
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Wave Equation Numerical Resolution: a
Comprehensive Mechanized Proof of a C Program

Sylvie Boldo · François Clément ·
Jean-Christophe Filliâtre · Micaela
Mayero · Guillaume Melquiond · Pierre
Weis

Received: date / Accepted: date

Abstract We formally prove correct a C program that implements a numerical
scheme for the resolution of the one-dimensional acoustic wave equation. Such
an implementation introduces errors at several levels: the numerical scheme in-
troduces method errors, and floating-point computations lead to round-off errors.
We annotate this C program to specify both method error and round-off error.
We use Frama-C to generate theorems that guarantee the soundness of the code.
We discharge these theorems using SMT solvers, Gappa, and Coq. This involves
a large Coq development to prove the adequacy of the C program to the numer-
ical scheme and to bound errors. To our knowledge, this is the first time such a
numerical analysis program is fully machine-checked.

Keywords Formal proof of numerical program · Convergence of numerical
scheme · Proof of C program · Coq formal proof · Acoustic wave equation · Partial
differential equation · Rounding error analysis

This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-04) and F
∮

st
(ANR-08-BLAN-0246-01).

S. Boldo · G. Melquiond · J.-C. Filliâtre
INRIA Saclay – Île-de-France, ProVal, Orsay cedex, F-91893

J.-C. Filliâtre · S. Boldo · G. Melquiond
LRI, UMR 8623, Université Paris-Sud, CNRS, Orsay cedex, F-91405

F. Clément · P. Weis
INRIA Paris – Rocquencourt, Estime, Le Chesnay cedex, F-78153

M. Mayero
LIPN, UMR 7030, Université de Paris-Nord, CNRS, Villetaneuse, F-93430
LIP, Arénaire (INRIA Grenoble - Rhône-Alpes, CNRS UMR 5668, UCBL, ENS Lyon), Lyon,
F-69364

2 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

1 Introduction

Ordinary differential equations (ODE) and partial differential equations (PDE)
are ubiquitous in engineering and scientific computing. They show up in nuclear
simulation, weather forecast, and more generally in numerical simulation, includ-
ing block diagram modelization. Since solutions to nontrivial problems are non-
analytic, they must be approximated by numerical schemes over discrete grids.

Numerical analysis is a part of applied mathematics that is mainly interested in
proving the convergence of these schemes [22], that is, proving that approximation
quality increases as the size of discretization steps decreases. The approximation
quality represents the distance between the exact continuous solution and the
approximated discrete solution; this distance must tend toward zero in order for
the numerical scheme to be useful.

A numerical scheme is typically proved to be convergent with pen and paper.
This is a difficult, time-consuming, and error-prone task. Then the scheme is im-
plemented as a C/C++ or Fortran program. This introduces new issues. First,
we must ensure that the program correctly implements the scheme and is im-
mune from runtime errors such as out-of-bounds accesses or overflows. Second,
the program introduces round-off errors due to floating-point computations and
we must prove that those errors could not lead to irrelevant results. Typical pen-
and-paper proofs do not address floating-point nor runtime errors. Indeed the huge
number of proof obligations, and their complexity, make the whole process almost
intractable. However, with the help of mechanized program verification, such a
proof becomes feasible. In the first place, because automated theorem provers can
alleviate the proof burden. More importantly, because the proof is guaranteed to
cover all aspects of the verification.

Our case study. We consider the acoustic wave equation in an one-dimensional
space domain. The equation describes the propagation of pressure variations (or
sound waves) in a fluid medium; it also models the behavior of a vibrating string.
Among the wide variety of numerical schemes to approximate the 1D acoustic
wave equation, we choose the simplest one: the second order centered finite differ-
ence scheme, also known as three-point scheme. To keep it simple, we assume an
homogeneous medium (the propagation velocity is constant) and we consider dis-
cretization over regular grids with constant discretization steps for time and space.
Our goal is to prove the correctness of a C program implementing this scheme.

Method and tools. We use the Jessie plug-in of Frama-C [43,32] to perform the
deductive verification of this C program. The source code is augmented with ACSL
annotations [6] to describe its formal specification. When submitted to Frama-C,
proof obligations are generated. Once these theorems are proved, the program is
guaranteed to satisfy its specification and to be free from runtime errors. Part
of the proof obligations are discharged by automated provers, e.g. Alt-Ergo [10],
CVC3 [5], Gappa [25], and Z3 [47]. The more complicated ones, such as the one re-
lated to the convergence of the numerical scheme, cannot be proved automatically.
These obligations were manually proved with the Coq [8,20] interactive proof assis-
tant. In the end, we have formally verified all the properties of the C program. To
our knowledge, this is the first time this kind of verification is machine-checked.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 3

The annotated C program and the Coq sources of the formal development are
available from

http://fost.saclay.inria.fr/wave_total_error.html

State of the art. There is an abundant literature about the convergence of nu-
merical schemes, e.g. see [56,58]. In particular, the convergence of the three-point
scheme for the wave equation is well-known and taught relatively early [7]. Un-
fortunately, no article goes into all the details needed for a formal proof. These
mathematical “details” may have been skipped for readability, but some manda-
tory details may have also been omitted due to oversights.

In the fields of automatic provers and proof assistants, few works have been
done for the formalization and mechanical proofs of mathematical analysis, and
even fewer works for numerical analysis. The first developments on real numbers
and real analysis are from the late 90’s, in systems such as ACL2 [33], Coq [44],
HOL Light [35], Isabelle [31], Mizar [54], and PVS [29]. An extensive work has been
done by Harrison regarding Rn and the dot product [36]. Constructive real anal-
ysis [34,24,38] and further developments in numerical analysis [49,50] have been
carried out at Nijmegen. We can also mention the formal proof of an automatic
differentiation algorithm [45].

As explained by Rosinger in 1985, old methods to bound round-off errors were
based on “unrealistic linearizing assumptions” [51]. Further work was done un-
der more realistic assumptions about round-off errors [51,52], but none of these
assumptions were proved correct with respect to the numerical schemes. As Roy
and Oberkampf, we believe that round-off errors should not be treated as random
variables and that traditional statistical methods should not be used [53]. They
propose the use of interval arithmetic or increased precision to control accuracy.
Note that their example of hypersonic nozzle flow is converging so fast that round-
off errors can be neglected [53]. Interval arithmetic can also take method error into
account [55]. The final interval is then claimed to contain the exact solution. This
is not formally proved, though. Additionally, the width of the final interval can be
quite large.

There are other tools to bound round-off errors not dedicated to numerical
schemes. Some successful approaches are based on abstract interpretation [23,27].
In our case, they are of little help, since there is a complex phenomenon of error
compensation during the computations. Ignoring this compensation would lead
to bounds on round-off errors growing as fast as O(2k) (k being the number of
time steps). That is why we had to thoroughly study the propagation of round-off
errors in this numerical scheme to get tighter bounds. It also means that most of
the proofs had to be done by hand to achieve this part of the formal verification.

Outline. Section 2 presents the PDE, the numerical scheme, and their mathe-
matical properties. Section 3 is devoted to the proofs of the convergence of the
numerical scheme and the upper bound for the round-off error. Finally, Section 4
describes the formalization, i.e. the tools used, the annotated C program, and the
mechanized proofs.

http://fost.saclay.inria.fr/wave_total_error.html

4 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

2 Numerical Scheme for the Wave Equation

A partial differential equation (PDE) modeling an evolution problem is an equa-
tion involving partial derivatives of an unknown function of several independent
space and time variables. The uniqueness of the solution is obtained by imposing
initial conditions, i.e. values of the function and some of its derivatives at initial
time. The problem of the vibrating string tied down at both ends, among many
other physical problems, is formulated as an initial-boundary value problem where
the boundary conditions are additional constraints set on the boundary of the
supposedly bounded domain [56].

This section, as well as the steps taken at Section 3.1 to conduct the conver-
gence proof of the numerical scheme, is inspired by [7].

2.1 The Continuous Equation

The chosen PDE models the propagation of waves along an ideal vibrating elastic
string that is tied down at both ends, see [1,18], see also Figure 1. The PDE is
obtained from Newton’s laws of motion [48].

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

tim
e

length

Fig. 1 Space-time representation of the signal propagating along a vibrating string. Each
curve represents the string at a different time step.

The gravity is neglected, so the string is supposed rectilinear when at rest.
Let xmin and xmax be the abscissas of the extremities of the string. Let Ω =

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 5

[xmin, xmax] be the bounded space domain. Let p(x, t) be the transverse displace-
ment of the point of the string of abscissa x at time t from its equilibrium position;
it is a (signed) scalar. Let c be the constant propagation velocity; it is a positive
number that depends on the section and density of the string. Let s(x, t) be the
external action on the point of abscissa x at time t; it is a source term, such that
t = 0⇒ s(x, t) = 0. Finally, let p0(x) and p1(x) be the initial position and velocity
of the point of abscissa x. We consider the initial-boundary value problem

∀t ≥ 0, ∀x ∈ Ω, (L(c) p)(x, t)
def
=

∂2p

∂t2
(x, t) +A(c) p(x, t) = s(x, t), (1)

∀x ∈ Ω, (L1 p)(x, 0)
def
=

∂p

∂t
(x, 0) = p1(x), (2)

∀x ∈ Ω, (L0 p)(x, 0)
def
= p(x, 0) = p0(x), (3)

∀t ≥ 0, p(xmin, t) = p(xmax, t) = 0 (4)

where the differential operator A(c) is defined by

A(c)
def
= − c2 ∂

2

∂x2
. (5)

This simple partial derivative equation happens to possess an analytical solu-
tion given by the so-called d’Alembert’s formula [39], obtained from the method
of characteristics and the image theory [37], ∀t ≥ 0, ∀x ∈ Ω,

p(x, t) =
1

2
(p̃0(x− ct) + p̃0(x+ ct)) +

1

2c

∫ x+ct

x−ct
p̃1(y)dy +

1

2c

∫ t

0

(∫ x+c(t−σ)

x−c(t−σ)
s̃(y, σ)dy

)
dσ (6)

where the quantities p̃0, p̃1, and s̃ are respectively the successive antisymmetric
extensions in space of p0, p1, and s defined on Ω to the entire real axis R.

We have formally verified d’Alembert’s formula as a separate work [41]. But for
the purpose of the current work, we just admit that under reasonable conditions
on the Cauchy data p0 and p1 and on the source term s, there exists a unique
solution p to the initial-boundary value problem (1)–(4) for each c > 0. Simply
supposing the existence of a solution instead of exhibiting it, opens the way to
scale our approach to more general cases for which there is no known analytic
expression of a solution, e.g. in the case of a nonuniform propagation velocity c.

