
Experimenting Formal Proofs of Petri Nets

Refinements

Christine Choppy, Micaela Mayero, Laure Petrucci 1

Université Paris 13, LIPN, UMR CNRS 7030
99, av. J.-B. Clément

93430 Villetaneuse, FRANCE

Abstract

Petri nets are a formalism for modelling and validating critical systems. Generally, the approach
to specification starts from an abstract view of the system under study. Once validated, a refine-
ment step takes place, enhancing some parts of the initial model so as to obtain a more concrete
specification. Some refinement techniques have been proposed in the framework of high-level Petri
nets. Up to now, proving that a concrete net refines an abstract one, i.e. that there is a refinement
relation between them, is completely manual. Our work aims at proving the refinement relation
between two nets, both formally and automatically. For that purpose, we use the Coq theorem
prover. We aim at having a framework general and parameterised enough to use Coq for any input
nets. Moreover, this work constitutes a stepping stone towards bridging the gap between Petri nets
and proof assistants techniques, and we claim that theorem proving methods are appropriate to
prove the correctness of Petri net refinement.

Keywords: Petri net, theorem proving, refinement, Coq

1 Introduction

Modelling and analysing large and complex systems requires elaborate tech-
niques and support. To overcome the problems inherent to designing and
checking a large model (as well as the well-known state space explosion prob-
lem with model checking), a specification is often developed step by step.
First, an abstract model is designed, and its properties are verified. Once it is
proved correct, a refinement step takes place, introducing further detail. Such

1 {Firstname.Lastname}@lipn.univ-paris13.fr,
http://www-lipn.univ-paris13.fr/∼lastname/

Electronic Notes in Theoretical Computer Science 214 (2008) 231–254

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.011

http://www-lipn.univ-paris13.fr/~lastname/
http://www.elsevier.com/locate/entcs

an addition can either be enhancing the description of the actual functioning of
part of the system, or introducing an additional part. This new refined model
is then verified, and another refinement step can take place. This process is
applied until an adequate level of description is obtained.

There are several advantages to use refinement and hence to start with
a more abstract model. It gives a better and structured view of the system
under study. The components within the system are clearly identified and
the modeling process is eased. The modeller does not have to bother with
spurious details. The validation process also becomes easier: the system
properties are checked at each step. Thus, abstract models are validated
before new details are added. Moreover, when model checking is used, the
analysis of a full concrete model may not be amenable, due to its very large
state space. Refinement helps in coping with this problem since it may
preserve some properties or analysis results obtained at an earlier step for a
more abstract model may be used for the analysis of the refined model. For
example, Lakos and Lewis [10] use the state space of the abstract model to
compute the state space of the refined one: some tests for enabledness of
transitions are avoided, as well as the construction of partial markings that
have already been computed. Moreover, the state space can be structured.
Hence, this approach saves both space and time in the analysis, countering
the state space explosion problem.

In this paper, we consider specifications written as coloured Petri nets [8].
They present the advantages of being quite compact, having a graphical
representation, a formal semantics, and data handling. Three types of refine-
ment have been defined for this kind of nets in [10]: type refinement, which
addresses the refinement of datatypes handled ; node refinement, consisting in
detailing the behaviour within a place or a transition ; and subnet refinement
which allows for the addition of a connected subnet. Such refinements can be
applied only if some constraints are satisfied. Up to now, these constraints
must be proved manually, which is an error-prone process. Our aim is to
formally prove that two nets are related by a refinement relation, using theo-
rem proving techniques. While most Petri net properties are model checked
(which involves traversing the state space), theorem proving (using proof
assistants as B [1], PVS [12], Isabelle/HOL [11], Coq [5], . . .) is appropriate
to check the Petri net refinement correctness. Let us note that, in this context,
the goal of refinement is not to produce a specification close to the code,
but rather to overcome the state space explosion problem through modularity.

The paper is structured as follows. Section 2 recalls the definitions of

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254232

coloured Petri nets and the different refinements. Then, the deduction sys-
tems and their use are presented in section 3. Afterwards, a case study is ad-
dressed in section 4, where we describe different formalisations experimented.
Conclusions and future work are finally discussed in section 5.

2 Petri Nets and Refinement

In this section, we present the formalisms used in this paper, and in particular
the kind of Petri nets we consider. We also describe the various Petri nets
refinements, briefly for the type refinement, and with more details for the
subnet and node refinements. We do not describe here the formal specification
regarding type refinement, but we give a sufficient description for the reader
to understand the discussion in section 5.

We end this section with correctness lemmas for refinement. These
lemmas will be formalised and proved with the Coq theorem prover in
section 4.

2.1 Basic Definitions

The Petri nets refinements we base on, from [9], were defined for Coloured
Petri Nets (CPN). The definition of refinement is first adapted here for
place/transition Petri nets. We will show our approach first for these and
will extend the work by adding colours in section 4.5.

Definition 2.1 [Petri Net] A Petri Net N is a 4-tuple N = 〈P, T, W, M0〉
where:

a. P is a set of places

b. T is a set of transitions, s.t. P ∩ T = ∅
c. W : (P × T) ∪ (T × P) −→ N is the valuation function of arcs ;

d. M0 : P −→ N is the initial marking.

A Petri net can be represented as a bipartite graph. Note that there is at
most one arc in each direction for a given couple (place,transition), and the
action of an arc is expressed by its direction and the value of W . Note that if
W is null there is no arc.

