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Abstract. Popular finite difference numerical schemes for the resolu-
tion of the one-dimensional acoustic wave equation are well-known to be
convergent. We present a comprehensive formalization of the simplest
scheme and formally prove its convergence in Coq. The main difficul-
ties lie in the proper definition of asymptotic behaviors and the implicit
way they are handled in the mathematical pen-and-paper proofs. To
our knowledge, this is the first time this kind of mathematical proof is
machine-checked.
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1 Introduction

Ordinary differential equations (ODE) and partial differential equations (PDE)
are ubiquitous in engineering and scientific computing. They show up in weather
forecast, nuclear simulation, etc., and more generally in numerical simulation.
Solutions to nontrivial problems are nonanalytic, hence approximated by numer-
ical schemes over discrete grids.

Numerical analysis is mainly interested in proving the convergence of these
schemes, that is, the approximation quality increases as the size of the dis-
cretization steps decreases. The approximation quality is characterized by the
error defined as the difference between the exact continuous solution and the
approximated discrete solution; this error must tend toward zero in order for
the numerical scheme to be useful.

There is a wide literature on this topic, e.g. see [1, 2], but no article goes into
all the details. These “details” may have been skipped for readability, but they
could also be mandatory details that were omitted due to an oversight. The

* This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-
04) and FfST (ANR-08-BLAN-0246-01).
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purpose of a mechanically-checked proof is to uncover these issues and check
whether they could jeopardize the correctness of the schemes.

This work is a first step toward the development of formal tools for dealing
with the convergence of numerical schemes. It would have been sensible to start
with classical schemes for ODE, such as the Euler or Runge-Kutta methods. But
we decided to directly validate the feasibility of our approach on the more com-
plicated PDE. Moreover, this opens the door to a wide variety of applications,
as they appear in many realistic problems from industry.

We chose the domain of wave propagation because it represents one of the
most common physical phenomena one experiences in everyday life: directly
through sight and hearing, but also via telecommunications, radar, medical
imaging, etc. Industrial applications range from aeroacoustics to music acoustics
(acoustic waves), from oil prospection to nondestructive testing (elastic waves),
from optics to stealth technology (electromagnetic waves), and even include sta-
bilization of ships and offshore platforms (surface gravity waves). We restrained
ourselves to the simplest example of wave propagation models, the acoustic wave
equation in a one-dimensional space domain, for it is a prototype model for all
other kinds of wave. In this case, the equation describes the propagation of pres-
sure variations (or sound waves) in a fluid medium; it also models the behavior of
a vibrating string. For simplicity, we only consider homogeneous media, meaning
that the propagation velocity is constant. Among the wide variety of numerical
schemes for approximately solving the 1D acoustic wave equation, we chose the
simplest one: the second order centered finite difference scheme, also known as
the “three-point scheme”. Again, for simplicity, we only consider regular grids
with constant discretization steps for time and space.

To our knowledge, this is the first time this kind of mathematical proof is
machine-checked.® Few works have been done on formalization and proofs on
mathematical analysis inside proof assistants, and fewer on numerical analysis.
Even real analysis developments are relatively new. The first developments on
real numbers and real analysis are from the late 90’s [3-7]. Some intuitionist
formalizations have been realized by a team at Nijmegen [8,9]. Analysis results
are available in provers such as ACL2, Coq, HOL Light, Isabelle, Mizar, or PVS.
Regarding numerical analysis, we can cite [10] which deals, more precisely, with
the formal proof of an automatic differentiation algorithm. About R™ and the
dot product, an extensive work has been done by Harrison [11]. About the big O
operator for asymptotic comparison, a decision procedure has been developed
in [12]; unfortunately, we needed a more powerful big O and those results were
not applicable.

Section 2 presents the PDE, the numerical scheme, and their mathematical
properties. Section 3 describes the basic blocks of the formalization: dot product,
big O, and Taylor expansions. Section 4 is devoted to the formal proof of the
convergence of the numerical scheme.

