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a b s t r a c t

Computer programs may go wrong due to exceptional behaviors, out-of-bound array
accesses, or simply coding errors. Thus, they cannot be blindly trusted. Scientific computing
programsmake no exception in that respect, and even bring specific accuracy issues due to
their massive use of floating-point computations. Yet, it is uncommon to guarantee their
correctness. Indeed, we had to extend existing methods and tools for proving the correct
behavior of programs to verify an existing numerical analysis program. This C program
implements the second-order centered finite difference explicit scheme for solving the 1D
wave equation. In fact, we have gone much further as we have mechanically verified the
convergence of the numerical scheme in order to get a complete formal proof covering all
aspects from partial differential equations to actual numerical results. To the best of our
knowledge, this is the first time such a comprehensive proof is achieved.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Given an appropriate set of mathematical equations (such as ODEs or PDEs) modeling a physical event, the usual
simulation process consists of two stages. First, the continuous equations are approximated by a set of discrete equations,
called the numerical scheme, which is then proved to be convergent. Second, the set of discrete equations is implemented
as a computer program, which is eventually run to perform simulations.

Themodeling of critical systems requires correctness of themodeling programs in the sense that there is no runtime error
and the computed value is an accurate solution to the mathematical equations. The correctness of the program relies on the
correctness of the two stages. Note that we do not consider here the issue of adequacy of the mathematical equations with
the physical phenomenon of interest.We take the differential equation as a starting point in the simulation process. Usually,
the discretization stage is justified by a pen-and-paper proof of the convergence of the selected scheme, while, following [1],
the implementation stage is ratified by both code verification and solution verification. Code verification (checking for bugs)
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uses manufactured solutions; it is called validation by tests below. Solution verification (checking for convergence of the
numerical scheme at runtime) usually uses a posteriori error estimates to control the numerical errors; it is out of scope
for this paper, nevertheless we briefly address the issue in the final discussion. The drawback of pen-and-paper proofs is
that human beings are fallible and errors may be left, for example in long and tedious proofs involving a large number of
subcases. The drawback of validation by tests is that, except for exhaustive testing which is impossible here, it does not
imply a proof of correctness in all possible cases. Therefore, one may overestimate the convergence rate, or miss coding
errors, or underestimate round-off errors due to floating-point computations. In short, this methodology only hints at the
correctness of modeling programs but does not guarantee it.

The fallibility of pen-and-paper proofs and the limitations of validation by tests is not a new problem, and has been
a fundamental concern for a long time in the computer science community. The answer to this question came from
mathematical logic with the notion of logical framework and formal proof. A logical framework provides tools to describe
mathematical objects and results, and state theorems to be proved. Then, the proof of those theorems gets all its logical
steps verified in the logical framework by a computer running a mechanical proof checker. This kind of proof forbids logical
errors and prevents omissions: it is a formal proof. Therefore, a formal proof can be considered as a perfect pen-and-paper
proof.

Fortunately, logical frameworks also support the definition of computer programs and the specification of their
properties. The correctness of a program can then be expressed as a formal proof that no execution of the program will
go wrong and that it has the expected mathematical properties. A formal proof of a program can be considered as a
comprehensive validation by an exhaustive set of tests. Note, however, that we verify the program at the source code level
and do not consider here compilation problems, nor external attacks.

Mechanical proof checkers are mainly used to formalize mathematics and are routinely used to prove programs in the
field of integer arithmetic and symbolic computation. We apply the same methodology to numerical programs in order to
obtain the same safety level in the scientific computing field. The simulation process is revisited as follows. The discretization
stage requires some preliminary work in the logical framework; we must implement the necessary mathematical concepts
and results to describe continuous and discrete equations (in particular, the notion of convergent numerical scheme). Given
this mathematical setting, we can write a faithful formal proof of the convergence of the discrete solution towards the
solution to the continuous problem. Then, we can specify the modeling program and the properties of the computed values,
and obtain a formal proof of its correctness. If we specify that computed values are close enough to the actual solution of
the numerical scheme, then the correctness proof of the program ensures the correctness of the whole simulation process.

This revised simulation process seems easy enough. However, the difficulty of the necessary formal proofs must
not be underestimated, notably because scientific computing adds specific difficulties to specifications and proofs. The
discretization stage uses real numbers and real analysis theory. The usual theorems and tools of real analysis are still in
their infancy in mechanical proof checkers. In addition, numerical programs use floating-point arithmetic. Properties of
floating-point arithmetic are complex and highly nonintuitive, which is yet another challenge for formal proofs of numerical
programs.

To summarize, the field of scientific computing has the usual difficulties of formal proof for mathematics and programs,
and the specific difficulties of real analysis and its relationships to floating-point arithmetic. This complexity explains why
mechanical proof checkers are mostly unknown in scientific computing. Recent progress [2–5] in providing mechanical
proof checkers with formalizations of real analysis and IEEE-754 floating-point arithmeticmakes formal proofs of numerical
programs tractable nowadays.

In this article, we conduct the formal proof of a very simple C program implementing the second-order centered finite
difference explicit scheme for solving the one-dimensional acoustic wave equation. This is a first step towards the formal
proof of more complex programs used in critical situations. This article complements a previous publication about the same
experiment [6]. This time however, we do not focus on the advances of some formal proof techniques, but we rather present
an overview of how formal methods can be useful for scientific computing and what it takes to apply them.

Formal proof systems are relatively recent compared with mathematics or computer science. The system considered as
the first proof assistant is Automath. It has been designed by de Bruijn in 1967 and has been very influential for the evolution
of proof systems. As a matter of comparison, the FORTRAN language was born in 1954. Almost all modern proof assistants
then appeared in the 1980s. In particular, the first version of Coq was created in 1984 by Coquand and Huet. The ability to
reason about numerical programs camemuch later, as it requires some formal knowledge of arithmetic and analysis. In Coq,
real numbers were formalized in 1999 and floating-point numbers in 2001. One can note that some of these developments
were born from interactions between several domains, and so is this work.

The formal proofs are too long to be given here in extenso, so the paper only explains general ideas and difficulties. The
annotated C program and the full Coq sources of the formal development are available from [7].

The paper is organized as follows. The notion of formal proof and the main formal tools are presented in Section 2.
Section 3 describes the PDE, the numerical scheme, and their mathematical properties. Section 4 is devoted to the formal
proof of the convergence of the numerical scheme, Section 5 to the formal proof of the boundedness on the round-off error,
and Section 6 to the formal proof of the C program implementing the numerical scheme. Finally, Section 7 paints a broader
picture of the study.

A glossary of terms from themathematical logic and computer science fields is given in Appendix A. Themain occurrences
of such terms⋆ are emphasized in the text by using italic font and superscript star.
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2. Formal proof

Modern mathematics can be seen as the science of abstract objects, e.g. real numbers, differential equations. In contrast,
mathematical logic researches the various languages used to define such abstract objects and reason about them. Once these
languages are formalized, one can manipulate and reason about mathematical proofs: What makes a valid proof? How can
we develop one? And so on. This paves the way to two topics we are interested in: mechanical verification⋆ of proofs, and
automated deduction of theorems. In both cases, the use of computer-based tools will be paramount to the success of the
approach.

2.1. What is a formal proof?

When it comes to abstract objects, believing that some properties are true requires some methods of judgment.
Unfortunately, some of these methods might be fallible: they might be incorrect in general, or their execution might be
lacking in a particular setting. Logical reasoning aims at eliminating any unjustified assumption and ensuring that only
infallible inferences are used, thus leading to properties that are believed to be true with the greatest confidence.

The reasoning steps that are applied to deduce from a property believed to be true a new property believed to be true is
called an inference rule⋆. They are usually handled at a syntactic level: only the form of the statements matters, their content
does not. For instance, the modus ponens rule states that, if both properties ‘‘A’’ and ‘‘if A then B’’ hold, then property ‘‘B’’
holds too, whatever the meaning of A and B. Conversely, if one deduces ‘‘B’’ from ‘‘A’’ and ‘‘if C then B’’, then something is
amiss: while the result might hold, its proof is definitely incorrect.

This is where formal proofs⋆ show up. Indeed, since inference rules are simple manipulations of symbols, applying them
or checking that they have been properly applied do not require much intelligence. (The intelligence lies in choosing which
one to apply.) Therefore, these tasks can be delegated to a computer running a formal system. The computer will perform
themmuch more quickly and systematically than a human being could ever do it. Assuming that such formal systems have
been designed with care,1 the results they produce are true with the greatest confidence.

The downside of formal proofs is that they are really low-level; they are down to themost elementary steps of a reasoning.
It is no longer possible to dismiss some steps of the proofs, trusting the reader to be intelligent enough to fill the blanks.
Fortunately, since inference rules aremechanical by nature, a formal systemcan also try to apply themautomaticallywithout
any user interaction. Thus it will produce new results, or at least proofs of known results. At worst, one could imagine that a
formal system applies inference rules blindly in sequence until a complete proof of a given result is found. In practice, clever
algorithms have been designed to find the proper inference steps for domain-specific properties. This considerably eases
the process of writing formal proofs. Note that numerical analysis is not amenable to automatic proving yet, which means
that related properties will require a lot of human interaction, as shown in Section 6.2.

It should have become apparent by now that formal systems are primarily aimed at proving and checking mathematical
theorems. Fortunately, programs can be turned into semantically⋆ equivalent abstract objects that formal systems can
manipulate, thus allowing to prove theorems about programs. These theoremsmight be about basic properties of a program,
e.g. it will not evaluate arrays outside their bounds. They might also be about higher-level properties, e.g. the computed
results have such and such properties. For instance, in this paper, we are interested in proving that the values computed by
the program are actually close to the exact solution to the partial differential equation. Note that these verifications are said
to be static: they are done once and for all, yet they cover all the future executions of a program.

Formal verification of a program comes with a disclaimer though, since a program is not just an abstract object, it also
has a concrete behavior once executed. Even if one has formally proved that a program always returns the expected value,
mishaps might still happen. Perfect certainty is unachievable. First and foremost, the specification⋆ of what the program
is expected to compute might be wrong or just incomplete. For instance, a random generator could be defined as being a
function that takes no input and returns a value between0 and1. One could then formally verify that a given function satisfies
such a specification. Yet that does not tell anything about the actual randomness of the computed value: the function might
always return the same number while still satisfying the specification. This means that formal proofs do not completely
remove the need for testing, as one still needs to make sure specifications are meaningful; but they considerably reduce the
need for exhaustive testing.

Another consideration regarding the extent of confidence in formally verified programs stems from the fact that programs
donot run in isolation, so formalmethods have tomake someassumptions. Basically, they assume that the programexecuted
in the end is the one that was actually verified and not some variation of it. This seems an obvious assumption, but practice
has shown that a programmight be miscompiled, that somemalware might be poking memory at random, that a computer
processormight have design flaws, or even that the electromagnetic environmentmight cause bit flips eitherwhen verifying
the program, or when executing it. So the trust in what a program actually computes will still be conditioned to the trust
in the environment it is executed in. Note that this issue is not specific to verified programs, so they still have the upper
hand over unverified programs. Moreover, formal methods are also applied to improve the overall trust in a system: formal

1 The core of a formal system is usually a very small program, much smaller than any proof it will later have to manipulate, and thus easy to check and
trust. For instance, while expressive enough to tackle any proof of modern mathematics, the kernel of HOL Light is just 200 lines long.
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verification of hardware design is now routine, and formal verification of compilers [8,9] and operating systems [10] are
bleeding edge research topics.

2.2. Formal proof tools at work

There is not a single tool that would allow us to tackle the formal verification⋆ of the C program we are interested in. We
will use different tools depending on the kind of abstract objects we want to manipulate or prove properties about.

The first step lies in running the tool Frama-C over the program (Section 2.2.2). We have slightly modified the C program
by adding comments statingwhat the program is expected to compute. These annotations⋆ are just mathematical properties
of the programvariables, e.g. the result variables are close approximations to the values of the exact solution. Except for these
comments, the code was not modified. Frama-C takes the program and the annotations and it generates a set of theorems.
What the tool guarantees is that, if we are able to prove all these theorems, then the program is formally verified. Some of
these theorems ensure that the execution will not cause exceptional behaviors: no accesses out of the bounds of the arrays,
no overflow during computations, and so on. The other theorems ensure that the program satisfies all its annotations.

