsime,
and only slightly increase the emulated network latency wdtgnmunicat-
ing, due to the added context switches and to blink commandss(gesub-
section4.8.3.

15 The number 42 is “The Answer to the Ultimate Question of Lifes th
Universe, and Everything” ir?].

Computer a

hublet}ﬂ{ cable 2% huplet
et hO

/ dev/ ubdo

etho

. Switch S1
User Mode Linux

Kernel

socket | socket | cable | socket

ethl

hublet 2 caple |52 puplet] % cabte | 2! hyblet
| \ | [ethi | L J lport 0

hublet sucket socket
B =

) VDE
Disk Image [Host tap switch
FILE }},I?lt)lge " sockei el
‘ ‘ ‘ ‘ et hO ‘ f W ‘ ‘ sucke“ ‘ socket
etho socket hUblet‘ socket‘ cable ‘ sockel‘ hublet‘ socket LcableJ suckedpgl'rﬂ?laet‘ ‘ cable ‘

User Mode Linux
Kernel

ethl

ethl
hublet S qe| cable 5 o] hublet

Computer b

/ dev/ ubd0

Figure 5. A sample network seen both aser-leveland atemulation-level The virtual computer is connected to the virtual computer

b via the four-port virtual switcts81 User-level network devices are represented as gray boxes witdedwangles, while emulation-level
processes running on the host are shown white; the two user-levall\éehles are particular in being the only cases where the two views
exactly match, a user-level device being mapped into an emulation-l@adgs. In this caseandb are running the same distribution and
hence are using the same filesystem image, but of course havertifferefiles. Both virtual computers have amh42 interface connected

to a hosttap, for communicating with the host X server.

Virtual serial cable connecting two machines: A simple cat
process has its standard input and standard output redirected to the
endpoints’ptys.

Virtual hub or switch with n ports: A main VDE hub or switchn
is connected ta cables:;, each incorporating the defectsmfrti.
Each cable:; is connected to a hublét;, representingorti as an
endpoint.

configuration

change

gracefully_terminate/ | =| terminate

|> resume
sleeping

Figure 6. Virtual device DFA. The stateon-existings needed for]) .
all the cases where a device has been defined but not started yefPa@way: A hubletis connected to a hosip on one side, and has

(hence has ndubletsor ptys to which other processes can con- the other.5|de available for connecting cables, as the only gateway
nect), or its configuration has been changed (which may alter the €ndpoint in the user-level network.
number ofhubletsandptys). Also note that thetartupoperation
is implemented in two different ways, as a two-step transition from
non-existingto on, and as a single-step transition frasff to on; The control layer is heavily object-oriented. A class hierarchy im-
this difference is not exposed to the user. plements each device as a class, hiding the details of managing the
the individual processes involved in the emulation.

) The startup order of virtual devices is constrained by the need
bles since éhe GUI does not allow one to connect cables of the ¢ 1, biets to be runningeforeany of the VDE cables and UML
wrong type”. processes directly connected to them.

> startup (step 2)

Virtual router with n ports: A router withn ports is represented
exactly as a machine with Ethernet ports and no serial ports.
e oL Routing protocols are implemented “in software” on the virtual
machine, using th®uaggaservice (B, 23]).

Cloud: Two hubletsh; and h, are connected by a cabite All
“defects” like lost packets or delay are implemented:jrwhile
the randomet1 decreas¥ is implemented (by convention) it .
The free endpoints di; andh. represent the two user-level cloud
endpoints.

4.4 Control layer

16 However the possibility of connecting cables of the “wrorgpe (thus
obtaining a non-working connection) could have some edoicakivalue,
and it is being considered for addition as an optional featur

17Such a functionality was not originally in VDE, but has beesyeto add
by patching its C source.

In the same way, a cable process can be spawned only when bottwith regard to network parameters. As UML kernels are seen by

its endpoints are already running.

the host as normal processes this poses no particular problems.

Apart from these two constraints, all process spawns can proceed When we need to supply some parameters from the OCaml side

in parallef®.

For usability’s sake it is very important that the GUI does not

“freeze” when a relatively long operation takes place, such as start-

to a UML instance we simply bind some variables on the kernel
command line, and then retrieve them in the emulated computer
from the Linux virtual file/proc/cmdline.

For example to implement thexam modewe simply invoke

ing up a set of devices together. In order to achieve this the whole UML with the parameteexam=1; the GNU/Linux distributions we

business of process management is delegatecctmtxol thread
with the purpose of asynchronously acceptiagksto be enqueued,

while executing them in a FIFO fashion. Each request may also in-

ternally involve concurrency.
The control thread is also responsible for reactingriexpected
terminationof emulation-level processes, which may happen be-

provide are modified to check at shutdown time whetheim is
bound in/proc/cmdline and, it that is the case, to run an analysis
script and saving the machine configuration and other relevant
results.