5 The Coq sources of the formal development are available from http://fost.saclay.
inria.fr/wave_method_error. php.
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2 Wave Equation

A partial differential equation modeling an evolutionary problem is an equation
involving partial derivatives of an unknown function of several independent space
and time variables. The uniqueness of the solution is obtained by imposing ad-
ditional conditions, typically the value of the function and the value of some of
its derivatives at the initial time. The right-hand sides of such initial conditions
are also called Cauchy data, making the whole problem a Cauchy problem, or an
initial-value problem.

The mathematical theory is simpler when unbounded domains are consid-
ered [1]. When the space domain is bounded, the computation is simpler, but
we have to take reflections at domain boundaries into account; this models a
finite vibrating string fixed at both ends. Thanks to the nice property of finite
velocity of propagation of the wave equation, we can build two Cauchy problems,
one bounded and the other one unbounded, that coincide on the domain of the
bounded one. Thus, we can benefit from the best of both worlds: the bounded
problem makes computation simpler and the unbounded one avoids handling
reflections. This section, as well as the steps taken at section 4 to conduct the
proof of the convergence of the numerical scheme, is inspired by [13].

2.1 The continuous equation

The chosen PDE models the propagation of waves along an ideal vibrating elastic
string, see [14,15]. It is obtained from Newton’s laws of motion [16].

The gravity is neglected, hence the string is supposed rectilinear when at
rest. Let u(z,t) be the transverse displacement of the point of the string of
abscissa x at time ¢ from its equilibrium position. It is a (signed) scalar. Let ¢
be the constant propagation velocity. It is a positive number that depends on
the section and density of the string. Let s(xz,t) be the external action on the
point of abscissa x at time ¢; it is a source term, such that ¢t = 0 = s(x,t) = 0.
Finally, let ug(x) and uy(x) be the initial position and velocity of the point of
abscissa z. We consider the Cauchy problem (i.e., with conditions at t = 0)

2
1) ¥>0,VoeR, (Lc)u)(z,t) < %(m) + A(e) u(z, t) = s(x, 1),
of O
(2) Ve R, (Liw)(e,0) % 2 (@,0) = wi(a),
(3) Ve eR, (Lou)(z,0) 2ef u(z,0) = up(x)
where the differential operator A(c) is defined by
def ({92
(4) A(C) = 702@.

We admit that under reasonable conditions on the Cauchy data uy and u; and
on the source term s, there exists a unique solution to the Cauchy problem (1)—
(3) for each ¢ > 0. This is a mathematical known fact (established for example
from d’Alembert’s formula (6)), that is left unproved here.



4 S. Boldo, F. Clément, J-C. Filliatre, M. Mayero, G. Melquiond, P. Weis

For such a solution wu, it is natural to associate at each time t the positive
definite quadratic quantity

ou 2

€= 7(5& t)

1 2
En t3 [ = w(z, )[4

() E(e)(u)(t) = 5

where (v, w) def Jp v(z)w(zx)dz, [[v]|? def (v,v) and ||v||i(c) def (A(c)v,v). The

first term is interpreted as the kinetic energy, and the second term as the poten-
tial energy, making F the mechanical energy of the vibrating string.

This simple partial derivative equation happens to possess an analytical solu-
tion given by the so-called d’Alembert’s formula [17], obtained from the method
of characteristics [18], Vt > 0, Va € R,

z+ct
(©) ulwt) = 5unle —ct) +wolo+e) + 5o [ )y

—ct
1 t z+c(t—o)
— / s(y,o)dy | do.
2c 0 ( z—c(t—o) )
One can deduce from formula (6) the useful property of finite velocity of prop-
agation. Assuming that we are only interested in the resolution of the Cauchy
problem on a compact time interval of the form [0, tmnax] With tmax > 0, we

suppose that ug, u; and s have a compact support. Then the property states
that there exists Tyin and Tyax With Zmin < Tmax such that the support of the

solution is a subset of £2 & [Zmins Tmax) X [0, tmax|. Furthermore, since the bound-
aries do not have time to be reached by the signal, the Cauchy problem set on (2
by adding homogeneous Dirichlet boundary conditions (i.e. for all ¢ € [0, tmax],
W(Tmin, t) = U(Tmax,t) = 0), admits the same solution. Hence, we will numeri-
cally solve the Cauchy problem on (2, but with the assumption that the spatial
boundaries are not reached.

