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Abstract. We present the proof of Diophantus’ 20th problem (book VI
of Diophantus’ Arithmetica), which consists in wondering if there exist
right triangles whose sides may be measured as integers and whose sur-
face may be a square. This problem was negatively solved by Fermat in
the 17th century, who used the wonderful method (ipse dixit Fermat) of
infinite descent. This method, which is, historically, the first use of in-
duction, consists in producing smaller and smaller non-negative integer
solutions assuming that one exists; this naturally leads to a reductio ad
absurdum reasoning because we are bounded by zero. We describe the
formalization of this proof which has been carried out in the Coq proof
assistant. Moreover, as a direct and no less historical application, we also
provide the proof (by Fermat) of Fermat’s last theorem for n = 4, as well
as the corresponding formalization made in Coq.

1 Introduction

Diophantus of Alexandria (c. ad 250) was a Greek mathematician whose life is
little known but who wrote the 13 books of a collection called Arithmetica [13].
Diophantus is usually considered to be the father of Algebra, and his books
consider more than 130 problems (most of which have been solved) of first and
second order leading to equations whose roots are either integer or fractional.
Until 1972, only 6 books of this collection had been retrieved (in the 15th cen-
tury in Italy by Regiomontanus) when 4 other books were found in Iran. The
collection was translated in the 16th century by Wilhelm Holtzmann (also known
as Xylander) at Heidelberg (in Germany) and completed (in France) in Latin
by Claude-Gaspard Bachet De Méziriac. Diophantus’ work had a significant in-
fluence on Arabic mathematicians but also on western (and essentially French)



mathematicians like Viete and Fermat. In the 17th century, reading Bachet’s
translation (now lost) of book VI (related to propositions over right triangles
whose sides are measured as integers), Pierre Simon de Fermat (1601-1665) [4]
was interested, amongst others, in the following problem (20th problem): can
a right triangle whose sides are measured as integers have a surface measured
as a square? Formally, this is equivalent to knowing if there exist four non-zero
integers x, y, z and t s.t.:

x2 + y2 = z2 and xy = 2t2.

We know that the first equation has an infinity of solutions (for example, 3,
4 and 5, etc), called Pythagorean triples [14] (for they measure the sides of a
right triangle and verify Pythagoras’ relation), but with the condition over the
surface the problem is a little more difficult so that Fermat answered this ques-
tion negatively [11] using a wonderful method (the word was applied by Fermat
himself): the infinite descent [4,21,10]. This method is based on the fact that
there does not exist any strictly decreasing non-negative integer sequence. Thus,
starting from a lemma characterizing Pythagorean triples, Fermat’s idea consists
in re-expressing the problem with (strictly) smaller non-negative integers. More
precisely, Fermat concludes his proof as follows (quotation of the original text [4]
in modern French):

Si on donne deux carrés dont la somme et la différence sont des carrés, on
donne par là même, en nombres entiers, deux carrés jouissant de la même
propriété et dont la somme est inférieure.

Par le même raisonnement, on aura ensuite une autre somme plus petite que
celle déduite de la première, et en continuant indéfiniment, on trouvera tou-
jours des nombres entiers de plus en plus petits satisfaisant aux mêmes con-
ditions. Mais cela est impossible, puisqu’un nombre entier étant donné, il ne
peut y avoir une infinité de nombres entiers qui soient plus petits.

which means that given two squares m2, n2 s.t. m2 + n2 and m2 − n2 are
also squares, we can find two squares m′2, n′2 with the same properties s.t.
m′2 + n′2 < m2 + n2. Re-applying the process infinitely, we always find smaller
non-negative integers (w.r.t. m2 + n2), which is impossible because we are
bounded by zero.

This proof is worth being formalized in a theorem prover for several reasons.
First, this is a nice mathematical proof in the sense that it is rather short (with-
out, nonetheless, being trivial) and uses an original method (infinite descent).
Actually, it can be shown that the descent is equivalent to Noetherian induction
and even if it is difficult to consider induction reasoning as original these days,
it is more the expression of this induction (making it possible to establish uni-
versally false propositions) which is interesting here (this method has not been
greatly formalized or even used in deduction systems). This provides an addi-
tional interest to Fermat’s proof and to this work since this is the first use of
induction in the history of Mathematics. Moreover, beyond the fact that adding



this new theorem contributes a little more to the formalization of Mathematics
on a computer, the true challenge is certainly the development of the application
of the method itself (which can vary widely from one problem to another1). Fi-
nally, this proof has a high re-use potential. Fermat’s last theorem [17,21,16,10]
(there do not exist non-zero integers x, y and z s.t. xn + yn = zn for n > 2)
can be easily deduced for n = 4 (also proved by Fermat) from the proof of
Diophantus’ 20th problem and we also provide the proof in this paper as well
as its formalization. Infinite descent is also used to prove Fermat’s last theo-
rem for n = 3 (probably first proved by Fermat and later by Leonhardt Euler
and Karl Friedrich Gauss independently), n = 5 (proved by Adrien-Marie Leg-
endre and Lejeune Dirichlet using Sophie Germain’s work), n = 7 (proved by
Gabriel Lamé) and n = 14 (proved by Dirichlet). More generally, as claimed
in [21], the infinite descent method is the method par excellence in number the-
ory and in Diophantine analysis in particular.