4.6 Virtual filesystems

cause of several conditions such as insufficient memory or explicit The user can also choose ama®yeral GNU/Linux distributions

termination of a process by the user. Being able at least to termi-

installed on the host disk as filesystem images. The same distribu-

nate related processes in such cases and to keep the internal stafgon can be used by different virtual computers at the same time,

consistent improves the application fault-tolerance.
Unexpected termination monitoring is performed by handling
SIGCHLD signals from spawned processes.

and each machine must be ablewadte to its virtual filesystem,
without interfering with the others. Making copies would be very
impractical because of the typically large size of filesystem image,
in the order of hundreds of megabytes or even several gigabytes.

To avoid implementing a command interpreter and ease inter-threadrortunately UML allows one to solve this problem in a simple way,
communication we devised a generic message-passing feature regsing as a virtual filesystempair of files:

lying on OCaml’s higher-order functions. The core of its imple-
mentation is shown in subsectiéiB.

4.4.1 Cable reference counter

A feature quite useful in practice is the possibility of temporarily
disconnectingnd therreconnectinga single virtual cable, without
destroying it®.

This is nontrivial to implement because of the complexity added

e aread onlyfilesystem image

e asparsefile containing only changes relative to the initial im-
age. In UML jargon such a “patch” is called —for understand-
able reasons—eopy-on-write fileor cow.

Filesystem images can thus be shared without any concern for
concurrency, and each machine needs onlgatsfile for running,

by the need for a cable process to have both its endpoints (hubletsas shown in the example of Figube

or ptys) alive to be started: for example a cable whose endpoints

Typical cowfiles takejust few megabyteson disk but require

become alive might be currently in disconnected state (hence theSparse file supporon the host filesystem. Such support is in prac-
cable process should not be spawn), or the configuration of a tice always present on GNU/Linux, but it may be lacking on other

currently running cable endpoint could be modified, leaving the

systems to which the user might want to copy some files. For this

cable with only one alive endpoint (and hence the cable processreason we work wititows only in temporary directories of the host

should be terminated).

We found a very compact and elegant solution to this prob-
lem involving areference countereach cable object has a muta-
ble integer fieldreference_counter, always in the rangé, 3.
reference_counter is initialized to1, and then:

e decremented at eaclisconnection

e incremented at eaalkeconnection

e incremented at eagndpoint startup

¢ decremented at eaemdpoint shutdown

A cable process has be spawn only whend#ference_counter
of its cable object rises fromto 3, and must be terminated as soon
asreference_counter drops from3 to 2.

4.5 UML kernels

When defining a virtual computer the user can choose Beweral
UML kernelscompiled with different configuratioR% particularly

185ych cases of process-level parallelism, very frequent imidviaet,
allow one to easily exploit SMP systems. OCaml, by contrast, rmat
exploitthread-levelkconcurrency for parallel execution on SMPs, due to the
current garbage collection design. We hope this limitatidhhe lifted in

a future release.

191n order to mirror what happens with physical cables, vireales can
not be “turned on” or “turned off”, and they are “connected’default.

20This simply involves kernels compiled with differentonfig configu-
ration files.

filesystem, and always save Marionnet project files as compressed
GNU tar archives.tars may contain sparse files without wasting
space and without being sparse themselves, hence they are safe to
copy to any filesystem.

To get an idea of a “reasonable” projects file size, the project
files delivered by students after their three hours exam mentioned
in subsectior?.2involved three machines (hence at least tlues
files) and took on average 4Mb each.

4.7 Network graph representation

The network graph is implemented in object-oriented style in a
quite straightforward manner, usitigts for holding together el-
ements of the same type.

Methods for looking up and updating elementsithynameand
type are implemented using higher-order functions on lists, typi-
cally of linear complexity. This is perfectly acceptable in our case:
the small size of the networks which can be practically managed
with the GUI makes performance concerns irrelevant.

4.8 Graphical User Interface

GTK+ ([42], [22]) and Glade @5]) allow one to build aesthetically
pleasant interfaces with a “native” feel.

In this spirit we paid attention to respect the usual conventions
of GUI applications that users typically expect, such as the presence
of the usuaFile menu, status bars and toolbars.

In order not to make the user interface heavy we ussdbook
widgets, which tend to save space on the screen and make some
interface elements visible only when requested. It is important that

Marionnet windows do not fill the whole screen, as often several
other windows are needed, like virtumdmputer terminalsvirtual
device LED gridsplus the windows for algraphical applications
running on virtual computers.

Figure7 shows a not particularly complicated scenario of this
kind.

Like any event-driven GUI, our interface makes heavy use of call-
back function&'. Being able to use higher order and in particular
partial function applicationproved to be a huge advantage for
writing callbacks, allowing to specify some parametatsevent
connection timeather than at function definition time.