Note that the implementation of the compact spatial domain [Zmin, Tmax] Will
be abstracted by the notion of finite support (that is to say, being zero outside
of an interval, see Section 4.2) and will not appear explicitly otherwise.

Note also that most properties of the continuous problem proved unnecessary
in the formalization of the numerical scheme and the proof of its convergence.
For instance, integration operators and d’Alembert’s formula can be avoided as
long as we suppose the existence and regularity of a solution to the PDE and
that this solution has a finite support.

2.2 The discrete equations

Let (Az, At) be a point in the interior of §2; define the discretization func-

. . def | p—gp - def . def .
tions jaz(z) = L%J and ka(t) = LEJ; then set jmax = jAz(Tmax) and
kmax def kat(tmax)- Now, the compact domain {2 is approximated by the regular

discrete grid defined by

(7)  Vk € [0.kmax)s Vi € [Ocdima)s x5 % (25, 8%) 2 (i + j AT, KAL),
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Fig. 1. Three-point scheme: u; ™" (x) depends on u?,l, u?, u?H and u?_l (o).

Let v;, be a discrete function over [0..jmax]| X [0..kmax]. For all k in [0..kmpax],
we write v} = (Uf)ogjgjmxv then v, = ((vF)o<k<kma)- A function v defined
over {2 is approximated at the points of the grid by the discrete function vy

defined on [0..jmax] X [0..kmax] by 0¥ d:Cfv(ka except for u where we use the

J
notation ¥ Lef u(x¥) to prevent notation clashes.
Let ugp and uyp, be two discrete functions over [0..jmax]; let sp be a discrete
function over [0..jmax] X [0.-Kmax]- Then, the discrete function wup, over [0..jmax] X
[0..kmax] is said to be the solution of the three-point” finite difference scheme,

as illustrated in Figure 1, when the following set of equations holds:

(8) Vk S [2~kmax]7 vj S [Oujmax]v

k k-1
def W5 —2uZ ™" 4w
(Lh(C) ’U,h)gC = J

1,0
(9) Vj € (0. Jmax)s (Lin(c)un); = —— + 7(Ah(0) up)j = uaj,

At
(10)  Vj € [0..jmax], (Lonun);j L0 = U5
J
(11)  Vk € [0..kmax]; u’il = u?maxﬂ =0

where the matrix Ay (c), discrete analog of A(c), is defined, for any vector v, =
(V)0 <hmax)> DY

. . def o Vjt1 — 205 + v
(12) Vj € [0.fmax),  (An(c)vn); = —¢ ALl .
Note that defining uy, for artificial indexes j = —1 and j = jax + 1 is a trick
to make the three-point spatial scheme valid for j = 0 and j = jpax-
A discrete analog of the energy is also defined by®

2
k+1 k
Up, — Up,

At

(13)  Eew) S

Az

" In the sense “three spatial points”, for the definition of matrix Ap(c).
8 By convention, the energy is defined between steps k and k + 1, thus the notation
k+ 3.
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where (vn,wp) 5, = S vjw Az, Jonlf, € (onsv) A,
and (Vn, Wh) 4, (o) def (An(c) vh, wn) Ay

Note that the three-point scheme is parametrized by the discrete Cauchy
data ugp and u1p, and by the discrete source term sy. Of course, when ugp, u1p,
and sy, are respectively approximations of ug, u1, f, then the discrete solution uy,
is an approximation of the continuous solution wu.

2.3 Convergence

Let ¢ and £ be in |0, 1] with ¢ < 1 — &. The CFL((, &) condition (for Courant-
Friedrichs-Lewy, see [19]) states that the discretization steps satisfy the relation
cAt
14 < —<1-¢€.