As a theorem prover, we chose to use the Coq proof assistant [18] (V8.0).
Despite the fact that Coq is usually not considered to be one of the most
mathematician-friendly theorem provers (essentially due to its proof style, i.e.
the proofs are expressed in a procedural way which may seem unnatural for
mathematician users, and probably a not high enough level of automation, i.e.
the system may be, in some cases, not strong enough to deduce automatically
theorems from others whereas it seems rather easy to do so by hand), our choice
was motivated both by recent improvements regarding concrete syntax, in par-
ticular for arithmetic, and by a fairly sufficient degree of automation for the
problem we wanted to formalize (actually, only ring simplifications were needed
in our development).

In this paper, we present an informal (but rigorous) sketch of Fermat’s proofs
for Diophantus’ 20th problem and Fermat’s last theorem for n = 4, as it would be
described in a usual Mathematics book. Next, we give details regarding the for-
malization of this proof emphasizing the difficult points (essentially the lemmas
related to Pythagorean triples and the descent) and the solutions we provided.

2 Mathematical proof sketch

As said in the introduction, we want to prove that there do not exist right
triangles whose sides are measured as integers and the surface as a square. This
means that there do not exist four non-zero natural numbers (the theorem is
also true for integers) x, y, z and t s.t.:

x2 + y2 = z2 and xy = 2t2.

The proof starts looking for a characterization of Pythagorean triples, i.e.
the set of triples of natural numbers x, y and z verifying x2 + y2 = z2.
1 For example, using this method to prove Fermat’s last theorem for n = 4 may be

considered as rather elementary, whereas the proof of Leonhardt Euler for n = 3
ruins any hope, for Christian Goldbach (his friend and boss), of using such a method
to find a general proof for this theorem.



In the following, N denotes the set of natural numbers (considering that
0 ∈ N), i.e. the set of non-negative integers, and N∗ is the set of natural numbers
except 0, i.e. the set of positive integers.

2.1 Pythagorean triples

Historically, Pythagorean triples (also called Pythagorean triads) were studied
by Euclid of Alexandria in his Stoicheion [14] (The Elements). But, as can be seen
in [21], a Babylonian tablet (Plimpton 322; c. BC 1900-1600) already contained
the computation of fifteen Pythagorean triples, which tends to prove that such
triples were at least known long before Euclid and may even have been calculated
according to some rules. The set of Pythagorean triples can be characterized by
theorem 1 below. The proof, we provide, uses a geometrical point of view and
consists in locating the rational points of the unit circle. This proof is described
in [5] and is far different from the usual proofs that can be found in [8] or [16].

Theorem 1 (Pythagorean triples). Let S be the set of Pythagorean triples

and defined as S = { (a, b, c) | a, b, c ∈ N and a2 + b2 = c2 }. Let T be the set

defined as follows:

T = { (m(q2 − p2), 2mpq, m(p2 + q2)),
(2mpq, m(q2 − p2), m(p2 + q2))| m, p ∈ N, q ∈ N∗, p ≤ q,

p and q relatively prime,

p and q have distinct parities}.

Then S = T .

Proof. We denote C = {(x, y) ∈ R2|x2 + y2 = 1}, the unit circle and, for r ∈ R,
Dr = {(x, y) ∈ R2|y = r(x + 1)}. The proof is made in 6 steps:

Step 1: given a Pythagorean triple (a, b, c), which is not (0, 0, 0), there exists
a corresponding point (a

c
, b

c
) of the unit circle. As c > 0, we can divide by c2:

(a
c
)2 +( b

c
)2 = 1, which verifies the unit circle equation. Conversely, given a point

(a
c
, b

c
) of the unit circle, there exists an infinity of corresponding Pythagorean

triples (ma, mb, mc), for m ∈ N. We have (a
c
)2 + ( b

c
)2 = 1 and we can multiply

by m2c2 obtaining: (ma)2 + (mb)2 = (mc)2.