For such a solution p, it is natural to associate at each time t the positive
definite quadratic quantity

E(c)(p)(t)
def
=

1

2

∥∥∥∥(x 7→ ∂p

∂t
(x, t)

)∥∥∥∥2 +
1

2
‖(x 7→ p(x, t))‖2A(c) (7)

where 〈q, r〉 def
=
∫
Ω
q(x)r(x)dx, ‖q‖2 def

= 〈q, q〉 and ‖q‖2A(c)

def
= 〈A(c) q, q〉. The first

term is interpreted as the kinetic energy, and the second term as the potential
energy, making E the mechanical energy of the vibrating string.

6 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

2.2 The Discrete Equations

Let imax be the positive number of intervals of the space discretization. Let the
space discretization step ∆x and the discretization function i∆x be defined as

∆x
def
=

xmax − xmin

imax
and i∆x(x)

def
=
⌊x− xmin

∆x

⌋
.

Let us consider the time interval [0, tmax]. Let ∆t ∈]0, tmax[be the time dis-
cretization step. We define

k∆t(t)
def
=

⌊
t

∆t

⌋
and kmax

def
= k∆t(tmax).

Now, the compact domain Ω× [0, tmax] is approximated by the regular discrete
grid defined by

∀k ∈ [0..kmax], ∀i ∈ [0..imax], xki
def
= (xi, t

k)
def
= (xmin + i∆x, k∆t). (8)

For a function q defined over Ω×[0, tmax] (resp. Ω), the notation qh denotes any
discrete approximation of q at the points of the grid, i.e. a discrete function over
[0..imax]×[0..kmax] (resp. [0..imax]). By extension, the notation qh is also a shortcut
to denote the matrix (qki)0≤i≤imax,0≤k≤kmax

(resp. the vector (qi)0≤i≤imax
). The

notation q̄h is reserved to the approximation defined on [0..imax]× [0..kmax] by

q̄ki
def
= q(xki) (resp. q̄i

def
= q(xi)).

x

t

xj+1xj−1 xj

tk+1

tk

tk−1

Fig. 2 Three-point scheme: pk+1
i (at ×) depends on pki−1, pki , pki+1, and pk−1

i (at •).

Let p0h and p1h be two discrete functions over [0..imax]. Let sh be a discrete
function over [0..imax]× [0..kmax]. Then, the discrete function ph over [0..imax]×
[0..kmax] is said to be the solution of the three-point1 finite difference scheme, as
illustrated in Figure 2, when the following set of equations holds:

∀k ∈ [2..kmax], ∀i ∈ [1..imax − 1],

(Lh(c) ph)ki
def
=

pki − 2pk−1
i + pk−2

i

∆t2
+ (Ah(c) (i′ 7→ pk−1

i′))i = sk−1
i , (9)

1 In the sense “three spatial points”, for the definition of matrix Ah(c).

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 7

∀i ∈ [1..imax − 1], (L1h(c) ph)i
def
=

p1i − p0i
∆t

+
∆t

2
(Ah(c) (i′ 7→ p0i′))i = p1,i,(10)

∀i ∈ [1..imax − 1], (L0h ph)i
def
= p0i = p0,i, (11)

∀k ∈ [0..kmax], pk0 = pkimax
= 0 (12)

where the matrix Ah(c), a discrete analog of A(c), is defined for any vector qh, by

∀i ∈ [1..imax − 1], (Ah(c) qh)i
def
= − c2 qi+1 − 2qi + qi−1

∆x2
. (13)

A discrete analog of the energy is also defined by2

Eh(c)(ph)k+
1
2

def
=

1

2

∥∥∥∥∥
(
i 7→ pk+1

i − pki
∆t

)∥∥∥∥∥
2

∆x

+
1

2

〈
(i 7→ pki), (i 7→ pk+1

i)
〉
Ah(c)

(14)
where, for any vectors qh and rh,

〈qh, rh〉∆x
def
=
∑imax

i=0 qiri∆x, ‖qh‖2∆x
def
= 〈qh, qh〉∆x ,

〈qh, rh〉Ah(c)
def
= 〈Ah(c) qh, rh〉∆x , ‖qh‖2Ah(c)

def
= 〈qh, qh〉Ah(c) .

Note that the three-point scheme is parameterized by the discrete Cauchy
data p0h and p1h, and by the discrete source term sh. Of course, when these
discrete inputs are respectively approximations of the continuous functions p0, p1,
and s (e.g. when p0h = p̄0h, p1h = p̄1h, and sh = s̄h), then the discrete solution ph
is an approximation of the continuous solution p.

2.3 Convergence

Let ξ be in]0, 1[. The CFL(ξ) condition (for Courant-Friedrichs-Lewy, see [22])
states that the discretization steps satisfy the relation

c∆t

∆x
≤ 1− ξ. (15)

The convergence error eh measures the distance between the continuous and
discrete solutions. It is defined by

∀k ∈ [0..kmax], ∀i ∈ [0..imax], eki
def
= p̄ki − pki . (16)

Note that when p0h = p̄0h, then for all i, e0i = 0. The truncation error εh
measures at which precision the continuous solution satisfies the numerical scheme.
It is defined for k ∈ [2..kmax] and i ∈ [1..imax − 1] by

εki
def
= (Lh(c) p̄h)ki − s̄k−1

i , (17)

ε1i
def
= (L1h(c) p̄h)i − p̄1,i, (18)

ε0i
def
= (L0hp̄h)i − p̄0,i. (19)

2 By convention, the energy is defined between steps k and k+ 1, hence the notation k+ 1
2

.

8 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

Again, note that when p0h = p̄0h and p1h = p̄1h, then for all i, ε0i = 0 and
ε1i = e1i /∆t. Furthermore, when there is also sh = s̄h, then the convergence error eh
is itself solution of the same numerical scheme with inputs defined by, for all i, k,

p0,i = ε0i = 0, p1,i = ε1i =
e1i
∆t

, and ski = εk+1
i .

The numerical scheme is said to be convergent of order 2 if the convergence
error tends toward zero at least as fast as ∆x2+∆t2 when both discretization steps
tend toward zero.3 More precisely, the numerical scheme is said to be convergent
of order (m,n) uniformly on the interval [0, tmax] if the convergence error satisfies4∥∥∥(i 7→ e

k∆t(t)
i

)∥∥∥
∆x

= O[0,tmax](∆x
m +∆tn). (20)

The numerical scheme is said to be consistent with the continuous problem at
order 2 if the truncation error tends toward zero at least as fast as ∆x2 + ∆t2

when the discretization steps tend toward 0. More precisely, the numerical scheme
is said to be consistent with the continuous problem at order (m, n) uniformly on
interval [0, tmax] if the truncation error satisfies∥∥∥(i 7→ ε

k∆t(t)
i

)∥∥∥
∆x

= O[0,tmax](∆x
m +∆tn). (21)

The numerical scheme is said to be stable if the discrete solution of the associ-
ated homogeneous problem (i.e. without any source term, s(x, t) = 0) is bounded
independently of the discretization steps. More precisely, the numerical scheme
is said to be stable uniformly on interval [0, tmax] if the discrete solution of the
problem without any source term satisfies

∃α,C1, C2 > 0, ∀t ∈ [0, tmax], ∀∆x,∆t > 0,
√
∆x2 +∆t2 < α⇒∥∥∥(i 7→ p

k∆t(t)
i

)∥∥∥
∆x
≤ (C1 + C2t)(‖p0h‖∆x + ‖p0h‖Ah(c) + ‖p1h‖∆x). (22)

The result to be formally proved at Section 3.1 states that if the continuous
solution p is regular enough on Ω × [0, tmax] and if the discretization steps satisfy
the CFL(ξ) condition, then the three-point scheme is convergent of order (2, 2)
uniformly on interval [0, tmax].

We do not admit (nor prove) the Lax equivalence theorem which stipulates
that for a wide variety of problems and numerical schemes, consistency implies
the equivalence between stability and convergence. Instead, we establish that
consistency and stability implies convergence in the particular case of the one-
dimensional acoustic wave equation.

2.4 Program

The main part of the C program is listed in Listing 1.
The grid steps ∆x and ∆t are respectively represented by the variables dx and

dt, the grid sizes imax and kmax by the variables ni and nk, and the propagation

3 Note that ∆x tending toward 0 actually means that imax goes to infinity.
4 See Section 3.1.1 for the precise definition of the big O notation.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 9

Listing 1 The main part of the C code, without annotations.

0 /∗ Compute the constant coe f f i c i en t of the s t i f f n e s s matrix . ∗/
a1 = dt/dx∗v ;
a = a1∗a1 ;

/∗ F i r s t i n i t i a l condit ion and boundary condit ions . ∗/
5 /∗ Left boundary . ∗/

p [0] [0] = 0 . ;
/∗ Time i t e r a t i on −1 = space loop . ∗/
for (i=1; i<ni ; i++) {

p [i] [0] = p0(i ∗dx) ;
10 }

/∗ Right boundary . ∗/
p [ni] [0] = 0 . ;

/∗ Second i n i t i a l condit ion (with p1=0) and boundary condit ions . ∗/
15 /∗ Left boundary . ∗/

p [0] [1] = 0 . ;
/∗ Time i t e r a t i on 0 = space loop . ∗/
for (i=1; i<ni ; i++) {

dp = p[i +1][0] − 2.∗p [i] [0] + p [i −1][0] ;
20 p [i] [1] = p [i] [0] + 0.5∗a∗dp ;
}
/∗ Right boundary . ∗/
p [ni] [1] = 0 . ;

25 /∗ Evolution problem and boundary condit ions . ∗/
/∗ Propagation = time loop . ∗/
for (k=1; k<nk ; k++) {

/∗ Left boundary . ∗/
p [0] [k+1] = 0 . ;

30 /∗ Time i t e r a t i on k = space loop . ∗/
for (i=1; i<ni ; i++) {

dp = p[i +1][k] − 2.∗p [i] [k] + p [i −1][k] ;
p [i] [k+1] = 2.∗p [i] [k] − p [i] [k−1] + a∗dp ;

}
35 /∗ Right boundary . ∗/

p [ni] [k+1] = 0 . ;
}

velocity c by the variable v. The initial position p0h is represented by the function
p0. The initial velocity p1h and the source term sh are supposed to be zero and are
not represented. The discrete solution ph is represented by the two-dimensional
array p of size (imax + 1)× (kmax + 1). (This is a simple naive implementation, a
more efficient implementation would store only two time steps.)