Note that the lower bound ¢ may seem surprising from a numerical analysis
point of view; the formalization has however shown that it was mandatory (see
Section 4.3).

The convergence error e;, measures the distance between the continuous and
discrete solutions. It is defined by

[

. . def _
(15) Vk € [0..kmax], VJ € [0..Jmax], ef = u? - uf

The truncation error €, measures at which precision the continuous solution
satisfies the numerical scheme. It is defined by

(16) Yk € 2. kmax], Vi € [0cfmax), €571 € (Ly(e) an)k — 471,
(17) Vi € [0ejmands €0 % (Lun(e) @n); — uny,
(18) Vj e [Onjmax}a 6;1 d:ef (Lohﬂh)j —Ug,j-

The numerical scheme is said to be convergent of order 2 if the convergence
error tends toward zero at least as fast as Az? + At? when both discretization
steps tend toward 0. More precisely, the numerical scheme is said to be conver-
gent of order (p,q) uniformly on the interval [0, ¢max] if the convergence error
satisfies (see Section 3.2 for the definition of the big O notation that will be
uniform with respect to space and time)

(19) Heﬁm(t) — Ojg.1,,. (A2? + At9).

Az

The numerical scheme is said to be consistent with the continuous problem
at order 2 if the truncation error tends toward zero at least as fast as Ax? +
At? when the discretization steps tend toward 0. More precisely, the numerical
scheme is said to be consistent with the continuous problem at order (p, q)
uniformly on interval [0, tyax] if the truncation error satisfies

(20) HEzAt(t)HA = O[O,tmax](Axp +Atq).
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The numerical scheme is said to be stable if the discrete solution of the
associated homogeneous problem (i.e. without any source term, s(z,t) = 0) is
bounded from above independently of the discretization steps. More precisely,
the numerical scheme is said to be stable uniformly on interval [0, {;,ax] if the
discrete solution of the problem without any source term satisfies

(21) 3Fa,C1,Co >0, Vt € [0, tmax]), VAZ, At >0, VAx2+ A2 < a=

kae(t
k=] < €1+ Cat)lluonll g + luonlay o) + lnll )

The result to be formally proved at section 4 states that if the continuous
solution u is regular enough on (2 and if the discretization steps satisfy the
CFL(¢, &) condition, then the three-point scheme is convergent of order (2, 2)
uniformly on interval [0, t;ax].

We do not admit (nor prove) the Lax equivalence theorem which stipulates
that for a wide variety of problems and numerical schemes, consistency implies
the equivalence between stability and convergence. Instead, we establish that
consistency and stability implies convergence in the particular case of the one-
dimensional acoustic wave equation.

3 The Coq Formalization: Basic Blocks

We decided to use the Coq proof assistant [20], as Coq was already used to prove
the floating-point error [21] of this case study. All our developments use the
Coq real standard (classical) library. Numerical equations, numerical schemes,
numerical approximations deal with classical statements, and are not in the scope
of intuitionist theory.

3.1 Dot product

The function space Z — R can be equipped with pointwise addition and multi-
plication by a scalar. The result is a vector space. In the following, we are only
interested in functions with finite support, that is the subset

FYYf . Z R|3abeZVicZ f(i)#0=a<i<b}

which is also a vector space. Then it is possible to define a dot product on F,
noted (., .), as follows:

def N

(22) (f9) = > fli)g(i)
=

and the corresponding norm || f|| et v/ {f, ). The corresponding Coq formaliza-

tion is not immediate, though. One could characterize F' with a dependent type,

but that would make operation (.,.) difficult to use (each time it is applied,
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proofs of finite support properties have to be passed as well). Instead, we define
{.,.) on the full function space Z — R using Hilbert’s e-operator (provided in
Coq standard library in module Epsilon), as follows:

(23)  (fog) Fe | Aa3ab, (Vi (f() A0V g(i) #0) > a <i<b)

Nx =3, f(i)g(0)
Said otherwise, we give (f, g) a definition as a finite sum whenever f and g both
have finite support and we let (f, g) undefined otherwise.