Step 2: the set C ∩ Dr has two points. To find these points, we have to solve
the following system:

{

y2 = 1 − x2

y = r(x + 1)
(1)

Thus, x must be solution of the following equation:

(1 + r2)x2 + 2r2x + r2 − 1 = 0

The solutions are −1 and 1−r2

1+r2 . Using the second equation of (1), we ob-

tain the two solutions {(−1, 0); (1−r2

1+r2 , 2r
1+r2 )}. We notice that the second point



is non-negative for 0 ≤ r ≤ 1.

Step 3: now, given M ∈ C, we can show that the coordinates of M are rational
iff there exists a rational r s.t. M ∈ C ∩ Dr. First, let us suppose that we have
r ∈ Q with M ∈ C ∩ Dr. We have two possibilities: either M = (−1, 0), which

is trivially rational, or M = (1−r2

1+r2 , 2r
1+r2 ), where the coordinates are rational

fractions (quotients of polynomials) in r ∈ Q, thus also in Q.

Conversely, let us suppose the coordinates (x, y) of M are rational. We have
two cases: either M = (−1, 0) and M is in M ∈ C ∩ Dr, for all r ∈ Q, or else
M 6= (−1, 0) and we take r = y

x+1
(which is a rational), M is in C by hypothesis

as well as in Dr by construction of r.

Step 4: the points of C with non-negative rational coordinates are given by the

set {(1−r2

1+r2 , 2r
1+r2 )}, with r ∈ Q∩ [0; 1] (steps 2 and 3). Taking r = p

q
, with p ∈ N,

q ∈ N∗, p ≤ q and p, q relatively prime (irreducible fraction), the set of points
of C with non-negative rational coordinates is the following:

W = {(q2 − p2

p2 + q2
,

2pq

p2 + q2
)|p ∈ N, q ∈ N∗, p ≤ q, p and q relatively prime}

Step 5: It is not possible to derive a characterization of Pythagorean triples
from W because the rational points of the unit circle must be expressed with
irreducible fractions. Hence, let us consider the set W ′ defined as follows:

W ′ = { ( q2
−p2

p2+q2 , 2pq
p2+q2 ), ( 2pq

p2+q2 , q2
−p2

p2+q2 ) |
p ∈ N, q ∈ N∗, p ≤ q, p and q relatively prime,

p and q have distinct parities}

Let us show that W = W ′. First, let us consider the inclusion W ⊂ W ′:

given a point x = ( q2
−p2

p2+q2 , 2pq
p2+q2 ) ∈ W , since p and q are relatively prime, either

p and q have distinct parities, or they are both odd. In the former case, we have
trivially x ∈ W ′. In the latter case, let us look for p′ and q′ s.t.:

q2 − p2

p2 + q2
=

2p′q′

p′2 + q′2
and

2pq

p2 + q2
=

q′2 − p′2

p′2 + q′2
(2)

which leads to the solutions p′ = q−p

2
and q′ = p+q

2
. These solutions are both

integers since p and q are both odd. We have p′ + q′ = q and q′ − p′ = p; since p

and q are relatively prime, p′ and q′ are relatively prime (knowing that if m + n

and m− n are relatively prime then m and n are relatively prime). Since p and
q are both odd, we have p = 2k + 1, q = 2k′ + 1 and we obtain p′ = k′ − k,
q′ = k + k′ +1. Considering all the cases w.r.t. the parities of k and k′, we easily
verify that p′ and q′ have distinct parities. Thus, x ∈ W ′.

Conversely, let us prove the inclusion W ′ ⊂ W . Given a point x ∈ W ′, either

x = ( q2
−p2

p2+q2 , 2pq

p2+q2 ) or x = ( 2pq

p2+q2 , q2
−p2

p2+q2 ). In the former case, x is trivially in W .



In the latter case, we have to solve the system (2), which leads to the solutions
p′ = q−p and q′ = p+ q. These solutions have distinct parities (using the condi-
tions over p and q together with proposition 1 in subsection 2.2). Thus, x ∈ W
and we have shown that W = W ′.

Step 6: We have to show that S = T . Given (a, b, c) ∈ S, (a
c
, b

c
) is a point of

C (step 1), which can be written as ( q2
−p2

p2+q2 , 2pq

p2+q2 ) or ( 2pq

p2+q2 , q2
−p2

p2+q2 ) (step 5).

The two fractions q2
−p2

p2+q2 and 2pq

p2+q2 are irreducible (because p and q are rela-

tively prime and have distinct parities), so c is a multiple of p2 + q2. Setting
c = m(p2 + q2), we obtain the triple (a, b, c) = (m(q2 − p2), 2mpq, m(p2 + q2)) or
(a, b, c) = (2mpq, m(q2 − p2), m(p2 + q2)). Thus, S ⊂ T .