At this point, we can run tools over the generated theorems, in the hope that they will automatically find proofs of them.
For instance, Gappa (Section 2.2.3) is suited for proving theorems stating that floating-point operations do not overflow or
that their round-off error is bounded, while SMT solvers⋆ (Section 2.2.2) will tackle theorems stating that arrays are never
accessed out of their bounds. Unfortunately, more complicated theorems require some user interaction, so we have used
the Coq proof assistant (Section 2.2.1) to help us in writing their formal proofs. This is especially true for theorems that deal
with the more mathematically-oriented aspect of verification, such as convergence of the numerical scheme.

2.2.1. Coq
Coq2 is a formal system that provides an expressive language to write mathematical definitions, executable algorithms,

and theorems, together with an interactive environment for proving them [11]. Coq’s formal language combines both a
higher-order logic⋆ and a richly-typed functional programming⋆ language [12]. In addition to functions and predicates, Coq
allows the specification of mathematical theorems and software specifications⋆, and to interactively develop formal proofs
of those.

The architecture of Coq can be split into three parts. First, there is a relatively small kernel that is responsible for
mechanically checking formal proofs. Given a theorem proved in Coq, one does not need to read and understand the proof
to be sure that the theorem statement is correct, one just has to trust this kernel.

Second, Coq provides a proof development system so that the user does not have to write the low-level proofs that the
kernel expects. There are some interactive proof methods (proof by induction, proof by contradiction, intermediate lemmas,
and so on), some decision⋆ and semi-decision algorithms (e.g. proving the equality between polynomials), and a tactic⋆

language for letting the user define his or her own proof methods. Note that all these high-level proof tools do not have to be
trusted, since the kernel will check the low-level proofs they produce to ensure that all the theorems are properly proved.

Third, Coq comes with a standard library. It contains a collection of basic and well-known theorems that have already
been formally proved beforehand. It provides developments and axiomatizations about sets, lists, sorting, arithmetic, real
numbers, and so on. In this work, we mainly use the Reals standard library [2], which is a classical axiomatization of an
Archimedean ordered complete field. It comes from the Coq standard library and provides all the basic theorems about
analysis, e.g. differentials, integrals. It does not containmore advanced topics such as the Fourier transform and its properties
though.

Here is a short example taken from our alpha.v file [7]:

Lemma Rabs_le_trans: forall a b c d : R,
Rabs (a − c) + Rabs (c − b) ≤ d →Rabs (a − b) ≤ d.

Proof.
intros a b c d H.
replace (a − b) with ((a − c) + (c − b)) by ring.
apply Rle_trans with (2 := H); apply Rabs_triang.
Qed.

The function Rabs is the absolute value on real numbers. The lemma states that, for all real numbers a, b, c , and d, if
|a − c| + |c − b| ≤ d, then |a − b| ≤ d. The proof is therefore quite simple. We first introduce variables and call H the
hypothesis of the conditional stating that |a − c| + |c − b| ≤ d. To prove that |a − b| ≤ d, we first replace a − b with
(a − c) + (c − b), the proof of that being automatic as it is only an algebraic ring equality. Then, we are left to prove that
|(a − c) + (c − b)| ≤ d. We use transitivity of ≤, called Rle_trans, and hypothesis H. Then, we are left to prove that
|(a− c) + (c − b)| ≤ |a− c| + |c − b|. This is exactly the triangle inequality, called Rabs_triang. The proof ends with the
keyword Qed.

2 http://coq.inria.fr/.

http://coq.inria.fr/
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The standard library does not come with a formalization of floating-point numbers. For that purpose, we use a large
Coq library called PFF3 initially developed in [13] and extended with various results afterwards [14]. It is a high-level
formalization of the IEEE-754 international standard for floating-point arithmetic [15,16]. This formalization is convenient
for human interactive proofs as testified by the numerous proofs using it. The huge number of lemmas available in the
library (about 1400) makes it suitable for a large range of applications. The library has been superseded since then by the
Flocq library [3] and both libraries were used to prove the floating-point results of this work.

2.2.2. Frama-C, Jessie, Why, and the SMT solvers
We use the Frama-C platform4 to perform formal verification of C programs at the source-code level. Frama-C is an

extensible framework that combines static analyzers⋆ for C programs, written as plug-ins, within a single tool. In this work,
we use the Jessie plug-in [17] for deductive verification⋆. C programs are annotated⋆ with behavioral contracts written using
the ANSI C Specification Language (ACSL for short) [18]. The Jessie plug-in translates them to the Jessie language [17], which
is part of the Why verification platform [19]. This part of the process is responsible for translating the semantics⋆ of C into
a set of Why logical definitions (to model C types, memory heap, and so on) and Why programs (to model C programs).
Finally, the Why platform computes verification conditions⋆ from these programs, using traditional techniques of weakest
preconditions [20], and emits them to a wide set of existing theorem provers, ranging from interactive proof assistants⋆ to
automated theoremprovers⋆. In thiswork,weuse theCoqproof assistant (Section 2.2.1), SMT solvers⋆ Alt-Ergo [21], CVC3 [22],
and Z3 [23], and the automated theorem prover Gappa (Section 2.2.3). Details about automated and interactive proofs can
be found in Section 6.2. The dataflow from C source code to theorem provers can be depicted as follows:

More precisely, to run the tools on a C program, we use a graphical interface called gWhy. A screenshot is displayed in Fig. 1,
in Section 6. In this interface, we may call one prover on several goals⋆. We then get a graphical view of howmany goals are
proved and by which prover.

In ACSL, annotations are written using first-order logic⋆. Following the programming by contract approach, the
specifications involve preconditions, postconditions, and loop invariants⋆. The contract of the following function states that
it computes the square of an integer x, or rather a lower bound on it:

//@ requires x ≥ 0;
//@ ensures \result ∗ \result ≤ x;
int square_root(int x);

The precondition, introduced with requires, states that the argument x is nonnegative. Whenever this function is called,
the toolchain will generate a theorem stating that the input is nonnegative. The user then has to prove it to ensure the
program is correct. The postcondition, introducedwith ensures, states the property satisfied by the return value \result. An
important point is that, in the specification, arithmetic operations are mathematical, not machine operations. In particular,
the product \result ∗ \result cannot overflow. Simply speaking, we can say that C integers are reflected within
specifications as mathematical integers, in an obvious way.

The translation of floating-point numbers is more subtle, since one needs to talk about both the value actually computed
by an expression, and the ideal value that would have been computed if we had computers able to work on real numbers.
For instance, the following excerpt from our C program specifies the relative error on the content of the dx variable, which
represents the grid step 1x (see Section 3.2):

dx = 1./ni;
/∗@ assert
@ dx > 0. && dx ≤ 0.5 &&
@ \abs(\exact(dx) − dx) / dx ≤ 0x1.p−53;
@ ∗/

3 http://lipforge.ens-lyon.fr/www/pff/.
4 http://www.frama-c.cea.fr/.

http://lipforge.ens-lyon.fr/www/pff/
http://www.frama-c.cea.fr/
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The identifier dx represents the value actually computed (seen as a real number), while the expression \exact(dx)
represents the value that would have been computed if mathematical operators had been used instead of floating-point
operators. Note that 0x1.p-53 is a valid ACSL literal (and C too) meaning 1 · 2−53 (which is also the machine epsilon on
binary64 numbers).

2.2.3. Gappa
The Gappa tool5 adapts the interval-arithmetic⋆ paradigm to the proof of properties that occur when verifying numerical

applications [24]. The inputs are logical formulas quantified over real numbers whose atoms⋆ are usually enclosures of
arithmetic expressions inside numeric intervals. Gappa answers whether it succeeded in verifying it. In order to support
program verification⋆, one can use rounding functions inside expressions. These unary operators take a real number and
return the closest real number in a given direction that is representable in a given binary floating-point format. For instance,
assuming that operator ◦ rounds to the nearest binary64 floating-point number, the following formula states that the relative
error of the floating-point addition is bounded [16]:

∀x, y ∈ R, ∃ε ∈ R, |ε| ≤ 2−53 and ◦ (◦(x) + ◦(y)) = (◦(x) + ◦(y))(1 + ε).

Converting straight-line⋆ numerical programs to Gappa logical formulas is easy and the user can provide additional hints
if the tool were to fail to verify a property. The tool is specially designed to handle codes that perform convoluted floating-
point manipulations. For instance, it has been successfully used to verify a state-of-the-art library of correctly-rounded
elementary functions [4]. In the current work, Gappa has been used to check much simpler properties. In particular, no user
hint was needed to automatically prove them. Yet the length of their proofs would discourage even the most dedicated
users if they were to be manually handled. One of the properties is the round-off error of a local evaluation of the numerical
scheme (Section 5.1). Other properties mainly deal with proving that no exceptional behavior occurs while executing the
program: due to the initial values, all the computed values are sufficiently small to never cause overflow.

Verification of some formulas requires reasonings that are so long and intricate [4], that it might cast some doubts on
whether an automatic tool can actually succeed in proving them. This is especially true when the tool ends up proving a
property stronger than what the user expected. That is why Gappa also generates a formal proof that can be mechanically
checked by a proof assistant. This feature has served as the basis for a Coq tactic⋆ for automatically proving goals⋆ related
to floating-point and real arithmetic [25]. Note that Gappa itself is not verified, but since Coq verifies the proofs that Gappa
generates, the goals are formally proved.

This tactic has been used whenever a verification condition⋆ would have been directly proved by Gappa, if not for some
confusing notations or encodings of matrix elements. We just had to apply a few basic Coq tactics to put the goal into the
proper form and then call the Gappa tactic to prove it automatically.

3. Numerical scheme for the wave equation

We have chosen to study the numerical solution to the one-dimensional acoustic wave equation using the second-
order centered explicit scheme as it is simple, yet representative of a wide class of scientific computing problems. First,
following [26], we describe and state the different notions necessary for the implementation of the numerical scheme and
its analysis. Then, we present the annotations added in the source code to specify the behavior of the program.

3.1. Continuous equation

We consider Ω = [xmin, xmax], a one-dimensional homogeneous acoustic medium characterized by the constant
propagation velocity c. Let p(x, t) be the acoustic quantity, e.g. the transverse displacement of a vibrating string, or the
acoustic pressure. Let p0(x) and p1(x) be the initial conditions. Let us consider homogeneous Dirichlet boundary conditions.

The one-dimensional acoustic problem on Ω is set by

∀t ≥ 0, ∀x ∈ Ω, (L(c) p)(x, t) def
=

∂2p
∂t2

(x, t) + A(c) p(x, t) = 0, (1)

∀x ∈ Ω, (L1 p)(x, 0)
def
=

∂p
∂t

(x, 0) = p1(x), (2)

∀x ∈ Ω, (L0 p)(x, 0)
def
= p(x, 0) = p0(x), (3)

∀t ≥ 0, p(xmin, t) = p(xmax, t) = 0 (4)

where the differential operator A(c) acting on function q is defined as

A(c)q def
= −c2

∂2q
∂x2

. (5)

5 http://gappa.gforge.inria.fr/.

http://gappa.gforge.inria.fr/
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We assume that under reasonable regularity conditions on the Cauchy data p0 and p1, for each c > 0, there exists a
unique solution p to the initial-boundary value problem defined by Eqs. (1)–(5). Of course, it is well-known that the solution
to this partial differential equation is given by d’Alembert’s formula [27]. But simply assuming existence of a solution instead
of exhibiting it ensures that our approach scales to more general cases for which there is no known analytic expression of a
solution, e.g. when propagation velocity c depends on space variable x.

