
How an ”Incoherent Behavior” inside generic hardware component
characterizes functional errors

Bruno Monsuez
ENSTA - UEI

bruno.monsuez@ensta.fr

Franck Védrine
CEA, LIST, LMEASI
franck.vedrine@cea.fr

Micaela Mayero
Université Paris 13 - LIPN - LCR

micaela.mayero@lipn.univ-paris13.fr

Nicolas Vallée
ENSTA - UEI

nicolas.vallee@ensta.fr

Abstract:Detecting functional errors on generic hardware components is often a complex task. This task becomes
more complex in a componentwise approach when analyzing components without their embedded context that
is the entire system description. In this paper, we propose amethodology that successfully detects just from the
component’s description a pure functional error that neither extensive tests nor formal methods could find.

Key–Words:static analysis, hardware functional error, logical formulae, formal inference

1 Introduction

Conception and design of components are changing.
Keywords are now reusability, genericity, scalability
and modularity as well as time to market.

Perfect tools and hardware description languages
should allow expressing generic components, allow
efficient specialization and multiple levels of abstrac-
tion, support the assemblies of modular components.
In addition, these tools should provide fast and effi-
cient simulation, an insurance that the combined com-
ponents can work together. In a really perfect world,
each component should be individually certified and
the assembly process should guarantee that the final
instantiated component is efficient and error-free.

1.1 New challenges for formal verification

The dream of any SoC designer would be to tailor the
complexity, the offered functionalities as well as the
performance of the component by specializing generic
components (1), and assembling them (2).

Part of the challenges are addressed by using new
Hardware Design Language like SystemC, CowareC,
SystemVerilog that address multiple abstraction lev-
els, modularity and genericity. However a new HDL
will solve some problems and introduces new ones. If
we concentrate on verification, the first challenge is to
analyze a single component before being assembled.
To make verification more difficult, formal parameters
are used to describe for instance the size of the bus,
the endianness of data, the cache associative memory.
The second challenge consists in analyzing the com-
ponent with respect to those formal parameters. The
third and last challenge is to be able to combine the
results obtained by each single analysis and refine the

inferred properties when embedded in a bigger sys-
tem. We call this approach ”debug as design” since
the debug process occurs during all the design pro-
cess. By contrast, we call the more classical approach
”design and debug” since the debug process occurs
after the design having been completed.

1.2 Context of the conducted case-study

In year 2001, the SystemC standard was emerging.
SystemC looks very different from HDL languages
like Verilog or VHDL introducing all the complex
and powerful expressivity of C++ to HDL. Obviously
hardware verification of SystemC developed compo-
nents could not be done with the tools that were avail-
able at this time. And tools for debugging SystemC
design are 7 years later still missing. Some of the
authors had good expertise in hardware and software
verification, and were working on technologies to an-
alyze C++ components. The idea of reusing the de-
veloped techniques had gained and a collaboration
with STMicroelectronics began, to evaluate if it were
meaningful with respect to hardware verification.

The first step was to evaluate the technologies we
developed. We first verify components that connect
to a bus. The components have been designed using
SystemC. The main work was to first use our tech-
niques to verify each component individually. We
then connect the components to the bus and terminates
the verification of the complete system. The compo-
nents were designed at BACA abstraction level. This
case study was conducted to verify the viability of the
”debug as design” approach and to gain experience in
SystemC verification before going into the implemen-
tation of a full-featured abstract debugger[2].

We chose a novel and rich analysis framework

where components are described by automata and
where the action on the arrows of the automata are
automata as well. Within this framework, we are able
to combine abstract interpretation, type inference and
theorem proving like techniques. We hope to be able
in the near future to add support for model checking
as well as for advanced theorem proving.

1.3 Errors detected during this case-study

The case-study has convinced us from the viability of
the presented approach before starting with the full
implementation of the formal debugger (1) as well as
to determine which kind of errors could be detected
during each phase of the formal analysis (2).

Despite having a good expertise in software and
hardware verification, we thought that the first phase
of our analysis – a formal verification of a single com-
ponent without the context – may only detect local de-
sign errors or basic local violation of specifications.

If we verified that protocol violation introduced
in the code are correctly detected, we were however
really surprised that the methodology we used make it
possible to detect ”incoherent behaviors” of individual
components and to be able to classify definitely those
”incoherent behaviors” as ”functional system errors”.