To assemble the stiffness matrix Ah(c), we only have to compute the square
of the CFL coefficient c∆t

∆x (lines 1–2). Then, we recognize the space loops for the
initial conditions: Equation (11) on lines 6–8, and Equation (10) with p1h = 0 on
lines 14–17. The space-time loop on lines 23–28 for the evolution problem comes
from Equation (9). And finally, the boundary conditions of Equation (12) are
spread out on lines 9–10, 18–19, and 29–30.

10 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

3 Bounding Errors

3.1 Method Error

We first present the notions necessary to formalize and prove the method error.
Then, we detail how the proof is conducted: we establish the consistency, the
stability and prove that these two properties imply convergence in the case of the
one-dimensional acoustic wave equation.

3.1.1 Big O, Differentiability, and Regularity

When considering a big O equality a = O(b), one usually assumes that a and b are
two expressions defined over the same domain and its interpretation as a quantified
formula comes naturally. Here the situation is a bit more complicated. Consider

f(x,∆x) = O(g(∆x))

when ‖∆x‖ goes to 0. If one were to assume that the equality holds for any x ∈ R2,
one would interpret it as

∀x,∃α > 0,∃C > 0, ∀∆x, ‖∆x‖ ≤ α⇒ |f(x,∆x)| ≤ C · |g(∆x)|,

which means that constants α and C are in fact functions of x. Such an interpre-
tation happens to be useless, since the infimum of α may well be zero while the
supremum of C may be +∞.

A proper interpretation requires the introduction of a uniform big O relation
with respect to the additional variable x:

∃α > 0, ∃C > 0, ∀x ∈ Ωx, ∀∆x ∈ Ω∆x,

‖∆x‖ ≤ α⇒ |f(x,∆x)| ≤ C · |g(∆x)|. (23)

To emphasize the dependency on the two subsets Ωx and Ω∆x, uniform big O
equalities are now written

f(x,∆x) = OΩx,Ω∆x(g(∆x)).

We now precisely define the notion of “sufficiently regular” functions in terms
of the full-fledged notation for the big O. The further result on the convergence
of the numerical scheme requires that the solution of the continuous equation is
actually sufficiently regular. We introduce two operators that, given a real-valued
function f defined on the 2D plane and a point in the plane, return the values
∂f
∂x and ∂f

∂t at this point. Given these two operators, we can define the usual 2D
Taylor polynomial of order n of a function f :

TPn(f,x)
def
= (∆x,∆t) 7→

n∑
p=0

1

p!

(
p∑

m=0

(
p

m

)
· ∂pf

∂xm∂tp−m
(x) ·∆xm ·∆tp−m

)
.

Let Ωx ⊂ R2. We say that the previous Taylor polynomial is a uniform ap-
proximation of order n of f on Ωx when the following uniform big O equality
holds:

f(x + ∆x)− TPn(f,x)(∆x) = OΩx,R2

(
‖∆x‖n+1

)
.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 11

A function f is then said to be sufficiently regular of order n uniformly on Ωx

when all its Taylor polynomials of order smaller than n are uniform approximations
of f on Ωx.

3.1.2 Consistency

The consistency of a numerical scheme expresses that, for ∆x small enough, the
continuous solution taken at the points of the grid almost solves the numeri-
cal scheme. More precisely, we formally prove that when the continuous solu-
tion of the wave equation (1)–(4) is sufficiently regular of order 4 uniformly on
[xmin, xmax]× [0, tmax], the numerical scheme (9)–(12) is consistent with the con-
tinuous problem at order (2, 2) uniformly on interval [0, tmax] (see definition (21)
in Section 2.3). This is obtained using the properties of Taylor approximations;
the proof is straightforward while involving long and complex expressions.

The key idea is to always manipulate uniform Taylor approximations that will
be valid for all points of all grids when the discretization steps goes down to zero.

For instance, to take into account the initialization phase corresponding to
Equation (10), we have to derive a uniform Taylor approximation of order 1 for
the following continuous function (for any v sufficiently regular of order 3)

((x, t), (∆x,∆t)) 7→
v(x, t+∆t)− v(x, t)

∆t
− ∆t

2
c2
v(x+∆x, t)− 2v(x, t) + v(x−∆x, t)

∆x2
.

Note that the expression of this function involves both x + ∆x and x − ∆x,
meaning that we need a Taylor approximation which is valid for both positive
and negative growths. The proof would have been impossible if we had required
0 < ∆x (as a space grid step) in the definition of the Taylor approximation.

In contrast with the case of an infinite string [13], we do not need here a lower
bound for c∆t∆x .

3.1.3 Stability

The stability of a numerical scheme expresses that the growth of the discrete
solution is somehow bounded in terms of the input data (here, the Cauchy data
u0h and u1h, and the source term sh). For the proof of the round-off error (see
Section 3.2), we need a statement of the same form as definition (22) of Section 2.3.
Therefore, we formally prove that, under the CFL(ξ) condition (15), the numerical
scheme (9)–(12) is stable uniformly on interval [0, tmax].

But, as we choose to prove the convergence of the numerical scheme by using
an energetic technique5, it is more convenient to formulate the stability in terms of
the discrete energy. More precisely, we also formally prove that under the CFL(ξ)
condition (15), the discrete energy (14) satisfies the following overestimation,√

Eh(c)(ph)k+
1
2 ≤

√
Eh(c)(ph)

1
2 +

√
2

2
√

2ξ − ξ2
·∆t ·

k∑
k′=1

∥∥∥(i 7→ sk
′

i

)∥∥∥
∆x

5 The popular alternative, using the Fourier transform, would have required huge additional
Coq developments.

12 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

for all t ∈ [0, tmax] and with k =
⌊
t
∆t

⌋
− 1.

The evolution of the discrete energy between two consecutive time steps is
shown to be proportional to the source term. In particular, the energy is constant
when the source is inactive. Then, we obtain the following underestimation of the
discrete energy,

∀k, 1

2

(
1−

(
c
∆t

∆x

)2
)∥∥∥∥∥
(
i 7→ pk+1

i − pki
∆t

)∥∥∥∥∥
∆x

≤ Eh(c)(ph)k+
1
2 .

Therefore, the non-negativity of the discrete energy is directly related to the
CFL(ξ) condition.

Note that this stability result is valid for any input data p0h, p1h, and sh.

3.1.4 Convergence

The convergence of a numerical scheme expresses the fact that the discrete solu-
tion gets closer to the continuous solution as the discretization steps go down to
zero. More precisely, we formally prove that when the continuous solution of the
wave equation (1)–(4) is sufficiently regular of order 4 uniformly on [xmin, xmax]×
[0, tmax], and under the CFL(ξ) condition (15), the numerical scheme (9)–(12) is
convergent of order (2, 2) uniformly on interval [0, tmax] (see definition (20) in
Section 2.3).

Firstly, we prove that the convergence error eh is itself the discrete solution of
a numerical scheme of the same form but with different input data6. In particular,
the source term (on the right-hand side) is here the truncation error εh associated
with the initial numerical scheme for ph. Then, the previous stability result holds,
and we have an overestimation of the square root of the discrete energy associated
with the convergence error Eh(c)(eh) that involves a sum of the corresponding
source terms, i.e. the truncation error. Finally, the consistency result also makes
this sum a big O of ∆x2 +∆t2, and a few more technical steps conclude the proof.

3.2 Round-off Error

As each operation is done with IEEE-754 floating-point numbers [46], round-off
errors will occur and may endanger the accuracy of the final results. On this
program, naive forward error analysis gives an error bound that is proportional to
2k2−53 for the computation of a pki . If this bound was sensible, it would cause the
numerical scheme to compute only noise after a few steps. Fortunately, round-off
error actually compensate themselves. To take into account the compensations and
hence prove a usable error bound, we need a precise statement of the round-off
error [12] to exhibit the cancellations made by the numerical scheme.

3.2.1 Local Round-off Errors

Let δki be the (signed) floating-point error made in the two lines computing pki
(lines 26–27 in Listing 1). Floating-point values as computed by the program

6 Of course, there is no associated continuous problem.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 13

will be underlined: a, pk
i

to distinguish them from the discrete values of previous
sections. They match the expressions a and p[i][k] in the annotations, while a
and pki can be represented in the annotations by \exact(a) and \exact(p[i][k]), as
described in Section 4.1.4.

The δki are defined as follow:

δk+1
i = pk+1

i
− (2pk

i
− pk−1

i
+ a× (pk

i+1
− 2pk

i
+ pk

i−1
)).

Note that the program explained in Section 2.4 gives us that

pk+1

i
= fl

(
2pk
i
− pk−1

i
+ a× (pk

i+1
− 2pk

i
+ pk

i−1
)
)

where fl(·) means that all the arithmetic operations that appear between the paren-
theses are actually performed by floating-point arithmetic, hence a bit off.

In order to get a bound on δki , we need to have the range of pk
i
. For this bound

to be usable in our correctness proof, we need the range to be [−2, 2]. We have
proved this fact by using the bounds on the method error and the round-off error
of all the pk and pk−1.

To prove the bound on δki , we perform forward error analysis and then use
interval arithmetic to bound each intermediate error. We prove that, for all i and
k, we have |δki | ≤ 78 × 2−52 for a reasonable error bound for a, that is to say
|a− a| ≤ 2−49.

3.2.2 Convolution of Round-off Errors

Note that the global floating-point error ∆ki = pk
i
− pki depends not only on δki ,

but also on all the δk−li+j for 0 < l ≤ k and −l ≤ j ≤ l. Indeed round-off errors

propagate along floating-point computations. Their contributions to ∆ki , which
are independent and linear (due to the structure of the numerical scheme), can
be computed by performing a convolution with a function λ : (Z × Z) → R. This
function λ represents the results of the numerical scheme when fed with a single
unit value:

λ00 = 1 ∀i 6= 0, λ0i = 0

λ1−1 = λ11 = a λ10 = 2(1− a) ∀i 6∈ {−1, 0, 1}, λ1i = 0

λki = a× (λk−1
i−1 + λk−1

i+1) + 2(1− a)× λk−1
i − λk−2

i

Theorem 1

∆ki = pk
i
− pki =

k∑
l=0

l∑
j=−l

λlj δ
k−l
i+j .

Details of the proof can be found in [12], but this point of view using convolu-
tion is new. The proof mainly amounts to performing numerous tedious transfor-
mations of summations until both sides are proved equal.

The previous proof assumes that the double summation is correct for all (i′, k′)
such that k′ < k. This would be correct if there was an unbounded set of i where
pki is computed. This is no longer the case for a finite string. Indeed, at the ends
of the range (i = 0 or imax), pki and pk

i
are equal to 0, so ∆ki has to be 0 too.

14 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

The solution is to define the successive antisymmetric extension in space (as
is done for d’Alembert’s formula in Section 2.1) and to use it instead of δ. This
ensures that both ∆k0 and ∆kimax

are equal to 0. It does not have any consequence

on the values of ∆ki for 0 < i < imax.