We introduce the positive definite quadratic quantity

E(c)(p)(t) def
=

1
2

∂p
∂t

(·, t)
2 +

1
2

∥p(·, t)∥2
A(c) (6)

where ⟨q, r⟩ def
=


Ω
q(x)r(x)dx, ∥q∥2 def

= ⟨q, q⟩ and ∥q∥2
A(c)

def
= ⟨A(c) q, q⟩. The first term is interpreted as the kinetic

energy, and the second term as the potential energy, making E the mechanical energy of the acoustic system.
Let p̃0 (resp. p̃1) represent the function defined on the entire real axis R obtained by successive antisymmetric extensions

in space of p0 (resp. p1). For example, we have, for all x ∈ [2xmin −xmax, xmin], p̃0(x) = −p0(2xmin −x). The image theory [28]
stipulates that the solution of thewave equation defined by Eqs. (1)–(5) coincides on domainΩ with the solution of the same
wave equation but set on the entire real axis R, without the Dirichlet boundary condition (4), and with extended Cauchy
data p̃0 and p̃1.

3.2. Discrete equations

Let us consider the time interval [0, tmax]. Let imax (resp. kmax) be the number of intervals of the space (resp. time)
discretization. We define6

1x def
=

xmax − xmin

imax
, i1x(x)

def
=


x − xmin

1x


, 1t def

=
tmax

kmax
, k1t(t)

def
=


t

1t


. (7)

The regular discrete grid approximating Ω × [0, tmax] is defined by7

∀k ∈ [0..kmax], ∀i ∈ [0..imax], xki
def
= (xi, tk)

def
= (xmin + i1x, k1t). (8)

For a function q defined over Ω × [0, tmax] (resp. Ω), the notation qh (with a roman index h) denotes any discrete
approximation of q at the points of the grid, i.e. a discrete function over [0..imax]×[0..kmax] (resp. [0..imax]). By extension, the
notation qh is also a shortcut to denote the matrix (qki )0≤i≤imax,0≤k≤kmax (resp. the vector (qi)0≤i≤imax ). The notation q̄h (with

a bar over it) is reserved to specify the values of qh at the grid points, q̄ki
def
= q(xki ) (resp. q̄i

def
= q(xi)).

Let u0,h and u1,h be two discrete functions over [0..imax]. Let sh be a discrete function over [0..imax] × [0..kmax]. Then, the
discrete function ph over [0..imax]×[0..kmax] is the solution of the second-order centered finite difference explicit scheme, when
the following set of equations holds:

∀k ∈ [2..kmax], ∀i ∈ [1..imax − 1], (Lh(c) ph)ki
def
=

pki − 2pk−1
i + pk−2

i

1t2
+ (Ah(c) pk−1

h )i = sk−1
i , (9)

∀i ∈ [1..imax − 1], (L1,h(c) ph)i
def
=

p1i − p0i
1t

+
1t
2

(Ah(c) p0h)i = u1,i, (10)

∀i ∈ [1..imax − 1], (L0,h ph)i
def
= p0i = u0,i, (11)

∀k ∈ [0..kmax], pk0 = pkimax
= 0 (12)

where the matrix Ah(c) (discrete analog of A(c)) is defined on vectors qh by

∀i ∈ [1..imax − 1], (Ah(c) qh)i
def
= −c2

qi+1 − 2qi + qi−1

1x2
. (13)

Note the use of a second-order approximation of the first derivative in time in Eq. (10).
A discrete analog of the energy is also defined by

Eh(c)(ph)k+
1
2

def
=

1
2

pk+1
h − pkh

1t


2

1x

+
1
2


pkh, p

k+1
h


Ah(c) (14)

6 Floor notation ⌊.⌋ denotes rounding to an integer towards minus infinity.
7 For integers n and p, the notation [n..p] denotes the integer range [n, p] ∩ N.
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where, for any vectors qh and rh,

⟨qh, rh⟩1x
def
=

imax−1
i=1

qiri1x, ∥qh∥2
1x

def
= ⟨qh, qh⟩1x , ⟨qh, rh⟩Ah(c)

def
= ⟨Ah(c) qh, rh⟩1x , ∥qh∥2

Ah(c)
def
= ⟨qh, qh⟩Ah(c) .

Note that ∥.∥Ah(c) is a semi-norm. Thus, the discrete energy Eh(c) is targeted to be a positive semidefinite quadratic form.
Note that the numerical scheme is parameterized by the discrete Cauchy data u0,h and u1,h, and by the discrete source

term sh.When these input data are respectively approximations of the exact functions p0 and p1 (e.g.when u0,h = p̄0h, u1,h =

p̄1h, and sh ≡ 0), the discrete solution ph is an approximation of the exact solution p.
The remark about image theory holds here too: we may replace the use of Dirichlet boundary conditions in Eq. (12) by

considering extended discrete Cauchy data ¯̃p0h and ¯̃p1h.
Note also that, as well as in the continuous case when a source term is considered on the right-hand side of Eq. (1), the

discrete solution of the numerical scheme defined by Eqs. (9)–(13) can be obtained by the discrete space–time convolution
of the discrete fundamental solution and the discrete source term. This will be useful in Sections 5.2 and 7.2.

3.3. Convergence

Themain properties required for a numerical scheme are the convergence, the consistency, and the stability. A numerical
scheme is convergent when the convergence error, i.e. the difference between exact and approximated solutions, tends to
zero with respect to the discretization parameters. It is consistent with the continuous equations when the truncation error,
i.e. the difference between exact and approximated equations, tends to zero with respect to the discretization parameters.
It is stable if the approximated solution is bounded when discretization parameters tend to zero.

The Lax equivalence theorem stipulates that consistency implies equivalence between stability and convergence, e.g.
see [29]. Consistency proof is usually straightforward, and stability proof is typically much easier than convergence proof.
Therefore, in practice, the convergence of numerical schemes is obtained by using the Lax equivalence theorem once
consistency and stability are established. Unfortunately, we cannot follow this popular path, since building a formal proof ⋆

of the Lax equivalence theorem is quite challenging. Assuming such a powerful theorem is not an option either, since it
would jeopardize the whole formal proof. Instead, we formally prove that consistency and stability imply convergence in
the particular case of the second-order centered scheme for the wave equation.

The Fourier transform is a popular tool to study the convergence of numerical schemes. Unfortunately, the formalization
of the Lebesgue integral theory and the Fourier transform theory does not yet exist in Coq (Section 2.2.1); such a
development should not encounter any major difficulty, except for its human cost. As an alternative, we consider energy-
based techniques. The stability is then expressed in terms of a discrete energy which only involves finite summations (to
compute discrete dot products). Energy-based approaches are less precise because they follow a priori error estimates; but,
unlike the Fourier analysis approach, they can be extended to the heterogeneous case, and to non uniform grids.

The CFL condition (for Courant–Friedrichs–Lewy, see [30]) states for the one-dimensional acoustic wave equation that
the Courant number

CN def
=

c1t
1x

(15)

should not be greater than 1. To simplify the formal proofs, we use a more restrictive CFL condition. First, we rule out the
particular case CN = 1 since it is not so important in practice, and would imply a devoted structure of proofs. Second, the
convergence proof based on energy techniques requires CN to stay away from 1 (for instance, constant C2 in Eq. (27) may
explode when ξ tends to 0). Thus, we parameterize the CFL condition with a real number ξ ∈]0, 1[:

CFL(ξ)
def
= CN ≤ 1 − ξ . (16)

Our formal proofs are valid for all ξ in ]0, 1[. However, to deal with floating-point arithmetic, the C code is annotated with
values of ξ down to 2−50.

For the numerical scheme defined by Eqs. (9)–(13), the convergence error eh and the truncation error εh are defined by

∀k ∈ [0..kmax], ∀i ∈ [0..imax], eki
def
= p̄ki − pki , (17)

∀k ∈ [2..kmax], ∀i ∈ [1..imax − 1], εk
i

def
= (Lh(c) p̄h)ki , (18)

∀i ∈ [1..imax − 1], ε1
i

def
= (L1,h(c) p̄h)i − p̄1,i, (19)

∀i ∈ [1..imax − 1], ε0
i

def
= (L0,hp̄h)i − p̄0,i, (20)

∀k ∈ [0..kmax], εk
0 = εk

imax

def
= 0. (21)

Note that, when the input data of the numerical scheme for the approximation of the exact solution are given by u0,h =

p̄0h, u1,h = p̄1h, and sh ≡ 0, then the convergence error eh is itself solution of the same numerical scheme with discrete
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inputs corresponding to the truncation error: u0,h = ε0
h = 0, u1,h = ε1

h , and sh =

k → εk+1

h


. This will be useful in

Section 4.4.
In Section 4.4, we discuss the formal proof that the numerical scheme is convergent of order (m, n) uniformly on the interval

[0, tmax] if the convergence error satisfies8ek1t (t)
h


1x

= O[0,tmax](1xm + 1tn). (22)

In Section 4.2, we discuss the formal proof that the numerical scheme is consistent with the continuous problem at
order (m, n) uniformly on interval [0, tmax] if the truncation error satisfiesεk1t (t)

h


1x

= O[0,tmax](1xm + 1tn). (23)

In Section 4.3, we discuss the formal proof that the numerical scheme is energetically stable uniformly on interval [0, tmax]

if the discrete energy defined by Eq. (14) satisfies

∃α, C1, C2 > 0, ∀t ∈ [0, tmax], ∀1x, 1t > 0,
1x2 + 1t2 < α ⇒


Eh(c)(ph)k1t (t)+ 1

2 ≤ C1 + C21t
k1t (t)
k′=1

i → sk
′

i


1x

. (24)

Note that constants C1 and C2 may depend on the discrete Cauchy data u0,h and u1,h.

3.4. C program

We assume that xmin = 0, xmax = 1, and that the absolute value of the exact solution is bounded by 1. The main part of
the C program is listed in Listing 1. Grid steps 1x and 1t are respectively represented by variables dx and dt, grid sizes imax
and kmax by variables ni and nk, and the propagation velocity c by the variable v. The Courant number CN is represented
by variable a1. The initial value u0,h is represented by the function p0. Other input data u1,h and sh are supposed to be zero
and are not represented. The discrete solution ph is represented by the two-dimensional array p of size (imax +1)(kmax +1).
Note that this is a simple implementation. A more efficient one would only store two time steps.

3.5. Program annotations

As explained in Section 2.2.2, the C code is enriched with annotations⋆ that specify the behavior of the program: what it
requires on its inputs and what it ensures on its outputs. We describe here the chosen specification for this program. The
full annotations are given in Appendix B.

The annotations can be separated into two sets. The first one corresponds to the mathematics: the exact solution of
the wave equation and its properties. It defines the required values (the exact solution p, and its initialization p0). It also
defines the derivatives of p: psol_1, psol_2, psol_11, and psol_22 respectively stand for ∂p

∂x ,
∂p
∂t ,

∂2p
∂x2

, and ∂2p
∂t2

. The
value of the derivative of f at point x is defined as the limit of f (x+h)−f (x)

h when h → 0. As the ACSL annotations are only first-
order⋆, these definitions are quite cumbersome: each derivative needs 5 lines to be defined. Here is the example of psol_1,
i.e. ∂p

∂x :

/∗@ logic real psol_1(real x, real t);
@ axiom psol_1_def:
@ \forall real x; \forall real t;
@ \forall real eps; \exists real C; 0 < C && \forall real dx;
@ 0 < eps ⇒ \abs(dx) < C ⇒

@ \abs((psol(x + dx, t) − psol(x, t)) / dx − psol_1(x, t)) < eps;
@ ∗/

Note the different treatment of the positiveness for the existential variable C, and for the free variable eps.

8 The big O notation is defined in Section 4.1. The function k1t is defined in Eq. (7).
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Listing 1: The main part of the C code, without annotations.

