
Marionnet: a virtual network laboratory and simulation tool

Jean-Vincent Loddo
LIPN

99, avenue J.B. Clément
93430 Villetaneuse, France

loddo@lipn.univ-paris13.fr

Luca Saiu
LIPN

99, avenue J.B. Clément
93430 Villetaneuse, France

saiu@lipn.univ-paris13.fr

ABSTRACT
We present Marionnet1, a high-level simulation tool allowing
to accurately reproduce the behavior of physical computer
networks made by computers, hubs, switches and routers;
virtual machines run unmodified GNU/Linux binaries for
the x86 architecture at nearly native speed.

Individual virtual devices can be dynamically created, de-
stroyed or modified while the rest of the virtual network is
running, providing many opportunities for experimentation
without any need for clumsy hardware setup.

Marionnet has a very intuitive graphical user interface also
suitable to inexperienced users, and is being used with suc-
cess for teaching computer networks at Université Paris 13.

We believe its adoption can be extended to other specialits
in the field of network, in order to ease the design and debug
of computer networks, applications and protocols.

This work presents Marionnet from a user point of view,
complementing its description with a practical use scenario
showing an example of how the application could be prof-
itably employed in the industry.

Categories and Subject Descriptors
I.6.7 [Simulation Support Systems]; I.6.3 [Applications];
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation

Keywords
simulation, computer networks, GUI, interactive, UML

1. INTRODUCTION
One of the main purposes of Marionnet is enabling users

to test computer network cablings, network protocols, ser-

1Marionnet is financed by Université Paris 13.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SimulationWorks March 4, 2008, Marseille, France
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

vices and applications. The application allows to easily de-
fine and configure a virtual network complete with hubs,
switches and routers, and then to actually run unmodified
GNU/Linux x86 software on virtual computers.

Marionnet is a free software application running on GNU/
Linux built on UML2 and VDE3.

Not only Marionnet benefits from the efficiency and sta-
bility of Linux, but its free software license has been the very
reason making Marionnet possible in the first place: we ac-
tually modified and adapted User Mode Linux ([7], [5], [6])
and VDE ([4]).

Network devices like hubs, switches, routers and cables
also need to be simulated to be able to closely reproduce
the behavior of a physical network.

In this paper we describe Marionnet from the point of view
of a user, providing only some brief hints to the implemen-
tation. [12] describes the inner workings of Marionnet at a
reasonable level of detail.

2. BASIC USAGE
Marionnet is an interactive software with a graphical user

interface based on GTK+ ([13]). If exposes to the users
the usual project-oriented metaphore: in order to start us-
ing the application the user can create a new empty project
or open an existing one. In both cases a dialog window
pops up, asking to choose a file name. Once a project is
created or opened the user can freely navigate through the
functionalities offered by the interface: the device palette,
the graphical network representation (henceforth the net-
work graph) and the panes providing advanced functionali-
ties (Interfaces, Anomalies, Filesystem history) become ac-
tive. Figure 1 shows the interface as it looks right after the
creation of a new project.

2User Mode Linux, by Jeff Dike et al., is a port of the Linux
kernel to the GNU/Linux system consisting in a guest kernel
which runs on the host operating system as a normal user-
level process, but exposing the complete Linux kernel API
to its guest processes.
Even at the cost of an excessive simplification, in this paper
we make the conscious decision of not distinguishing among
such a solution, emulation, simulation and paravirtualiza-
tion: the internal architecture of the software compoents we
build upon is not relevant for the application.
3Virtual Distributed Ethernet, by Renzo Davoli et al., is
a low-level communication infrastructure which we heavily
reused for implementing virtual devices. Marionnet inter-
nals, including our modification to VDE, are described in
[12].



Figure 1:

The interface how it looks right after the creation of a new
project

2.1 Devices palette
Network devices can be created, modified and controlled

from the device palette within the Hardware pane.
The user is freed from the burden of physically placing

device icons in the network graph two-dimensional space:
placement is automatic, but several parameters (for example
the length of edges and the size of icons) can be tuned if
needed (see Figure 1, on the right).

The network graph is automatically updated at each de-
vice state change (such as startup, pause or resume) to re-
flect the current state.

The device palette offers two kinds of functionalities:

1. virtual network editing, including definition, modifica-
tion and removal of individual devices.

2. virtual network control features: each device can be
started-up, paused, resumed, shutdown and powered-off.