Given a triple (a, b, c) ∈ T , either (a, b, c) = (m(q2−p2), 2mpq, m(p2+q2)) or
(a, b, c) = (2mpq, m(q2 − p2), m(p2 + q2)). In both cases, we only have to verify
that we have a Pythagorean triple (by computation), i.e.:

(m(q2 − p2))2 + (2mpq)2 = (2mpq)2 + (m(q2 − p2))2

= m2(q4 + p4 − 2p2q2 + 4p2q2)
= m2(p2 + q2)2 = (m(p2 + q2))2

Thus, T ⊂ S and we have shown that T = S.

2.2 Infinite descent

For this proof, which is an application of the infinite descent method [4,21,10],
we essentially used [11], but it is also described in [10]. This proof can also be
found in [8] and [16], integrated into the proof of Fermat’s last theorem for n = 4.

Using theorem 1, we can express the surface of the right triangle as:

xy

2
= k2pq(q2 − p2) (3)

with k, p ∈ N, q ∈ N∗, p ≤ q, p, q are relatively prime and have distinct
parities.

Thus, Diophantus’ 20th problem is equivalent to asking:

Can pq(q2 − p2) be a square?

Preliminaries Here are some preliminary propositions (related to properties
regarding relatively prime integers and squares) we will have to use when building
the infinite descent proof (to save space, we do not provide the proofs of these
rather basic notions):

Proposition 1. Given m, n ∈ N s.t. n < m, if m, n are relatively prime and

have distinct parities then m + n and m − n are relatively prime.



Proposition 2. Given m, n ∈ N s.t. n ≤ m, if m, n are relatively prime then

m2, n2 are relatively prime and m, n, m2 − n2 are relatively prime.

Proposition 3. Given m, n ∈ N, if m2, n2 are relatively prime then m, n are

relatively prime.

Proposition 4. Given the sequence (un) over N, if u0, u1, . . . , un are relatively

prime and u0 × u1 × . . . × un is a square then u0, u1, . . . , un are squares.

We also recall Gauss’s theorem (we do not give the proof again because this is
quite an usual theorem, which, in particular, is already part of the Coq standard
library):

Theorem 2 (Gauss’s theorem). Given a, b ∈ N, if d divides ab and if a, d

are relatively prime then d divides b.

To make the dependencies between the previous propositions and theorems
clear, it should be noted that proposition 1 and theorem 2 are also (implic-
itly) used in the proof of theorem 1 whereas theorem 2 is used in the proof of
proposition 1.

Proof of Diophantus’ 20th problem We start by assuming that pq(q2 − p2)
is a square. Propositions 2 and 4 allow us to claim that p, q and q2 − p2 are
squares. Let us have q = m2, p = n2 and q2 − p2 = r2. Thus, we obtain:

r2 = q2 − p2 = m4 − n4 = (m2 + n2)(m2 − n2) (4)

We have:

– m2 + n2 and m2 − n2 are odd because p and q have distinct parities;
– m and n are relatively prime (proposition 3);
– m2 + n2 and m2 − n2 are relatively prime (proposition 1).

As (m2 + n2)(m2 − n2) is a square, there exist (proposition 4) two natural
numbers u and v s.t.:

m2 + n2 = u2 and m2 − n2 = v2 (5)

But, u2 = q + p and v2 = q − p. Then, u and v are odd and are relatively
prime. Moreover, u2 − v2 = (u + v)(u − v) = 2n2 and u + v, u − v are even
(divisible by 2). If d is a common prime divisor of u + v and u − v then d

divides 2u and 2v (by addition and subtraction). If d > 2 then d divides u and v

(theorem 2): this leads to a contradiction because u and v are relatively prime.
Thus, gcd(u + v, u − v) = 2.

However, the product of two even numbers is divisible by 4. So, exactly one
of u + v and u − v is a multiple of 4. Let us assume that u − v is a multiple of
4: we have u − v = 4s and u + v = 2w, with s, w relatively prime and w odd.
Then we obtain:

(u + v)(u − v) = 8sw = 2n2 and next: n2 = 4sw ⇔ (
n

2
)2 = sw



The numbers s and w are relatively prime and then s and w are squares
(proposition 4). Thus, we have:

u − v = 4a2, u + v = 2b2, v = b2 − 2a2

Next:
n2 = 4a2b2 and using (5): m2 = n2 + v2 = b4 + 4a4

Writing m2 = b4 + 4a4 means that (b2, 2a2, m) is a Pythagorean triple (we
can remark that if we assume that u + v is the multiple of 4, we have the same
values for m and n). We can express this triple as described by theorem 1 and
observing that b2 is odd (for u and v are relatively prime):