0 /∗ Compute the constant coefficient of the stiffness matrix. ∗/
a1 = dt/dx∗v;
a = a1∗a1;

/∗ First initial condition and boundary conditions. ∗/
5 /∗ Left boundary. ∗/

p[0][0] = 0.;
/∗ Time iteration −1 = space loop. ∗/
for (i=1; i<ni; i++) {
p[i][0] = p0(i∗dx);

10 }
/∗ Right boundary. ∗/
p[ni][0] = 0.;

/∗ Second initial condition (with p1=0) and boundary conditions. ∗/
15 /∗ Left boundary. ∗/

p[0][1] = 0.;
/∗ Time iteration 0 = space loop. ∗/
for (i=1; i<ni; i++) {
dp = p[i+1][0] − 2.∗p[i][0] + p[i−1][0];

20 p[i][1] = p[i][0] + 0.5∗a∗dp;
}
/∗ Right boundary. ∗/
p[ni][1] = 0.;

25 /∗ Evolution problem and boundary conditions. ∗/
/∗ Propagation = time loop. ∗/
for (k=1; k<nk; k++) {
/∗ Left boundary. ∗/
p[0][k+1] = 0.;

30 /∗ Time iteration k = space loop. ∗/
for (i=1; i<ni; i++) {
dp = p[i+1][k] − 2.∗p[i][k] + p[i−1][k];
p[i][k+1] = 2.∗p[i][k] − p[i][k−1] + a∗dp;

}
35 /∗ Right boundary. ∗/

p[ni][k+1] = 0.;
}

We also assume that the solution actually solves Eqs. (1)–(5). The last property needed on the exact solution is its
regularity. We require it to be close to its Taylor approximations of degrees 3 and 4 on the whole space interval (see
Section 4). For instance, the following annotation states the property for degree 3:

/∗@ axiom psol_suff_regular_3:
@ 0 < alpha_3 && 0 < C_3 &&
@ \forall real x; \forall real t; \forall real dx; \forall real dt;
@ 0 ≤ x ≤ 1 ⇒ \sqrt(dx ∗ dx + dt ∗ dt) ≤ alpha_3 ⇒

@ \abs(psol(x + dx, t + dt) − psol_Taylor_3(x, t, dx, dt)) ≤

@ C_3 ∗ \abs(\pow(\sqrt(dx ∗ dx + dt ∗ dt), 3));
@ ∗/

The second set of annotations corresponds to the properties and loop invariant⋆ needed by the program. For example,
we require the matrix to be separated. This means that a line of the matrix should not overlap with another line. Otherwise
a modification would alter another entry in the matrix. The predicate analytic_error that is used as a loop invariant is
declared in the annotations and defined in the Coq files.

The initialization functions are only specified: there is no C code given and no proof. We assume a reasonable behavior
for these functions. More precisely, this corresponds first to the function array2d_alloc that initializes the matrix and
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p_zero that produces an approximation of the p0 function. The use of deductive verification⋆ allows our proof to be generic
with respect to p0 and its implementation.

The preconditions of the main function are as follows:

• imax and kmax must be greater than one, but small enough so that imax + 1 and kmax + 1 do not overflow;
• the CFL(2−50) condition must be satisfied (see Eqs. (16) and (15));
• the grid sizes 1x and 1t must be small enough to ensure the convergence of the scheme (the precise value is given in

Section 6.1);
• the floating-point values computed for the grid sizes must be close to their mathematical values;
• to prevent exceptional behavior in the computation of a, 1t must be greater than 2−1000 and c1t

1x must be greater than
2−500.

The last hypothesis gets very close to the underflow threshold: the smallest positive floating-point number is a subnormal
of value 2−1074.

There are two postconditions, corresponding to a bound on the convergence error and a bound on the round-off error.
See Sections 4 and 5 for more details.

4. Formal proof of convergence of the scheme

In [31], the method error is the distance between the discrete value computed with exact real arithmetic and the ideal
mathematical value, i.e. the exact solution; here, it reduces to the convergence error. Round-off errors, due to the use of
floating-point arithmetic, are handled in Section 5. First, we present the notions necessary to the formal specification and
proof ⋆ of boundedness of the method error. Then, taking inspiration from [26], we sketch the main steps of the proofs of
consistency, stability, and convergence of the numerical scheme, andwepoint out some tricky aspects thatmaynot be visible
in pen-and-paper proofs. Full formal proofs are available from [7]. Feedback about issues showing up when formalizing a
pen-and-paper proof is discussed in Section 7.1.

4.1. Big O, Taylor approximations, and regularity

Proving the consistency of the numerical scheme with the continuous equations requires some assumptions on the
regularity of the exact solution. This regularity is expressed as the existence of Taylor approximations of the exact solution up
to some appropriate order. For the sake of simplicity, we chose to prove uniform consistency of the scheme (see definitions
at the end of Section 3.3); this implies the use of uniform Taylor approximations.

These uniform approximations involve uniform big O equalities of the form

F(x, 1x) = OΩx,Ω1x(g(1x)). (25)

Variable x stands for points around which Taylor approximations are considered, and variable 1x stands for a change in x
in the neighborhood of zero. Note that we explicitly state the set Ωx on which the approximation is uniform. As for the set
Ω1x, we will later omit it when it spans the full space, here R2. Function F goes from Ωx × Ω1x to R, and g goes from Ω1x
to R. As all equalities embedding big O notations, Eq. (25) actually means that function 1x → F(x, 1x) belongs to the set
OΩx(g(1x)) of functions of 1xwith the same asymptotic growth rate as g , uniformly for all x in Ωx.

The formal definition behind Eq. (25) is

∃α, C > 0, ∀x ∈ Ωx, ∀1x ∈ Ω1x, ∥1x∥ < α ⇒ |F(x, 1x)| ≤ C |g(1x)|. (26)

Its translation in Coq is straightforward.9

Definition
OuP (A : Type) (P : R ∗ R → Prop) (f : A →R ∗ R →R) (g : R ∗ R →R) :=

exists alpha : R, exists C : R, 0 < alpha ∧ 0 < C ∧

forall X : A, forall dX : R ∗ R, P dX → norm_l2 dX < alpha →

Rabs (f X dX) ≤C ∗ Rabs (g dX).

Argument type A stands for domain Ωx, allowing to deal with either a subset of R2 or of R. Domain Ω1x is formalized by its
indicator function on R2, the argument predicate P (Prop is the type of logical propositions).

Let x = (x, t) be a point in R2, let f be a function from R2 to R, and let n be a natural number. The Taylor polynomial of
order n of f at point x is the function TPn(f , x) defined over R2 by

TPn(f , x)(1x, 1t) def
=

n
p=0

1
p!


p

m=0

 p
m

 ∂pf
∂xm∂tp−m

(x) · 1xm · 1tp−m


.

9 Rabs is the absolute value of real numbers, and norm_l2 is the L2 norm on R2 .
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Let Ωx be a subset of R2. The Taylor polynomial is a uniform approximation of order n of f on Ωx when the following
uniform big O equality holds10:

f (x + 1x) − TPn(f , x)(1x) = OΩx


∥1x∥n+1 .

Function f is then sufficiently regular of order n uniformly on Ωx when all its Taylor polynomials of order smaller than n are
uniform approximations on Ωx.

Of course, we could have expressed regularity requirements by using the usual notion of differentiability class. Indeed, it
is well-known that functions of class Cn+1 over some compact domain are actually sufficiently regular of order n uniformly
on that domain. But, besides the suboptimality of the statement, we did not want to formalize all the technical details of its
proof.

4.2. Consistency

The numerical scheme defined by Eqs. (9)–(13) is well-known to be of order 2, both in space and time. Furthermore,
this result holds as soon as the exact solution admits Taylor approximations up to order 4. Therefore, we formally prove
Lemma 4.1, where sufficient regularity is defined in Section 4.1, and uniform consistency is defined by Eq. (23).

Lemma 4.1. If the exact solution of the wave equation defined by Eqs. (1)–(5) is sufficiently regular of order 4 uniformly on
Ω × [0, tmax], then the numerical scheme defined by Eqs. (9)–(13) is consistent with the continuous problem at order (2, 2)
uniformly on interval [0, tmax].

The proof uses properties of uniform Taylor approximations. It deals with long and complex expressions, but it is still
straightforward as soon as discrete quantities are banned in favor of uniform continuous quantities that encompass them.
Indeed, the key point is to use Taylor approximations that are uniform on a compact set including all points of all grids
showing up when the discretization parameters tend to zero.

For instance, to handle the initialization phase of Eq. (10), we consider a uniform Taylor approximation of order 1 of the
following function (for any v sufficiently regular of order 3):

((x, t), (1x, 1t)) →
v(x, t + 1t) − v(x, t)

1t
−

1t
2

c2
v(x + 1x, t) − 2v(x, t) + v(x − 1x, t)

1x2
.

Thanks to the second-order approximation used in Eq. (10), the initialization phase does not deteriorate the consistency
order.

Note that, to provide Taylor approximations for both expressions v(x + 1x, t) and v(x − 1x, t), the formal definition of
the uniform Taylor approximation via Eq. (25) must accept negative changes in x, and not only the positive space grid steps,
as a naive specification would state.

4.3. Stability

When showing convergence of a numerical scheme, energy-based techniques use a specific stability statement involving
an estimation of the discrete energy. Therefore, we formally prove Lemma 4.2 where the CFL(ξ) condition is defined by Eqs.
(15) and (16).

Lemma 4.2. For all ξ ∈]0, 1[, if discretization parameters satisfy the CFL(ξ) condition, then the numerical scheme defined by
Eqs. (9)–(13) is energetically stable uniformly on interval [0, tmax]. Moreover, constants in Eq. (24) defining uniform energy
stability are

C1 =


Eh(c)(ph)

1
2 and C2 =

1
√
2ξ(2 − ξ)

. (27)

First, we show the variation of the discrete energy between two consecutive time steps to be proportional to the source
term. In particular, the discrete energy is constant when the source is inactive. Then, we establish the following lower bound
for the discrete energy:

1
2
(1 − CN2)



i →

pk+1
i − pki

1t


2

1x

≤ Eh(c)(ph)k+
1
2

where CN is the Courant number defined by Eq. (15), and k = k1t(t) for some t in [0, tmax]. Therefore, the discrete energy
is a positive semidefinite quadratic form, since its nonnegativity directly follows the CFL(ξ) condition. Finally, Lemma 4.2

10 Domain Ω1x is implicitly considered to be R2 .
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follows in a straightforward manner from the estimate:(i → pk+1
i − pki )


1x ≤ 2C21tEh(c)(ph)k+

1
2

where C2 is given in Eq. (27).
Note that this stability result is valid for any discrete Cauchy data u0,h and u1,h, so it may be suboptimal for specific

choices.

4.4. Convergence

We formally prove Theorem 4.1, where sufficient regularity is defined in Section 4.1, the CFL(ξ) condition is defined by
Eqs. (15) and (16), and uniform convergence is defined by Eq. (22).

Theorem 4.1. For all ξ ∈]0, 1[, if the exact solution of the wave equation defined by Eqs. (1)–(5) is sufficiently regular of
order 4 uniformly on Ω × [0, tmax], and if the discretization parameters satisfy the CFL(ξ) condition, then the numerical scheme
defined by Eqs. (9)–(13) is convergent of order (2, 2) uniformly on interval [0, tmax].

First, we prove that the convergence error eh is itself solution of the same numerical scheme but with different input
data. (Of course, there is no associated continuous problem here.) In particular, the source term on the right-hand side of
Eq. (9) is here the truncation error εh associated with the numerical scheme for ph. Then, from Lemma 4.2 (stating uniform
energy stability), we have an estimation of the discrete energy associatedwith the convergence error Eh(c)(eh) that involves
the sum of the corresponding source terms, i.e. the truncation error. Finally, from Lemma 4.1 (stating uniform consistency),
this sum is shown to have the same growth rate as 1x2 + 1t2.

5. Formal proof of boundedness of the round-off error

Beyond the proof of convergence of the numerical scheme, which is here mechanically checked, we can now go into the
sketch of the main steps of the proof of the boundedness of the round-off error due to the limited precision of computations
in the program. Full formal proofs are available from [7]. Feedback about the novelty of this part is discussed in Section 7.1.

For the C program presented in Section 3, naive forward error analysis⋆ gives an error bound that is proportional to 2k−53

for the computation of any pki . If this bound was tight, it would cause the numerical scheme to compute only noise after a
few steps. Fortunately, round-off errors actually cancel themselves in the program. To take into account cancellations and
hence prove a usable error bound, we need a precise statement of the round-off error [32] to exhibit the cancellations made
by the numerical scheme.