Places may contain any number of tokens. A distribution of tokens over
the places of a net is called a marking. The initial marking is a particular case
which expresses the initial state of the system (see figure 1 for an example).

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 233

p1
t1

p2

p4

t2

t3

p3

2

p5

Fig. 1. Initial net

Definition 2.2 [Marking] Let N = 〈P, T, W, M0〉 be a Petri net. A marking
of N is a function M : P −→ N.

When a system is in a state M , some transitions can be fired and we have
a new state M ′.

Definition 2.3 [Behaviour] Let N = 〈P, T,W, M0〉 be a Petri net and M a
marking of N . A transition t ∈ T is enabled in the marking M (noted M [t〉)
iff :

∀p ∈ P : W (p, t) ≤ M(p)

In this case, the firing of the transition t in the marking M leads to a new
marking M ′ (denoted by M [t〉M ′) such that :

∀p ∈ P : M ′(p) = M(p) − W (p, t) + W (t, p)

The behaviour of a Petri net is the set of possible transitions firing sequences
from the initial marking.

Example: from the initial marking in figure 1, transition t1 is enabled
and its firing leads to the marking with one token in p2 and p4, and none in
the other places.

As mentioned above, three types of refinement have been defined. For the
reader to understand the discussion in section 5, we provide below a brief
description of these refinements. A mathematical description of the subnet
refinement will also be given, since it will be formalised in section 4. The
three types of refinement are presented here, and further described in [9].

The refinements should preserve the Petri net behaviour, i.e. it should
always be possible to associate a behaviour of the refined net with a corre-
sponding behaviour of the abstract one for those transitions that are in both

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254234

nets.

2.2 Type Refinement

In a coloured net, information is carried by the tokens.

Type refinement is related to the information carried by the tokens (as
well as in the firing modes), while the net structure remains unchanged. Type
refinement involves incorporating additional information. This can be done
in various ways, for instance by adding a new element in a tuple, or by repre-
senting an abstract type by a more concrete (detailed) one. Type refinement
should preserve the type properties, i.e. if type A is refined by type B, the
properties satisfied by A should also be satisfied by B (after an adequate
syntactical translation).

In section 4.5, we formalise (a subclass of) coloured nets and discuss in
section 5 the formalisation of asociated proofs of refinement properties.

2.3 Node Refinement

The formal definition of this refinement is given in [9]. As for type refinement
(see Section 2.2), we will only give an idea of that kind of refinement. This
refinement has been formalised using one of the methods explained in section 4;
we do not give all details here, but we will refer to them in section 5.

Node refinement consists in replacing a place (transition) by a place-
(transition-) bordered subnet. This refinement consists in canonical place
and transition refinements.

The following definition expresses a place refinement of the abstract net,
where Pin, Pout and P ′ are sets of new places.

Definition 2.4 [Place Refinement] Let Nr = 〈Pr, Tr, Wr, M0r〉 and Na =
〈Pa, Ta, Wa, M0a〉 be two Petri nets. Nr is a place refinement of net Na w.r.t.
pr if :

(i) ∀p ∈ Pa \{pr}, ∀t ∈ Ta : p ∈ Pr ∧ t ∈ Tr ∧Wr(p, t) = Wa(p, t)∧Wr(t, p) =
Wa(t, p) ∧ M0r(p) = M0a(p) ;

(ii) Pr = Pin ∪ Pout ∪ P ′ ∪ Pa \ {pr} where ∀p ∈ P ′ : M0r(p) = 0, ∀t ∈
Ta, ∀p ∈ Pin : Wr(p, t) = 0∧Wr(t, p) = Wa(t, pr), and ∀t ∈ Ta, ∀p ∈ Pout :
Wr(t, p) = 0 ∧ Wr(p, t) = Wa(pr, t) ;

(iii) The token flow through the place refinement border is preserved w.r.t.
the abstract net;

(iv) ∀p ∈ Pr \ Pa, ∀t ∈ Tr \ Ta : Wr(p, t) ∈ {0, 1} ∧ Wr(t, p) ∈ {0, 1}.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 235

The following definition is similar, for transition refinement.

Definition 2.5 [Transition Refinement] Let Nr = 〈Pr, Tr, Wr, M0r〉 and Na =
〈Pa, Ta, Wa, M0a〉 be two Petri nets. Nr is a transition refinement of net Na

w.r.t. tr if :

(i) ∀p ∈ Pa, ∀t ∈ Ta \ {tr} : p ∈ Pr ∧ t ∈ Tr ∧Wr(p, t) = Wa(p, t)∧Wr(t, p) =
Wa(t, p) ∧ M0r(p) = M0a(p) ;

(ii) Tr = Tin ∪ Tout ∪ T ′ ∪ Ta \ {tr} where ∀p ∈ Pa, ∀t ∈ Tin : Wr(t, p) =
0∧Wr(p, t) = Wa(p, tr), and ∀p ∈ Pa, ∀t ∈ Tout : Wr(p, t) = 0∧Wr(t, p) =
Wa(tr, p) ;

(iii) The token flow through the transitions refinement border is preserved
w.r.t. the abstract net;

(iv) ∀p ∈ Pr \ Pa, ∀t ∈ Tr \ Ta : Wr(p, t) ∈ {0, 1} ∧ Wr(t, p) ∈ {0, 1} ;

(v) ∀p ∈ Pr \ Pa : M0r(p) = 0.

2.4 Subnet Refinement

As mentioned previously, this kind of refinement is the main one considered
in this paper, as will be illustrated by the case study.