An example from our filesystem history interface shows this:

(* A callback definition: *)
let on_add_row treeview selection file_name () =
(x body *);;

(* ... From the function creating a popup menu,
in an environment where treeview, add_row_menuitam
and selection are visible: *)
add_row_menuitam#connect#activate
“callback: (on_add_row
treeview
selection
"file.text");

LabIGTK ([22]) —the OCaml binding for GTK+— requires that
callbacks have typenit -> unit and the partially applied func-
tion we connect to thactivateevent has indeed that type, but while
connect’ing it we are also able to supplsiny other parameter
needed in the callback body, and all of this with static type check-
ing.
Such flexibility relies on the language support for closures,
hence is simply unthinkable in most imperative languages includ-
ing GTK+’s “native” C.

As one of the very few open-ended “experiments” we conceded

ourselves, we implemented a polymorpleisvironmentdatatype

enable users to recognize which console belongs to which machine.
This was achieved “in software” by making the GNU/Linux system
running on virtual machines print a string wikitTerm terminal
control sequenceat startup (11]).

4.8.3 Device LED grids

For eachrunningvirtual hub, switch or router a GTK+ window is
shown displaying the emulated device LED dfidhs it can be seen
in Figures3 and7. This allows one to easily inspect thennection
stateand traffic for each single port, mirroring what could be seen
with a physical device.

LED blinking is exact i.e. each blink reflects the transmission
or reception obneEthernet frame.

This is implemented with a small patch to the VDE virtual cable
wirefilter (see subsectiof.9.2 and, at the OCaml side, with a
thread waiting for 'blink’ commands fromirefilter processes.
Each command simply contains a LED grid identifier and a port
index, encoded in a text string to ease portability.

Inter-process communication is implemented witatagram
socketsn the PF_LOCAL namespace.

LED grids are implemented with a relatively complex combina-
tion of GTK+ widgets; in particular each light, which can deor
off, consists of anotebookwidget (see 42]) with two hidden tabs,
each of which contains gixmap The same pixmaps are shared by
all lights.

GTK+ timers are used to automatically toggle the light state
back to theon state (i.e. “connected but not communicating”) after
a fixed time interval for each blink (currently 80 milliseconds),
making the interface completely asynchronous.

Despite the occasionally high bandwidth of blink commands
this functionality has no noticeable impact on responsiveness, prob-
ably due to the efficiency of the implementations of GTK+ and
Unix sockets. Garbage collection pauses are hardly perceivable.

representing the outcome of all user interactions via dialogs, seen4.8.4 Filesystem history and defects interfaces

as a set ok key, value > pairs. Using environments allowed for
some more modularity in interface cdde

4.8.1 Network graph image

The graphical representation of the whole network shown in the
notebookHardwargImageis automatically built byGraphviz([3])

Despite their very different uses, the filesystem history interface
shown in Figure4 and the defects interface (etebookpage for
editing the defects of all ports and cables) share most of their logic,
and at the implementation level they inherit from the same base
class, heavily relying on the GTKtreeviewwidget ([34)).

The functionality of both interfaces consists in displaying and

from aDOT specification regenerated by the OCaml code at every gjiowing modifications to forest data structures: in one case the tree
network modification. The user is also free to set several parametersof filesystem states for each machine or router, in the other one the
such as edge length and icon size, whose effect is forcing andset of defects for each direction of each port or cable, organized as

immediate regeneration of the image with the appropriate DOT
options.
Reusing the sophisticated functionalities of Graphviz allowed

us to save considerable development time, with a negligible perfor-

a set of trees for visual simplicity.
The forest data structure is implemented asmorphic alge-
braic data typeas shown in subsectidn2

mance impact. Algebraic data types and higher-order make OCaml a|peit slightly complicated by to the nature wéeviewshis kind of

extremely well suited for symbolic manipulation of which tham-

pilation is an instance. The availability of such features has made

this part of the implementation particularly simple.

4.8.2 Computer terminals

UML easily allows one to use amterm Or gnome-terminal as
the virtual machine console.

Practically the only “customization” we needed consisted in
displaying the virtual machine name on the window title bar, to

21Here we do not take into account the subtle distinction betveignals
andeventsmade by GTK+. What we say here applies to both sigmal
event handlers

22 And also made GUI implementation a bit more interesting.

implementation is interesting because it relies more on parametric
polymorphism than on inheritance for code sharing.

Because performance is not a particular concern for these in-
terfaces due to the very small size of managed data —in the order
of few hundreds of nodes for typical cases— we can afford to do
translations from forest data structures to GTK+ widgets and vice
versa at every structure modification.