To ease the manipulation of functions with finite support, we introduce the
following predicate characterizing such functions

FS(f) < 3ab, Vi, f(i) #0 = a<i<b

and we prove several lemmas about it, such as

Vfg, FS(f) = FS(g) = FS(f +9)
Vfe, FS(f) = FS(c- f)
Vik,FS(f) = FS(i— f(i+k))
We also provide a Coq tactic to automatically discharge most goals about FS(.).

Finally, we can establish lemmas about the dot product, provided functions have
finite support. Here are some of these lemmas:

Vfge, FS(f) = FS(g) = (c- f.9) =c¢- ([, 9)

Vfif29, FS(f1) = FS(f2) = FS(9) = (f1 + f2,9) = (f1.9) + {f2, 9)
Vf g, FS(f) = FS(g) = [{(f, ol < If] - lgll

Vfg, FS(f) = FS(g) = If +gll < [If + llgll

These lemmas are proved by reduction to finite sums, thanks to Formula (23).

Note that the value of (f, g) 5, defined in Section 2.2 is equal to Az - (f, g).

3.2 Big O notation

For two functions f and g over R", one usually writes f(x) = O|z|—0o(g(x)) for
da,C >0, Ve eR" |z|<a=|f(x)<C-lg(x)|

Unfortunately, this definition is not sufficient for our formalism. Indeed, while
f(x, Ax) will be defined over R? x R?, g(Ax) will be defined over R? only. So
it begs the question: what to do about x?

Our first approach was to use

VX, f(X, AX) = O|\Ax|\~>0(g(AX))
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that is to say
vx,3a,C >0, VAx € R? |Ax| <a=|f(x,Ax)| < C - |g(Ax)|

which means that a and C are functions of x. So we would need to take the
minimum of all the possible values of a, and the maximum for C. Potentially,
they may be 0 and +oo respectively, making them useless.

In order to solve this issue, we had to define a notion of big O uniform with
respect to the additional variable x:

do, C >0, Vx,Ax, |Ax||<a=|f(x,Ax)| <C-|g(Ax)|.

Variables x and Ax are restricted to subsets S and P of R?. For instance,
the big O that appears in Equation (19) uses

S =R x [0, tmax],

P:{AX:(Ax,At)|0<Ax A 0< At A g<C'AAt<1—g}.
X

As often, the formal specification has allowed us to detect some flaws in
usual mathematical pen-and-paper proofs, such as an erroneous switching of the
universal and existential quantifiers hidden in the big O definition.

3.3 Taylor expansion

The formalization assumes that “sufficiently regular” functions can be uniformly
approximated by multivariate Taylor series. More precisely, the development
starts by assuming that there exists two operators partial derive firstvar
and _secondvar. Given a real-valued function f defined on the 2D plane and a
point of it, they respectively return the functions % and % for this point, if
they exist.

Again, these operators are similar to the use of Hilbert’s & operator. For
documentation purpose, one could add two axioms stating that the returned
function computes the derivatives for derivable functions; they are not needed
for the later development though. Indeed, none of our proofs depend on the
actual properties of derivatives; they only care about the fact that differential
operators appear in both the regularity definition below and the wave equation.

The two primitive operators a% and % are encompassed in a generalized
m—+n

differential operator %. This allows us to define the 2D Taylor expansion
of order n of a function f:

n

DL, (f,%) % (Az, At) 3 & (Z (f;) (%) Aam At”_m> |

p=0+" \m=0
A function f is then said to be sufficiently regular of order n if

(24) Vm <n, DLy_1(f,x)(Ax) — f(x + Ax) = O (| Ax||™).
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4 The Coq Formalization: Convergence

4.1 Wave equation

As explained in Section 2, a solution of the wave equation with given ug, u; and s
verifies Equations (1)—(3). Its discrete approximation verifies Equations (8)—(10).
Both are directly translated in Coq using the definitions of Section 3. Concerning
the discretization, we choose that the space index is in Z (to be coherent with
the dot product definition of Section 3.1) while the time index is in N.