The formal proof uses a comprehensive formalization of the IEEE-754 standard, and hence both normal and subnormal
(i.e. very small) numbers are handled. Other floating-point special values (infinities, NaNs) are proved in Section 6.2 not to
appear in the program.

5.1. Local round-off errors

Let δk
i be the local floating-point error that occurs during the computation of pki . For k = 0 (resp. k = 1, and k ≥ 2),

the local error corresponds to the floating-point error at Line 9 of Listing 1 (resp. at Lines 19–20, and at Lines 32–33).
To distinguish them from the discrete values of previous sections, the floating-point values as computed by the program
are underlined below. Quantities a and pk

i
match the expressions a and p[i][k] in the annotations⋆, while a and pki are

represented by \exact(a) and \exact(p[i][k]), as described in Section 2.2.2.
The local floating-point error is defined as follows, for all k in [1..kmax − 1], for all i in [1..imax − 1]:

δk+1
i =


2pk

i
− pk−1

i
+ a(pk

i+1
− 2pk

i
+ pk

i−1
)


− pk+1
i

,

δ1
i =


p0
i
+

a
2
(p0

i+1
− 2p0

i
+ p0

i−1
)


− p1
i
−


δ0
i +

a
2


δ0
i+1 − 2δ0

i + δ0
i−1


,

δ0
i = p0i − p0

i
.

Note that the program presented in Section 3.4 gives us that, for all k in [1..kmax − 1], for all i in [1..imax − 1]:

pk+1
i

= fl

2pk

i
− pk−1

i
+ a(pk

i+1
− 2pk

i
+ pk

i−1
)


,

p1
i

= fl

p0
i
+

a
2
(p0

i+1
− 2p0

i
+ p0

i−1
)


,

p0
i

= fl

p0(i1x)


where fl(·)means that all the arithmetic operations that appear between the parentheses are actually performed by floating-
point arithmetic, hence a bit off.
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In order to get a bound on δk
i , we need to know the range of pk

i
. For the bound to be usable in our correctness proof, the

range has to be [−2, 2]. We assume here that the exact solution is bounded by 1; if not, we normalize by the maximum
value and use the linearity of the problem. We have proved this range by induction on a simple triangle inequality taking
advantage of the fact that at each point of the grid, the floating-point value computed by the program is the sum of the exact
solution, the method error, and the round-off error.

To prove the bound on δk
i , we perform forward error analysis and then use interval arithmetic⋆ to bound each intermediate

error [24].Weprove that, for all i and k, we have |δk
i | ≤ 78·2−52 for a reasonable error bound for a, that is to say |a−a| ≤ 2−49.

5.2. Global round-off error

Let ∆k
i = pk

i
− pki be the global floating-point error on pki . The global floating-point error depends not only on the local

floating-point error at position (i, k), but also on all the local floating-point errors inside the space–time dependency cone
of apex (i, k).

From the linearity of the numerical scheme, the global floating-point error is itself solution of the same numerical scheme
with discrete inputs corresponding to the local floating-point error:

u0,h = δ0
h = 0, u1,h =

δ1
h

1t
, sh =


k →

δk+1
h

1t2


.

Taking advantage of the remark about image theory made in Section 3.2, we see the global floating-point error as the
restriction to the domain Ω of the solution of the same numerical scheme set on the entire real axis without the Dirichlet
boundary condition of Eq. (12), andwith extendeddiscrete inputs. Therefore, the expression of the global floating-point error
is given by the convolution of the discrete fundamental solution on the entire real axis and the extended local floating-point
error.

Let us denote by λh the discrete fundamental solution. It is the solution of the same numerical scheme set on the entire
real axis with null discrete inputs except u1,0 =

1
1t . Then, we can state the following result. (See [32] for a direct proof that

does not follow above remarks.)

Theorem 5.1.

∀k ≥ 0, ∀i ∈ [0..imax], ∆k
i =

k
l=0

l
j=−l

δ̃k−l
i−j λl+1

j .

Note that, for all k, we have ∆k
0 = ∆k

imax
= 0. Note also that λk

i vanishes as soon as |i| ≥ k, hence the sum over j could be
replaced by an infinite sum over all integers.

5.3. Bound on the global round-off error

The analytic expression of ∆k
i can be used to obtain a bound on the round-off error. We will need two lemmas for this

purpose.

Lemma 5.1.

∀k ≥ 0, σ k def
=

+∞
i=−∞

λk
i = k.

Proof. The sum satisfies the following linear recurrence: for all k ≥ 1, σ k+1
− 2σ k

+ σ k−1
= 0. Since σ 0

= 0, and σ 1
= 1,

we have, for all k ≥ 0, σ k
= k. �

Lemma 5.2.
∀k ≥ 0, ∀i, λk

i ≥ 0.

The sketch of the proof is given in Appendix C. It uses complex algebraic results (the positivity of sums of Jacobi
polynomials), and was not formalized in Coq.

Theorem 5.2.
∀k ≥ 0, ∀i ∈ [0..imax],

∆k
i

 ≤ 78 · 2−53(k + 1)(k + 2).

Proof. According to Theorem 5.1, ∆k
i is equal to

k
l=0
l

j=−l λ
l+1
j δ̃k−l

i−j . We know from Section 5.1 that for all j and l,
|δ̃l

j| ≤ 78 · 2−52, and from Lemma 5.1 that


λl+1
i = l + 1. Since the λ’s are nonnegative (Lemma 5.2), the error is easily

bounded by 78 · 2−52k
l=0(l + 1). �



S. Boldo et al. / Computers and Mathematics with Applications 68 (2014) 325–352 339

Except for Lemma 5.2, all proofs described in this section have been machine-checked using Coq. In particular, the proof
of the bound on δk

i was done automatically by calling Gappa from Coq. Lemma 5.2 is a technical detail compared to the rest
of our work, and is not worth the tremendous work it would require to be implemented in Coq: keen results on integrals
but also definitions and results about the Legendre, Laguerre, Chebyshev, and Jacobi polynomials (see Appendix C).

6. Formal proof of the C program

To completely prove the actual C program, we bound the total error incorporating both the method error and the round-
off error. Then, we show how we prove the absence of coding errors (such as overflow and out-of-bound access) and how
we relate the behavior of the program to the preceding Coq proofs.

6.1. Total error

Let Eh be the total error. It is the sum of the method error (or convergence error) eh of Sections 3.3 and 4.4, and of the
round-off error ∆h of Section 5.

From Theorem 5.2, we can estimate11the following upper bound for the spatial norm of the round-off error when1x ≤ 1
and 1t ≤ tmax/2: for all t ∈ [0, tmax],

i → ∆
k1t (t)
i


1x

=

 imax
i=0


∆

k1t (t)
i

2
1x

≤


(imax + 1)1x · 78 · 2−53


tmax

1t
+ 1


tmax

1t
+ 2


≤


xmax − xmin + 1 · 78 · 2−53

· 3
t2max

1t2
.

Thus, from the triangle inequality for the spatial norm, we obtain the following estimation of the total error:

∀t ∈ [0, tmax], ∀1x, ∥1x∥ ≤ min(αe, α∆) ⇒

i → E
k1t (t)
i


1x

≤ Ce(1x2 + 1t2) +
C∆

1t2
(28)

where the method error constants αe and Ce were extracted from the Coq proof (see Section 4.4) and are given in terms of
the constants for the Taylor approximation of the exact solution at degree 3 (α3 and C3), and at degree 4 (α4 and C4) by

αe = min(1, tmax, α3, α4), Ce = 4C2tmax
√
xmax − xmin


C ′

√
2

+ 2C2(tmax + 1)C ′′


(29)

with C2 coming from Eq. (27), C ′
= max(1, C3 + c2C4 + 1), C ′′

= max(C ′, 2(1 + c2)C4), and where the round-off constants
α∆ and C∆, as explained above, are given by

α∆ = min(1, tmax/2), C∆ = 234 · 2−53t2max


xmax − xmin + 1. (30)

Of course, decreasing the size of the grid step decreases themethod error, but at the same time, it increases the round-off
error. Therefore, there exists a minimum for the upper bound on the total error, corresponding to optimal grid step sizes
that may be determined using above formulas.

On specific examples, one observes that this upper bound on the total error can be highly overestimated (see Section 7.1).
Nevertheless, one also observes that the asymptotic behavior of the upper bound of the total error for high values of the grid
steps is close to the asymptotic behavior of the effective total error [6].

6.2. Automation and manual proofs

Given the program code, the Frama-C/Jessie/Why tools generate 150 verification conditions⋆ that have to be proved (see
Section 2.2.2).While possible, proving all of them inCoqwould be rather tedious.Moreover, systematically usingCoqwould
lead to a rather fragile construct: any later modification to the program, however small it is, would cause different proof
obligations to be generated, which would then require additional human interaction to adapt the Coq proofs. We prefer to
have automated theorem provers⋆ (SMT solvers⋆ and Gappa, see Sections 2.2.2 and 2.2.3) prove as many of them as possible,
so that only the most intricate ones are left to be proved in Coq.

11 When τ ≥ 2, we have (τ + 1)(τ + 2) ≤ 3τ 2 .
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Fig. 1. Screenshot of gWhy. Left: list of all verification conditions (VCs) and their proof status with respect to the various automatic tools. Upper right:
statement of the currently selected VC. Lower right: location in the source code where this VC originates from.

Fig. 1 displays a screenshot of the gWhy graphical interface. For instance, any discrepancy between the code and its
specification⋆ would be highlighted on the lower right part when the corresponding verification condition is selected. A
comprehensive view on all the verification conditions and how they are proved can be found in [7].

Verification conditions split into safety goals⋆ andbehavior goals. Safety goals are always generated, even in the absence of
any specification. Proving them ensures that the program always successfully terminates. They check that matrix accesses
are in range, that the loop variants decrease and are nonnegative (thus loops terminate), that integer and floating-point
arithmetic operations do not overflow, and so on. On such goals, automatic provers are helpful, as they prove about 90% of
them.

Behavior goals relate the program to its specification. Proving themensures that, if the program terminateswithout error,
then it returns the specified result. They check that loop invariants⋆ are preserved, that assertions hold, that preconditions
hold before function calls, that postconditions are implied by preconditions, and so on. Automatic provers are a bit less
helpful, as they fail for half of the behavior goals. That is whywe resort to an interactive higher-order theorem prover⋆, namely
Coq.

Coq developments split into two sets of files. The first set, for a total of more than 4000 lines of script, is dedicated to
the proof of the boundedness of the method error, i.e. the convergence of the numerical scheme. About half of it is generic,
meaning it can be re-used for other PDEs or ODEs: definitions and lemmas about big O, scalar product, Rn and so on. The
other half is dedicated to the 1D wave equation and the chosen numerical scheme. The second set, for a total of more than
12,000 lines, deals with both the proof of the boundedness of the round-off error, and the proof of the absence of runtime
errors. Note that slightly less than half of those Coq developments are statements of the second set that are automatically
generated by the Frama-C/Jessie/Why framework, whereas the other half – statements for the convergence and all proofs –
is manually edited.

7. Discussion

We emphasize now the difficulties and the originality of this work that may strike the computational scientist’s mind
when confronted to the formal proof of a numerical program. Finally, we discuss some future work.
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7.1. Applied mathematicians and formal proof of programs

From the point of view of computational scientists, the big surprise of a formal proof ⋆ development may come from
the requirement of writing an extremely detailed conventional pen-and-paper proof. Indeed, an interactive proof assistant⋆
such as Coq is not able to elaborate a sketch of proof, nor to automatically find a proof of a lemma—but for the most trivial
facts. Therefore, a formal proof is completely human driven, up to the utmost detail. Fortunately, we do not need to specify
all the mathematical facts from scratch, since Coq provides a collection of known facts and theories that can be reused to
establish new results. However, classical results from Hilbert space analysis, uniform asymptotic comparison of functions,
and Taylor approximations have not yet been proved in Coq. Thus, we had to develop them, as well as in the detailed
pen-and-paper proof. In the end, the detailed pen-and-paper proof is about 50 pages long. Surprisingly, it is roughly of the
same size as the complete Coq formal proof: both collections of source files are approximately 5 kLOC long, and weigh
about 160 kB.