We do not hear about any other approach that is
able to proceed with the analysis of small component
like a size-converter and is able to detect that there
is no consistency in the way the messages get sent
or received, despite the fact that all the single actions
are perfectly valid and do not violate the properties or
constraints that the single component should verify.

We suppose that at least one of those errors was
introduced by an hazardous copy-paste in the Sys-
temC code that were obtained by retro engineering
the RTL. However, this error was never detected by
the tests that were conducted during the validation of
the platform written in SystemC.

We think that the gained results are not specific
to our current formal debugger and that the approach
could be also be used by other analyzers (resp. formal
verification techniques) to detect functional errors.

In this paper, we first characterize one of those
functional errors that have been detected by the pres-
ence of an incoherent behavior. We then give a way of
detecting and correcting such errors. We finally end
the presentation with some words on the formal de-
bugger we are developping and how such a tool can
help non-expert users to validate their components.

2 Functional error in size-converter

Detecting functional errors is difficult by using for-
mal verification techniques. The most obvious way is
to write a functional specification of the system and to
verify that the implemented system verifies it. How-
ever, since the functional specification is quite redun-
dant with the implemented code, it may also contain
the same error. Therefore, functional errors are mostly
detected by performing execution tests and by verify-
ing the results of those tests.

However, as we mentioned above, we discovered
functional errors by performing an analysis of a hard-
ware component without any functional specification.

In this section, we present on one specific case
how an incoherent behavior allow us to automatically
detect a functional error and to localize its origin.

2.1 A small component: a size-converter

During the conducted case-study, we first proceed
with the analysis of different components used to im-
plement a full functional system. Among other com-
ponents, a size converter were used to connect two
buses of different sizes – the sizes of the two buses are
parameters of the generic component.

The size converter receives requests from an ini-
tiator. It first converts a request message into a se-
quence of smaller (resp. bigger) words, it then sends
this converted request to the target and waits for an
answer from the target. It then translates the answer
message into a sequence of bigger (resp. smaller)
words. In the following, we suppose that the initia-
tor bus is smaller than the target bus. For instance, the
size converter translates a four words request message
from the initiator into a two words request message. It
translates a two words answer coming from the target
into a four words message.

The size converter also support some QoS. Words
refused by the initiator bus are stored inside a buffer.

r e s p o n s e

r e q u e s t r e q u e s t '

r e s p o n s e '

s i z e c o n v e r t e r
i n i t i a t o r
b u s

t a r g e t
b u sb u f f e r

c e l l s a g g l o m e r a t i o n
c e l l 2c e l l 1 c e l l 3 c e l l 4 t a r g e t c e l l 1 t a r g e t c e l l 2

c e l l 2c e l l 1 c e l l 3 c e l l 4 t a r g e t c e l l 1 t a r g e t c e l l 2
c e l l s s p l i t t i n g

Figure 1: Size converter connections.

Messages are identified by a unique id. Each
packet carries a message id and the last packet of a

message also carries a flag ”end of message”. Pack-
ets can interleave and the size converter receives and
reconstructs the full message before proceeding with
the conversion.

size
converter

i n i t i a t o r
b u s

t a r g e t
b u s

i d 0 i d 0

i d 1

i d 0 = i d e n t i f i e r o f m e s s a g e 0
i d 1 = i d e n t i f i e r o f m e s s a g e 1

f i r s t
c e l l

s e c o n d
c e l l

t h i r d
c e l l

t i m e

Figure 2: Messages’ scheduling.

2.2 The error and its manifestation

When performing a static analysis of the size con-
verter, the only potential errors we expected to find
were in the decision procedure that gives grants. The
size converter gives grants as long as memory is avail-
able in the internal buffer. The decision procedure
of the component is error-prone since many internal
signals have been introduced to optimize transmission
delays. However, despite the inherent complexity of
the decision procedure, no errors were found inside it.

The analysis nevertheless detected an error when
handling with ”unaligned data”. This error was not
located in the decision procedure. More surprisingly,
neither the specification, nor the tests and their asso-
ciated oracles could capture this error. This error was
purely functional.

When proceeding with the conversion of mes-
sages sent by the target – ie. an answer to a specific
request – in some specific cases, the size converter
may handle unaligned data. Decision to handle it only
depends on the structure of the message sent by the
emitter (in our case the target). However, the struc-
ture of messages sent by the receiver (in our case the
initiator) were also used to decide whether we are in
presence of unaligned data.