Eight types of virtual network components are currently
provided:

1. computer

2. Ethernet hub

3. Ethernet switch

4. IP router

5. “straight” Ethernet cable

6. crossover Ethernet cable

7. Ethernet cloud

8. Ethernet socket

We are now going to briefly review them, showing how the
devices of each type can be tuned.

2.2 Virtual computer
The virtual computer device represents a computer run-

ning a GNU/Linux operating system. Just like a physical
computer a virtual computer can be off or running. As an
“extension” to what it is possible in a physical network we
also provide the possibility of pausing computers: in the
paused state computers do not react to incoming messages.
Pausing allows to experiment with dynamic routing proto-
cols, making a machine temporarily unreachable.

Different icons represent a virtual computer in off, running
and paused state in the network graph:

Parameters
When a user adds or modifies a virtual computer the dialog
window shown in Figure 2 allows to choose its name and to
set several parameters.

The following parameters are hardware-related:

• RAM: the quantity of RAM reserved by the host sys-
tem to the guest, seen by the guest as its physical
memory. The default 48Mb setting is adequate for
comfortably running even graphical applications like
Firefox or Ethereal/Wireshark.
Of course swapping is also provided on virtual ma-
chines.

• Number of Ethernet cards (1 by default)

The user can also tune the software running on the virtual
machine:

• the particular GNU/Linux distribution, chosen among
the ones provided for guest systems by the Marionnet
installation4.

• a variant represents a modification to the filesystem
of the selected GNU/Linux distribution. The COW
(Copy On Write) technology supported by UML al-
lows a very efficient implementation of this feature,
involving a single sparse file containing only the blocks
which are different from the unmodified distribution.
A typical COW file takes only a few megabytes of disk
space on the host.

• the particular guest kernel, chosen from several ver-
sions of Linux compiled with different features enabled.

• setting the terminal type allows to choose whether the
machine displays its X clients using the host X server
or an Xnest server of its own.
When a machine has its terminal type set to host the
user interacts with it in text mode using a simple vir-
tual terminal window, and can launch graphical appli-
cations which draw their clients on the same X display

4It is quite easy to add support for more distributions: see
the UML documentation for more information about how to
create guest filesystem images.



Figure 2:

Virtual machine parameters dialog

where Marionnet runs.
In Xnest mode, instead, a running virtual computer
has a window (shown on the host display, of course)
representing its monitor and running some graphical
desktop system: the guest X clients are clearly sep-
arated from the host ones and the ones belonging to
other guests. This setting is particularly appropriate
for beginners.

2.3 Virtual hub
A hub is a very simple electronic device reproducing the

signals it receives from one of its port into all the other
ports. All the network nodes connected to a hub belong to
the same Ethernet collision domain.

Despite nowadays being mostly disregarded as obsolete
variants of switches (see Section 2.4), hubs are often con-
venient for intercepting and analyzing network traffic: this
can be easily realized by running a sniffer application such
as wireshark or tcpdump on a virtual computer directly con-
nected to a hub.

VDE (see [4] and [3]) allows to simulate an Ethernet switch,
but some modifications to its C source code have been nec-
essary in order to realize the behavior needed in Marionnet.

The following icons represent a hub in its off, running and
paused state:

Parameters
A very simple dialog window allows to set the name and few
other parameters of each virtual hub:

• an optional label to be shown on the network graph
near the hub icon.

• the number of Ethernet ports, 4 by default.

2.4 Virtual switch
An Ethernet switch also allows to relay several Ethernet

frames through a network, but differently from a hub it out-
puts data only to the intended receiving node.

A virtual switch is represented by the following icons in Mar-
ionnet:

Parameters
The dialog window allowing to edit a switch has no notable
differences from the one for editing a hub (see Section 2.3):
only a name, an optional label (to be shown in the network
graph) and the number of ports can be chosen.

2.5 Virtual router
An IP router is a device directing packets from a local net-

work to another local network. The main purpose of a router
is to find the next node of a network through which a packet
should be sent to reach its final destination in the minimum
time. It is worth to emphasize that, differently from hubs
and switches which operate at the link layer, routers work at
the network layer, and their behavior is considerably more
complex. Routing tables can be set either statically or dy-
namically.

Virtual routers are implemented with the Quagga software
(see [10], [2]; Quagga is derived from the Zebra project:
http://www.zebra.org/) running on a UML virtual ma-
chine. Quagga allows both static and dynamic routing (in
the latest case supporting different protocols such as RIP,
OSF, BGP and ISIS).

Each router port can be configured from the Marionnet
Interface pane.

Once it is started, a virtual router can also be set up with
the telnet protocol.