Subnet refinement consists in adding net components (places, transitions
and arcs or even additional tokens or mode values).

Definition 2.6 [Subnet Refinement] Let Nr = 〈Pr, Tr, Wr, M0r〉 and Na =
〈Pa, Ta, Wa, M0a〉 be two Petri nets. Nr is a subnet refinement of Na if :

(i) Pa ⊆ Pr ;

(ii) Ta ⊆ Tr ;

(iii) ∀p ∈ Pa, ∀t ∈ Ta : Wr(p, t) = Wa(p, t) ∧ Wr(t, p) = Wa(t, p)
∀p ∈ Pa, ∀t ∈ Tr \ Ta : Wr(p, t) = Wr(t, p) = 0
∀p ∈ Pr \ Pa, ∀t ∈ Ta : Wr(t, p) = 0 ;

(iv) ∀p ∈ Pa : M0r(p) = M0a(p).

The subnet refinement can be seen as an extension of initial abstract net
with a subnet linked only by input arcs to abstract net transitions. This
ensures that the behaviour preservation condition holds. Indeed, when adding
input to transitions the firing is more constrained. Therefore, if the transition
is enabled in the refined net, it is also enabled in the abstract one.

For example, subnet refinement can be applied to the net of figure 1 to
obtain the net of figure 2, where places p6, p7 and transition t4 have been
added.

In the refined net of figure 2 the firable sequences are t1 t2 t4, t4 t1 t2,

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254236

p1
t1

p2

p4

p6

t2

t3

p3

2

p5

t4
p6

Fig. 2. Subnet refinement

t1 t4 t2, t1 t3, t3 t1. Note that as soon t4 is fired, t3 will not be enabled
anymore.

Firable sequences in the abstract net of figure 1 are t1 t2, t1 t3 and
t3 t1.

The following soundness lemma for subnet refinement expresses defini-
tion 2.6 in a way that can be translated and proved using Coq (see the
formalisation in section 4).

Lemma 2.7 Given P ′, T ′ and A′, the sets of places, transitions and arcs of
the refined net, and P , T , A, the set of places, transitions and arcs of the
initial (abstract) net, the subnet refinement satisfies the following properties:

(i) P ⊆ P ′

(ii) T ⊆ T ′

(iii) A ⊆ A′

(iv) There is no new arc from P to T ′.

(v) There is no new arc from T to P ′.

(vi) There is no new arc from T ′ to P .

(vii) The initial marking of places in P is unchanged.

3 Using a Deduction System: Coq System presentation

Automated theorem proving consists in proving mathematical theorems us-
ing a computer program. Interactive theorem provers require a user to give

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 237

hints to the system. Depending on the degree of automation, the prover can
essentially be reduced to a proof checker, with the user providing the proof in
a formal way, or significant proof tasks can be performed automatically. We
have chosen Coq in order to specify and prove our refinement problem.

The Coq [5] tool is a formal proof assistant system: a proof performed
using Coq is mechanically checked by the machine. In particular, Coq
allows for defining functions or predicates, stating mathematical theorems
and software specifications, developing interactively formal proofs of these
theorems, and checking these proofs by a small certification “kernel”.

Coq is based on a logical framework called “Calculus of Inductive
Constructions” [13] extended by a modular development system for theories.

In order to help the reader who may not be familiar with this kind of tool,
we first present three small examples which may be useful to understand our
formalisations. In particular we present three different methods (datatypes)
that can be used in Coq to formalise sets, and that we use in Section 4 for
the Petri nets encoding.

3.1 Sets library

In this case study formalisation of section 4.2, we use the Sets library that
comes with the Coq system distribution.

Let us first get acquainted with Coq and the Sets library with a few
examples.

In the standard library, sets (called Ensembles) are defined as follows:

Variable U : Type.

Definition Ensemble := U -> Prop.

U is the type of the set elements, and it is a parameter. Prop is the
type of propositions of Coq. Thus, the set of integers E is defined by
E:(Ensemble nat).

We now define the membership and union concepts:

Definition In (A:Ensemble) (x:U) : Prop := A x.

Inductive Union (B C:Ensemble) : Ensemble :=

| Union_introl : forall x:U, In B x -> In (Union B C) x

| Union_intror : forall x:U, In C x -> In (Union B C) x.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254238

The following table presents some correspondences between the usual
mathematical notations (left column) and their expression in Coq (right col-
umn), where A and B are integer sets:

x ∈ A In nat A x

A ∪ B Union nat A B

B \ A Setminus nat A B

We can, for instance, prove the property: if x ∈ B ∪ C then x ∈ B or
x ∈ C, that is expressed and proved with Coq as follows.

Lemma Union_inv :

forall (B C:Ensemble U) (x:U), In U (Union U B C) x ->

In U B x \/ In U C x.

Proof.

intros B C x H’; elim H’; auto with sets.

Qed.

The tactic intros allows us to consider the expressions on the left-hand
side of the arrows (here, B, C, x and (In U (Union U B C) x)) as hypothe-
ses, the tactic elim allows us to apply an induction scheme (corresponding to
an inductive type, here Union). The tactic auto is an automation tactic (try-
ing to apply lemmas stored in a database).

3.2 FSets library

In the case study formalisation of section 4.3, we use the FSets library that
comes with the Coq system distribution. It is a finite sets library. It ac-
tually contains three different implementations of finite sets using the Coq
functors (parameterised modules) and modules: ordered lists, red-black trees
and AVLs.