. . .i d 0 i d 0i d 1

i d 0 i d 0b u f f e r

t - 1
t

e r r o r

. . .i d 0 i d 0

b a d c e l l c o n t e n t a t t + w

t - n t - n - 3
t i m i n g o f r e q u e s t

t - k

t i m i n g o f r e s p o n s e

b a d d e p e n d e n c y c o n n e c t i o n i m p l i e d i n
t h e d e c i s i o n t o c r e a t e u n a l i g n e d d a t a

c o n f l i c t o f m e s s a g e ' s t y p e s i m p l i e d

Figure 3: Unaligned data bug.

Creating unaligned data does not violate the pro-
tocol: messages remain well structured, the ordering
of the packets is preserved, the message ids remain

also intact. However, the content of the message get
corrupted. The semantic content of the transmitted
message after conversion will be altered w.r.t. the an-
swer message that the target sent.

2.3 Why is detecting such errors so difficult ?

Conceptually, such a data corruption may be detected
when testing the complete system in presence of com-
ponents, that requires data should be aligned. How-
ever, the data corruption would be detected later in-
side the component that will handle the data and not
inside the size converter. Once the error is detected –
and if it is detected – the designer has to find its origin.
We should not forget that the presence of many cache
associative memory make its localization much more
difficult.

Regarding this specific case, the error has not
been detected by the tests performed on the SystemC
code. The unitary tests are correct since the messages
are not long enough, their chaining makes the correct
decision or the oracles are too robust with respect to
the data to detect the error. The integration tests are
not fine enough to make such verification.

Pure formal methods have also difficulties to find
such errors. There is no protocol violation and no
invalid state. Basically, the only way is to add a
more detailed specification that goes over the proto-
col and that specifies for each type of message pass-
ing through the size converter the valid conversions
not altering the meaning of the message.

Yet in this case, a bus does not care about the
types of transmitted messages. Thus the specification
breaks the component modularity and is not adequate.

The last way consists in specifying all the depen-
dencies that allow to handle with unaligned data. With
such information, model checkers should detect a vio-
lation. However, specifying all those dependencies re-
quires a considerable effort that requires updates each
time the component evolves.

2.4 How to analyze the behavior of a generic
and parametrized component ?

In a modular, bottom-up approach wih reusable com-
ponents, we first decided to analyze the size converter
as an independent IP component. To verify the ex-
pressed properties, we had annotated the SystemC
code of the size converter with assertions. The job
was ”to automatically verify that the assertions were
correct if the initiator and target bus verify the bus pro-
tocol as well as the size converter protocol”.

Our static analyzer performs an abstract but sym-
bolic simulation of the main process. It symbolically

executes the code and builds (1) a support for the ex-
ecution traces, (2) the current trace, (3) the current
formal values of registers, signals, path condition and
time as specified below.

signal −→ trace −→ symbolic value
register −→ trace −→ symbolic value
sc time −→ trace −→ symbolic value
condition −→ trace −→ symbolic value

As an example, on the SystemC code

while (count < N) {

wait(clock);

if (msg.bit)

++count;

out = count%10;

};

t 0
t 1 t 2

t 3 t 4
" c n t Î [0 , N - 1]
$ t e s t Î [0 , N - 1] ® { 0 , 1 }

+ + c o u n t
o u t = . . .

$ c t Î [0 , + ¥ [. S i < c t t e s t (i) = N

Traces’ support

t2 is the trace that has donecnt < N loops and that has
finally answeredtrue to the testmsg.bit. The anal-
ysis progressively produces this final formal result.

count t0 0
t1

∑
i<cnt test(i)

t2 1 +
∑

i<cnt test(i)
t3 N

msg.bit t2 1
t3 test(cnt)

out t3 (
∑

i≤cnt test(i))%10
t4 N % 10

sc time t3 cnt
t4 ct

Organized by traces, the result is a set of logical
formulae that describes the evolution of data. As for
all static analyzers, if we want a verdict in finite time,
we have to reconcile the following choices :

• we may lose information. But losing information
may quickly mix the contents of the packets sent.
Consequently false warnings will be issued and
a lot of work is required to distinguish between
false warnings and real errors.

• we may infer a minimal set of properties that may
be refined later if precisions are needed. But in-
ferring a minimal set of properties does only al-
low to verify the specification we want to verify.