23Despite the apparent and indeed partly intended “eye candliyire of
such an interface, experience on the field with students hasrsit to be
very valuable for debugging virtual network configurations

LED grids have also been useful for debugging the applinatse|f.

jm Marionnet

SEIEY

] a SIEIES)

Projet Options Debug Aide

Matériel | Logiciel Historique Enoncé | 64 bytes from www,gnu,org (199,232,41,10): icmp_seq=2 tt1=51 time=93,7 ms
- Réseau virtuel 64 bytes from www,gnu.org (199,232,41,10): icnp_seq=3 tt1=51 time=93.8 ms
64 bytes from www.gnu.org (199.232.41.10): icmp_seq=4 ttl=51 time=93.7 ms
Nodes | | []
==, 2 2
g |
— -
e o3
y [-
Edges
. mmm— s1 ‘
ﬁll = b EEE)
N T o s/
@ bin dev initrd lost+found opt shin sys var
- boot etc initrd,img media proc selinux tmp wmlinuz
&1 Labels | | cdrom home 1ib mnt. root sry usr
, b:"# ifconfig ethd
J] eth0 Link encap:Ethernet Huaddr 00:01:02:00306:00
inet addr:10,10,10,2 Bcast:10,255,255,255 Mask:255,0,0,0
[| inet6 addr: fe80::201:2fF:fe00:B00/64 ScopesLink
— UP BROADCAST RUNNING MULTICAST HMTU:1500 Metric:l
11.1:4/24 Area R packets:B37 errors:0 dropped:0 overruns:0 frame:0
o etererk 3 TH packets:15 errors:0 dropped:0 overruns:0 carrier:0
/ "X/ collisions:0 txqueuelens1000
- | RX bytes:72636 (70,9 KiB) TX bytes:756 (756.0 b)
U Interrupt:5

a:™# ping wuw,gnu,org
PING gnu,org (199,232,41,10) 56(84) bytes of data.
64 bytes from www,gnu.org (199,232,41,10): icnp_seq=1 tt1=51 time=93.8 ns

b:"# xeyes

= spy

length 64
17304:25,141006 IP 10,10,1,222.3075 > 10.10.0.10.donain: 44617+ PTR? 10.41.232.
17:04:26,051924 1P 10.10,1.222 > 199,232,41,10: ICHP echo request, id 7434, seq

Control panel

th 64

26,145108 IP 199,232,41,10 > 10,10,1,222; ICHP echo reply, id 7434, seq 3,
64
146803 IP 10,10,1,222,3075 > 10,10,0,10,domain: 36773+ PTR? 10,41,232,
idr.arpa, (44)

149311 IP 10.10,0,10.domain > 10,10,1,222,3075: 36773 1/0/0 (63)

042922 IPE feB03:212;3FFF:fe3es58c0 > FFO2::1:FF00:1201; ICHPE, neighbo

$3FFF.
ation, who has 2001:660:5001:100:31201, length 32
059563 IP 10,10,1,222 > 199,232,41,10: ICHP echo request, id 7434, seq

Switch® & &

th 64

152793 IP 199,232,41,10 > 10,10,1,222: ICHP echo reply, id 7434, seq 4,

64

154484 IP 10,10,1,222,3075 > 10,10,0,10,domain: 21056+ PTR? 10,41,232,

idr,arpa, (44)

156887 IP 10,10,0,10,domain > 10,10,1,222,3075; 21056 1/0/0 (63)

468633 IP 10,10,0,143,32777 > 10,10,255,255,sunrpc: UDP, length 112
042867 1PE feB80::212:3FFF1fe3e:58c0 > £FO2::13FF00:1201: ICHPE, neighbo

r_solicitation, who has 2001:660:50013100231201, length 32

17:04:28,075474 1P 10,10,1,222 > 199,232,41,10: ICHP echo request, id 7434, seq

ED, length 64

Figure 7. A very typical Marionnet session showing virtual machine terminals avitd LED grids. The computeris pinging a remote
machine reachable via the gateway, spyis executingtcpdump observinga’s traffic, andb is running the graphical applicatioeyes. The
network traffic betweeb and the host X server cannot be spied becauggaofstification as explained in subsecti@m9.1

4.9 Patches to the C code

We modified the Linux kernel (which includes UN) and VDE
to implement a couple of functionalities we needed to suppor
emulation.

tion is used on guest kernels to allow virtual computers to connect
to the host X server in a fashion completely invisible to the user.
¢ Users might run sniffers with graphical interfaces, hence needing
to communicate with the host X server, but such network traffic
should be hidden to the sniffer itself.
491 Ghostification More in general we are trying to replicate what would happen with
a physical network where graphic works only locally, as in most
A ghostifiednterfacé5 is a network interface which remains fully typical cases.
functional in receiving and sending frames but can not be in Hiding ghostified interfaces also saves the student from the
any way detected or configured by userspace processes, includunnecessary burden of dealing with the complexity of network-
ing utilities like ifconfig, route andnetstat, and sniffers like transparent graphics.
tcpdump.
An interface can be ghostified and unghostified by calling the 492 Defects and blinking
newioctls SIOCGIFGHOSTIFY andSIOCGIFUNGHOSTIFY.
Ghostification works by making soniectls fail when their pa-
rameter is a currently ghostified interface, returriyODEV as if
the device did not exist.