Our goal is to prove the uniform convergence of the scheme with order (2,2)
on the interval [0, tax]:

k:At(t)
|

= Ot e [07 tmax] (A:E2 + At2).

(Az, At) — 0
0< Az A0 < AtA
(<cRb<1-¢

Az

4.2 Finite support

The proofs concerning the convergence of the scheme rely on the dot product.
As explained in Section 3.1, the dot product requires the functions to have a
finite support in order to apply any lemma. We therefore proved the finiteness
of the support of many functions. We assume that the inputs ug, u1, and s of the
wave equation have a finite support. More precisely, we assume that there exists
x1 and x2 such that up(z) = ui(x) = 0 for all = out of [x1, x2] and s(z,t) =0
for all  out of [x1 —c-t, x2 + ¢-t] where ¢ is the velocity of propagation of waves
in Equation (1).

Figure 2 describes the nullity, that is to say the finite support, of the various
functions. We needed to prove the finiteness of their support:

B uo and u; may be nonzero.
[ v and thus v may be nonzero.

up may be nonzero.

e ﬁ—ﬂ_l (equals ﬁ—; under CFL

conditions)

X1 X2

Fig. 2. Finite supports. The support of the Cauchy data up and u; is included in the
support of the continuous source term s, and of the continuous solution . Which is in
turn also included in the support of the discrete solution wp, provided that the CFL
condition holds. For a finite tmax, all these supports are finite.
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— up and u; by hypothesis and therefore ug ; and uq ;.
— s (for any value t) by hypothesis and therefore s;? is zero outside of a cone
of slope ¢~ 1.

— the scheme itself has a finite support: due to the definition of ug? and the
nullity of ug ; and u; ; and s?, we can prove that u;f is zero outside of a cone

—1 . . .
of slope % . [c~ %W . Under CFL((, £) conditions, this slope will be %.

— the truncation and convergence errors also have finite support with the pre-
vious slope.

We need here an axiom about the nullity of the continuous solution. We
assume that the continuous solution u(x, t) is zero for x out of [x1 —c-t, x2+c-t]
(same as s). This is mathematically correct, since it derives from d’Alembert’s
formula (6). But its proof is out of the scope of the current formalization and
we therefore preferred to simply add the nullity axiom.

4.3 Consistency

We first prove that the truncation error is of order Axz? 4+ At2. The idea is
to show that, for Ax small enough, the values of the scheme L; are near the
corresponding values of L. This is done using the properties of Taylor expansions.
This involves long and complex expressions but the proof is straightforward.

We first prove that the truncation error in one point (j, k) is a O(Axz? + At?).
This is proved for £k = 0 and k = 1 by taking advantage of the initializations
and Taylor expansions. For bigger k, the truncation error reduces to the sum of
two Taylor expansions of degree 3 in time (this means m = 4 in Formula (24))
and two Taylor expansions of degree 3 in space that partially cancel (divided by
something proportional to ||Ax|?). Here, we take advantage of the generality
of big O as we consider the sum of a Taylor expansion on Az and of a Taylor
expansion on —Ax. If we had required 0 < Az (as a space grid step), we could
not have done this proof.

The most interesting part is to go from pointwise consistency to uniform
consistency. We want to prove that the norm of the truncation error (in the sense
of the infinite dot product (-,) ,,) is also O(Az? + At?). We therefore need to
bound the number of nonzero values of the truncation error. As explained in
Section 4.2, the truncation error values at time k - At may be nonzero between
xip =X - [ %1 k and xof = [X2]| + [c- %1 k. This gives a number of
terms N roughly bounded by (all details are handled in the formal proof):

X2k — X1k _ X2 — X1 [C' %W
N < < 2.k 1T Aad
- Az - Az? + max Az
<X2_X1+2'tmax.c'%+]—
- Ax? At Ax

As the norm is a Az-norm, this reduces to bounding with a constant value the
value N - Az? which is smaller than x2 — X1 4+ 2 tmax - ¢+ 2 - tmax - %. To bound
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this with a constant value, we require c% to have a constant lower bound ¢ (it
already had an upper bound 1—¢). Then N-Az? < xo—x1 —|—2-tmax-c+2-c-tmax%
which is constant.