3.2.3 Bound on the Global Round-off Error

The analytic expression of ∆ki can be used to obtain a bound on the round-off
error. We will need two lemmas for this purpose.

Lemma 1

+∞∑
i=−∞

λki = k + 1.

Proof We have

+∞∑
i=−∞

λk+1
i = 2ǎ

+∞∑
i=−∞

λki + 2(1− ǎ)

+∞∑
i=−∞

λki −
+∞∑
i=−∞

λk−1
i = 2

+∞∑
i=−∞

λki −
+∞∑
i=−∞

λk−1
i .

The sum by line verifies a simple linear recurrence. As
∑
λ0i = 1 and

∑
λ1i = 2,

we have
∑
λki = k + 1. ut

Lemma 2 λki ≥ 0.

Proof The demonstration was found out by M. Kauers and V. Pillwein.

If we denote by P the Jacobi polynomial, we have

λjn =
n∑
k=j

(
2k

j + k

)(
n+ k + 1

2k + 1

)
(−1)j+kak = aj

n−j∑
k=0

P
(2j,0)
k (1− 2a)

Now the conjecture follows directly from the inequality of Askey and Gasper [3],

which asserts that
∑n
k=0 P

(r,0)
k (x) > 0 for r > −1 and −1 < x ≤ 1 (see Theorem

7.4.2 in The Red Book [2]). ut

Theorem 2 ∣∣∣∆ki ∣∣∣ =
∣∣∣pk
i
− pki

∣∣∣ ≤ 78× 2−53 × (k + 1)× (k + 2).

Proof According to Theorem 1, ∆ki is equal to
∑k
l=0

∑l
j=−l λ

l
j δ

k−l
i+j . We know

that for all j and l, |δlj | ≤ 78 × 2−52 and that
∑
λli = l + 1. Since the λki are

nonnegative, the error is easily bounded by 78× 2−52 ×
∑k
l=0(l + 1). ut

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 15

3.3 Total Error

Let Eh be the total error. It is the sum of the method error (or convergence error)
eh of Sections 2.3 and 3.1.4, and of the round-off error ∆h of Section 3.2.

From Theorem 2, we can estimate7 the following upper bound for the spatial
norm of the round-off error when ∆x ≤ 1 and ∆t ≤ tmax/2: for all t ∈ [0, tmax],

∥∥∥(i 7→ ∆
k∆t(t)
i

)∥∥∥
∆x

=

√√√√imax∑
i=0

(
∆
k∆t(t)
i

)2
∆x

≤
√

(imax + 1)∆x× 78× 2−53 ×
(
tmax

∆t
+ 1

)
×
(
tmax

∆t
+ 2

)
≤
√
xmax − xmin + 1× 78× 2−53 × 3× t2max

∆t2
.

Thus, from the triangular inequality for the spatial norm, we obtain the fol-
lowing estimation of the total error:

∀t ∈ [0, tmax], ∀∆x, ‖∆x‖ ≤ min(αe, α∆)⇒∥∥∥(i 7→ Ek∆t(t)i

)∥∥∥
∆x
≤ Ce(∆x2 +∆t2) +

C∆
∆t2

where the convergence constants αe and Ce were extracted from the Coq proof (see
Section 3.1.4) and are given in terms of the constants for the Taylor approximation
of the exact solution at degree 3 (α3 and C3), and at degree 4 (α4 and C4) by

αe = min(1, tmax, α3, α4),

Ce = 2µtmax

√
xmax − xmin

(
C′√

2
+ µ(tmax + 1)C′′

)
with µ =

√
2√

2ξ−ξ2
, C′ = max(1, C3 + c2C4 + 1), and C′′ = max(C′, 2(1 + c2)C4),

and where the round-off constants α∆ and C∆, as explained above, are given by

α∆ = min(1, tmax/2),

C∆ = 234× 2−53 × t2max

√
xmax − xmin + 1.

To give an idea of the relative importance of both errors, we consider the
academic case where the space domain is the interval [0, 1], the velocity of waves is
c = 1, and there is no initial velocity (u1(x) = 0) nor source term (s(x, t) = 0). We
suppose that the initial position is given by u0(x) = χ(2(x−x0)/l) where x0 = 0.5,
l = 0.25, and χ is the C4 function defined on [−1, 1] by χ(z) = (cos(π2 z))

5, and with

null continuation on the real axis. For this function, we may take α3 = α4 =
√

2/2,
C3 = 5120

√
2, and C4 = 409600/3. The corresponding solution presents two hump-

shaped signals that propagate in each direction along the string, see Figure 1.
The upper bound on the total error is represented in Figure 3. Note that

everything is in logarithmic scale. Of course, decreasing the size of the grid step
decreases the method error, but in the same time, it increases the round-off error.

7 When tmax
∆t
≥ 2, we have

(tmax
∆t

+ 1
) (tmax

∆t
+ 2
)
≤ 3

t2max
∆t2

.

16 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Space step dx

T
o
ta

l
e
rr

o
r

Fig. 3 Upper bound for the total error in log-scale. Left: for ∆x and ∆t satisfying the CFL
condition. The lighter area (in yellow) represents the higher values above 104, whereas the
darker area represents the lower values below 10−1. Right: for an optimal CFL condition with

∆t = 1−ξ
c
∆x. The green crosses represent the effective total error computed by the C program

for a few values of the space step.

Hence, the existence of a minimum for the upper bound on the total error (about
0.02 in our test case), corresponding to optimal grid step sizes. Fortunately, the
effective total error usually happens to be much smaller than this upper bound
(by about a factor of 106 in our example).

Even if the effective total error on this example is off by several orders of
magnitude with respect to the theoretical bound, this experiment is still reassuring.
First, the left side of Figure 3 shows that the optimal choice (the darker part) for
choosing ∆x and ∆t is reached near the limit of the CFL condition. This property
matches common knowledge from numerical analysis. Second, the right side shows
that both the effective error and the theoretical error have the same asymptotic
behavior. So the properties we have verified in this work are not intrinsically easier
than the best theorems one could state. It is just that the constants of the formulas
extracted from the proofs (which we did not tune for this specific purpose) are not
optimal for this example.

4 Mechanization of Proofs

In Sections 3.1 and 3.2, we have mostly described the method and round-off er-
rors introduced when solving the wave equation problem with the given numerical
scheme. We do not yet know whether this formalization actually matches the pro-
gram described in Section 2.4 and fully given in Appendix A. In addition, the pro-
gram might contain programming errors like out-of-bound accesses, which would
possibly be left unattended while comparing the program and its formalization.

To fully verify the program, our process is as follows. First, we annotated the
C program with comments specifying its behavioral properties, that is, what the
program is supposed to compute. Second, we let Frama-C/Why generate proof
obligations that state that the program matches its specification and that its
execution is safe. Third, we used automated provers and Coq to prove all of these
obligations.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 17

Section 4.1 presents all the tools we have used for verifying the C program.
Then Section 4.2 explains how the program was annotated. Finally, Section 4.3
shows how we proved all the obligations, either automatically or with a proof
assistant.

4.1 Tools

Several software packages are used in this work. The formal proof of the method
error has been made in Coq. The formal proof of the round-off error has been
made in Coq, and using the Gappa tactic. The certification of the C program has
used Frama-C (with the Jessie plug-in), and to prove the produced goals, we used
Gappa, SMT provers, and the preceding Coq proofs. This section is devoted to
present these tools and necessary libraries.

4.1.1 Coq

Coq8 is a formal system that provides an expressive language to write mathemat-
ical definitions, executable algorithms, and theorems, together with an interactive
environment for proving them [8]. Coq’s formal language is based on the Calcu-
lus of Inductive Constructions [21] that combines both a higher-order logic and a
richly-typed functional programming language. Coq allows to define functions or
predicates, that can be evaluated efficiently, to state mathematical theorems and
software specifications, and to interactively develop formal proofs of these theo-
rems. These proofs are machine-checked by a relatively small kernel, and certified
programs can be extracted from them to external programming languages like
Objective Caml, Haskell, or Scheme [42].

As a proof development system, Coq provides interactive proof methods, de-
cision and semi-decision algorithms, and a tactic language for letting the user
define its own proof methods. Connection with external computer algebra system
or theorem provers is also available.

The Coq library is structured into two parts: the initial library, which contains
elementary logical notions and data-types, and the standard library, a general-
purpose library containing various developments and axiomatizations about sets,
lists, sorting, arithmetic, real numbers, etc.

In this work, we mainly use the Reals standard library [44], that is a classical
axiomatization of an Archimedean ordered complete field. We chose Reals to make
our numerical proofs because we do not need an intuitionistic formalization.

For floating-point numbers, we use a large Coq library9 initially developed
in [26] and extended with various results afterwards [11]. It is a high-level formal-
ization of IEEE-754 with gradual underflow. This is expressed by a formalization
where floating-point numbers are pairs (n, e) associated with real values n × βe.
The requirements for a number to be in the format (emin, β

p) are

|n| < βp and emin ≤ e.

8 http://coq.inria.fr/
9 http://lipforge.ens-lyon.fr/www/pff/

http://coq.inria.fr/
http://lipforge.ens-lyon.fr/www/pff/

18 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

This formalization is convenient for human interactive proofs as testified by
the numerous proofs using it. The huge number of lemmas available in the library
(about 1400) makes it suitable for a large range of applications. This library has
since then been superseded by the Flocq library [16], but it was not yet available
at the time we proved the floating-point results of this work.

4.1.2 Frama-C, Jessie, Why, and the SMT Solvers

We use the Frama-C platform10 to perform formal verification of C programs at
the source-code level. Frama-C is an extensible framework that combines static
analyzers for C programs, written as plug-ins, within a single tool. In this work,
we use the Jessie plug-in for deductive verification. C programs are annotated with
behavioral contracts written using the ANSI C Specification Language (ACSL for
short) [6]. The Jessie plug-in translates them to the Jessie language [43], which is
part of the Why verification platform [30]. This part of the process is responsible
for translating the semantics of C into a set of Why logical definitions (to model
C types, memory heap, etc.) and Why programs (to model C programs). Finally,
the Why platform computes verification conditions from these programs, using
traditional techniques of weakest preconditions, and emits them to a wide set of
existing theorem provers, ranging from interactive proof assistants to automated
theorem provers. In this work, we use the Coq proof assistant (Section 4.1.1),
SMT solvers Alt-Ergo [19], CVC3 [5] and Z3 [47], and the automated theorem
prover Gappa (Section 4.1.3). Details about automated and interactive proofs can
be found in Section 4.3. The dataflow from C source code to theorem provers can
be depicted as follows:

ACSL-annotated
C program

Frama-C
(Jessie plug-in)

Why

Coq

Alt-Ergo

CVC3

Z3

Gappa

More precisely, to run the tools on a C program, we use a graphical interface
called gWhy. A screenshot is in Appendix B. In this interface, we may call one
prover on one or on many goals. We then get a graphical view of how many goals
are proved and by which prover.