(b2, 2a2, m) = (k′(q′2 − p′2), 2k′p′q′, k′(p′2 + q′2))

It is necessary that k′ = 1 since b2 and 2a2 are relatively prime (for u and v

are relatively prime) and we have:

b2 = q′2 − p′2, a2 = p′q′

Finally, for the same reason, p′ and q′ are also relatively prime. As p′q′

and (p′ + q′)(q′ − p′) are squares, p′, q′, p′ + q′ and q′ − p′ are also squares
(proposition 4). Setting q′ = m2 and p′ = n2, we are back to the initial point:
looking for m2 and n2 whose addition and subtraction must be squares implies
looking for m′2 and n′2 with the same property. But we have m′2+n′2 < m2+n2:

m′2 + n′2 = q′ + p′ =
b2

(q′ − p′)
< b2 < b2 + 2a2 < (b2 + 2a2)2 = m2 + n2

We can restart the reasoning and we will always find strictly smaller non-
negative integers (not w.r.t. m and n but w.r.t. m2 + n2) verifying the same
conditions. However, this leads to a contradiction because there does not exist
an infinity of smaller non-negative integers (bounded by 0). This reasoning was
called infinite descent by Fermat. Thus, pq(q2 − p2) cannot be a square and
Diophantus’ 20th problem has no solution.

2.3 Application: Fermat’s last theorem for n = 4

From the proof of Diophantus’ 20th problem, we can deduce quite directly the
proof of Fermat’s last theorem for n = 4, i.e. there do not exist three non-zero
natural numbers x, y and z s.t. x4 +y4 = z4. Regarding this proof, we essentially
used [12], but it can be also found in [10], [8] and [16].

As previously (for Diophantus’ 20th problem), the idea is to deduce a con-
tradiction and the proof starts by assuming that there exist x, y, z ∈ N∗ s.t.:

x4 + y4 = z4 (6)

We can assume that y and z are relatively prime. Otherwise if d is the gcd
of y and z, then y = dy′, z = dz′ and we have:

z4 − y4 = d4(y′4 − z′4) = x4



Thus, d divides x and if x = dx′ then we have to prove:

x′4 + y′4 = z′4

which is the initial equation (6) with y′ and z′ relatively prime.
We can also assume that y and z have distinct parities. First, y and z cannot

be both even because we have just assumed that they are relatively prime. Next,
let us show that y and z can be supposed not to be both odd. Equation (6) can
be written as follows:

(x2)2 + (y2)2 = (z2)2

Thus, (x2, y2, z2) is a Pythagorean triple. As a consequence of theorem 1,
one of the numbers x2 and y2 is even (of the form 2mpq). By symmetry of T ,
we can assume that y2 is even (otherwise we have to permute the role of x and
y: we can show that x and z are also relatively prime and we apply the same
reasoning which follows). In this way, x2 and z2 are both odd (divided by an odd
m); otherwise, they are both even (divided by an even m) which contradicts the
assumption that y and z are relatively prime. So, we can assume that y2 and z2

have distinct parities, as well as y and z.
Moreover, equation (6) is equivalent to:

z4 − y4 = (z2 + y2)(z2 − y2) = x4 = (x2)2

This new equation shows that the problem is now reduced to proving that
the expression (z2 + y2)(z2 − y2) cannot be a square, with y, z relatively prime
and having distinct parities. This has been already shown in subsection 2.2 when
proving Diophantus’ 20th problem with infinite descent. More precisely, we are
exactly in the conditions of equation (4), where m, n are relatively prime and
have distinct parities (since p and q have distinct parities).

3 Formalization

3.1 Generalities

As mentioned in the introduction, we used the Coq proof assistant (latest version
V8.0 [18]) to carry out the entire formalization of Diophantus’ 20th problem. This
choice was essentially motivated by some of the recent improvements proposed by
this version of Coq. Amongst other features, we were attracted by the complete
revision of the concrete syntax which appears more homogeneous and which
allows us to get a kind of overloading with a system of scopes. In particular,
for number theory, this is quite appropriate because we have exactly the same
notations (e.g. for 0, 1, +, ∗, etc) over N, Z, Q or R. Despite the fact that
the proof style and the level of automation provided by Coq is not as suitable
as could be expected for mathematical developments, this release does clearly
represent a step toward a more mathematician-friendly framework.