• we may try to keep exact and formal informa-
tion as long as long the amount of information
to be handled with does not explode. But keep-
ing exact and formal information requires com-
plex heuristics and abstraction techniques when
the amount of information starts growing expo-
nentially.

For the size converter, we decide to keep the maxi-
mum of formal information in order to precisely solve
further assertions. Several heuristics avoid the inher-
ent explosion of the amount of information. Among
other heuristics, the extraction of what we call the
component protocolis the most significant one. The
extractedcomponent protocolrepresentsa posteriori
the sequence of events that a given component is wait-
ing for. It looks like the traces’ support with formal
conditions to take transitions.

On the size converter, the analyzer extracts the
following component protocol.
Initialization through a reset - event e0

Do n times
Receive a first packet - event e1

Do p times
Receive a non final packet - event e2

Receive a final packet - event e3

Optionnaly receive a first packet - event e1

Do p times
Receive a non final packet - event e2

To find thecomponent protocol, the analysis per-
forms abstract interpretation iterations where each it-
eration step adds new edges, new nodes to the traces’
support and new symbolic values to the data descrip-
tions. When loops are encountered, a formal loop
counter is automatically introduced, that helps to sim-
plify the symbolic values of the data in the loop. Sym-
bolic values are forced to converge on logical, stable
and combinatorial formulae valid for all values of the
loop counter. Note that sequential formal values are
expressed as combinatorial formulae w.r.t thecompo-
nent protocol. That is why thecomponent protocol,
shared by the sequential values, has got its structure
obtained through a vote between the different formal
values. The analysis ends when convergence is met, a
standard process within fixpoint iterations. This kind
of analysis is an adaptation of [6, 7] for systems.

On figure 4, we describe the steps that participate
to the construction of the adequate protocol that is the
valid sequence of packets received by the size con-
verter. Without any analysis, the protocol is simply an
unstructured sequence of eventse1, e2, e3, represented
by the regular expression(e1 ∨ e2 ∨ e3)∗. Given that
some registers have got cleared since the processing
of an evente3, the data descriptions naturally merge
after this kind of event. Hence the analyzer starts with
transforming the initial unordered sequence of events
(e1 ∨ e2 ∨ e3)∗ into the ordered sequence of events
((e1∨e2)∗.e3)

n.(e1∨e2)
p and goes on as documented

on figure 4.

2.5 What look the inferred properties like ?

In addition to verifying that the assertions are not vi-
olated, we discovered a relation between the size of

step 1 e1

step 2 e1.(e2 ∨ e3)

step 3 e1.e2.(e2 ∨ e3) ∨ e1.e3.e1

step 4 e1.e
2
2.(e2 ∨ e3)∨ e1.e2.e3.e1 ∨ e1.e3.e1.(e2 ∨ e3)

= (e1.e
2
2 ∨ e1.e3.e1).e3 ∨ e1.e

3
2 ∨ e1.e3.e1.e2

∨ e1.e2.e3.e1

Same data description implies merge of traces

step 5 ((e1.e
r
2.e3)

n.e1.e
q
2).e3

∨ (e1.e
2
2 ∨ e1.e3.e1).e3.e1 ∨ ((e1.e

s
2.e3)

m.e1.e
p
2

Data description with same structure for formu-
lae implies merge of traces with loop counters

step 6 ((e1.e
r
2.e3)

n.e1.e
q
2).e3

∨ ((e1.e
t
2.e3)

l.e1.e
u
2).e3.e1 ∨ ((e1.e

s
2.e3)

m.e1.e
p
2

Stable component protocol

step 7 ((e1.e
r
2.e3)

n.e1.e
q
2).e3

∨ ((e1.e
t
2.e3)

l.e1.e
u
2).e3.e1 ∨ ((e1.e

s
2.e3)

m.e1.e
p
2

with n, l < buffer size,m ≤ buffer size
Constraint resolution

step 8 ((e1.e
r
2.e3)

n.e1.e
q
2).e3

∨ ((e1.e
t
2.e3)

l.e1.e
u
2).e3.e1 ∨ ((e1.e

s
2.e3)

m.e1.e
p
2

∨((e1.e
r
2.e3)

buffer size+a.e1.e
q
2).e3

∨ ((e1.e
t
2.e3)

buffer size+b.e1.e
u
2).e3.e1

∨ ((e1.e
s
2.e3)

buffer size+c.e1.e
p
2

with n, l < buffer size,m ≤ buffer size,
anda, b ≥ −1, c ≥ 0. Stable, no more behavior

Figure 4: Abstract simulation and structure on message receptions

internal buffers – since the size converter grants all in-
puts until internal buffers may be filled – and the num-
ber of messages the size converter may handle without
any delay. Such an information is usefulper seto de-
termine the size of buffers when instantiating a small
component in a bigger system.