The case of the big O notation deserves some comments. Typically, this is a notion about which pen-and-paper proofs
do not elaborate on. Of course, misinterpreting the involved existential constants leads to erroneous reasoning. This issue
is seldom dealt with in the literature; however, we point out an informal mention in [33] with a relevant remark about
pointwise consistency versus norm consistency. We had to focus on the uniform notion of big O equalities in [34] in the
context of the infinite string, for which the space domain Ω is the whole real axis. In the present paper, we deal with finite
strings. Thus, for compactness reasons, both uniform and nonuniform notions of big O notations are obviously equivalent.
Nevertheless, we still use the more general uniform big O notion to share most of the proof developments between finite
and infinite cases.

With pen-and-paper proofs, it is uncommon to expand constants involved in the estimation of themethod error (namely
α, and C in the big O equality for the norm of the convergence error). In contrast, Coq can automatically extract from the
formal proof the constants appearing in the upper bound for the total error,which also takes the round-off error into account.
The mathematical expressions given in Section 6.1 are as sharp as the estimations used in the proof can provide. The same
expressions could be obtained by hand with extreme care from the pen-and-paper proof, at least for the method error
contribution. However, in specific examples, the actual total error may bemuch smaller than the established estimation [6].
This is essentially due to the use of a priori error estimations, worsened by the energy-based techniques which are known
to become less precise as the CFL condition becomes optimal (i.e. as the Courant number goes up to 1). Indeed, constant Ce
in Eq. (29) grows as 1/ξ for small values of ξ . An alternative to obtain more accurate a priori bounds is to use a leapfrog
scheme for the equivalent first-order system [26].

Nowadays, a posteriori error estimates have become popular tools to control the method error, e.g. see [35,1]. Indeed, the
measure at runtime of the error due to the different stages of approximation provides much tighter bounds than any a priori
technique. For instance, the approach allows to adapt stopping criteria of internal iterative solvers to the overall numerical
error, and to save a significant amount of computations [36]. From the certification point of view, such developments present
themselves as part of the numerical method, as a complement to the numerical scheme: a posteriori error estimates are first
designed and proved on paper, then implemented into the program, and finallymake use of floating-point operators in their
computations. They deserve exactly the same care in terms of code verification⋆: first, their definition and behavior must be
specified in the annotations⋆, and then the generated verification conditions⋆ must be formally proved.

The other big surprise for computational scientists is the possibility to take into account the round-off error cancellations
occurring during the computations, and to evaluate a sensible bound that encompasses all aspects of the IEEE-754 floating-
point arithmetic. Of course, this is typically the kind of results that are not accessible outside the logical framework of a
mechanical interactive proof assistant as Coq.

Furthermore, in numerical analysis, one usually evaluates bounds on the absolute value of quantities of interest. To obtain
an upper bound on the round-off error, we needed a result about the sign of the fundamental solution of the discrete scheme,
not about a bound for its absolute value. To our best knowledge, the only way to capture such a result is purely algebraic:
the closed-form expression of the solution is first obtained using a generating function, then it may be recognized as a
combination of Jacobi polynomials that happens to be nonnegative (see Appendix C).

Such a result about the sign of the discrete fundamental solution may not hold for other numerical schemes. In our case,
just assuming a bound on the absolute value of the discrete fundamental solution would lead to an estimation of the global
round-off error about 4 times higher than that of Theorem 5.2.

Finally, differential equations introduce an issue in the annotations. Due to the underlying logic, the annotations have
to define the solution of the PDE by using first-order formulas⋆ stating differentiability, instead of second-order formulas
involving differential operators. This makes the annotations especially tedious and verbose. In the end, the C code grows
by a factor of about 4, as can be seen when comparing the original source in Listing 1 with the fully annotated source in
Appendix B.

7.2. Future work

Given its cost, we do not plan to apply the same methodology to any other scheme or any other PDE at random. We
nevertheless want to take advantage of our acquired expertise on several related topics.
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In floating-point arithmetic, an algorithm is said to be numerically stable if it has a small forward error⋆. This property is
certainly related to the notion of stability used in scientific computing for numerical schemes, which states that computed
values do not diverge. As a rule of thumb, stable schemes are considered numerically stable. We plan to formally prove this
statement for a large class of numerical schemes. This will require the formalization of the notion of numerical scheme, and
of the property of stability. Indeed, the definition given in Section 3.3 is dedicated to numerical schemes for second-order
in time evolution problems.

The mechanism used to extract the constants involved in the estimation of the total error can be deployed on a wider
scale to generate thewhole program. Instead of formally proving properties specified in an existing program, one formalizes
a problem, proves it has a solution, and obtains for free an OCaml program by automatic extraction from the Coq proof.
Such a program is usually inefficient, but it is zero-defect, provided it is not modified afterwards. For computational science
problems involving real numbers, efficiency is not the only issue: the extracted program would also be hindered by the
omnipresence of classical real numbers in the formalization. Therefore, being able to extract efficient and usable zero-defect
programs would be an interesting long-term goal for critical numerical problems.

In the present exploratory work, we consider the simple second-order centered finite difference scheme for the one-
dimensionalwave equation. Furtherworks involve scaling to higher-order numerical schemes, and/or to higher-dimensional
problems. Finite support functions, and summations on such support played a much more important role in the Coq
developments than we initially expected. Therefore, we consider using the SSReflect interface and libraries for Coq [37],
so as to simplify manipulations of these objects in higher-dimensional cases.

Another long-term perspective is to generalize the mathematical notions formalized in Coq to be able to apply the
approach to finite difference schemes for other PDEs, and ODEs. Steps in this direction concern the generalization of the
use of convolution with the discrete fundamental solution to bound the round-off error, and the formal proof of the Lax
equivalence theorem.

Finally, a more ambitious perspective is to formally deal with the finite element method. This first requires a Coq
formalization of mathematical tools from Hilbert space analysis on Sobolev spaces such as the Lax–Milgram theorem (for
existence and uniqueness of exact and approximated solutions), and the handling of meshes (that may be regular or not,
and structured or not). Then, the finite element method may be proved convergent in order to formally guarantee a large
class of numerical analysis programs that solve linear PDEs on complex geometries. The purpose is to go beyond Laplace’s
equation set on the unit square, e.g.handlemixed boundary conditions, and extend tomixed andmixedhybrid finite element
methods.

8. Conclusion

Wehave presented a comprehensive formal proof of a C program solving the 1D acousticwave equation using the second-
order centered finite difference explicit scheme. Our proof includes the following aspects.

• Safety: we prove that the C program terminates and is free of runtime failure such as division by zero, array access
out of bounds, null pointer dereference, or arithmetic overflow. The latter includes both integer and floating-point
overflows.

• Method error: we show that the numerical scheme is convergent of order (2, 2) uniformly on the time interval, under
the assumptions that the exact solution is sufficiently regular (i.e. its Taylor polynomials of order up to 4 are uniform
approximations on the space–time domain) and that the Courant–Friedrichs–Lewy condition holds.

• Round-off error: we bound all round-off errors resulting from floating-point computations used in the program. In
particular, we show how some round-off errors cancel, to eventually get a meaningful bound.

• Total error: altogether, we are able to provide explicit (and formally proved) bounds for the sum ofmethod and round-off
errors.

To our knowledge, this is the first time such a comprehensive proof is achieved. Related to the small length of the program
(a few tens of lines), the total cost of the formal proof is huge, if not frightening: several man-months of work, three times
more annotations to be inserted in the program than lines of code, over 16,000 lines of Coq proof scripts, 30 min of CPU
time to check them on a 3-GHz processor.

The recent introduction of formalmethods in DO-178C12 shows the need for the verification of numerical programs in the
context of embedded critical software. Considering theworkwe have presented, one can hardly think of verifying numerical
codes on the scale of a large airborne system. Yet we think our techniques and a large subset of our proof can be reused and
would significantly decrease the workload of such a proof. This is to be combined with increased proof automation, so that
user interaction is minimized. Finally, the challenge is to provide tools that are usable by computational scientists that are
not specialists of formal methods.

12 DO-178C is the newest version of Software Considerations in Airborne Systems and Equipment Certification, which is used by national certification
authorities.
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In conclusion, combining scientific computing and formal proofs is now considered an important matter by logicians.
Formal tools for scientific computing are being actively developed and progress is done to get them mature and usable for
non specialists. It seems that it is now time for computational scientists to take a keen interest in this area.
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Appendix A. Glossary

This section gives the definition of concepts used in mathematical logic and computer science that appear in this paper.

annotation comment added to the C code to specify the logical properties of the program. Tools turn them into verification
conditions⋆.

atom atomic component of a logical formula. In the setting of classical logic, any propositional formula can be rewritten
using literals (atoms or negated atoms), conjunctions, and disjunctions only.

automated theorem prover software tool that automatically proves goals⋆. It may fail to find a proof, even for valid
formulas.

decision procedure an algorithm dedicated to proving specific properties. This is one of the basic blocks of theorem
provers.

deductive verification process of verifying, with the help of theorem provers, that a program satisfies its specification⋆.
first-order logic formal language of logical formulas that use quantifications over values only, and not over predicates and

functions.
formal proof a finite sequence of deduction steps which are checked by a computer.
forward error analysis process of propagating error bounds from inputs to outputs of functions.
functional programming programming paradigm that treats computation as mathematical evaluation of functions and

considers functions as ordinary values.
goal a set of hypotheses and a logical formula. The proof of a goal is a way to deduce the logical formula from the

hypotheses. When proving a theorem, the statement of the theorem is the initial goal.
higher-order logic formal language of logical formulas that use quantifications over values, predicates and functions.
inference rule generic way of drawing a valid conclusion based on the form of hypotheses. Each deduction step of a formal

proof ⋆ must satisfy one of the inference rules of the logical system.
interactive proof assistant software tool to assist with the development of formal proofs⋆ by human–machine

collaboration.
interval arithmetic arithmetic that operates on sets of values (typically intervals) instead of values.
loop invariant logical formula about the state of a program, that is valid before entering a loop and remains valid at the

end of each iteration of the loop.
semantics meaning associated to each syntactic construct of a language.
SMT solver variety of automated theorem prover⋆ combining a SAT solver (propositional logic), equality reasoning, decision

procedures⋆ (e.g., for linear arithmetic), and quantifier instantiation.
specification description of the expected behavior of a program.
static analysis analysis of a program without executing it.
straight-line program program that does not contain any loop and thus does not need any loop invariant⋆ to be verified.
tactic command for an interactive proof assistant⋆ to transform the current goal⋆ into one or more goals that imply it.
validation process of making sure of the correctness of a program by experiments such as tests.
verification process of making sure of the correctness of a program by mathematical means such as formal proofs⋆.
verification conditions goals⋆ that need to beproved to guarantee the adequacy between theprogramand its specification⋆.