Regarding the formalization, it was also necessary to make some choices es-
sentially motivated by the developments provided by the standard library of



Coq as well as the level of automation offered by the system. For example, as
seen in section 2, the theorem deals only with natural numbers but we use
many expressions with the opposite - (together with appropriate side conditions
ensuring that the corresponding expressions are always natural numbers; see
equation (3), for example) and as N is only a semi-ring, the automation strategy
over rings (tactic Ring) does not work as expected (it does not simplify expres-
sions involving the opposite). As a consequence, many algebraic simplifications
must be carried out manually using the appropriate combination of rewritings.
This tends to slow down the development significantly and we decided to use Z
(with some additional non-negativity conditions) instead of N. In this way, the
theorem is formally the same and we get a full automation for algebraic manip-
ulations (the tactic Ring does work as expected). Another point which had to
be dealt with is that Coq’s standard library does not provide a rational number
theory (used in the proof of theorem 1). Actually, there are several libraries of
rationals (contributed by some Coq users), but no standard tends to emerge and
especially none of them is related to the classical real number theory provided
by the standard library. To work around this problem, we considered the real
number library and we used an ad hoc rational predicate (considering that a
rational number is a real number expressed as a fraction of two integers), which
was quite sufficient to deal with our proof.

In the following, we present an outline of our formalization which has been
separated in three significant parts: the characterization of Pythagorean triples,
the application of infinite descent and the proof of Fermat’s last theorem for
n = 4. The whole development is available as a Coq contribution [2]. For informa-
tion, this contribution involves about 2000 lines of code and took the equivalent
of two months of development.

3.2 Pythagorean triples

The proof in Coq of theorem 1 follows exactly the steps described in subsec-
tion 2.1 (trying to characterize the non-negative rational coordinates of the unit
circle). We do not give all the intermediary lemmas necessary to build the proof
and here are the two main lemmas (step 6) which allows us to conclude:

Lemma pytha_thm1 : forall a b c : Z,

(is_pytha a b c) -> (pytha_set a b c).

Lemma pytha_thm2 : forall a b c : Z,

(pytha_set a b c) -> (is_pytha a b c).

where is_pytha is the Pythagorean triple predicate (corresponding to S)
and pytha_set is the set of Pythagorean triples (corresponding to T ), which
are defined as follows:

Definition pos_triple (a b c : Z) :=

(a >= 0) /\ (b >= 0) /\ (c >= 0).



Definition is_pytha (a b c : Z) :=

(pos_triple a b c) /\ a * a + b * b = c * c.

Definition cond_pqb (p q : Z) :=

p >= 0 /\ q > 0 /\ p <= q /\ (rel_prime p q).

Definition distinct_parity (a b : Z) :=

(Zeven a) /\ (Zodd b) \/ (Zodd a) /\ (Zeven b).

Definition cond_pq (p q : Z) := cond_pqb p q /\ (distinct_parity p q).

Definition pytha_set (a b c : Z) :=

exists p : Z, exists q : Z, exists m : Z,

(a = m * (q * q - p * p) /\ b = 2 * m * (p * q) \/

a = 2 * m * (p * q) /\ b = m * (q * q - p * p)) /\

c = m * (p * p + q * q) /\ m >= 0 /\ (cond_pq p q).

where Z corresponds to Z, Zeven/Zodd are respectively the even/odd pred-
icates over Z (predefined in the Coq library) and rel_prime is the relatively
prime predicate over Z (also predefined).

3.3 Infinite descent

Infinite descent and induction Historically, infinite descent [4,21,10], in-
vented in the 17th century by Fermat, is one of the first explicit uses of reason-
ing by induction2 (over natural numbers) in a mathematical proof (around the
same time, Blaise Pascal used a similar principle to prove properties for num-
bers in his triangle). Nevertheless, as claimed in [22], some tend to think that
this principle was, in fact, already used by the ancient Greeks (in particular, by
the Pythagorean mathematician Hippasos of Metapont in the proof of the irra-
tionality of the golden number 1

2
(1+

√
5)) in the 5th century BC, and thus, long

before Fermat, who simply reinvented it. Formally, Fermat’s induction schema
can be expressed in a general way as follows:

(∀x.P (x) ⇒ ∃y.y ≺ x ∧ P (y)) ⇒ ∀x.¬P (x) (7)

where the relation ≺ is supposed to be well-founded.
This schema is quite appropriate to establish universally false properties (in

particular, Diophantus’ 20th problem) but even if it appears that Fermat failed to
adapt it to prove universally true properties3, this principle is, in fact, equivalent

2 Here, by induction, we mean complete induction (or mathematical induction), in
contrast to incomplete induction, which was used in Fermat’s time to establish con-
jectures and which simply consisted in verifying the validity of a proposition over N
for the first values of N.