In ACSL, annotations are using first-order logic. Following the programming
by contract approach, the specifications involve preconditions, postconditions, and
loop invariants. Contrary to other approaches focusing on run-time assertion check-
ing, ACSL specifications do not refer to C values and functions, even if pure, but
refer instead to purely logical symbols. In the following contract for a function
computing the square of an integer x

//@ ensures \ r e su l t == x ∗ x ;
int square (int x) ;

10 http://www.frama-c.cea.fr/

http://www.frama-c.cea.fr/

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 19

the postcondition, introduced with ensures, refers to the return value \result and
argument x. Both are denoting mathematical integer values, for the corresponding
C values of type int. In particular, x ∗ x cannot overflow. Of course, one could give
function square a more involved specification that handles overflows, e.g. with a
precondition requiring x to be small enough. Simply speaking, we can say that C
integers are reflected within specifications as mathematical integers, in an obvious
way. The translation of floating-point numbers is more subtle and explained in
Section 4.1.4.

4.1.3 Gappa

The Gappa tool11 adapts the interval-arithmetic paradigm to the proof of proper-
ties that occur when verifying numerical applications [25]. The inputs are logical
formulas quantified over real numbers whose atoms are usually enclosures of arith-
metic expressions inside numeric intervals. Gappa answers whether it succeeded
in verifying it. In order to support program verification, one can use rounding
functions inside expressions. These unary operators take a real number and return
the closest real number in a given direction that is representable in a given binary
floating-point format. For instance, assuming that operator ◦ rounds to the near-
est binary64 floating-point number, the following formula states that the relative
error of the floating-point addition is bounded:

∀x, y ∈ R, ∃ε ∈ R, |ε| ≤ 2−53 ∧ ◦(◦(x) + ◦(y)) = (◦(x) + ◦(y))× (1 + ε).

Converting straight-line numerical programs to Gappa logical formulas is easy
and the user can provide additional hints if the tool were to fail to verify a property.
The tool is specially designed to handle codes that are performing convoluted ma-
nipulations. For instance, it has been successfully used to verify a state-of-the-art
library of correctly-rounded elementary functions [28]. In the current work, Gappa
has been used to check much simpler properties. (In particular, no user hint was
needed to discharge a proof automatically.) But the length of their proofs would
discourage even the most dedicated users if they were to be manually handled.
One of the properties is the round-off error of a local evaluation of the numerical
scheme (Section 3.2.1). Other properties mainly deal with proving that no excep-
tional behavior occurs while executing the program: due to the initial values, all
the computed values are sufficiently small to never cause overflow.

The verification of some formulas requires reasonings that are so long and
intricate [28], that it might cast some doubts on whether an automatic tool actually
succeeded in proving them. This is especially true when the tool ends up proving a
property stronger than what the user expected. That is why Gappa also generates
a formal certificate that can be mechanically checked by a proof assistant. This
feature has served as the basis for a Coq tactic for automatically solving goals
related to floating-point and real arithmetic [15]. The tactic reads the current Coq
goal, generates a Gappa goal, executes Gappa on it, recovers the certificate, and
converts it to a complete proof term that Coq matches against the current goal.
At this point, whether Gappa is correct or not no longer matters: the original Coq
goal is formally proved by a complete Coq proof.

11 http://gappa.gforge.inria.fr/

http://gappa.gforge.inria.fr/

20 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

This tactic has been used whenever a verification condition would have been
directly proved by Gappa, if not for some confusing notations or encodings of
matrix elements. We just had to apply a few basic Coq tactics to put the goal into
the proper form and then call the Gappa tactic to discharge it automatically.

4.1.4 Floating-Point Formalizations

A natural question is the link between the various representations of floating-
point numbers. We assume that the execution environment (mostly the processor)
complies with the IEEE-754 standard [46], which defines formats, rounding modes,
and operations. The C program we consider is compiled in an assembly code that
will directly use these formats and operations. We also assume that the compiler
optimizations preserve the visible semantics of floating-operations from the original
code, e.g. no use of the extended registers. Such optimizations could have been
taken into account though, but at a cost [17].

When verifying the C program, the floating-point operations are translated by
Frama-C/Jessie/Why following some previous work by two of the authors [14]. A
floating-point number f is modeled in the logic as a triple of real numbers (r, e,m).
Value r simply stands for the real number that is immediately represented by f ;
value e stands for the exact value of f , as obtained if no rounding errors had
occurred; finally, value m stands for the model of f , which is a placeholder for the
value intended to be computed and filled by the user. The two latter values have no
existence in the program, but are useful for the specification and the verification.
In particular, they help state assertions about the rounding or the model error of a
program. In ACSL, the three components of the model of a floating-point number
f can be referred to using f, \exact(f), and \model(f), respectively. \round error(f)
is a macro for the rounding error, that is, \abs(f - \exact(f)).

For instance, the following excerpt from our C program specifies the error on
the content of the dx variable, which represents the grid step ∆x (see Section 2).

dx = 1./ ni ;
/∗@ assert

@ dx > 0. && dx <= 0.5 &&
@ \abs(\ exact (dx) − dx) / dx <= 0x1 .p−53;
@ ∗/

Note that 0x1.p-53 is a valid ACSL (and C too) literal meaning 2−53.
Proof obligations are extracted from the annotated C program by computing

weakest preconditions and then translated to automated and interactive provers.
For SMT provers, the three fields r, e, and m, of floating-point numbers are ex-
pressed as real numbers and operations on floating-point numbers are uninter-
preted relations axiomatized with basic properties such as bounds on the round-
ing error or monotonicity. For Gappa too, the fields are seen as real numbers. The
tool, however, knows about floating-point arithmetic and its relation to real arith-
metic. So floating-point operations are translated to the corresponding symbols
from Gappa.

For Coq, we use the formalization described in Section 4.1.1 with a limited
precision and gradual underflow (so that subnormal numbers are correctly trans-
lated). It is based on the real numbers of the standard library, which are also used
for the translation of the exact and the model parts of the floating-point number.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 21

While the IEEE-754 standard defines infinities and NaNs (Not-a-Number) as
floating-point values, our translation does not take them into account. This does
not compromise the correctness of the translation though, as each operation has a
precondition that raises a proof obligation to guarantee that no exceptional events
occur, such as overflow or division by zero, and therefore no infinities nor NaNs
are produced by the program.

To summarize, there is one assumption about the actual arithmetic being
executed (IEEE-754 compliant and no overly aggressive optimizations from the
compiler) and three formalizations of floating-point arithmetic used to verify the
program: one used by Jessie/Why and then sent to the SMT solvers, one used by
Gappa, and one used by Coq. The combination of these three different formal-
izations does not introduce any inconsistency. Indeed, we have formally proved in
Coq that Gappa’s and Coq’s formalizations are equivalent for floating-point for-
mats with limited precision and gradual underflow, that is, IEEE-754 formats. We
have also formally proved that the Jessie/Why specifications and the properties
for SMT provers are compatible with these formalizations, including the absence
of special values (infinity or NaN) and the possibility to disregard the upper bound
on reals representing floating-point numbers.

In fact, there is a fourth formalization of floating-point arithmetic involved,
which is the one used internally by the interval computations of Gappa for proving
results about real-valued expressions. It is not equivalent to the previous ones,
since it is a multi-precision arithmetic, but it has no influence whatsoever on the
formalization that Gappa uses for modeling floating-point properties.

4.2 Program Annotations

The full annotations are given in Appendix A. We give here hints about how to
specify this program.

There are two axiomatics. The first one corresponds to the mathematics: the
exact solution of the wave equation and its properties. It defines the needed values
(the exact solution p, and its initialization p0). We here assume that s and p1 are
zero functions. It also defines the derivatives of p (psol1, first derivative for the
first variable of p, and psol11, second derivative for the first variable, and psol2
and psol22 for the second variable) as functions such that their value is the limit of
p(x+∆x)−p(x)

∆x when ∆x→ 0. As the ACSL annotations are only first order, these
definitions are quite cumbersome: each derivative needs 5 lines to be defined.

We also put as axioms the fact that the solution has the expected proper-
ties (1–4). The last property needed on the exact solution is its regularity. We
require it to be near its Taylor approximations of degrees 3 and 4 on the whole
interval [xmin, xmax]. For instance, the following annotation states the property
for degree 3.

/∗@ axiom pso l su f f r egu la r 3 :
@ 0 < alpha 3 && 0 < C 3 &&
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 3 ==>
@ \abs(psol (x + dx , t + dt) − psol Taylor 3 (x , t , dx , dt)) <=
@ C 3 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 3)) ;
@∗/

22 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

The second axiomatic corresponds to the properties and loop invariant needed
by the program. For example, we require the matrix to be separated: it means
that a line of the matrix should not mix with another line (or a modification could
alter another point of the matrix). We also state the existence of the loop invariant
analytic error that is needed for applying the results of Section 3.2.

The initializations functions are specified, but not stated. This corresponds
firstly to the function array2d alloc that initializes the matrix and p zero that pro-
duces an approximation of the p0 function. Our program verification is modular:
our proofs are generic with respect to p0 and its implementation.

The preconditions of the main functions are the following ones:

– imax and kmax must be greater than one, but small enough so that imax + 1
and kmax + 1 do not overflow;

– the grid sizes ∆x must fulfill some mathematical conditions that are required
for the convergence of the scheme;

– the floating-point values computed for the grid sizes must be near their math-
ematical values;

– to prevent exceptional behavior in the computation of a, the time discretization
step must be greater than 2−1000 and c∆t

∆x must be greater than 2−500.

There are two postconditions, corresponding to the method and round-off er-
rors. See Sections 3.1 and 3.2 for more details.

4.3 Automation and Manual Proofs

This section is devoted to formal specifications and proofs corresponding to the
bounds proved in Section 3. We give some key points of the automated proofs.

Big O. In section 3.1.1, we present two interpretations of the big O notation. Usual
mathematical pen-and-paper proofs switch from one interpretation to the other
depending on which one is the most adapted, without noticing that they may
not be equivalent. The formal development was helpful in bringing into light the
erroneous reasoning hidden by the usage of big O notations. We introduced the
notion of uniform big O in [13] in the context of an infinite string. In the present
paper, we consider the case of the finite string, hence for compactness reasons,
both notions are in fact equivalent. However, we still use the more general uniform
big O notion to share most of the proof developments between the finite and the
infinite cases. Regarding automation, a decision procedure has been developed
in [4]; unfortunately, those results were not applicable since we needed a more
powerful big O.