In the example below, we will define two sets A and B, the first one
contains integers 1, -2 and 3 and the second one contains 4. Next, we can
prove that 1 belongs to the union of A and B.

We first import the FSets library, next the ZArith library (of integers)
and finally open the ”scope” of Z which allows us to use the integers syntax:

Require Import ZArith FSets.

Open Scope Z_scope.

We can now define a new module from the functor FSetList. To do that,
we have to pass a module representing the integers seen as ordered type as

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 239

argument; it is the Z as OT module which is available in the library. Our
integer set will be the following SetZ:

Module SetZ := FSetList.Make Z_as_OT.

To define A and B, we can use functions add and empty defined in the
implementation by ordered lists. For example, for add, it is an insertion sort
(doubles are ignored); empty is the empty list. We can define A = {1,−2, 3}
and B = {4} as follows:

Definition A := SetZ.add 1 (SetZ.add (-2) (SetZ.add 3 SetZ.empty)).

Definition B := SetZ.add 4 SetZ.empty.

We can now prove that 1 ∈ A ∪ B. To do that, the user has to apply 2
lemmas of the library: union 2 and add 1. union 2 states that if s and s’ are
2 sorted lists, if x and y are elements, and if x is in the set s then x is also
in the union of s and s’. add 1 states that if x and y are equal then y is in s
where we have added x. In this proof, we also have to expand A by {1,−2, 3},
B by {4} using Coq command unfold. Finally, we obtain the following Coq
script:

Lemma prop1: SetZ.In 1 (SetZ.union A B).

Proof.

apply SetZ.union_2.

unfold A.

apply SetZ.add_1.

auto.

Qed.

where the auto command is needed to prove 1 = 1 and union 2 and add 1

are defined as follows:

Lemma union_2 : forall (s s’: t)(Hs: Sort s)(Hs’: Sort s’)(x: elt),

In x s -> In x (union s s’).

Lemma add_1 : forall (s: t)(Hs: Sort s)(x y: elt), X.eq x y ->

In y (add x s).

Note that there may exist many ways to make a proof. Another possible
proof is the following:

Lemma prop1: SetZ.In 1 (SetZ.union A B).

Proof.

Apply SetZ.mem_2; unfold SetZ.mem; simpl; auto.

Qed.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254240

This second proof presents the advantage of simplicity and efficiency 2 .
This is interesting to write automated tactics.

3.3 List library and Record type

In the case study formalisation of section 4.4, we use the List library that
comes with the Coq system distribution. We represent sets as lists. We first
import the List library and open the ”scope” of nat and list which allow us
to use natural numbers and list syntax respectively:

Require Export List.

Open Scope nat_scope.

Open Scope list_scope.

The type list is defined as an inductive type with two constructors nil

and cons (denoted by ::):

Inductive list (A : Type) : Type :=

nil : list A

| cons : A -> list A -> list A

Now, we are able to define a list which contains 3 natural numbers, 1, 2
and 3:

Definition example_list_nat:=(1::2::3::nil).

Then, the type of example list nat is list nat. The standard library
of lists includes many properties that allows us to make proofs using lists for
our specification.

Now, we also present the record type that will be used in the section 4.
The record construction is a macro allowing the definition of records as is done
in many programming languages. Actually, the macro generates an inductive
definition with just one constructor. As an example, we can define complex
numbers, with real and imaginary parts (we have to require the Real library
first) and 2 + i:

Require Export Reals.

Open Scope R_scope.

Record C : Set := mkC

2 ”Simplicity” means facility to manipulate objects and data types in proofs, in other
words, facility to make proofs. ”Efficiency” means size of proof λ-term (to reduce time of
type checking), using conversion (by reflexion) instead of rewriting for example. For further
details, the reader can refer to [5].

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 241

{real : R;

im : R}.

Definition two_plus_i:=mkC 2 1.

For further explanation about the previous examples of formalisations,
refer to [5].

4 Proving Refinement Using Coq

To formally prove a refinement we need to prove, with Coq, the correctness
properties expressed in section 2. In this section we sketch two possible ways
to achieve this proof.

(i) The first method is, as in the previous section, to manually drive the
proof, using existing tactics in the Coq prover. Of course this is much
simpler, but the drawback is that it cannot be generalised since it is valid
for each specific proof and cannot be reused.

(ii) The second approach is to build the proof such that it is as automated as
possible. To automate a proof means that our specific tactics should be
explicited and written in such a way that they may be applied to most
of our problems.
With Coq, the user may write her/his own automation tactics thanks
to the tactic language Ltac [7]. In this section, we present as an example
a short tactic that may be used to automate our case study proofs, and
may also be applied in a more general context to coloured Petri nets.

4.1 Case study description

As a case study, we chose the quite simple place transition net derived from [9].
The initial net is shown in figure 1.

Subnet refinement involves augmenting a subnet with additional places,
transitions, and arcs. Subnet refinement can be applied to the net of figure 1
to obtain the net of figure 2, where places p6, p7 and transition t4 have been
added.

We present hereafter three main parts of formalisations of the subnet re-
finement formal proof (lemma 2.7) in commented Coq code that use the three
sets formalisations presented in Section 3. Note that the properties introduced
by these different representations are not involved in our proofs, so the differ-
ence between the three possibilities will only be in the way the proof can be
achieved, and also generalised.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254242

4.2 Using the Sets library

As described in section 3.1, we import the required libraries:

Require Export Ensembles.