We modified VDE in just two simple ways:

e In virtual cables’ defect support we made the random delay
follow a normal distribution rather than a uniform distribution.

e For every frame received or sent by a virtual cable we option-
ally?® send blink commands (see subsectia®.3 dealing with
LED grids) to aPF_LOCAL namespace&atagram socketon-
nected to the main Marionnet process.

This functionality has a mostly pedagogical purpose: ghostifica-

240ur added functionality does not necessarily requires Uliig also
works on host kernels. In order to better test the patch (@bétter impress
coworkers) one of the authors has been running the patchredll@n his
main machines for months now, without stability or performanobiems.

25The video R9) gives a practical demonstration of ghostification.

26This functionality is enabled only when appropriate commane pa-
rameters are passed.

4.10 Implementation scope

Our OCaml application consists in about 12,000 nonempty source
lines, including comments.

It was developed by the two authors in six man-months, working
full-time for three months with even distribution of effort.

5. Relevant code samples

We are now going to show some patrticularly illustrative code snip-
pets as samples of the different coding styles employed in Marion-
net.

5.1 Process implementation

This is the base class of the processes hierarchy, showing how™ "

self#terminate

(** Stop the process with a SIGSTOP. This forbids any
interaction, until self#continue is called. *)
method stop =
match !pid with
(Some p) -> Unix.kill p Sys.sigstop
| None -> raise (ProcessIsntInTheRightState "stop")

(** Make a stopped process continue, with a SIGCONT. *)
method continue
match !pid with
(Some p) -> Unix.kill p Sys.sigcont
| None -> raise (ProcessIsntInTheRightState "continue")
d;;

external processes are spawn, terminated, suspended anddesumes 2 Forest data structure

Note that we dmotuseUnix. system, thus saving the overhead of
a subshell invocation per started process.

class virtual process

fun program
(arguments : string list)
?stdin: (stdin=Unix.stdin)
?stdout: (stdout=Unix.stdout)
?stderr: (stderr=Unix.stderr)
() -> object(self)

val pid : int option ref

ref None

(** Get the spawn process pid, or fail if the process
has not been spawn yet: *)
method get_pid =
match !pid with
(Some p) -> p
| _ -> raise (ProcessIsntInTheRightState "get_pid")

(** Startup the process using command_line, and return
its pid *)
method spawn
match !'pid with
(Some _) ->
raise (ProcessIsntInTheRightState "spawn")
| None ->
let new_pid =
(Unix.create_process
program
(Array.of_list (program ::
stdin
stdout
stderr) in
:= (Some new_pid)

arguments))

pid

(** Kill the process with a SIGINT.
interaction, until the process
method terminate
match !pid with
(Some p) —->
(try
Unix.kill p Sys.sigint;
(* Wait for the subprocess
zombie processes remain:
ignore (Unix.waitpid [] p);
with _ ->
Printf.printf
"WARNING: termination of %i failed\n"
P);
pid := None
| None ->
raise (ProcessIsntInTheRightState "terminate")

This forbids any
is started again: *)

to die, so that no

*)

(**x By default gracefully_terminate is just an alias
for terminate. *)
method gracefully_terminate

The forest data structure is an algebraic polymorphic data type,
used for implementing the data structures displayed in the filesys-
tem history and defects GUI.

type ’a forest
Empty
| NonEmpty of ’a * (* first tree root *)
(’a forest) * (x first tree subtrees *)
(’a forest);; (* other trees *)

Forests are easy to manipulate in a purely functional style, and
we rely on higher order for many operations:

let rec map f forest
match forest with
Empty ->
Empty
| NonEmpty(root, subtrees, rest) ->
NonEmpty(f root, map f subtrees, map f rest)

Forests are saved into Marionnet project files using OQaant-
shalingsupport.

5.3 Message passing

A queue is a polymorphic data structure used to implement general
purpose inter-threaohessage passing

The linear complexity concatenation in the methatjueue
has not been a problem in practice, because of the typically small
size of queues; however this data structure could of course be
modified to rely on circular arrays instead of lists if the need ever
arose.

class [’al queue = object(self)
val elements = ref []
val mutex = Mutex.create ()

val empty_condition = Condition.create ()

method private
lelements

empty =

1

method enqueue x
Mutex.lock mutex;
elements := !elements @ [x];
Condition.signal empty_condition;
Mutex.unlock mutex

method dequeue : ’a
Mutex.lock mutex;
while self#__empty do

Condition.wait empty_condition mutex;
done;
let result
match !elements with
X :: rest -> elements
| _ -> assert false in

Mutex.unlock mutex;

= rest; x

result
end;;

The control threadmentioned in subsectiof.4 heavily relies
on this thunkpassing (see the type of thmeue field) facility
implemented with queues.

class task_runner = object(self)
val queue : (unit -> unit) queue = new queue

initializer
ignore (Thread.create
(fun O —->
while true do
let task = queue#dequeue in
task ();
done)

O

method schedule task =
queue#enqueue task
method terminate =
self#schedule
(fun () -> failwith "asked to terminate")
end;;

6. Related work

Some projects employing UML as a network emulation platform
for didactic purposes already exist; however they are all nontrivial
to use for beginners, and for what we know they only provide static
control layer:

e VNUML ([21, 20Q]), written in Python, allows one to define a
network as an XML file, describing the network to be emulated
once and for all without allowing any change to network ele-
ments while the emulation is happening.