Differential operators. As long as we were studying only the method error, we did
not have to define the differential operators nor assume anything about them [13].
Their only properties appeared through their usage: function p is a solution of the
partial differential equation and it is sufficiently regular. This is no longer possible
for the annotated C program. Indeed, due to the underlying logic, the annotations
have to define p as a solution of the PDE by using first-order formulas stating
differentiability, instead of second-order formulas involving differential operators.
Since the formalization of Taylor approximations has been left unchanged, the

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 23

natural way to relate the C annotations with the Coq development is therefore
to define the operators as actual differential operators. Note that this has forced
us to introduce a small axiom. Indeed, our definition of Taylor approximation
depends on differential operators that are total functions, while Coq’s standard
library defines only partial operators. So we have assumed the existence of some
total operators that are equal to the partial ones whenever applied to differentiable
functions. The axiom states absolutely nothing about the result of these operators
for nondifferentiable functions, so no inconsistencies are introduced this way. This
is just a specific instance of Hilbert ε operator [57], which does not make the logic
inconsistent [40].

Method error. The Coq proof of the method error is about 5000-line long. About
half of it is dedicated to the wave equation and the other half is re-usable (def-
inition and properties of the dot product, the big O, Taylor expansions. . .). We
formally proved without any axiom that the numerical scheme is convergent of or-
der 2, which is the known mathematical result. An interesting aspect of the formal
proof in Coq is that we were able to extract the constants α and C appearing in
the big O for the convergence result in order to obtain their precise values. The
recursive extraction was fully automatic after making explicit some inlining. The
mathematical expressions are given in Section 3.3.

Round-off errors. Except for Lemma 2, all the proofs described in section 3.2
have been done and machined-checked using Coq. In particular, the proof of the
bound on δki was done automatically by calling Gappa from Coq. Lemma 2 is a
technical detail compared to the rest of our work, that is not worth the immense
Coq development it would require: keen results on integrals but also definitions
and results about the Legendre, Laguerre, Chebychev, and Jacobi polynomials.

The program proof. Given the program code, the Why tool generates 149 verifi-
cation conditions that have to be proved. While possible, proving all of them in
Coq would be rather tedious. Moreover, it would lead to a rather fragile construct:
any later modification to the code, however small it is, would cause different proof
obligations to be generated, which would then require additional human interac-
tion to adapt the Coq proofs. We prefer to have automated provers (SMT solvers
and Gappa) discharge as many of them as possible, so that only the most intricate
ones are left to be proven in Coq. The following table shows how many goals are
discharged automatically and how many are left to the user.12

Prover Proved Behavior VC Proved Safety VC Total

Alt-Ergo 18 80 98

CVC3 18 89 107

Gappa 2 20 22

Z3 21 63 84

Automatically proved 23 94 117

Coq 21 11 32

Total 44 105 149

12 Note that verification conditions might be discharged by one or several automated provers.

24 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

On safety goals (matrix access, loop variant decrease, overflow), automatic
provers are helpful: they prove about 90 % of the goals. On behavior goals (loop
invariant, assertion, postcondition), automatic provers succeed for half of the goals.
As our loop invariant involves an uninterpreted predicate, the automatic provers
cannot prove all the behavior goals (they would have been too complicated any-
way). That is why we resort to an interactive higher-order theorem prover, namely
Coq.

Coq proofs are split into two sets: first, the mathematical proof of convergence
and second, the proofs of bounded round-off errors and absence of runtime errors.
Appendix C displays the layout of the Coq formalization.

The following tabular gives the compilation times of the Coq files on a 3-GHz
dual core machine.

Type of proofs Nb spec lines Nb lines Compilation time

Convergence 991 5 275 42 s

Round-off + runtime errors 7 737 13 175 32 min

Note that most proof statements regarding round-off and runtime errors are
automatically generated (7 321 lines out of 7 737) by the Frama-C/Jessie/Why
framework.

The compilation time may seem prohibitive; it is mainly due to the size of the
theorems and to calls to the omega decision procedure for Presburger arithmetic.
The difficulty does not lie in the arithmetic statement itself, but rather in a large
number of useless hypotheses. In order to reduce the compilation time, we could
manually massage the hypotheses to speed up the procedure, but this would defeat
the point of using an automatic tactic.

5 Conclusion

In the end, having formally verified the C program means that all of the proof
obligations generated by Frama-C/Jessie/Why have been proved, either by auto-
mated tools or by Coq formal proofs. These formal proofs depend on some axioms
specific to this work: the fact about Jacobi polynomials, the existence of a solution
to the EDP, and the existence of differential operators. The last two have been
tackled by subsequent works, which means that the only remaining Coq axiom is
the one about Jacobi polynomials.

We succeeded in verifying a C program that implements a numerical scheme for
the resolution of the one-dimensional acoustic wave equation. This is comprised
of three sets of proofs. First we formalized the wave equation and proved the
convergence of a scheme for its numerical resolution. Second we proved that the
C program behaves safely: no out-of-bound array accesses and no overflow during
floating-point computations. Third we proved that the round-off errors are not
causing the numerical results to go astray. This is the first verification of this kind
of program that covers all its aspects, both mathematics and implementation.

This work shows a tight synergy between researchers from applied mathemat-
ics and logic. Three domains are intertwined here: applied mathematics for an
initial proof that was enriched and detailed upon request, computer arithmetic
for smart bounds on round-off errors, and formal methods for machine-checking

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 25

them. This may be the reason why such proofs never appeared before, as this kind
of collaboration is uncommon.

Each proof came with its own hurdles. For ensuring the correct behavior of
the program, the most tedious point was to prove that setting a result value did
not cause other values to change, that is, that all the lines of the matrix are
properly separated. In particular, verifying the loop invariant requires checking
that, except for the new value, the properties of the memory are preserved. An
unexpectedly tedious part was to check that the program actually complies with
our mathematical model for the numerical scheme.

Another difficulty lies in the mathematical proof itself. We based our work
on proofs found in books, courses, and articles. It appears that pen-and-paper
proofs are sometimes sketchy: they may be fuzzy about the needed hypotheses,
especially when switching quantifiers. We have also learned that filling the gaps
may cause us to go back to the drawing board and to change the basic blocks of
our formalization to make them more generic (e.g. devising a big O that needs to
be uniform and also generic with respect to a property P).

An unexpected side effect of having performed this formal verification in Coq
is our ability to automatically extract the constants hidden inside the proofs. That
way, we are able to explicitly bound the total error rather than just having the
usual O(∆x2 +∆t2) bound. In particular, we can compare the magnitudes of the
method error and round-off error and then decide how to scale the discretization
grid.

Coq could have offered us more: it would have been possible to describe and
prove the algorithm directly in Coq. The same formalism would have been used
all the way long, but we were more interested in proving a real-life program in a
real-life language. This has shown us the difficulties lying in the memory handling
for matrices. In the end, we have a C code with readable annotations instead of a
Coq theorem and that seems more convincing to applied mathematicians.

For this exploratory work, we considered the simple three-point scheme for the
one-dimensional wave equation. Further works involve scaling to higher-dimension.
The one-dimensional case showed us that summations and finite support functions
play a much more important role in the development than we first expected. We
are therefore moving to the SSReflect interface and libraries for Coq [9], so as to
simplify the manipulations of these objects in the higher-dimensional case.

This example also exhibits a major cancellation of rounding errors and it would
be interesting to see under which conditions numerical schemes behave so well.

Another perspective is to generalize our approach to other higher-order nu-
merical schemes for the same equation, and to other PDEs. However, the proofs
of Section 3.1 are entangled with particulars of the presented problem, and would
therefore have to be redone for other problems. So a more fruitful approach would
be to prove once and for all the Lax equivalence theorem that states that con-
sistency implies the equivalence between convergence and stability. This would
considerably reduce the amount of work needed for tackling other schemes and
equations.

26 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

References

1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)
2. Andrews, G.E., Askey, R., Roy, R.: Special functions. Cambridge University Press, Cam-

bridge (1999)
3. Askey, R., Gasper, G.: Certain rational functions whose power series have positive coeffi-

cients. The American Mathematical Monthly 79, 327–341 (1972)
4. Avigad, J., Donnelly, K.: A Decision Procedure for Linear “Big O” Equations. J. Autom.

Reason. 38(4), 353–373 (2007)
5. Barrett, C., Tinelli, C.: CVC3. In: 19th International Conference on Computer Aided

Verification (CAV ’07), LNCS, vol. 4590, pp. 298–302. Springer-Verlag (2007). Berlin,
Germany

6. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, version 1.5 (2009). URL http://frama-c.cea.fr/
acsl.html

7. Bécache, E.: Étude de schémas numériques pour la résolution de l’équation des ondes.
Master Modélisation et simulation, Cours ENSTA (2009). URL http://www-rocq.inria.
fr/~becache/COURS-ONDES/Poly-num-0209.pdf

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer (2004)

9. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical Big Operators. In: 21st In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs’08), LNCS,
vol. 5170, pp. 86–101. Springer, Montreal, Canada (2008)

10. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.: The
Alt-Ergo automated theorem prover (2008). URL http://alt-ergo.lri.fr/

11. Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. Ph.D. thesis, École
Normale Supérieure de Lyon (2004)

12. Boldo, S.: Floats & Ropes: a case study for formal numerical program verification. In: 36th
International Colloquium on Automata, Languages and Programming, LNCS - ARCoSS,
vol. 5556, pp. 91–102. Springer, Rhodos, Greece (2009)

13. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Formal proof
of a wave equation resolution scheme: the method error. In: M. Kaufmann, L.C. Paulson
(eds.) 1st Interactive Theorem Proving Conference (ITP), LNCS, vol. 6172, pp. 147–162.
Springer, Edinburgh, Scotland (2010)

14. Boldo, S., Filliâtre, J.C.: Formal Verification of Floating-Point Programs. In: 18th IEEE In-
ternational Symposium on Computer Arithmetic, pp. 187–194. Montpellier, France (2007)

15. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and Gappa for certifying floating-
point programs. In: J. Carette, L. Dixon, C.S. Coen, S.M. Watt (eds.) 16th Calculemus
Symposium, Lecture Notes in Artificial Intelligence, vol. 5625, pp. 59–74. Grand Bend,
ON, Canada (2009)

16. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point algorithms
in Coq. In: E. Antelo, D. Hough, P. Ienne (eds.) 20th IEEE Symposium on Computer
Arithmetic, pp. 243–252. Tübingen, Germany (2011)

17. Boldo, S., Nguyen, T.M.T.: Proofs of numerical programs when the compiler optimizes.
Innovations in Systems and Software Engineering 7, 1–10 (2011)

18. Brekhovskikh, L.M., Goncharov, V.: Mechanics of Continua and Wave Dynamics. Springer
(1994)

19. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantical combination of
congruence closure with solvable theories. In: Post-proceedings of the 5th International
Workshop on Satisfiability Modulo Theories (SMT 2007), Electronic Notes in Computer
Science, vol. 198-2, pp. 51–69. Elsevier Science Publishers (2008)

20. The Coq reference manual. URL http://coq.inria.fr/refman/
21. Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: P. Martin-Löf, G.Mints

(eds.) Colog’88, LNCS, vol. 417. Springer-Verlag (1990)
22. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical

physics. IBM Journal of Research and Development 11(2), 215–234 (1967)
23. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The

ASTRÉE analyzer. In: ESOP, no. 3444 in LNCS, pp. 21–30 (2005)
24. Cruz-Filipe, L.: A Constructive Formalization of the Fundamental Theorem of Calculus.