4.2.1 Formalisation of a place/transition net

Defining places and transitions is achieved inductively. They are indexed by
natural numbers.

Inductive places : Type := p : nat -> places.

Inductive transitions : Type := t : nat -> transitions.

We distinguish arcs from a place to a transition and arcs from a transition
to a place. Arcs are labelled by their weight (for simple Petri nets, the weight
is the number of tokens involved in firing the transition). An arc from a place
to a transition can be represented as a pair ((place, transition),n) where n is
its label (that is the weight of the arc), and similarly ((transition, place),n)
for an arc from a transition to a place. A marking can be represented as a
pair (place,n) where n is the number of tokens.

Definition arc_pt (pl:places)(tr:transitions)(n: nat):=

(pairT (pairT pl tr) n).

Definition arc_tp (tr:transitions) (pl:places)(n: nat):=

(pairT (pairT tr pl) n).

Definition marking (pl:places)(n:nat):=(pairT pl n).

It is now possible to define the net in figure 1. The set P containing places
Pj, j=1..5 in the initial net is defined as:

Definition P1 := p 1.

...

Definition P5 := p 5.

Definition P :=

Add places (Add places (Add places (Add places (Add places

(Empty_set places) P1) P2) P3) P4) P5.

The three transitions are defined in a similar manner:

Definition T1 := t 1.

...

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 243

Definition T :=

Add transitions (Add transitions (Add transitions

(Empty_set transitions) T1) T2) T3.

Apt and Atp respectively represent the set of arcs from places to transitions,
and the set of arcs from transitions to places. Note that the definition of the
arc At2p3 from transition t2 to place p3 is labelled with 2.

Definition Ap1t1 := arc_pt P1 T1 1.

...

Definition Ap4t3 := arc_pt P4 T3 1.

Definition At1p2 := arc_tp T1 P2 1.

...

Definition Apt :=

Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Empty_set (prodT (prodT places transitions) nat))

Ap1t1) Ap2t2) Ap4t2) Ap4t3.

Atp is defined similarly from transitions to places.

The initial marking is the following:

Definition mP1:=marking P1 1.

Definition mP2:=marking P2 0.

Definition mP3:=marking P3 0.

Definition mP4:=marking P4 1.

Definition mP5:=marking P5 0.

Definition InitMarkI := Add (prodT places nat) (Add (prodT places nat)

(Add (prodT places nat) (Add (prodT places nat) (Add (prodT places nat)

(Empty_set (prodT places nat)) mP1) mP2) mP3) mP4) mP5.

4.2.2 Subnet refinement

The refined net is defined in Coq in a similar way. We denote respectively by
P’, T’, Apt’, Atp’ and InitMarkR the sets of places, transitions, arcs (from
places to transitions and conversely) and the initial marking.

Definition P’1 := p 1.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254244

....

Definition P’ :=

Add places (Add places (Add places (Add places (Add places

(Add places (Add places (Empty_set places)

P’1) P’2) P’3) P’4) P’5) P’6) P’7.

Definition T’1 := t 1.

....

Definition T’ :=

Add transitions (Add transitions (Add transitions

(Add transitions (Empty_set transitions)

T’1) T’2) T’3) T’4.

Definition A’p1t1 := arc_pt P’1 T’1 1.

...

Definition A’t1p2 := arc_tp T’1 P’2 1.

Definition A’t2p3 := arc_tp T’2 P’3 2.

...

Definition A’pt :=

Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Add (prodT (prodT places transitions) nat)

(Empty_set (prodT (prodT places transitions) nat))

A’p1t1) A’p2t2) A’p4t2) A’p4t3) A’p6t3) A’p6t4.

A’tp is defined similarly from transitions to places.

The initial marking is defined by:
Definition mP’1:=marking P’1 1.
...
Definition mP’6:=marking P’6 1.
Definition mP’7:=marking P’7 0.

Definition InitMarkR := Add (prodT places nat) ...
(Empty_set (prodT places nat)) mP’1) mP’2) mP’3) mP’4) mP’5) mP’6) mP’7.

Now we can express the correctness lemma in Coq that corresponds to
lemma 2.7. We do not give here the sequence of tactics that constitutes the
proof.
Lemma subnet_refined: Included places P P’ /\ Included transitions T T’

/\ Included (prodT places nat) InitMarkI InitMarkR /\

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 245

(Included (prodT (prodT places transitions) nat) Apt A’pt /\
(forall (pe:places) (te:transitions) (n:nat), (In places P pe) ->
(In transitions T te) -> ~In (prodT (prodT places transitions) nat)

(Setminus (prodT (prodT places transitions) nat) Apt A’pt)
(pairT (pairT pe te) n))) /\

(Included (prodT (prodT transitions places) nat) Atp A’tp /\
(forall (te:transitions) (pe:places) (n:nat), (In places P pe) ->
(In transitions T’ te) -> ~In (prodT (prodT transitions places) nat)

(Setminus (prodT (prodT transitions places) nat) Atp A’tp)
(pairT (pairT te pe) n))).

The Coq proof requires about 30 tactics that are specific to the previous
proof. As mentioned before, one of our goals is to automate the proofs. To
this end, we wrote a tactic that may be applied to any Petri net encoded
through sets. We present part of the code below:

Ltac is_subnet_refinement :=
try
match goal with
| |- (?X1 /\ ?X2) =>

split;[try (match goal with | |- (Included _ ?X3 ?X4) =>
unfold X3, X4; auto with sets end) | intros;

(match goal with | |- ~(In _ (Setminus _ ?X3 ?X4) _)=>
unfold X3, X4 end);unfold Setminus;intro; ...]

end.