Appendix B. Fully annotated source code

0 /∗@ axiomatic dirichlet_maths {
@
@ logic real c;
@ logic real p0(real x);
@ logic real psol(real x, real t);

5

@ axiom c_pos: 0 < c;
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@ logic real psol_1(real x, real t);
@ axiom psol_1_def:

10 @ \forall real x; \forall real t;
@ \forall real eps; \exists real C; 0 < C && \forall real dx;
@ 0 < eps ⇒ \abs(dx) < C ⇒

@ \abs((psol(x + dx, t) − psol(x, t)) / dx − psol_1(x, t)) < eps;

15 @ logic real psol_11(real x, real t);
@ axiom psol_11_def:
@ \forall real x; \forall real t;
@ \forall real eps; \exists real C; 0 < C && \forall real dx;
@ 0 < eps ⇒ \abs(dx) < C ⇒

20 @ \abs((psol_1(x + dx, t) − psol_1(x, t)) / dx − psol_11(x, t)) < eps;

@ logic real psol_2(real x, real t);
@ axiom psol_2_def:
@ \forall real x; \forall real t;

25 @ \forall real eps; \exists real C; 0 < C && \forall real dt;
@ 0 < eps ⇒ \abs(dt) < C ⇒

@ \abs((psol(x, t + dt) − psol(x, t)) / dt − psol_2(x, t)) < eps;

@ logic real psol_22(real x, real t);
30 @ axiom psol_22_def:

@ \forall real x; \forall real t;
@ \forall real eps; \exists real C; 0 < C && \forall real dt;
@ 0 < eps ⇒ \abs(dt) < C ⇒

@ \abs((psol_2(x, t + dt) − psol_2(x, t)) / dt − psol_22(x, t)) < eps;
35

@ axiom wave_eq_0: \forall real x; 0 ≤ x ≤ 1 ⇒ psol(x, 0) = p0(x);
@ axiom wave_eq_1: \forall real x; 0 ≤ x ≤ 1 ⇒ psol_2(x, 0) = 0;
@ axiom wave_eq_2:
@ \forall real x; \forall real t;

40 @ 0 ≤ x ≤ 1 ⇒ psol_22(x, t) − c ∗ c ∗ psol_11(x, t) = 0;
@ axiom wave_eq_dirichlet_1: \forall real t; psol(0, t) = 0;
@ axiom wave_eq_dirichlet_2: \forall real t; psol(1, t) = 0;

@ logic real psol_Taylor_3(real x, real t, real dx, real dt);
45 @ logic real psol_Taylor_4(real x, real t, real dx, real dt);

@ logic real alpha_3; logic real C_3;
@ logic real alpha_4; logic real C_4;

50 @ axiom psol_suff_regular_3:
@ 0 < alpha_3 && 0 < C_3 &&
@ \forall real x; \forall real t; \forall real dx; \forall real dt;
@ 0 ≤ x ≤ 1 ⇒ \sqrt(dx ∗ dx + dt ∗ dt) ≤ alpha_3 ⇒

@ \abs(psol(x + dx, t + dt) − psol_Taylor_3(x, t, dx, dt)) ≤

55 @ C_3 ∗ \abs(\pow(\sqrt(dx ∗ dx + dt ∗ dt), 3));

@ axiom psol_suff_regular_4:
@ 0 < alpha_4 && 0 < C_4 &&
@ \forall real x; \forall real t; \forall real dx; \forall real dt;

60 @ 0 ≤ x ≤ 1 ⇒ \sqrt(dx ∗ dx + dt ∗ dt) ≤ alpha_4 ⇒

@ \abs(psol(x + dx, t + dt) − psol_Taylor_4(x, t, dx, dt)) ≤

@ C_4 ∗ \abs(\pow(\sqrt(dx ∗ dx + dt ∗ dt), 4));

@ axiom psol_le:
65 @ \forall real x; \forall real t;

@ 0 ≤ x ≤ 1 ⇒ 0 ≤ t ⇒ \abs(psol(x, t)) ≤ 1;

@ logic real T_max;
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@ axiom T_max_pos: 0 < T_max;
70

@ logic real C_conv; logic real alpha_conv;
@ lemma alpha_conv_pos: 0 < alpha_conv;
@
@ } ∗/

75

/∗@ axiomatic dirichlet_prog {
@
@ predicate analytic_error{L}
@ (double ∗∗p, integer ni, integer i, integer k, double a, double dt)

80 @ reads p [..][..];
@
@ lemma analytic_error_le{L}:
@ \forall double ∗∗p; \forall integer ni; \forall integer i;
@ \forall integer nk; \forall integer k;

85 @ \forall double a; \forall double dt;
@ 0 < ni ⇒ 0 ≤ i ≤ ni ⇒ 0 ≤ k ⇒

@ 0 < \exact(dt) ⇒

@ analytic_error(p, ni, i, k, a, dt) ⇒

@ \sqrt(1. / (ni ∗ ni) + \exact(dt) ∗ \exact(dt)) < alpha_conv ⇒

90 @ k ≤ nk ⇒ nk ≤ 7598581 ⇒ nk ∗ \exact(dt) ≤ T_max ⇒

@ \exact(dt) ∗ ni ∗ c ≤ 1 − 0x1.p−50 ⇒

@ \forall integer i1; \forall integer k1;
@ 0 ≤ i1 ≤ ni ⇒ 0 ≤ k1 < k ⇒

@ \abs(p[i1][k1]) ≤ 2;
95 @

@ predicate separated_matrix{L}(double ∗∗p, integer leni) =
@ \forall integer i; \forall integer j;
@ 0 ≤ i < leni ⇒ 0 ≤ j < leni ⇒ i != j ⇒
@ \base_addr(p[i]) != \base_addr(p[j]);

100 @
@ logic real sqr_norm_dx_conv_err{L}
@ (double ∗∗p, real dx, real dt, integer ni, integer i, integer k)
@ reads p [..][..];
@ logic real sqr(real x) = x ∗ x;

105 @ lemma sqr_norm_dx_conv_err_0{L}:
@ \forall double ∗∗p; \forall real dx; \forall real dt;
@ \forall integer ni; \forall integer k;
@ sqr_norm_dx_conv_err(p, dx, dt, ni, 0, k) = 0;
@ lemma sqr_norm_dx_conv_err_succ{L}:

110 @ \forall double ∗∗p; \forall real dx; \forall real dt;
@ \forall integer ni; \forall integer i; \forall integer k;
@ 0 ≤ i ⇒
@ sqr_norm_dx_conv_err(p, dx, dt, ni, i + 1, k) =

@ sqr_norm_dx_conv_err(p, dx, dt, ni, i, k) +
115 @ dx ∗ sqr(psol(1. ∗ i / ni, k ∗ dt) − \exact(p[i][k]));

@ logic real norm_dx_conv_err{L}
@ (double ∗∗p, real dt, integer ni, integer k) =
@ \sqrt(sqr_norm_dx_conv_err(p, 1. / ni, dt, ni, ni, k));
@

120 @ } ∗/

/∗@ requires leni ≥ 1 && lenj ≥ 1;
@ ensures
@ \valid_range(\result, 0, leni − 1) &&

125 @ (\forall integer i; 0 ≤ i < leni ⇒
@ \valid_range(\result[i], 0, lenj − 1)) &&
@ separated_matrix(\result, leni);
@ ∗/

double ∗∗array2d_alloc(int leni, int lenj);
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130

/∗@ requires (l != 0) && \round_error(x) ≤ 5./2∗0x1.p−53;
@ ensures
@ \round_error(\result) ≤ 14 ∗ 0x1.p−52 &&
@ \exact(\result) = p0(\exact(x));

135 @ ∗/
double p_zero(double xs, double l, double x);

/∗@ requires
@ ni ≥ 2 && nk ≥ 2 && l != 0 &&

140 @ dt > 0. && \exact(dt) > 0. &&
@ \exact(v) = c && \exact(v) = v &&
@ 0x1.p−1000 ≤ \exact(dt) &&
@ ni ≤ 2147483646 && nk ≤ 7598581 &&
@ nk ∗ \exact(dt) ≤ T_max &&

145 @ \abs(\exact(dt) − dt) / dt ≤ 0x1.p−51 &&
@ 0x1.p−500 ≤ \exact(dt) ∗ ni ∗ c ≤ 1 − 0x1.p−50 &&
@ \sqrt(1. / (ni ∗ ni) + \exact(dt) ∗ \exact(dt)) < alpha_conv;
@
@ ensures

150 @ \forall integer i; \forall integer k;
@ 0 ≤ i ≤ ni ⇒ 0 ≤ k ≤ nk ⇒

@ \round_error(\result[i][k]) ≤ 78. / 2 ∗ 0x1.p−52 ∗ (k + 1) ∗ (k + 2);
@
@ ensures

155 @ \forall integer k; 0 ≤ k ≤ nk ⇒

@ norm_dx_conv_err(\result, \exact(dt), ni, k) ≤

@ C_conv ∗ (1. / (ni ∗ ni) + \exact(dt) ∗ \exact(dt));
@ ∗/

double ∗∗forward_prop(int ni, int nk, double dt, double v,
160 double xs, double l) {

/∗ Output variable. ∗/
double ∗∗p;

165 /∗ Local variables. ∗/
int i , k;
double a1, a, dp, dx;

dx = 1./ni;
170 /∗@ assert

@ dx > 0. && dx ≤ 0.5 &&
@ \abs(\exact(dx) − dx) / dx ≤ 0x1.p−53;
@ ∗/

175 /∗ Compute the constant coefficient of the stiffness matrix. ∗/
a1 = dt/dx∗v;
a = a1∗a1;
/∗@ assert
@ 0 ≤ a ≤ 1 &&

180 @ 0 < \exact(a) ≤ 1 &&
@ \round_error(a) ≤ 0x1.p−49;
@ ∗/

/∗ Allocate space−time variable for the discrete solution. ∗/
185 p = array2d_alloc(ni+1, nk+1);

/∗ First initial condition and boundary conditions. ∗/
/∗ Left boundary. ∗/
p[0][0] = 0.;

190 /∗ Time iteration −1 = space loop. ∗/
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/∗@ loop invariant
@ 1 ≤ i ≤ ni &&
@ analytic_error(p, ni, i − 1, 0, a, dt);
@ loop variant ni − i; ∗/

195 for (i=1; i<ni; i++) {
p[i][0] = p_zero(xs, l, i∗dx);

}
/∗ Right boundary. ∗/
p[ni][0] = 0.;

200 /∗@ assert analytic_error(p, ni, ni, 0, a, dt); ∗/

/∗ Second initial condition (with p_one=0) and boundary conditions. ∗/
/∗ Left boundary. ∗/
p[0][1] = 0.;

205 /∗ Time iteration 0 = space loop. ∗/
/∗@ loop invariant
@ 1 ≤ i ≤ ni &&
@ analytic_error(p, ni, i − 1, 1, a, dt);
@ loop variant ni − i; ∗/

210 for (i=1; i<ni; i++) {
/∗@ assert \abs(p[i−1][0]) ≤ 2; ∗/
/∗@ assert \abs(p[i][0]) ≤ 2; ∗/
/∗@ assert \abs(p[i+1][0]) ≤ 2; ∗/
dp = p[i+1][0] − 2.∗p[i][0] + p[i−1][0];

215 p[i][1] = p[i][0] + 0.5∗a∗dp;
}
/∗ Right boundary. ∗/
p[ni][1] = 0.;
/∗@ assert analytic_error(p, ni, ni, 1, a, dt); ∗/

220

/∗ Evolution problem and boundary conditions. ∗/
/∗ Propagation = time loop. ∗/
/∗@ loop invariant
@ 1 ≤ k ≤ nk &&

225 @ analytic_error(p, ni, ni, k, a, dt);
@ loop variant nk − k; ∗/

for (k=1; k<nk; k++) {
/∗ Left boundary. ∗/
p[0][k+1] = 0.;

230 /∗ Time iteration k = space loop. ∗/
/∗@ loop invariant
@ 1 ≤ i ≤ ni &&
@ analytic_error(p, ni, i − 1, k + 1, a, dt);
@ loop variant ni − i; ∗/

235 for (i=1; i<ni; i++) {
/∗@ assert \abs(p[i−1][k]) ≤ 2; ∗/
/∗@ assert \abs(p[i][k]) ≤ 2; ∗/
/∗@ assert \abs(p[i+1][k]) ≤ 2; ∗/
/∗@ assert \abs(p[i][k−1]) ≤ 2; ∗/

240 dp = p[i+1][k] − 2.∗p[i][k] + p[i−1][k];
p[i][k+1] = 2.∗p[i][k] − p[i][k−1] + a∗dp;

}
/∗ Right boundary. ∗/
p[ni][k+1] = 0.;

245 /∗@ assert analytic_error(p, ni, ni, k + 1, a, dt); ∗/
}

return p;

250 }
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Appendix C. Fundamental solution and Jacobi polynomials

Let λ be the sequence defined in Section 5.2. Note that adding zero initial values for the fictitious time step k = −1
makes this sequence be a time shift by one of the fundamental solution of the discrete acoustic wave equation, associated
with the input data sh ≡ 0, u0,h ≡ 0, for all i, i ≠ 0, u1,i = 0, and u1,0 = 1. The items of the sequence satisfy the following
equations:

∀i, λ−1
i = 0, (C.1)

∀i ≠ 0, λ0
i = 0, λ0

0 = 1, (C.2)

∀i, ∀k ≥ 0, λk+1
i = a(λk

i−1 + λk
i+1) + 2(1 − a)λk

i − λk−1
i . (C.3)

We want to prove Lemma 5.2, i.e. that for all i, k, k ≥ 0, we have λk
i ≥ 0.