Virtual routers are identified by the following icons in the
network graph:

Parameters
Router interfaces can be configured from the Interfaces pane.

The dialog window allowing to setup or modify routers is
similar to the ones for hubs and switches.

2.6 Virtual cable
Ethernet cables allow to physically connect nodes in the

network. Marionnet simulates the most common sort of ca-
bles deployed today, twisted pair with “RJ45” connectors.
In any case we tend to abstract over such low-level details,
which are typically not relevant at the high-level where Mar-
ionnet works.

Marionnet currently supports only fully wired virtual net-
works; support for wireless networks is planned for a future
version. Some work in this direction using UML already
exists: see [9]. Bandwitdh limitation (allowing for exam-
ple to restrict bandwidth to 100Mb/s over some cables and

http://www.zebra.org/


Figure 3:

“Straight” cable editing dialog

to 1000Mb/s on others) would be easy to implement5, and
is planned for the next version. The distinction between
“straight” and crossover cables can be enforced6 or ignored
by setting a global option.

The control actions provided by the devices palette are
limited to connect and disconnect in the case of cables7. Ca-
bles are always connected by default, but they can be discon-
nected and reconnected at will by the user, as it is common
while making tests on the network at several different levels.

Cables are represented in the network graph as solid lines
when connected, and as dashed lines when disconnected.

Parameters
The user can set the name, and optional label to be shown
in the network graph, and the identity of each endpoint for
each cable, as seen in Figure 3.

2.7 Virtual Ethernet “cloud”
An cloud represents an Ethernet network composed of

hubs, switches and cables, with exactly two endpoints an
unspecified internal structure. The only externally observ-
able effects of a cloud consist in delays and other anomalies
in the relaying of frames from one endpoint to the other.

This “device” is particularly useful for the simulation of
dynamic routing (see Section 2.5).

Parameters
The cloud definition dialog is not particularly interesting,
as it only allows to set a name and an optional label to be
shown in the network graph.
5Of course the speed of the processor or processors would
remain an artificial limit, but limiting the maximum band-
width is easy with VDE.
6When this policy is enforced an“incorrect”cable, for exam-
ple a crossover cable connecting a computer with a switch,
simply does not trasmit any frames.
7There would be very little point in stretching the star-
tup/shutdown/poweroff/pause/resume metaphore to also ap-
ply to cables, as the behavior associated to each of these ac-
tions would always exactly minic either the connect or dis-
connect action. Simply providing the means for temporarily
disconnecting a cable is intuitive and covers all the useful
cases.

Anomalies can be set from the Defects pane with a very
fine level of detail: see Section 5.2.

2.8 Virtual external socket
Using the components presented up to this moment it

is possible to build a virtual network made of computers,
hubs, switches, routers and clouds connected by “straight”
and crossover Ethernet cables. Such a virtual network is a
possibly interesting and useful but completely closed system,
isolated by the outside world8.

The external socket device represents a“female Ethernet wall
socket”, opening a breach in this apparent closure: when
connected to an external socket other compoenents can ac-
cess the same (non-virtual) network to which the host be-
longs.

External sockets provide several useful opportunities:

• connecting virtual computers to the Internet

• easily installing additional software on virtual machines,
for example using apt-get install on a debian dis-
tribution

• making virtual computers clients of services offered by
the host or its network: some examples include DHCP,
DNS, NFS, and NTP

It is also possible to use external sockets to connect several
virtual networks, possibly running on different hosts.

The implementation depends on the bridging functionality
in Linux.

Parameters
The user can only specify a name and an optional label.

3. NETWORK GRAPH
When any virtual device changes state or a Marionnet

project is opened the network graph image is regenerated9

to reflect the current situation.

The configuration parameters settable by the user from the
palette next to the graph image in the Hardware pane are
divided into four categories.

8There is a hidden communication channel from each vir-
tual computer to the host system, used for making virtual
machines exchange messages with the host X server (be it
“native” or Xnest). The implementation of this feature is
discussed in [12]. Nonetheless this communication is not
directly accessible to the user and definitely not “general-
purpose”.
9This functionality is implemented with runtime calls to dot,
from the free sofware package Graphviz ([1]). dot can gener-
ate an image by placing icons in the two-dimensional space
in a completely automatic way, but it also supports many
“hints” to tune the picture apparence. All the user settings
described in this section are implemented with (often quite
complex) dot commands.



Figure 4:

A typical example of simulation with a very simple network. m2 is pinging a remote machine reachable through the external
socket. m3 has an Xnest interface; instead m1 has a terminal interface, and its xeyes is shown by the host X server.