The keyword Ltac means that we define a new tactic in Coq (called
is_subnet_refinement), thanks to the tactic language Ltac mentioned in
section 3. The keywords match goal with allow us to match the goal (i.e.
hypothesis and conclusion) with some patterns and to apply the correspond-
ing appropriate tactics (split, unfold, ...) to this goal.
The 30 tactics of the previous proof are therefore replaced by this unique and
generic tactic is_subnet_refinement.

4.3 Using the FSets library

As described in section 3.2, we import the required libraries:

Require Export FSets.

4.3.1 Formalisation of a place transition net

We create, for places and transitions, a new module PT with Nat as OT, which
represents a finite set of natural numbers:

Module PT := FSetList.Make Nat_as_OT.

As previously, arcs and marking are represented respectively by a triple
(pl,tr,n) or (tr,pl,n) and by a pair (pl, n). In Coq, we define a triple (a,b,c)
as a couple ((a,b),c), using predefined module PairOrderedType:

Module PairOT := PairOrderedType Nat_as_OT Nat_as_OT.

Module TriOT := PairOrderedType PairOT Nat_as_OT.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254246

Module Arc := FSetList.Make TriOT.

Module Mark := FSetList.Make PairOT.

After that, the arcs and marking are defined:

Definition arc_pt (pl tr n: nat):= (pl,tr,n).

Definition arc_tp (tr pl n: nat):= (tr,pl,n).

Definition marking (pl n:nat):=(pl,n).

We can now define the abstract net of figure 1. Set P represents the set of
places, from 1 to 5:

Definition P1 := 1.

...

Definition P := PT.add P1 (PT.add P2 (PT.add P3

(PT.add P4 (PT.add P5 PT.empty)))).

The three transitions are defined similarly:

Definition T1 := 1.

...

Definition T := PT.add T1 (PT.add T2 (PT.add T3 PT.empty)).

Apt and Atp represent the sets of arcs from places to transitions and from
transitions to places respectively. Note that the arc At2p3 from transition t2
to place p3 is weighted by 2.

Definition Ap1t1 := arc_pt P1 T1 1.

...

Definition At1p2 := arc_tp T1 P2 1.

...

Definition Apt := Arc.add Ap1t1 (Arc.add Ap2t2

(Arc.add Ap4t2 (Arc.add Ap4t3 Arc.empty))).

Definition Atp :=

Arc.add At1p2 (Arc.add At2p3 (Arc.add At3p5 Arc.empty)).

The initial marking is represented as follows:

Definition mP1:=marking P1 1.

...

Definition InitMarkI := Mark.add mP1 (Mark.add mP2 (Mark.add mP3

(Mark.add mP4 (Mark.add mP5 Mark.empty)))).

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 247

4.3.2 Subnet refinement

The refined net is defined similarly in Coq. We denote respectively by P’, T’,
Apt’, Atp’ and InitMarkR the sets of places, transitions, arcs and the initial
marking.

Definition P’1 := 1.

....

Definition P’ := PT.add P’1 (PT.add P’2 (PT.add P’3 (PT.add P’4

(PT.add P’5 (PT.add P’6 (PT.add P’7 PT.empty)))))).

Definition T’1 := 1.

....

Definition T’ := PT.add T’1 (PT.add T’2

(PT.add T’3 (PT.add T’4 PT.empty))).

Definition A’p1t1 := arc_pt P’1 T’1 1.

...

Definition A’t1p2 := arc_tp T’1 P’2 1.

Definition A’t2p3 := arc_tp T’2 P’3 2.

...

Definition A’pt :=

Arc.add A’p1t1 (Arc.add A’p2t2 (Arc.add A’p4t2 (Arc.add A’p4t3

(Arc.add A’p6t3 (Arc.add A’p6t4 Arc.empty))))).

Definition A’tp :=

Arc.add A’t1p2 (Arc.add A’t2p3 (Arc.add A’t3p5

(Arc.add A’t4p7 Arc.empty))).

Definition mP’1:=marking P’1 1.

...

Definition mP’7:=marking P’7 0.

Definition InitMarkR := ...

We can now express the correctness lemma in Coq that corresponds to
lemma 2.7. We do not give here the sequence of tactics that constitutes the
proof. The proof uses techniques stated in section 3 and corresponds to the
mathematical proof in section 2.4.
Lemma subnet_refined: Included places P P’ /\ Included transitions T T’

/\ Included (prodT places nat) InitMarkI InitMarkR /\
Arc.Subset Apt A’pt /\

(forall p t n: nat, PT.In p P -> PT.In t T ->
~Arc.In (p,t,n) (Arc.diff Apt A’pt))

/\ Arc.Subset Atp A’tp /\
(forall p t n: nat, PT.In p P -> PT.In t T’ ->

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254248

~Arc.In (t,p,n) (Arc.diff Atp A’tp)).

Similarly to the previous formalisation (with Set), we can implement au-
tomation tactics. These two approaches are similar, we will discuss the differ-
ences in section 5.

4.4 Using the List library

As described in section 3.3, we import the required libraries:

Require Export List.

4.4.1 Formalisation of a place/transition net

As previously, a net is defined in Coq similarly except that places and transi-
tions are defined with a record type. We denote respectively by P, T, Apt, Atp
and InitMarkI the sets of places, transitions, arcs and the initial marking.