Netkit ([38]), formerly implemented in Python and curiously

re-implemented in Bash, is a set of many interdependent scripts
implementing single operations such as starting up and termi-

nating a virtual machine. While powerful, this low-level inter-

face requires a considerable learning effort to master the large

set of available command line options.

MLN ([5]) is interesting in its support for both UML and Xen
with the same configuration, and the possibility of allocating
different virtual network components on different hosts. Like
VNUML it defines a network configuration language, and pro-
vides a static control layer.

Concerning at least VNUML and Netkit, some related projects
exist to build high-level graphical interfaces on top of them: Net-
GUI ([33)), and vnumlgui (F], written in Perl). This confirms our
intuition about the importance of an easy to use GUI layer, partic-
ularly if we consider that the control layer they employ is much
simpler than ours.

Although it lies at a different level than the other alternatives,
VDE has also been directly used for didactics by its author with
success ([2]). Despite working at a lower level of abstraction than
the other tools, VDE has the advantage of providing a platform for
implementing dynamic control.

7. Conclusions and further work
A virtual network can be an excellent teaching tool both for stu-

In this report we described Marionnet, a system we have writ-
ten in OCaml to enable users to define and control an emulated
network. Despite its large number of features and the complexity
of the related GUI, the application has been developed in just six
man-months by the authors. On the basis of our long experience
in programming using many different styles and tools —“popular”
and otherwise— we seriously doubt that tbigllengecould have
been won by using more conventional tools like traditional imper-
ative languages (C, C++, Java, Ada) or “fashionable” scripting lan-
guages (Perl, Python).

The application has already been tested in the occasion of a real
exam and has been publicly demonstratethe interest shown by
teachers and Department directors makes us confident in a wide
adoption in French IUTS starting from the next academic year.

Even if most of the code was written in a functional style using
immutable structures such as lists, the peculiarities of OCaml in in-
tegrating the functional, imperative and object-oriented paradigms
have been profitable for our purposes.

Static checks have been extremely helpful to shorten develop-
ment time. Very few bugs have been found, and practically all of
them in the part dealing with external processes interaction, on
which the compiler does not have static control.

Our objectives have been almost completely reached. Only a
few features remain to be implemented before packaging the ap-
plication for being installable on major GNU/Linux distributions.
This further work will concern mainly GUI internationalization (as
it can be seen from screenshots, message localization is still incom-
plete, but could be easily enhanced by using, for example, a port of
gettext [17, 27]) and enhanced support for teaching activities. We
plan to enable teachers to broadcast exercises as Marionnet projects
to all the students in a classroom, and eventually get the students’
work back.

Actually, this is possible thanks to ttepy-on-writetechnol-
ogy supported by UML, allowing to work with very small project
files. The teacher receiving backwfiles containing the students’
modifications to filesystems will be able to manually inspect files
or to automatically run analysis scripts.

What we regard as the main current limit of our application is
directly inherited from the underlying UML technology, consisting
in the possibility to emulatenly the Linux kernel, and not others.

In order to enrich the variety of supported operating systems, we
are considering the idea of porting Marionnet to the Xen platform
as a further interesting, although not prioritary work.

A tempting possible approach for further developing Marionnet
would consist in using Marionnet itself to emulate the network-
classroom situation, including the teacher and the students’ ma-
chines. This kind of “bootstrap” would allow one to use a stable
version of Marionnet to run a newer testing version of itgéthin
itself.

Acknowledgments

First of all we wish to thank Jeff Dike and Renzo Davoli for their
great work on which we based our application, the whole free
software community, whose first and foremost contributors remain
the GNU and Linux projects, and the authors of OCaml.

Universie Paris 13 provides us with the practical means of
continuing this deeply satisfying work by financing the Marionnet
project.

27Colloque Rdagogique National des IUTs en éfeaux et

dents and for teachers. It can be also useful to system administra-Telecommunications, 30 May - 1 June 2007, Saint-Malo, France.
tors, scientists and developers in designing, implementing, testing,28There are about one hundred IUTs in France, of which about

installing and configuring network applications, services and pro-
tocols.

half with Networks or Computer Science Departments (Source:
http://www.cefi.org/IUT/AZ_IUT.HTM).

http://www.cefi.org/IUT/AZ_IUT.HTM

References

[1] ABELSON, H., AND SussSMAN, G. J. Structure and Interpretation
of Computer Programs2nd ed. The MIT Press, Cambridge,
Massachusetts, July 1996.