Nodes
Three settings are available:

1. a slider allows to tune the icons’ size

2. pressing the “dice” button randomly rearranges nodes

3. pressing the “slashed dice” button resets the nodes ar-
rangement to the initial state

Edges
Four settings:

1. pressing the “right arrow” button regenerates the im-
age so that its main spine is drawn horizontally

2. pressing the “down arrow” button redraws the image
with a vertical main spine

3. a slider allows to set the minimum edge length

4. pressing the “circular arrow” button pops up a menu
allowing to swap the ends of an edge in the network
graph image

Labels
A slider allows to set the distance between a label and the
icon representing the node it describes.

Surface
A slider allows to set the size of the canvas containing the
whole image.

4. EXECUTION AND CONTROL
The Marionnet user interface provides two different styles

of controlling simulation: the device-oriented local style and
the network-oriented global style.

4.1 Local vs. global control
The device palette provides for local control: the user

first chooses a device type (e.g. the router); then a popup
menu appears displaying the possible actions. When the
user chooses one (e.g. “power-off”), a sub-menu pops up
displaying the list of device name of the selected type on
which the selected action is currently possible. The action
is performed as soon as the user clicks on a device name.

All menus are dynamically generated according to the cur-
rent simulation state: for example the “resume” action is
only possible on currently “paused” devices; and of course
the possibility of creating and destroying devices even dur-
ing the simulation implies that the list of existing devices
itself varies through time.

By contrast, the large buttons always visible on the bot-



Figure 5: Interfaces pane

tom pane permit a form of global control: pressing one of
them executes the same action on all the devices which are
currently in a state allowing it; the possible global actions
are startup everything, shutdown everything, and power-off
everything.

4.2 “Shutdown” vs. “power-off”
Within Marionnet the term “power-off” means brusquely

unplugging the “power cord” of a virtual device10. By con-
trast the term“shutdown” refers to the action of “gracefully”
terminating the activity of a device before turning it off.

The difference between power-off and shutdown is rele-
vant for “stateful” virtual devices which contain some kind
of disk which supports asynchronous writes, like computers
and routers; just like for physical devices, a brusque power-
off can leave filesystems in an inconsistent state11.

5. ADVANCED USAGE
Marionnet also provides several advanced functionalities,

the most important of which we now enumerate:

5.1 Interface pre-configuration
In the Interfaces pane (see Figure 5) the user can configure

the network interfaces of virtual computers and routers by
setting the following parameters:

• MAC address

• MTU

• IPv4 address

• IPv4 broadcast address

• IPv4 netmask

10This is implemented by sending a SIGKILL signal to all the
processes simulating a virtual device, for most devices.

11But damages are typically very limited with modern filesys-
tems: since UML is a complete port of Linux it includes sup-
port for journaled filesystem like ext3 and raiserfs, which of
course can also be used in virtual computers and routers.

Figure 6: Defects pane

• IPv6 address12

Although all these parameters can also be set after startup
by logging in the virtual computer or router and invoking
ifconfig, this interface provides a conventient shortcut. By
setting a global option IPv4 and IPv6 addresses can also be
automatically generated by the application upon the cre-
ation of a port.

5.2 Defects
The communication infrastructure can manifest several

kinds of “faulty” behavior:

• frame loss

• frame duplication

• flipped bits

• trasmission delay13

As shown in Figure 6 defects can be set up in the Anoma-
lies pane, with the granularity of the single electric line, i.e.
the direction (in-to-out or out-to-in for ports and left-to-right
or right-to-left for cables).

For each direction of each cable or port of each device the
user can individually set any defect, by entering a probabil-
ity or, in the case of delays, a time in millieconds.

Defects settings can be updated “hot”, i.e. while the net-
work is running: the behavior is immediately affected.

5.3 Filesystem history
For each virtual computer or router, a complete history

of the disk states is available (see Figure 7): each state is
saved just before startup.

A machine or router can be started up in the most recent
state (which is the default behavior), or in any previously

12IPv6 addresses also contain information about the netmask
and broadcast; there is no need for three distinct paramters
in the case of IPv6.

13The delay follows a normal distribution in the current im-
plementation. The parameters “min”and“max”, settable by
the user, represent µ − 3σ and µ + 3σ.



Figure 7: Filesystem history pane

saved state. This allows users to freely experiment with po-
tentially“dangerous”filesystem modifications, as each change
is reversible.

For each machine or router the filesystem history displays
a tree structure keeping track of the“parent-child”derivation
relation of states.