Record Place : Type := mkPlace

{ Pl : nat}.

Record Transition : Type := mkTransition

{ Tr : nat}.

Definition P1 := mkPlace 1.

...

Definition T1 := mkTransition 1.

...

Definition Ap1t1 := (P1,T1,1).

...

Definition mP1:=(P1,1).

...

Definition P:= P1::P2::P3::P4::P5::nil.

Definition T:= T1::T2::T3::nil.

Definition Apt := Ap1t1::Ap2t2::Ap4t2::Ap4t3::nil.

Definition Atp := At1p2::At2p3::At3p5::nil.

Definition InitMarkI := mP1::mP2::mP3::mP4::mP5::nil.

4.4.2 Subnet refinement

The refined net is defined in Coq similarly. We denote respectively by P’, T’,
Apt’, Atp’ and InitMarkR the sets of places, transitions, arcs and the initial
marking.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 249

Definition P’1 := mkPlace 1.
...
Definition T’1 := mkTransition 1.
...
Definition A’p1t1 := (P’1,T’1,1).
...
Definition mP’1:=(P’1,1).
Definition P’ := P’1::P’2::P’3::P’4::P’5::P’6::P’7::nil.
Definition T’ := T’1::T’2::T’3::T’4::nil.
Definition A’pt := A’p1t1::A’p2t2::A’p4t2::A’p4t3::A’p6t3::A’p6t4::nil.
Definition A’tp := A’t1p2::A’t2p3::A’t3p5::A’t4p7::nil.
Definition InitMarkR := mP’1::mP’2::mP’3::mP’4::mP’5::mP’6::mP’7::nil.

As previously, we can express the correctness lemma in Coq that corre-
sponds to lemma 2.7.
Lemma subnet_refined: incl P P’ /\ incl T T’ /\

incl InitMarkI InitMarkR /\ incl Apt A’pt /\
(forall p:Place, forall t:Transition, forall n: nat, In p P ->

In t T -> ~((In (p,t,n) Apt)/\(~In (p,t,n) A’pt)))
/\ incl Atp A’tp /\

(forall p:Place, forall t:Transition, forall n: nat, In p P ->
In t T’ -> ((In (t,p,n) Atp)/\(~In (t,p,n) A’tp))).

4.5 Adding colours

All these experimentations were motivated by specifying Coloured Petri Nets
(CPN) in order to prove the type refinement stated in section 2.2. We now
extend the previous development so as to add colours. Note that proofs are
also adapted. Let us illustrate this on the CPN example in figure 3.

Class
 P is 1..PR;
 Val is 1..V;
Domain
 D is <P,Val>;

CR
<Val.all>

outCS

compute

InCSout
<P.all>

Mutex1

<p> <v>

<v>

<p, v>

<p, v>

<p>

<v>

Var
 p in P;
 v, v2 in Val;

Fig. 3. A Coloured Petri Net example

To deal with these additional data, the question is how to reuse previous
specifications adding colours, in other words, which one of these three
implementations is best suited? From our experience, the last formalisation,
using just simple lists, is the most convincing.

The example of figure 3 can be formalised as follows:

We add to Place and Transition records a field for colours and guards. We
define an enumerated type to create a new list with propositions and so on
(as a tuple)...:

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254250

Definition nat_interval (n min max:nat) := min <= n /\ n <= max.

Inductive basic_types : Type := cal: Set -> basic_types

| propo: Type -> basic_types.

Definition Tuple := list basic_types.

(* arcs values are data_types*)

Inductive data_types : Type :=

prop : Prop -> data_types

| tuples : Tuple -> data_types.

(* type of places *)

Record Place : Type := mkPlace

{ P : nat;

Colors : data_types }.

(* type of transitions *)

Record Transition : Type := mkTransition

{ T : nat;

Garde : Prop }.

Now, we are able to specify places, transitions and arcs:

Parameter PR: nat.

Parameter V: nat.

Parameter token: Prop.

Parameter p: nat.

Parameter v: nat.

Definition interval_p p := (nat_interval p 1 PR).

Definition interval_v v := (nat_interval v 1 V).

(* places *)

(* out *)

Definition Piout := mkPlace 1 (tuples ((cal nat)::nil)).

...

Definition listI_pl:= PiMutex::PiCR::Picompute::Piout::nil.

(* transitions *)

(* InCS *)

Definition TiInCS := mkTransition 1 True.

...

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 251

Definition listI_tran:= TioutCS::TiInCS::nil.

(* arcs *)

Definition AiPoutTInCS := (Piout,TiInCS,(interval_p p)).

Definition AiPcomputeToutCS :=

(Picompute,TioutCS,(interval_p p)/\(interval_v v)).

...

Definition listI_arcs_PT :=

AiPMutexTInCS::AiPCRTInCS::AiPcomputeToutCS::AiPoutTInCS::nil.

Definition listI_arcs_TP :=

AiToutCSPMutex::AiToutCSPCR::AiToutCSPout::AiTInCSPcompute::nil.

As shown in our previous experiments,we have easily and successfully ex-
tended the formalisation of places/transitions net to a simple CPN.

5 Discussion, conclusion and future work

In this section, we will try to explain why we had to experiment with several
formalisations. It is quite common when doing formal proofs to choose a
formalisation that turns out to be inadequate. In our case, to experiment
several formalisations was necessary, at least, for the following reasons:

• our refinement proofs should be generalisable to any Petri net (not only
usable for a specific one);

• our refinement proofs should be automatable (abstracting proofs so that we
can develop an automation tactic);

• the formalisation should be easily extended to take colours into account;

• the formalisation should easily be modified (and proofs as well which is a
more difficult problem), and, in particular, it should be easily adapted to the
exchange format of CPN which is in a normalising process [3] and evolving
consequently;

• it should be possible to generate the specification with an external tool.