In: H. Geuvers, F. Wiedijk (eds.) 2nd International Workshop on Types for Proofs and
Programs (TYPES 2002), LNCS, vol. 2646. Springer, Berg en Dal, Netherlands (2002)

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html
http://www-rocq.inria.fr/~becache/COURS-ONDES/Poly-num-0209.pdf
http://www-rocq.inria.fr/~becache/COURS-ONDES/Poly-num-0209.pdf
http://alt-ergo.lri.fr/
http://coq.inria.fr/refman/

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 27

25. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded
operators. Transactions on Mathematical Software 37(1), 1–20 (2010)

26. Daumas, M., Rideau, L., Théry, L.: A generic library for floating-point numbers and its
application to exact computing. In: TPHOLs, pp. 169–184 (2001)

27. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an
industrial use of FLUCTUAT on safety-critical avionics software. In: FMICS, LNCS, vol.
5825, pp. 53–69. Springer (2009)

28. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation
of an elementary function using Gappa. Transactions on Computers 60(2), 242–253 (2011)

29. Dutertre, B.: Elements of mathematical analysis in PVS. In: J. von Wright, J. Grundy,
J. Harrison (eds.) 9th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs’96), LNCS, vol. 1125, pp. 141–156. Springer, Turku, Finland (1996)

30. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification. In: 19th International Conference on Computer Aided Verification, LNCS,
vol. 4590, pp. 173–177. Springer, Berlin, Germany (2007)

31. Fleuriot, J.D.: On the mechanization of real analysis in Isabelle/HOL. In: M. Aagaard,
J. Harrison (eds.) 13th International Conference on Theorem Proving and Higher-Order
Logic (TPHOLs’00), LNCS, vol. 1869, pp. 145–161. Springer (2000)

32. The Frama-C platform for static analysis of C programs (2008). URL http://www.
frama-c.cea.fr/

33. Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. Journal of Automated Rea-
soning 27(4), 323–351 (2001)

34. Geuvers, H., Niqui, M.: Constructive reals in Coq: Axioms and categoricity. In:
P. Callaghan, Z. Luo, J. McKinna, R. Pollack (eds.) 1st International Workshop on Types
for Proofs and Programs (TYPES 2000), LNCS, vol. 2277, pp. 79–95. Springer, Durham,
United Kingdom (2002)

35. Harrison, J.: Theorem Proving with the Real Numbers. Springer (1998)
36. Harrison, J.: A HOL theory of euclidean space. In: J. Hurd, T.F. Melham (eds.) 18th Inter-

national Conference on Theorem Proving and Higher-Order Logic (TPHOLs’05), LNCS,
vol. 3603, pp. 114–129. Springer (2005)

37. John, F.: Partial Differential Equations. Springer (1986)
38. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq.

arXiv:1106.3448v1 (2011). URL http://arXiv.org/abs/1106.3448
39. le Rond D’Alembert, J.: Recherches sur la courbe que forme une corde tendue mise en

vibrations. In: Histoire de l’Académie Royale des Sciences et Belles Lettres (Année 1747),
vol. 3, pp. 214–249. Haude et Spener, Berlin (1749)

40. Lee, G., Werner, B.: Proof-irrelevant model of CC with predicative induction and judg-
mental equality. Logical Methods in Computer Science 7(4:5) (2011)

41. Lelay, C., Melquiond, G.: Différentiabilité et intégrabilité en Coq. Application à la formule
de d’Alembert. In: 23èmes Journées Francophones des Langages Applicatifs, pp. 119–133.
Carnac, France (2012)

42. Letouzey, P.: A new extraction for Coq. In: H. Geuvers, F. Wiedijk (eds.) 2nd International
Workshop on Types for Proofs and Programs (TYPES 2002), LNCS, vol. 2646. Springer,
Berg en Dal, Netherlands (2003)

43. Marché, C.: Jessie: an intermediate language for Java and C verification. In: Programming
Languages meets Program Verification (PLPV), pp. 1–2. ACM, Freiburg, Germany (2007)

44. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique.
Ph.D. thesis, Université Paris VI (2001)

45. Mayero, M.: Using theorem proving for numerical analysis (correctness proof of an auto-
matic differentiation algorithm). In: V. Carreño, C. Muñoz, S. Tahar (eds.) 15th Inter-
national Conference on Theorem Proving and Higher-Order Logic, LNCS, vol. 2410, pp.
246–262. Springer, Hampton, VA, USA (2002)

46. Microprocessor Standards Committee: IEEE Standard for Floating-Point Arithmetic.
IEEE Std. 754-2008 pp. 1–58 (2008). DOI 10.1109/IEEESTD.2008.4610935

47. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In: TACAS, Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

48. Newton, I.: Axiomata, sive Leges Motus. In: Philosophiae Naturalis Principia Mathemat-
ica, vol. 1. London (1687)

49. O’Connor, R.: Certified exact transcendental real number computation in Coq. In: 21st In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs’08), LNCS,
vol. 5170, pp. 246–261. Springer (2008)

http://www.frama-c.cea.fr/
http://www.frama-c.cea.fr/
http://arXiv.org/abs/1106.3448

28 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

50. O’Connor, R., Spitters, B.: A computer-verified monadic functional implementation of the
integral. Theoretical Computer Science 411(37), 3386–3402 (2010)

51. Rosinger, E.E.: Propagation of round-off errors and the role of stability in numerical
methods for linear and nonlinear PDEs. Applied Mathematical Modelling 9(5), 331–336
(1985)

52. Rosinger, E.E.: L-convergence paradox in numerical methods for PDEs. Applied Mathe-
matical Modelling 15(3), 158–163 (1991)

53. Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, validation, and
uncertainty quantification in scientific computing. Computer Methods in Applied Mechan-
ics and Engineering 200(25-28), 2131–2144 (2011)

54. Rudnicki, P.: An overview of the MIZAR project. In: Types for Proofs and Programs, pp.
311–332 (1992)

55. Szyszka, B.: An interval method for solving the one-dimensional wave equation. In: 7th
EUROMECH Solid Mechanics Conference (ESMC2009). Lisbon, Portugal (2009)

56. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. No. 22
in Texts in Applied Mathematics. Springer (1995)

57. Zach, R.: Hilbert’s “Verunglueckter Beweis,” the first epsilon theorem, and consistency
proofs. URL http://front.math.ucdavis.edu/math.LO/0204255

58. Zwillinger, D.: Handbook of Differential Equations. Academic Press (1998)

http://front.math.ucdavis.edu/math.LO/0204255

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 29

A Source Code

0

/∗@ axiomatic d i r ich let maths {
@
@ log i c r ea l c ;
@ log i c r ea l p0(rea l x) ;

5 @ log i c r ea l psol (r ea l x , r ea l t) ;

@ axiom c pos : 0 < c ;

@ log i c r ea l psol 1 (r ea l x , r ea l t) ;
10 @ axiom psol 1 def :

@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dx ;
@ \abs(dx) < C ==>
@ \abs ((psol (x + dx , t) − psol (x , t)) / dx − psol 1 (x , t)) < eps ;

15

@ log i c r ea l psol 11 (rea l x , r ea l t) ;
@ axiom psol 11 def :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dx ;

20 @ \abs(dx) < C ==>
@ \abs ((psol 1 (x + dx , t) − psol 1 (x , t)) / dx − psol 11 (x , t)) < eps ;

@ log i c r ea l psol 2 (r ea l x , r ea l t) ;
@ axiom psol 2 def :

25 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dt ;
@ \abs(dt) < C ==>
@ \abs ((psol (x , t + dt) − psol (x , t)) / dt − psol 2 (x , t)) < eps ;

30 @ log i c r ea l psol 22 (rea l x , r ea l t) ;
@ axiom psol 22 def :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dt ;
@ \abs(dt) < C ==>

35 @ \abs ((psol 2 (x , t + dt) − psol 2 (x , t)) / dt − psol 22 (x , t)) < eps ;

@ axiom wave eq 0 : \ f o r a l l r ea l x ; 0 <= x <= 1 ==> psol (x , 0) == p0(x) ;
@ axiom wave eq 1 : \ f o r a l l r ea l x ; 0 <= x <= 1 ==> psol 2 (x , 0) == 0;
@ axiom wave eq 2 :

40 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ 0 <= x <= 1 ==> psol 22 (x , t) − c ∗ c ∗ psol 11 (x , t) == 0;
@ axiom wave eq dir ich let 1 : \ f o r a l l r ea l t ; psol (0 , t) == 0;
@ axiom wave eq dir ich let 2 : \ f o r a l l r ea l t ; psol (1 , t) == 0;

45 @ log i c r ea l psol Taylor 3 (rea l x , r ea l t , r ea l dx , r ea l dt) ;
@ log i c r ea l psol Taylor 4 (rea l x , r ea l t , r ea l dx , r ea l dt) ;

@ log i c r ea l alpha 3 ; log i c r ea l C 3 ;
@ log i c r ea l alpha 4 ; log i c r ea l C 4 ;

50

@ axiom pso l su f f r egu la r 3 :
@ 0 < alpha 3 && 0 < C 3 &&
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 3 ==>

55 @ \abs(psol (x + dx , t + dt) − psol Taylor 3 (x , t , dx , dt)) <=
@ C 3 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 3)) ;

30 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

@ axiom pso l su f f r egu la r 4 :
@ 0 < alpha 4 && 0 < C 4 &&

60 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 4 ==>
@ \abs(psol (x + dx , t + dt) − psol Taylor 4 (x , t , dx , dt)) <=
@ C 4 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 4)) ;