3 Actually, as can be noticed in a work sent to Christiaan Huygens v̂ıa Pierre de Carcavi
(see [21,4,10]), Fermat succeeded in using the descent to answer positive questions,
operating a kind of ¬¬-translation over the statement, more or less easily in some



to Noetherian induction [3,22], which allows us to prove properties positively and
which is the following:

(∀x.(∀y.y ≺ x ⇒ P (y)) ⇒ P (x)) ⇒ ∀x.P (x)

where the relation ≺ is supposed to be well-founded.

Thus, to apply one or the other of these schemas to our proof (see subsec-
tion 2.2), we only have to prove that the relation R(x, y)(x′, y′) ≡ x+y < x′+y′

(over N) is well-founded. This is trivially done using a compatibility lemma
related to the relation < (predefined in the Coq library), i.e. if there exists a
function f s.t. R(x, y) ⇒ f(x) < f(y) then R is well-founded. Here, in our case,
the function is simply f(x, y) = x + y.

Development The formalization in Coq of Diophantus’ 20th problem follows
the steps described in subsection 2.2 and to conclude, we use the infinite de-
scent schema. As said previously, for the infinite descent principle, we started
proving the Noetherian induction lemma adapted to our proof (using the well-
foundedness induction schema provided by the library of Coq, as well as the proof
that the relation given previously is well-founded) and then we deduced the in-
finite descent lemma. Here are some of the corresponding lemmas (we proved
the infinite descent schema for N and we generalized it, with non-negativity side
conditions, to work over Z):

Lemma noetherian : forall P : nat * nat -> Prop,

(forall z : nat * nat, (forall y : nat * nat,

(fst(y) + snd(y) < fst(z) + snd(z))%nat -> P y) -> P z) ->

forall x : nat * nat, P x.

Lemma infinite_descent_nat : forall P : nat * nat -> Prop,

(forall x : nat * nat, (P x -> exists y : nat * nat,

(fst(y) + snd(y) < fst(x) + snd(x))%nat /\ P y)) ->

forall x : nat * nat, ~(P x).

Lemma infinite_descent : forall P : Z -> Z -> Prop,

(forall x1 x2 : Z, 0 <= x1 -> 0 <= x2 ->

(P x1 x2 -> exists y1 : Z, exists y2 : Z, 0 <= y1 /\ 0 <= y2 /\

y1 + y2 < x1 + x2 /\ P y1 y2)) ->

forall x y: Z, 0 <= x -> 0 <= y -> ~(P x y).

where the notation %nat is used to switch to the arithmetic scope of nat (the
default scope has been set for Z), the symbol * is the Cartesian product and
fst/snd are respectively the first/second components of a couple.

cases (for example, every prime number of the form 4n+1 is the sum of two squares)
and quite painfully in some others (such as, every number is a square or composed
of two, three or four squares). However, he never used a positive induction schema
to do so.



Next, here are four lemmas corresponding to the propositions stated in the
preliminaries of subsection 2.2 (as said in this subsection, Gauss’s theorem has
already been proved in Coq and is part of the standard library):

Lemma prop1 : forall m n : Z, rel_prime m n -> distinct_parity m n ->

rel_prime (m + n) (m - n).

Lemma prop2 : forall m n : Z, rel_prime m n ->

rel_prime (m * m) (n * n) /\ rel_prime m (m * m - n * n).

Lemma prop3 : forall m n : Z, rel_prime (m * m) (n * n) -> rel_prime m n.

Lemma prop4 : forall p q : Z, 0 <= p -> 0 <= q -> rel_prime p q ->

is_sqr (p * q) -> is_sqr p /\ is_sqr q.

where is_sqr is the square predicate defined as follows:

Definition is_sqr (n : Z) : Prop :=

0 <= n -> exists i : Z, i * i = n /\ 0 <= i.

Finally, here are the two main lemmas, a refined version of the problem (i.e.
looking for p, q s.t. pq(q2 − p2) is a square) and the final problem:

Lemma diophantus20_refined : forall p q : Z,

p > 0 -> q > 0 -> p <= q -> rel_prime p q -> distinct_parity p q ->

~is_sqr (p * (q * (q * q - p * p))).

Lemma diophantus20 :

~(exists x : Z, exists y : Z, exists z : Z, exists t : Z,

0 < x /\ 0 < y /\ 0 < z /\ 0 < t /\ x * x + y * y = z * z /\

x * y = 2 * (t * t)).

3.4 Fermat’s last theorem for n = 4

The formalization in Coq of Fermat’s last theorem for n = 4 follows the proof
described in subsection 2.3. As previously stated, the idea is to use the refutation
of equation (4), established by the descent in the proof of Diophantus’ 20th
problem and expressed as follows:

Lemma diophantus20_equiv : forall y z : Z,

y > 0 -> z > 0 -> y <= z -> rel_prime y z -> distinct_parity y z ->

~is_sqr ((z * z + y * y) * (z * z - y * y)).