The proof is highly indebted to computer algebra: we use a generating function to obtain a closed-form expression for
the λ’s, the creative telescoping method of Zeilberger [38] to express those λ’s in terms of Jacobi polynomials, and finally
a result by Askey and Gasper [39] to ensure the nonnegativity. We have not mechanically checked this proof. For example,
the Askey and Gasper result would have required enormous Coq developments, but parts of it could have been formalized,
in particular Zeilberger’s algorithm provides a certificate that eases the verification⋆ of its result.

Consider the associated bivariate generating function formally defined by

Λ(X, T ) =


i


k≥−1

λk
i X

iT k.

The above recurrence relation in Eq. (C.3) rewrites
i


k≥0

λk+1
i X iT k

= a


i


k≥0

λk
i−1X

iT k
+


i


k≥0

λk
i+1X

iT k


+ 2(1 − a)


i


k≥0

λk
i X

iT k
−


i


k≥0

λk−1
i X iT k.

Since coefficients for k’s smaller than 1 are almost all equal to zero, we formally have

T


i


k≥0

λk+1
i X iT k

= Λ(X, T ) − 1,


i


k≥0

λk
i−1X

iT k
= XΛ(X, T ),

X


i


k≥0

λk
i+1X

iT k
= Λ(X, T ),


i


k≥0

λk
i X

iT k
= Λ(X, T ),


i


k≥0

λk−1
i X iT k

= TΛ(X, T ).

Therefore, the generating function satisfies
Λ(X, T ) − 1

T
= a


X +

1
X


Λ(X, T ) + 2(1 − a)Λ(X, T ) − TΛ(X, T ),

which solution is given by

Λ(X, T ) =
1

(1 − T )2

1 − a T

X

 1−X
1−T

2 .

Now, we can evaluate the power series expansion of the generating function Λ. Using the following power series
expansion, valid for |u| < 1,

1
(1 − u)p+1

=


n≥0


p + n
p


un,

and the properties of binomial coefficients, we successively have

Λ(X, T ) =
1

(1 − T )2


n≥0

an
T n

Xn


1 − X
1 − T

2n

=


n≥0

an
i=2n
i=0


2n
i


(−1)iX i−n


k≥0


2n + 1 + k
2n + 1


T n+k

=


i

X i

k≥0

T k
n=k
n=|i|


2n

n + i


n + k + 1
2n + 1


(−1)n+ian.

Finally, by identification of the two power series expansions of the generating function Λ, we have for all i, k, 0 ≤ |i| ≤ k,

λk
i =

n=k
n=|i|


2n

n + i


n + k + 1
2n + 1


(−1)n+ian. (C.4)
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For i = 0, sharp eyes may recognize that λk
0 =

k
n=0 Pn(1 − 2a) where the Pn’s are Legendre polynomials. Fejér showed

in [40] the nonnegativity of the sum of Legendre polynomials when the argument is in [−1, 1], which is satisfied here since
we consider 0 < a < 1. More generally, we have λk

i = a|i|k−|i|
n=0 P (2|i|,0)

n (1 − 2a) where the P (α,β)
n ’s are Jacobi polynomials.

Askey and Gasper generalized in [39,41] Fejér’s result for β ≥ 0 and α + β ≥ −2. See also [42], pages 314 and 384.
Indeed, from the definition of Jacobi polynomials, for all α, β > −1, for all n ∈ N, for all x ∈ [−1, 1],

P (α,β)
n (x) =

n
p=0


n + α

p


n + β

n − p


x + 1
2

p x − 1
2

n−p

,

we have, for all i, k, 0 ≤ i ≤ k,

ai
k−i
n=0

P (2i,0)
n (1 − 2a) = ai

k−i
n=0

n
p=0


n + 2i

p


n

n − p


(1 − a)p(−a)n−p

=

k
n=i

n−i
p=0

p
q=0


n + i
p


n − i
p


p
q


(−1)n−p+q+ian−p+q

=

k
n=i

n
p=i

n
q=p


n + i
n − p


n − i
n − p


n − p
n − q


(−1)q+iaq

=

k
n=i

n
p=i

k
q=n


q + i
p + i


q − i
p − i


q − p
n − p


(−1)n+ian.

We have successively shifted n by i, replaced n − p by p, then shifted q by p. To obtain the last equality, notice that the
previous triple sum is actually taken over {(n, p, q) ∈ N3/i ≤ p ≤ q ≤ n ≤ k}, hence we can take q in [i..k], p in [i..q], n in
[q..k], and then switch notations n and q, and use the symmetry of binomial coefficients. Identifying with the expression of
Eq. (C.4), we are led to prove, for all i, n, k, 0 ≤ i ≤ n ≤ k,

n
p=i

k
q=n


q + i
p + i


q − i
p − i


q − p
n − p


=


2n

n + i


n + k + 1
2n + 1


. (C.5)

Suppose we have the following identity, for all i, n, k, 0 ≤ i ≤ n ≤ k,

n
p=i


k + i
p + i


k − i
p − i


k − p
n − p


=


2n

n + i


k + n
2n


. (C.6)

Then, we would have
n

p=i

k
q=n


q + i
p + i


q − i
p − i


q − p
n − p


=

k
q=n


2n

n + i


q + n
2n


=


2n

n + i

 k+n
q=2n

 q
2n


=


2n

n + i


k + n + 1
2n + 1


.

The last equality comes directly from the recurrence relation for the binomial coefficients (column-sum property of Pascal’s
triangle).

Proving identity of Eq. (C.6) is a bit more technical. The hypergeometric nature of its terms makes it a good candidate for
Zeilberger’s algorithm, a.k.a. the method of creative telescoping, see [43,44]. Let us introduce some new notations, for all
i, n, k, 0 ≤ i ≤ n ≤ k,

F(i, n, k; p) =


k + i
p + i


k − i
p − i


k − p
n − p


,

f (i, n, k) =


p

F(i, n, k; p),

g(i, n, k) =


2n

n + i


k + n
2n


.

Note that F vanishes when p is outside the interval [i..n]. Thus, identity of Eq. (C.6) now writes f = g .
Let I (resp. N, K , and P) be the forward shift operator in i (resp. in n, k, and p). E.g., If (i, n, k) = f (i + 1, n, k). We first

assume that the function f satisfies the following first-order recurrence relations, for all i, n, k, 0 ≤ i ≤ n ≤ k,

(n + 1 + i)If = (n − i)f , (C.7)
(n + 1 + i)(n + 1 − i)Nf = (k + 1 + n)(k − n)f , (C.8)
(k + 1 − n)Kf = (k + 1 + n)f . (C.9)
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Then, it is easy to show that the function g satisfies exactly the same first-order recurrence relations, and since f (0, 0, 0) =

g(0, 0, 0) = 1, we have f = g . Indeed, simply using the symmetry and absorption properties of binomial coefficients, we
have, for all i, n, k, 0 ≤ i ≤ n ≤ k,

g(i + 1, n, k)
g(i, n, k)

=


2n

n+i+1




2n
n+i

 =
n − i

n + 1 + i
,

g(i, n + 1, k)
g(i, n, k)

=


2n+2
n+1+i

 
k+n+1
2n+2




2n
n+i

 
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2n
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n + 1 + i


2n+1
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
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2n
n+i


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k+n
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


k+n
2n

 =
(k + 1 + n)(k − n)

(n + 1 + i)(n + 1 − i)
,

g(i, n, k + 1)
g(i, n, k)

=


k+1+n

2n




k+n
2n

 =
k + 1 + n
k + 1 − n

.

Finding the first-order recurrence relations for f , i.e. Eqs. (C.7), (C.8), and (C.9), is the job of the method of creative
telescoping. Actually, Zeilberger’s algorithm provides recurrence relations for the hypergeometric summand F of the form

m′
m=0

bl,mLmF = (P − 1)(RlF)

where coefficients bl,m are polynomials independent of p, and Rl is a rational function. There are actually one such recurrence
relation per free variable l (here i, n, and k), and L is the generic forward shift operator in the generic free variable l. Thus,
since coefficients bl,m do not depend on p, when summing over p, the right-hand terms telescope, andwe can deduce similar
recurrence relations for the sum f

m′
m=0

bl,mLmf = 0.

Note that although those recurrence relations are difficult to obtain, and even to check on the sum f , they are easy to check
on the summand F (since there is nomore sumover p). One has just to check the simpler equationswith rational expressions

bl,0 +

m′
m=1

bl,m
LmF
F

= PRl
PF
F

− Rl. (C.10)

In the present case, Zeilberger’s algorithm provides first-order recurrence relations with

bi,0 = n − i, bn,0 = (k + 1 + n)(k − n), bk,0 = k + 1 + n

bi,1 = −(n + 1 + i), bn,1 = −(n + 1 + i)(n + 1 − i), bk,1 = −(k + 1 − n),

Ri =
(1 + 2i)(p − i)

k − i
, Rn =

(k − n)(p + i)(p − i)
n + 1 − p

, Rk =
(p + i)(p − i)
k + 1 − p

.

And, simply using the symmetry and absorption properties of binomial coefficients, Eq. (C.10) is successively equivalent to,
for l = i,

(C.10) ⇔ (n − i) − (n + 1 + i)
(k + 1 + i)
(p + 1 + i)

(p − i)
(k − i)

=
(1 + 2i)(p + 1 − i)

(k − i)
(k − p)

(p + 1 + i)
(k − p)

(p + 1 − i)
(n − p)
(k − p)

−
(1 + 2i)(p − i)

(k − i)

⇔ (n − i)(k − i)(p + 1 + i) − (n + 1 + i)(k + 1 + i)(p − i)

= (1 + 2i)(k − p)(n − p) − (1 + 2i)(p − i)(p + 1 + i)

⇔
(1 + 2i)

4


(2n + 1)(2k + 1) − (2n + 1)(2p + 1) − (2k + 1)(2p + 1) + (1 + 2i)2


= (1 + 2i) [(k − p)(n − p) − (p − i)(p + 1 + i)]

⇔
(1 + 2i)2

4
−

(2p + 1)2

4
= −(p − i)(p + 1 + i),
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for l = n,

(C.10) ⇔ (k + 1 + n)(k − n) − (n + 1 + i)(n + 1 − i)
(k − n)

(n + 1 − p)

=
(k − n)(p + 1 + i)(p + 1 − i)

(n − p)
(k − p)

(p + 1 + i)
(k − p)

(p + 1 − i)
(n − p)
(k − p)

−
(k − n)(p + i)(p − i)

(n + 1 − p)
⇔ (n + 1 + k)(n + 1 − p) − (n + 1 + i)(n + 1 − i)

= (k − p)(n + 1 − p) − (p + i)(p − i)
⇔ (n + 1)(k − p) − kp + i2 = (k − p)(n + 1) − kp + i2,

and for l = k,

(C.10) ⇔ (k + 1 + n) − (k + 1 − n)
(k + 1 + i)
(k + 1 − p)

(k + 1 − i)
(k + 1 − p)

(k + 1 − p)
(k + 1 − n)

=
(p + 1 + i)(p + 1 − i)

(k − p)
(k − p)

(p + 1 + i)
(k − p)

(p + 1 − i)
(n − p)
(k − p)

−
(p + i)(p − i)
(k + 1 − p)

⇔ (k + 1 + n)(k + 1 − p) − (k + 1 + i)(k + 1 − i)
= (n − p)(k + 1 − p) − (p + i)(p − i)

⇔ (k + 1)(n − p) − np + i2 = (n − p)(k + 1) − np + i2,

which are all true.
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