As we have seen before, the selected approach
tries to compute a set of stable logical formulae. How-
ever, in some cases, the analyzer fails in finding sta-
ble formulae. We must distinguish between different
cases:

1. the size of the computed logical formulae is
growing exponentially. If this happens, we have
to use approximation techniques to reduce the
size of the logical formulae and to compute an
upper-approximation of the set of all the reach-
able states. Such approximation techniques have
already been used in some model-checkers [3].

2. the functionalities implemented by the compo-
nent heavily relies on functionalities provided by
other components. This case happens when the
component is not reusable out of the given sys-
tem. In this case, the analysis of the compo-
nent may only continue when we will connect
this component in the system.

3. a meta-stable generalized logical formulae may
be inferred. It so relies on the complete history
of the component, different from thecomponent
protocol. Such a behavior points to a potential
functional error.

During the analysis of the size-converter, the anal-
ysis has found for each intern subcomponent an ad-
equate formula defining its evolution. The only ex-
ception came from the conditional that handles with

unaligned data. The analyzer was not able to find a
stable logical formula. It has generated a recursive
formula depending on the whole history of the com-
ponent since the last reset. This erratic behavior may
suspect a functional error. We finally found the source
of the error thanks to a review from the start of the
explosion.

3 A new characterization of func-
tional errors

As a consequence of the conducted case-study, we
propose to suspect errors when we observe a formal
explosion that does not simplify, except with a loss of
precision or with the whole history.

3.1 Why is it an error ?

The notions of simplicity, modularity, focus on one
task, are inherent and essential for hardware and soft-
ware components. Focused on one task, a non trivial
component should do something that does not arbi-
trarily mix different behaviors. The functional error
we point out violates this implicit rule.

3.2 Why detecting functional errors during
early design stage is difficult ?

Functional errors often appear mixed with other im-
plementation errors, they may only be detected at the
end of the following refinement process :

• During the first tests of a new design, many as-
sertions fail. The simulation identifies local im-
plementation errors and failed assertions.

• During the first debugging stages, only the triv-
ial simulations are correctly done: the other tests
fail or return aberrant states. The user extracts
scenarios that fails as non-regression tests. It
contains the environment description, the formal
stimuli and the traces of simulation.

• During intensive debugging, simple simulations
are correct and the most complex simulations
fail. Errors do not question the global architec-
ture, but indicate some difference between spec-
ification and implementation. The user progres-
sively refines the complex simulations scenarios
to focus on the error. During the refinement pro-
cess, he can replace a transactional description
by a BACA or a RTL description.

• After the validation report, all the simulations
seem to be correct, all expressed assertions have
the expected behaviour. The existence of some
residual bug cannot be excluded though, since we
never take into account implicit or purely func-
tional specifications.

If the standard test process may detect the vast major-
ity of errors, the following errors may be not captured
by simulation and occurs in the following cases:

• simple events never tested since they occur with
very low frequency.

• simple events never tested because they are
quickly implemented to add a non-forecast func-
tionality in the existent range of tests.

• succession of simple events setting more com-
plex events, such as the buffer filling up.

• error set in motion from an unlikely combination
of these different cases.

The difficulty of detection increases with the
functional nature of the errors, since assertions do not
cover the whole specification. And simulation is not
the only verification technique having problems with
detecting functional errors.

3.3 What are the limitations of standard for-
mal verification techniques in this case ?

In this section we review the most widely-used tech-
niques, their scopes and limitations with respect to
the given problem and also discuss how to extend the
technique to make functional error detection possible.

• Model checking is certainly the most effective
technique to formally detect errors. It can handle
with simple sequences of events as well as com-
plex ones. However, model checking requires a
lot of effort to translate the properties into logical
expressions that model checkers can understand.

Thus, the detected errors are only the errors ca-
pable of inferring a violation of the protocol. In
the present case, since the specifications do not
cover the contents of the message, the error in
the size-converter could not have been detected,
We can improve model checkers with a dynamic
refinement of properties[8], by taking explicitly
into account the implementation of the compo-
nent. The states should then merge according to
high level or user’s criteria to avoid explosion. If
the user cannot avoid it, the first states that ex-
plode may indicate the location of the error.