[2] Apawms, D. The Hitch Hiker's Guide to the GalaxyPan Books,
London, 1979.

[3] AT&T L aBs. Graphviz - open source graph drawing software.
URL: http://www.research.att.com/sw/tools/graphviz/.

[4] BARHAM, P.,ET AL. Xen and the art of virtualization. IBOSP '03:
Proceedings of the nineteenth ACM symposium on Operatsigrag
principles(New York, NY, USA, 2003), ACM Press, pp. 164-177.

[5] BEGNUM, K., ET AL. The MLN Project Home Page.
URL: http://mln.sourceforge.net/index.php.

[6] BELLARD, F. QEMU Open Source Processor Emulator.
URL: http://www.qemu.org.

[7] BLANC, M. The vmumlgui Project Home Page.
URL: http://pagesperso.erasme.org/michel/vnumlgui/.

[8] CAESAR, M., CALDWELL, D., FEAMSTER, N., REXFORD, J.,
SHAIKH, A., AND VAN DER MERWE, J. Design and implementation
of a routing control platform. IMNSDI'05: Proceedings of the
2nd conference on Symposium on Networked Systems Design &
Implementatior(Berkeley, CA, USA, 2005), USENIX Association,
pp. 2-2.

[9] CHAILLOUX, E., MANOURY, P.,AND PAGANO, B. Developing Ap-
plications with Objective CamR000. Developement d’'applications
avec Objective Caml, O'Reilly, France.

[10] CousINEAU, G., AND MAUNY, M. The Functional Approach to
Programming Cambridge University Press, 1998.

[11] DAvEY, P. The X userxterm tips and tricks.]-X-RESOURCE 01
(oct 1991), 24-30.

[12] DavoLl, R. Teaching Operating Systems Administration with
User Mode Linux. InITICSE '04: Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in computer
science educatiofNew York, NY, USA, 2004), ACM Press, pp. 112—
116.

[13] DavoLl, R. VDE: Virtual Distributed Ethernet. IRIDENTCOM
(2005), IEEE Computer Society, pp. 213-220.

[14] DikE, J. User Mode Linux Community Site.
URL: http://usermodelinux.org.

[15] DIKE, J. User Mode Linux Kernel Home Page.
URL: http://user-mode-1linux.sourceforge.net.

[16] DIKE, J. User Mode Linux Prentice-Hall, 2006.

[17] DREPPER U., MILLER, P.,AND HAIBLE, B. gettext Home Page.
URL: http://www.gnu.org/software/gettext/.

[18] FREE SOFTWARE FOUNDATION. GNU Home Page.
URL: http://wuw.gnu.org.

[19] FREE SOFTWARE FOUNDATION. GNU General Public License.
URL: http://www.gnu.org/copyleft/gpl.html, 2007.

[20] GALAN, F.,AND DEcclo, C. T. VNUML Language Reference.
URL:http://jungla.dit.upm.es/vnuml/doc/1.6/reference/index.html.

[21] GALAN, F., AND FERNANDEZ, D. Virtual Network User Mode
Linux.
URL: http://jungla.dit.upm.es/vnuml/.

[22] GARRIGUE, J., FAUQUE, H., FURUSE, J., AND KAGAWA, K.
Lablgtk, a Gtk interface for Objective Label.
URL: http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[23] ISHIGURO, K., ET AL. Quagga Home Page.
URL: http://www.quagga.net.

[24] KRAP, A. Setting up a virtual network laboratory with User-Mode
Linux. Tech. rep., 2004. Masters programme on System and Metwo
Administration, University of Amsterdam.

URL: http://www.o0s3.nl/arjen/snb/asp/asp-report.pdf.

[25] KRASNYANSKY, M. Universal TUN/TAP device driver.
URL: http://www.kernel.org/pub/linux/kernel/,
FILE: people/marcelo/linux-2.4/Documentation/networking/
tuntap.txt.

[26] LawTON, K., ET AL. Bochs Home Page.
URL: http://bochs.sourceforge.net.

[27] LE GALL, S. ocaml-gettext Home Page.
URL: http://sylvain.le-gall.net/ocaml-gettext.html.

[28] LEROY, X., DOLIGEZ, D., GARRIGUE, J., REMY, D., AND
VOUILLON), J. The Objective Caml system, Documentation and
user's manualrelease 3.10 ed., 2007.

URL: http://caml.inria.fr/pub/docs/manual-ocaml/.

[29] LoDbDoO, J.-V., AND SAlU, L. A sample work session with
Marionnet. Video.
URL: http://www-1lipn.univ-paris13.fr/~loddo/video.ogg.

[30] MILNER, R. A proposal for standard ml. IoFP '84: Proceedings
of the 1984 ACM Symposium on LISP and functional programming
(New York, NY, USA, 1984), ACM Press, pp. 184-197.

[31] MURI, F. uml_switch2 Home Page.
URL: http://www.uxu.ch/uxu/software/uml_switch2.