Mathematically, this requirement comes as a surprise. The following scenario
explains it. If c% goes to zero, then At goes to zero much faster than Ax. It
corresponds to Figure 3. The number of nonzero terms (for u;, and thus for the
truncation error) goes to infinity as % goes to zero.

t

e O o o o o .to ® O o o o o o IAt
At At
A slope: Ar

T

Fig. 3. For a given time to, the number of nonzero values increases when the slope %
goes to zero. From left to right, At is divided by 2 whereas Ax remains the same. We
can see that the number of nonzero terms is almost doubled (from 9 to 17).

4.4 Stability

To prove stability, we use the discrete energy defined in Equation (13). From the
properties of the scheme, we calculate the evolution of the energy. At each step,
it increases by a known value. In particular, if s is zero, the discrete energy (as
the continuous energy) is constant:

k>0, En()(un)E = Bn(0)(un)* % = o (uptt =i )
From this, we give an underestimation of the energy:
1 A\ 2\ ||ultt — uk ,
vk, 5 (1 - (CAJ;> > % < Eh(c)(uh)k+§~
Az

Therefore we have the nonnegativity of the energy under CFL((, £) conditions.
For convergence, the key result is the overestimation of the energy:

V2 k . .
— . At — ,
o ;:1:”2 (i, ) e

VE(© @) < \/Bue) )t +

for all time ¢, with k= | %] — 1.

This completes the stability proof. In the inequality above, the energy is
bounded for wj, but the bound is actually valid for all the solutions of the
discrete scheme, for any initial conditions and source term.

Note that the formal proof of stability closely follows the mathematical pen-
and-paper proof and no additional hypotheses were found to be necessary.
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4.5 Convergence

We prove that the convergence error is the solution of a scheme and therefore
the results of Section 4.4 apply to it. More precisely, for all Ax, the convergence
error is solution of a discrete scheme with inputs

1
ug,; = O7 Ui, = %, and S? = E;ﬁ_l,

where the errors refer to the errors of the initial scheme of the wave equation
with grid steps Ax. (Actual Coq notations depend on many more variables.)

We have proved many lemmas about the initializations of our scheme and of
the convergence error. The idea is to prove that the initializations of the scheme
are precise enough to guarantee that the initial convergence errors (at step 0
and 1) are accurate enough.

We also bounded the energy of the convergence error. Using results of Sec-
tion 4.4, the proof reduces to bounding the sum of the source terms, here
the truncation errors. Using results of Section 4.3, we prove this sum to be
O(Az? + At?). A few more steps conclude the proof.

Once more, the formal proof follows the pen-and-paper proof and progresses
smoothly under the required hypothesis, including all the conditions on j—; of
Equation (14).

5 Conclusion and perspectives

One of the goals of this work is to favor the use of formal methods in numerical
analysis. It may seem to be just wishful thinking, but it is actually seen as
needed by some applied mathematicians. An early case led to the certification
of the Odyssée tool [10]. This tool performs automatic differentiation, which
is one of the basic blocks for gradient-based algorithms. Our work tackles the
converse problem: instead of considering derivation-based algorithms, we have
formalized and proved part of the mathematical background behind integration-
based algorithms.

This work shows there may be a synergy between applied mathematicians
and logicians. Both domains are required here: applied mathematics for an initial
proof that could be enriched upon request and formal methods for machine-
checking it. This may be the reason why such proofs are scarce as this kind of
collaboration is uncommon.