For these reasons, we chose to explore several methods. The “good” choice
of formalisation may be compared to a “good” choice of data structures to
write a program, with additional difficulties as to elaborate the proof, λ-term
“structure” (by Curry-Howard isomorphism), automation,...

The first formalisation (with Sets) seems the most natural, because, in a
CPN, colours are naturally and often represented by sets. The minor point
of this method is that, with the Sets library, using finite sets is not natural
and requires specific attention. More precisely, extending the formalisation

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254252

becomes complicated. To deal with finite sets, the FSets library is more
appropriate, and it was recently developed and integrated in the Coq standard
library.

The benefit of the second formalisation (with FSets), with respect to the
previous one with Sets, is that the finite sets library contains many tools
(tactics, especially if implementation by red-black trees or AVLs is used).
The minor point of this method is that the use of modules and functors yields
a difficult automation of specification from an external tool. To add colours
“manually” is also not so easy.

The third formalisation (with List) is quite simple, it represents sets
as lists which is sufficient and allows us to extend it with colours just like
adding a field in records. The List library also contains some automations
that yield easier proofs.

Now, we are able to choose the formalisation that is the most adapted to
our goal. This general methodology which consists in making some experimen-
tation before implementing the full problem can be seen as an “investment”,
rewarded by discovering “the good” approach.

Subnet refinement was formalised and proved in Coq. This first step of
formalisation and proof assessed the feasibility and validity of our approach.
Automation tactics were also developed.

The common pre-requisite to the three kinds of refinements is the formal-
isation of a given Petri net. This formalisation is probably the most tedious
part of our work and requires a significant automation. The possibility to eas-
ily integrate automation at a later stage was a key issue in the work presented
in this paper. For example, as seen in Section 4, to define all the places, all
the transitions and all the arcs manually is certainly not efficient, especially
if the net has more than 50 places/transitions.

We plan to solve this problem using an interface to PNML (Petri Net
Markup Language, [3]). PNML is currently being standardised within
ISO/IEC 15909-2. It aims at becoming the common language for Petri
nets tools, e.g. CPN-AMI [2], CPN-Tools [6] or other tools which han-
dle Petri nets, like FAST [4]. Such files can be directly translated in Coq
(as in the third formalisation) so as to generate the places, transitions and arcs.

Our goal is to provide a Petri net refinement specification that enables a
user, not familiar with formal proof assistants, to make a formal proof as well.
While refinement was extensively studied for other specification languages
(e.g., B, VDM/Raise, . . .), to our knowledge, there exists neither such a work
nor such formalisations of CPN and proofs of refinements.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254 253

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University Press, New
York, NY, USA, 1996.

[2] cpn-ami: Home Page. http://www-src.lip6.fr/logiciels/mars/CPNAMI/.

[3] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post,
C. Stehno, and M. Weber. The Petri Net Markup Language: Concepts, technology and tools.
In Proc. 24th Int. Conf. Application and Theory of Petri Nets (ICATPN’2003), Eindhoven, The
Netherlands, June 2003, volume 2679 of Lecture Notes in Computer Science, pages 483–505.
Springer, 2003.

[4] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast acceleration of symbolic transition
systems. In Computer Aided Verification (CAV), volume 2725 of Lecture Notes in Computer
Science. Springer, 2003.

[5] The Coq proof assistant. http://coq.inria.fr.

[6] cpntools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[7] David Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic for
Programming and Automated Reasoning (LPAR), Reunion Island, volume 1955, pages 85–95.
Springer-Verlag LNCS/LNAI, November 2000.

[8] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical use. Volume
1: basic concepts. Monographs in Theoretical Computer Science. Springer, 1992.

[9] G. Lewis. Incremental specification and analysis in the context of coloured Petri nets. PhD
thesis, University of Hobart, Tasmania, 2002.

[10] C. Lakos and G. Lewis. Incremental state space construction of coloured Petri nets. In Proc.
22nd Int. Conf. Application and Theory of Petri Nets (ICATPN’01), Newcastle, UK, June
2001, volume 2075 of Lecture Notes in Computer Science, pages 263–282. Springer, 2001.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[12] Sam Owre, Natarajan Shankar, and John Rushby. PVS: A Prototype Verification System. In
Proceedings of CADE 11, Saratoga Springs, New York, June 1992.

[13] Ch. Paulin-Mohring. Inductive definitions in the system Coq, rules and properties. In Typed
Lambda Calculi and Applications (TLCA), volume 664 of Lecture Notes in Computer Science,
pages 328–345. Springer, 1993.

C. Choppy et al. / Electronic Notes in Theoretical Computer Science 214 (2008) 231–254254

http://www-src.lip6.fr/logiciels/mars/CPNAMI/
http://coq.inria.fr
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

	Introduction
	Petri Nets and Refinement
	Basic Definitions
	Type Refinement
	Node Refinement
	Subnet Refinement

	Using a Deduction System: Coq System presentation
	Sets library
	FSets library
	List library and Record type

	Proving Refinement Using Coq
	Case study description
	Using the Sets library
	Using the FSets library
	Using the List library
	Adding colours

	Discussion, conclusion and future work
	References