States can also be deleted or exported as variants, to be
used for new machines or routers in the same or even in
different projects: see subsection 2.1 and Figure 2 for some
details about variants.

6. FILE FORMAT
The Marionnet project file format is a tar archive con-

taining some OCaml marshalled objects and UML cow files.
The format has been very carefully designed to be back-

and forward-compatible: newer versions of Marionnet can
read project saved by older versions and vice-versa: when
Marionnet finds some information which it doesn’t “under-
stand”, the system simply ignores it. If instead some needed
field is lacking then a default value is generated.

We hope this to become a conventional exchange format for
people who desidred to share projects and “prepackaged”
networks.

7. A POSSIBLE USAGE EXAMPLE
As one example of a usage scenario for Marionnet be-

ing employed in the industry we outline the development of
a peer-to-peer application-level protocol, using a simulated
network.

7.1 Scenario
We assume the protocol to be based on an existing trans-

port layer, so that its implementation does not need to reside
in the kernel14; a reasonable choice for the transport is, of
course, UDP.

14Marionnet could also be used for testing kernel-level imple-
mentations based on Linux, but this would limit its applica-
tion to running virtual machines using experimental UML
kernels. The kernel-level development itself could also be
performed within Marionnet, but without particolar bene-
fits: in particular (virtual) computer reboots would be still

7.2 Development
Setting up a development environment in which program-

mers can be productive and at ease may involve a consider-
able investiment of time and energy; our proposal is explic-
itly aimed at not disrupting this environment. In particular
the devlopment itself, intended as editing and compiling, can
continue to happen on the phyisical machines already em-
ployed by programmers.

We assume the adoption of a typical modern infrastruc-
ture for development, in particular the availability of a net-
work file system like NFS or SMB15.

A shared directory on the network file system will host
the compiled, executable files, so that they are available to
all virtual computers through an Ethernet socket device (see
Subsection 2.8).

One virtual computer should be configured as a peer ma-
chine, installing on its virtual filesystem all the needed soft-
ware, including external serivices and libraries; the packag-
ing system of the GNU/Linux distribution can be used for
this. This setup should then be made easily reusable by sav-
ing the machine’s filesystem state as a variant: in this way
other identical peer virtual machines can be later created,
at will.

7.2.1 Discovery
The first task in this project would probabaly consist in

developing some strategy to discover new peer machines
joining the network. This is easy to test by creating a vir-
tual network with just three or four computers connected to
a switch. Each of them will run the same executable from
the shared directory.

7.2.2 Fault tolerance
Any reasonable peer-to-peer protocol should of course be

fault-tolerant, and react in a correct way to the sudden dis-
connection of some machine. The pause and power-off ac-
tions can be employed on virtual computers in the same
setup outlined above.

In order to stress the protocol’s resilience to the lack of
reliability of the network, one or more cloud devices (see
Subsection 2.7) can be added to the virtual network. The
application can be tested in arbitrarily adverse conditions,
by tuning the defect probabilities16 (see Subsection 5.2) at
runtime, while the application is running.

If the application has also an on-disk state and its fault-
tolerance needs to be tested, single virtual computers can
be powered-off while running, just for this purpose. If some
“interesting” inconsistent disk state is reached in this way
the filesystem state can be saved as a variant (see Subsec-
tion 2.2) so that the problem can be studied and debugged
in repeatable conditions.

7.2.3 Firewalls, NATs and multicast
If the peer-to-peer protocol needs to work across firewalls

needed. Here we want to present, by constrast, a case of
development with rapid turnaround.

15If not already available such a service can be installed on
the Marionnet host computer, when the same machine is
also used for development.

16Doing the same type of test with a loopback network device
or on a physical network would be extremely hard, because
the number of faults would be too small in practice, and
however not directly modifiable.



and NAT subnetworks, the virtual network can be modified
by adding routers (see Subsection 2.5), or different virtual
computers configured as gateways: virtual computers can be
equipped with the exact same firewall software which could
run on physical networks.

A possible optimization of the protocol consists in sup-
porting multicast to transmit the same message to multiple
peers: such a feature, and its interaction with routing, is
much easier to test in a virtual environment.

7.2.4 Interoperability among different versions
At some time in the application life time, the protocol

will inevitably have to be modified. When interoperability
among different versions is desired, tests can be prepared by
setting up one virtual machine per released protocol version
(not using the shared network direcory in this case), and
making variants.

If this is desired, machines created from such variants can
be added to all future test cases, and made interact with the
new versions of the protocol.