[32] NARBEL, P. Programmation fonctionnelle,&gérique et objet. Une
introduction avec le langage OCamVuibert Informatique, 2005.

[33] NEMESIO, S. C.,DE LAS HERAS QUIROS, P., BARBERO, E.
M. C., AND GONZALEZ, J. A. C. Early experiences with NetGUI
laboratories.

[34] OH, S. Gtk+ 2.0 Tree View Tutorial using OCaml - Adaptation of
Tim-Philipp Muller tutorial.
URL: http://plus.kaist.ac.kr/~shoh/ocaml/lablgtk2/
treeview-tutorial/.

[35] PERLMAN, R. J. An algorithm for distributed computation of a
spanningtree in an extended LAN. $#iGCOMM(1985), pp. 44-53.

[36] PEYTON JONES, S.,ET AL. Report on the programming language
haskell 98, Feb. 1999.

[37] REMY, D., AND VOUILLON, J. Objective ML: An effective object-
oriented extension to MLTheory and Practice of Object Systems 4
1(1998), 27-50.

RIMONDINI, M. Emulation of Computer Networks with Netkit.
Tech. rep., 2007. Universitdegli Studi di Roma Tre.

URL: http://dipartimento.dia.uniroma3.it/

FILE: ricerca/rapporti/rt/2007-113.pdf.

(38]

[39] Salu, L. The epsilon project — a functional language implementa-
tion (MD thesis)

URL: http://etd.adm.unipi.it/theses/available/etd-02012007~
071542

Software available atttp://savannah.gnu.org/projects/epsilon,

Feb. 14 2007.

[40] SCHEIFLER, R. W.,AND GETTYS, J. The X window systemACM
Trans. Graph. 52 (1986), 79-109.

[41] STEVENS, W. R. Unix Network ProgrammingPrentice Hall, 1990.

[42] TAYLOR, O., ET AL. Gtk+ - GNU toolkit for X windows
development.

URL: http://wuw.gtk.org.

[43] TORVALDS, L. Linux Home Page.
URL: http://www.linux.org.

[44] TURNER, D. A. Miranda: a non-strict functional language with
polymorphic types. InProc. of a conference on Functional
programming languages and computer architect{Mew York, NY,
USA, 1985), Springer-Verlag New York, Inc., pp. 1-16.

[45] vaN BEERS M., CHAPLIN, D., ET AL. Glade - A User Interface
Designer for GTK+ and GNOME.
URL: http://glade.gnome.org.

[46] VM WARE, INC. VMware Home Page.
URL: http://www.vmware . com.

http://www.research.att.com/sw/tools/graphviz/
http://mln.sourceforge.net/index.php
http://www.qemu.org
http://pagesperso.erasme.org/michel/vnumlgui/
http://usermodelinux.org
http://user-mode-linux.sourceforge.net
http://www.gnu.org/software/gettext/
http://www.gnu.org
http://www.gnu.org/copyleft/gpl.html
http://jungla.dit.upm.es/vnuml/doc/1.6/reference/index.html
http://jungla.dit.upm.es/vnuml/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://www.quagga.net
http://www.os3.nl/arjen/snb/asp/asp-report.pdf
http://www.kernel.org/pub/linux/kernel/
people/marcelo/linux-2.4/Documentation/networking/
tuntap.txt
http://bochs.sourceforge.net
http://sylvain.le-gall.net/ocaml-gettext.html
http://caml.inria.fr/pub/docs/manual-ocaml/
http://www-lipn.univ-paris13.fr/~loddo/video.ogg
http://www.uxu.ch/uxu/software/uml_switch2
http://plus.kaist.ac.kr/~shoh/ocaml/lablgtk2/
treeview-tutorial/
http://dipartimento.dia.uniroma3.it/
ricerca/rapporti/rt/2007-113.pdf
http://etd.adm.unipi.it/theses/available/etd-02012007-
071542
http://savannah.gnu.org/projects/epsilon
http://www.gtk.org
http://www.linux.org
http://glade.gnome.org
http://www.vmware.com

	Motivations
	Introduction
	An high level architecture: network emulation layers
	Contributions

	Objectives
	Emulated network components
	Port and cable defects
	Dynamic network reconfiguration
	Filesystem history
	GUI-related functionalities
	Classroom functionalities
	Internationalization
	Development time constraints

	The solution
	Language choice
	Implementation guidelines
	Network structure: user-level vs. emulation-level
	Translation of virtual devices into processes

	Control layer
	Cable reference counter

	UML kernels
	Virtual filesystems
	Network graph representation
	Graphical User Interface
	Network graph image
	Computer terminals
	Device LED grids
	Filesystem history and defects interfaces

	Patches to the C code
	Ghostification
	Defects and blinking

	Implementation scope

	Relevant code samples
	Process implementation
	Forest data structure
	Message passing

	Related work
	Conclusions and further work