65 @ axiom pso l l e :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ 0 <= x <= 1 ==> 0 <= t ==> \abs(psol (x , t)) <= 1;

@ log i c r ea l T max;
70 @ axiom T max pos : 0 < T max;

@ log i c r ea l C conv ; l og i c r ea l alpha conv ;
@ lemma alpha conv pos : 0 < alpha conv ;
@

75 @ } ∗/

/∗@ axiomatic d i r i ch l e t p rog {
@

80 @ predicate ana l y t i c e r ro r{L}
@ (double ∗∗p , integer ni , integer i , integer k , double a , double dt)
@ reads p [. .] [. .] ;
@
@ lemma ana l y t i c e r r o r l e{L} :

85 @ \ f o r a l l double ∗∗p ; \ f o r a l l integer ni ; \ f o r a l l integer i ;
@ \ f o r a l l integer nk ; \ f o r a l l integer k ;
@ \ f o r a l l double a ; \ f o r a l l double dt ;
@ 0 < ni ==> 0 <= i <= ni ==> 0 <= k ==>
@ 0 < \exact (dt) ==>

90 @ ana ly t i c e r ro r (p , ni , i , k , a , dt) ==>
@ \ sqrt (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) < alpha conv ==>
@ k <= nk ==> nk <= 7598581 ==> nk ∗ \exact (dt) <= T max ==>
@ \exact (dt) ∗ ni ∗ c <= 1 − 0x1 .p−50 ==>
@ \ f o r a l l integer i1 ; \ f o r a l l integer k1 ;

95 @ 0 <= i1 <= ni ==> 0 <= k1 < k ==>
@ \abs(p [i1] [k1]) <= 2;
@
@ predicate separated matrix{L}(double ∗∗p , integer l e n i) =
@ \ f o r a l l integer i ; \ f o r a l l integer j ;

100 @ 0 <= i < l e n i ==> 0 <= j < l e n i ==> i != j ==>
@ \base addr (p [i]) != \base addr (p [j]) ;
@
@ log i c r ea l sqr norm dx conv err{L}
@ (double ∗∗p , r ea l dx , r ea l dt , integer ni , integer i , integer k)

105 @ reads p [. .] [. .] ;
@ log i c r ea l sqr (r ea l x) = x ∗ x ;
@ lemma sqr norm dx conv err 0{L} :
@ \ f o r a l l double ∗∗p ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ \ f o r a l l integer ni ; \ f o r a l l integer k ;

110 @ sqr norm dx conv err (p , dx , dt , ni , 0 , k) == 0;
@ lemma sqr norm dx conv err succ{L} :
@ \ f o r a l l double ∗∗p ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ \ f o r a l l integer ni ; \ f o r a l l integer i ; \ f o r a l l integer k ;
@ 0 <= i ==>

115 @ sqr norm dx conv err (p , dx , dt , ni , i + 1 , k) ==
@ sqr norm dx conv err (p , dx , dt , ni , i , k) +
@ dx ∗ sqr (psol (1. ∗ i / ni , k ∗ dt) − \exact (p [i] [k])) ;

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 31

@ log i c r ea l norm dx conv err{L}
@ (double ∗∗p , r ea l dt , integer ni , integer k) =

120 @ \ sqrt (sqr norm dx conv err (p , 1. / ni , dt , ni , ni , k)) ;
@
@ } ∗/

125 /∗@ requ i res l e n i >= 1 && len j >= 1;
@ ensures
@ \val id range (\ resu l t , 0 , l e n i − 1) &&
@ (\ f o r a l l integer i ; 0 <= i < l e n i ==>
@ \val id range (\ r e su l t [i] , 0 , l en j − 1)) &&

130 @ separated matrix (\ resu l t , l e n i) ;
@ ∗/

double ∗∗array2d al loc (int l en i , int l e n j) ;

135 /∗@ requ i res (l != 0);
@ ensures
@ \ round error (\ r e su l t) <= 14 ∗ 0x1 .p−52 &&
@ \exact (\ r e su l t) == p0(\ exact (x)) ;
@ ∗/

140 double p zero (double xs , double l , double x) ;

/∗@ requ i res
@ ni >= 2 && nk >= 2 && l != 0 &&

145 @ dt > 0. && \exact (dt) > 0. &&
@ \exact (v) == c && \exact (v) == v &&
@ 0x1 .p−1000 <= \exact (dt) &&
@ ni <= 2147483646 && nk <= 7598581 &&
@ nk ∗ \exact (dt) <= T max &&

150 @ \abs(\ exact (dt) − dt) / dt <= 0x1 .p−51 &&
@ 0x1 .p−500 <= \exact (dt) ∗ ni ∗ c <= 1 − 0x1 .p−50 &&
@ \ sqrt (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) < alpha conv ;
@
@ ensures

155 @ \ f o r a l l integer i ; \ f o r a l l integer k ;
@ 0 <= i <= ni ==> 0 <= k <= nk ==>
@ \ round error (\ r e su l t [i] [k]) <= 78. / 2 ∗ 0x1 .p−52 ∗ (k + 1) ∗ (k + 2);
@
@ ensures

160 @ \ f o r a l l integer k ; 0 <= k <= nk ==>
@ norm dx conv err (\ resu l t , \exact (dt) , ni , k) <=
@ C conv ∗ (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) ;
@ ∗/

double ∗∗ forward prop (int ni , int nk , double dt , double v ,
165 double xs , double l) {

/∗ Output var iab le . ∗/
double ∗∗p ;

170 /∗ Local va r iab le s . ∗/
int i , k ;
double a1 , a , dp , dx ;

dx = 1./ ni ;
175 /∗@ assert

@ dx > 0. && dx <= 0.5 &&
@ \abs(\ exact (dx) − dx) / dx <= 0x1 .p−53;

32 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

@ ∗/

180 /∗ Compute the constant coe f f i c i en t of the s t i f f n e s s matrix . ∗/
a1 = dt/dx∗v ;
a = a1∗a1 ;
/∗@ assert

@ 0 <= a <= 1 &&
185 @ 0 < \exact (a) <= 1 &&

@ \ round error (a) <= 0x1 .p−49;
@ ∗/

/∗ Allocate space−time var iab le for the d i sc re te so lut ion . ∗/
190 p = array2d al loc (ni+1, nk+1);

/∗ F i r s t i n i t i a l condit ion and boundary condit ions . ∗/
/∗ Left boundary . ∗/
p [0] [0] = 0 . ;

195 /∗ Time i t e r a t i on −1 = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&
@ ana ly t i c e r ro r (p , ni , i − 1 , 0 , a , dt) ;
@ loop var iant ni − i ; ∗/

200 for (i=1; i<ni ; i++) {
p [i] [0] = p zero (xs , l , i ∗dx) ;

}
/∗ Right boundary . ∗/
p [ni] [0] = 0 . ;

205 /∗@ assert ana l y t i c e r ro r (p , ni , ni , 0 , a , dt) ; ∗/

/∗ Second i n i t i a l condit ion (with p one=0) and boundary condit ions . ∗/
/∗ Left boundary . ∗/
p [0] [1] = 0 . ;

210 /∗ Time i t e r a t i on 0 = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&
@ ana ly t i c e r ro r (p , ni , i − 1 , 1 , a , dt) ;
@ loop var iant ni − i ; ∗/

215 for (i=1; i<ni ; i++) {
/∗@ assert \abs(p [i −1][0]) <= 2; ∗/
/∗@ assert \abs(p [i] [0]) <= 2; ∗/
/∗@ assert \abs(p [i +1][0]) <= 2; ∗/
dp = p[i +1][0] − 2.∗p [i] [0] + p [i −1][0] ;

220 p [i] [1] = p [i] [0] + 0.5∗a∗dp ;
}
/∗ Right boundary . ∗/
p [ni] [1] = 0 . ;
/∗@ assert ana l y t i c e r ro r (p , ni , ni , 1 , a , dt) ; ∗/

225

/∗ Evolution problem and boundary condit ions . ∗/
/∗ Propagation = time loop . ∗/
/∗@ loop invar iant

@ 1 <= k <= nk &&
230 @ ana ly t i c e r ro r (p , ni , ni , k , a , dt) ;

@ loop var iant nk − k ; ∗/
for (k=1; k<nk ; k++) {

/∗ Left boundary . ∗/
p [0] [k+1] = 0 . ;

235 /∗ Time i t e r a t i on k = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 33

@ ana ly t i c e r ro r (p , ni , i − 1 , k + 1 , a , dt) ;
@ loop var iant ni − i ; ∗/

240 for (i=1; i<ni ; i++) {
/∗@ assert \abs(p [i −1][k]) <= 2; ∗/
/∗@ assert \abs(p [i] [k]) <= 2; ∗/
/∗@ assert \abs(p [i +1][k]) <= 2; ∗/
/∗@ assert \abs(p [i] [k−1]) <= 2; ∗/

245 dp = p[i +1][k] − 2.∗p [i] [k] + p [i −1][k] ;
p [i] [k+1] = 2.∗p [i] [k] − p [i] [k−1] + a∗dp ;

}
/∗ Right boundary . ∗/
p [ni] [k+1] = 0 . ;

250 /∗@ assert ana l y t i c e r ro r (p , ni , ni , k + 1 , a , dt) ; ∗/
}

return p ;

255 }

34 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

B Screenshot

This is a screenshot of gWhy: we have the list of all the verification conditions and
if they are proved by the various automatic tools.

A Comprehensive Mechanized Proof of a C Program Solving a Wave Equation 35

C Dependency Graph

In the following graph, the ellipse nodes are Coq files formalizing the wave equation
and the convergence of its numerical scheme. The octagon nodes are Coq files
that deal with proof obligations generated from the dirichlet.c program file,
that is, propagation of round-off errors and error-free execution. Arrows represent
dependencies between the Coq files.

BigO

R_two

Reals_compl

consistency

one_d_wave_equation

R_n

convergence

stability

Differential

comput1

alpha

dirichlet_aux

dirichlet_why

dirichlet.c

Frama-C
Jessie
Why

	Introduction
	Numerical scheme for the wave equation
	The continuous equation
	The discrete equations
	Convergence
	Program

	Bounding errors
	Method error
	Big O, differentiability, and regularity
	Consistency
	Stability
	Convergence

	Round-off error
	Local round-off errors
	Convolution of round-off errors
	Bound on the global round-off error

	Total error

	Mechanization of proofs
	Tools
	Coq
	Frama-C, Jessie, Why, and the SMT solvers
	Gappa
	Floating-point formalizations

	Program annotations
	Automation and manual proofs

	Conclusion
	Source code
	Screenshot
	Dependency graph