Here are the main lemma as well as a refined version making the application
of the previous lemma possible:

Lemma fermat4_weak:

~(exists x : Z, exists y : Z, exists z : Z,

0 < x /\ 0 < y /\ 0 < z /\ rel_prime y z /\ distinct_parity y z /\

x * x * x * x + y * y * y * y = z * z * z * z).



Lemma fermat4:

~(exists x : Z, exists y : Z, exists z : Z,

0 < x /\ 0 < y /\ 0 < z /\

x * x * x * x + y * y * y * y = z * z * z * z).

4 Conclusion

4.1 Related proofs and formalizations

One of the most significant related proofs is certainly John Harrison’s work, who
did the same formalization in HOL90 (an old implementation of the HOL [7]
system). Actually, it is not exactly the same especially regarding the proof of
Pythagorean triples (theorem 1), which, as seen in subsection 2.1, is based on the
characterization of the rational points of the unit circle. Moreover, the formaliza-
tion described here is fully constructive in contrast to Harrison’s; we do not use
the excluded middle or any form of the axiom of choice (the real numbers we use
are classical but this could be avoided relying on a constructive formalization of
real numbers or more appropriately of rational numbers; unfortunately, none of
these formalizations are standard theories in Coq).

In Coq, some non trivial proofs regarding number theory have been also
developed (as user contributions, see [2]). For example, Olga Caprotti and Mar-
tijn Oostdijk formalized Pocklington’s criterion for checking primality for large
natural numbers (their development includes also a proof of Fermat’s little theo-
rem). Valérie Ménissier-Morain also developed a proof of Chinese lemma (related
to the notion of congruence) and finally, Laurent Théry [19] formalized the cor-
rectness proof of Knuth’s algorithm which gives the first n prime numbers.

In other theorem provers, the Mizar system [20] provides a large library of
formalizations (the Mizar Mathematical Library). In particular, a subset of this
library is dedicated to Mathematics and is edited as the collection entitled For-

malized Mathematics [6], which contains many developments regarding number
theory. In HOL (and variants), Joe Hurd [9] formalized the Miller-Rabin proba-
bilistic primality test and John Harrison is developing the Agrawal-Kayal-Saxena
primality test. Finally, in Isabelle [15], the project directed by Jeremy Avigad [1]
at Carnegie Mellon University aims at developing Mathematics in Isabelle’s
higher-order logic and is focusing, in particular, on extending the number theory
library of the Isabelle system.

4.2 Extensions

As far as the authors know, this work is one of the first formalizations (together
with Harrison’s) of a proof based on the infinite descent principle (other formal-
izations must certainly use Noetherian inductions but they are not expressed
in the infinite descent way). This opens up some possibilities of re-using this
method, which can be easily generalized to any well-founded relation, for some



other proofs which may be appropriate for this kind of reasoning (essentially uni-
versally false properties). As examples, we have another historical proof, which
is the proof of Fermat’s last theorem for n = 3 [8] (which is, in fact, the basic
case if we try to prove Fermat’s last theorem by induction). The proof (maybe
by Fermat and later by Euler and Gauss independently) also uses the principle
of infinite descent but is longer and far more technical than that for n = 4. This
should not be considered as surprising: induction can be applied trivially in some
proofs whereas in some others, it turns out to be tricky to make it work and this
is also true for the infinite descent schema. Also, it would be possible to adapt
the method to formalize other proofs (equally historical) of the same theorem for
other specific values of n (n = 5, n = 7, etc), which similarly use the descent and
which essentially come from attempts to prove the theorem in the general case
(in this situation, it may appear surprising that the breakthrough came from a
link with algebraic geometry and did not use any kind of induction). But, more
generally, as pointed out in [21], infinite descent is the method par excellence

in number theory and in Diophantine analysis. In this way, some other projects
could be Fermat’s equation [16,8,21,10] (also wrongly called Pell’s equation in
older writings; i.e. the equation x2 − Ny2 = 1 has infinitely many solutions inZ if N > 1 and is not a square), where the method of descent could be used
to get a proof of existence (but not to compute solutions), or, more ambitiously
and also more modern, the proof of Mordell’s theorem [21] (the group of rational
points of an elliptic curve is always finitely generated), where the descent has
been refined to be applied.
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22. Claus-Peter Wirth. Descente infinie + Deduction. In Logic Journal of the IGPL.
Oxford University Press, 2004.