Proof assistants seem to mainly deal with algebra, but we have demonstrated
that formalizing numerical analysis is possible too. We can confirm that pen-
and-paper proofs are sometimes sketchy: they may be fuzzy about the needed
hypotheses, especially when switching quantifiers. We have also learned that
filling the gaps may cause us to go back to the drawing board and to change the
basic blocks of our formalization to make them more generic (a big O that needs
to be uniform and also generic with respect to a property P).

The formal bound on the error method, while of mathematical interest, is
not sufficient to guarantee the correction of numerical applications implementing
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the three-point scheme. Indeed, such applications usually perform approximated
computations, e.g., floating-point computations, for efficiency and simplicity rea-
sons. As a consequence, the proof of the method error has to be combined with
a proof on the rounding error, in order to get a full-fledged correction proof.
Fortunately, the proof on the rounding error has already been achieved [21]. We
are therefore close to having a formal proof of both the numerical scheme and
its floating-point implementation.

An advantage of Coq with respect to most other proof assistants is the abil-
ity to extract programs from proofs [22]. For this work, it does not make much
sense to extract the algorithm from the proofs: not only is the algorithm already
well-known, but its floating-point implementation was also certified [21]. So, an
extraction of the algorithm would not bring much. However, extraction gives
access to the constant C' hidden behind the big O notation. Indeed, the proof of
the floating-point algorithm relies on the discrete solution being good enough,
so that the computed result does not diverge. Precisely, the convergence error
has to be smaller than 1, and an extracted computation would be able to en-
sure this property. Furthermore, having access to this constant can be useful to
the applied mathematicians for the a posteriori estimations needed for adaptive
mesh refinements. Extraction also gives access to the a constant. That way, we
could check that the constant Ax chosen in the C program described in [21]
verifies this requirement. Note that performing an extraction requires to modify
the definition of Oup so that it lives in Set instead of Prop. But this formaliza-
tion change happens to be straightforward and Coq then succeeds in extracting
mathematical formulas for constants « and C. Only basic operators (e.g. +, v/-,
min) and constants (e.g. tmax, &, X1, Taylor constants) appear in them, so they
should be usable in practice.

The formal development is about 4500-line long. Its dependency graph is
detailed in Figure 4. About half of the development is a reusable library described
in Section 3 and the other half is the proof of convergence of the numerical scheme
described in Section 4. This may seem a long proof for a single scheme for a single
PDE. To put it into perspective, usual pen-and-paper proofs are 10-page long
and an in-depth proof can be 60-page long. (We wrote one to ensure that we
were not getting sidetracked.) So, at least from a length point of view, the formal
proof is comparable to a detailed pen-and-paper proof.

In the end, the whole development contains only two axioms: the € operator
for the infinite dot product (see Section 3.1) and the finite support of the continu-
ous solution of the wave equation (see Section 4.2). So, except for this last axiom
which is related to the chosen PDE, the full numerical analysis proof of conver-
gence is machine-checked and all required hypotheses are made clear. There is
no loss of confidence due to this axiom, since the kind of proof and the results
it is based upon are completely different from the ones presented here. Indeed,
this axiom is about continuous solutions and hence much less error-prone.

For this exploratory work, we only considered the simple three-point scheme
for the one-dimensional wave equation. Further works involve generalizing our
approach to other schemes and other PDEs. We are confident that it would
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Fig. 4. Dependency graph of the Coq development. On the left are the files from the
convergence proof. The other files correspond to the reusable library.

scale to higher-dimension and higher-order equations solved by discrete numer-
ical schemes. However, the proofs of Section 4 are entangled with particulars of
the presented problem, and would therefore have to be redone for other prob-
lems. So a more fruitful approach would be to prove once and for all the Lax
equivalence theorem that states that consistency implies the equivalence between
convergence and stability. This would considerably reduce the amount of work
needed for tackling other schemes and equations.

This work also showed us that summations and finite support functions play
a much more important role in the development than we first expected. We are
therefore considering moving to the SSReflect interface and libraries for Coq [23],
so as to simplify the manipulations of these objects in our forthcoming works.
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