If some older version which the developer desires to use
for testing is not readily available, it can even be fetched
from the revision control system and compiled on the vir-
tual machine itself: the only requirements are, of course,
the availability of a network-accessible revision control sys-
tem on the host network, and the compiling (not necessarily
editing) environemnt on virtual computers.

8. CONCLUSIONS
We implemented a general purpose interactive simulation

system for computer networks, allowing to accurately sim-
ulate complete networks, including the software running on
computers.

Marionnet is currently being employed with success for
teaching computer networks to students at Université Paris
13. We believe its use can be profitable extended to other
cases of simulation and debugging or networks and applica-
tions.

Some rough edges and “wishlist features” remain, like UI
internationalization. The problem of supporting wireless
networks, despite being nontrivial, has been tackled with
success by others using UML: see [9].

Marionnet is free software, released under the GNU GPL
([8]): anyone is free to share and modify it.

Marionnet is written using the elegant functional language
OCaml ([11]), and the implementation itself is quite inter-
esting; we are trying to build a strong “community” around
it, and we welcome contributions to expand it in new direc-
tions.

The Marionnet web site is http://www.marionnet.org.

9. ACKNOWLEDGEMENTS
We wish to thank Jeff Dike for UML, Renzo Davoli for

VDE, the author of OCaml and of course the free software
community, for making this work possible. Marionnet is
financed by Université Paris 13.

10. REFERENCES
[1] AT&T Labs. Graphviz - open source graph drawing

software.
URL: http://www.research.att.com/sw/tools/graphviz/.

[2] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
implementation of a routing control platform. In
NSDI’05: Proceedings of the 2nd conference on
Symposium on Networked Systems Design &
Implementation, pages 2–2, Berkeley, CA, USA, 2005.
USENIX Association.

[3] R. Davoli. Teaching Operating Systems
Administration with User Mode Linux. In ITiCSE
’04: Proceedings of the 9th annual SIGCSE conference
on Innovation and technology in computer science
education, pages 112–116, New York, NY, USA, 2004.
ACM Press.

[4] R. Davoli. VDE: Virtual Distributed Ethernet. In
TRIDENTCOM, pages 213–220. IEEE Computer
Society, 2005.

[5] J. Dike. User Mode Linux Community Site.
URL: http://usermodelinux.org.

[6] J. Dike. User Mode Linux Kernel Home Page.
URL: http://user-mode-linux.sourceforge.net.

[7] J. Dike. User Mode Linux. Prentice-Hall, 2006.

[8] Free Software Foundation. GNU General Public
License.
URL: http://www.gnu.org/copyleft/gpl.html, 2007.

[9] V. Guffens and G. Bastin. Running virtualized native
drivers in user mode linux. In ATEC’05: Proceedings
of the USENIX Annual Technical Conference 2005 on
USENIX Annual Technical Conference, pages 40–40,
Berkeley, CA, USA, 2005. USENIX Association.

[10] K. Ishiguro et al. Quagga Home Page.
URL: http://www.quagga.net.

[11] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon). The Objective Caml system,
Documentation and user’s manual, release 3.10
edition, 2007.
URL: http://caml.inria.fr/pub/docs/manual-ocaml/.

[12] J.-V. Loddo and L. Saiu. Status Report: Marionnet –
“How to Implement a Virtual Network Laboratory in
Six Months and be Happy”. In ACM SIGPLAN
Workshop on ML. ACM Press, 2007.

[13] O. Taylor et al. Gtk+ - GNU toolkit for X windows
development.
URL: http://www.gtk.org.

http://www.marionnet.org
http://www.research.att.com/sw/tools/graphviz/
http://usermodelinux.org
http://user-mode-linux.sourceforge.net
http://www.gnu.org/copyleft/gpl.html
http://www.quagga.net
http://caml.inria.fr/pub/docs/manual-ocaml/
http://www.gtk.org

	Introduction
	Basic usage
	Devices palette
	Virtual computer
	Virtual hub
	Virtual switch
	Virtual router
	Virtual cable
	Virtual Ethernet ``cloud''
	Virtual external socket

	Network graph
	Execution and control
	Local vs. global control
	``Shutdown'' vs. ``power-off''

	Advanced usage
	Interface pre-configuration
	Defects
	Filesystem history

	File format
	A possible usage example
	Scenario
	Development
	Discovery
	Fault tolerance
	Firewalls, NATs and multicast
	Interoperability among different versions


	Conclusions
	Acknowledgements
	References