• Theorem provers only deal with simple events.
This limitation is not theoretical, but practical.
For instance, our formal debugger uses some
technology like local simplifications from theo-
rem provers. The succession of simple events
commonly requires a user’s assistance. To find
the functional error, the user should express the
evolution of each register and signal according
to a protocol in construction. If it fails, the
user can suspect an error. To follow this pro-
cess, more automation should be introduced in
theorem provers, especially for the protocol con-
struction. The protocol is naturally big and it is
built with many heterogeneous notions. Theo-
rem provers should then introduce some merge
heuristics present in model checkers. Techniques
of theorem provers are compatible with the ones
of model checkers and they closely work through
PVS [1].

• Static analysis like abstract interpretation will
set warnings for the errors resulting from simple
events and from the successions of simple events.
It allows to give automatic verdicts regarding the
successions of simple events. However, this tech-
nique performs an analysis of a complete system
[4]. Therefore, abstract interpretation could only
be used at the end of the development and not
during the various development stages. Since ab-
stract interpretation does not support the notion
of specification, there is no way to explain to an
analyzer based on this technique that such a func-
tional error should be detected. Consequently,
no analyzer based on abstract interpretation will
produce no warning at all.

3.4 Methodology to detect a functional error
using a formal debugger

Our result suggests to apply the following test
methodology for the verification of IPs. For each in-
dividual component, a static analyzer should extract a
formal description of the behavior of the component,
The user should assist the static analyzer providing

SystemC assertions and suppressing impossible sce-
narios introduced for exhaustiveness. The static ana-
lyzer should be able to find a set of stable logic for-
mulae that describes the behavior of the system.

The set of stable logic formulae may be used as an
abstraction for model checking, as a coverage objec-
tive for test case generators and as a base description
for theorem provers (based on the Hoare Logic for in-
stance).

If no stable logic formulae can be inferred, we
must distinguish between three cases :

• the size of the logical formulae is exploding be-
cause of the complexity of the component,

• the behavior of the component depends on func-
tionalities provided by other component,

• the logic formulae describes an incoherent be-
havior with respect to the component parameters.
Here the origin of the error is at the point where
the first decision procedure does not stabilize.

In fact this methodology is really applicable as
soon as the component development covers all func-
tionalities and either before passing the first tests or
just after. It proves the validity of the version and au-
thorizes the automatic generation of test cases for non-
regression of future versions. Since this methodology
implies some work – it is not a push button method-
ology – it must be used for releases candidate. But it
gives confidence in the component, in its reuse and in
its maintainability: all that is the essence of IPs.

Errors that can be detected using this methodol-
ogy are: (1) a violation of the protocol or the specifica-
tion, (2) a violation of internal and external assertions,
(3) an incorrect access to data structures like an out
of bound access on internal buffers, (4) information
used before their definitions, (5) information stored
but never used, (6) aberrant dependencies, (7) inter-
nal deadlocks in a component or possible live locks
with extern components, (8) incoherent implemented
component functionalities.

4 Summary and Conclusions

In this article, we develop a methodology to achieve
exhaustive verification even on behaviours not cov-
ered by the specification. We motivate the importance
of constructing the protocol that describes the formal
behavior attached to each component. This protocol
allows simplifications of all internal decisions, except
the erroneous ones.

In this methodology, the protocol construction is
the most complex task. We propose a process that
will be integrated in a “formal debugger”. The pro-
tocol construction interacts with the simplifications.

Heuristics tends to maximize the number of decisions
involved. Based on user’s assisted scenarios and on
the protocol, the formal debugger should provide a
precious help to track the large kinds of errors until
exhaustive verification.

The “formal debugger” should assist the code’s
review but may intervene very early during design,
which we call the ”debug as design” design approach.
The protocol verifies that each component is dedicated
to a single task in an often complex but abstract en-
vironment. Hence it enables an automatic verifica-
tion of assumptions when components are connected.
The verification specializes each components protocol
and automatically propagates on each internal deci-
sion without any additional work. Hence the method-
ology should be scalable, as soon as it will be fully
supported by tools.

References:

[1] T. Arons, “Using Timestamping and History
Variables to Verify Sequential Consistency”, in
LNCS 2102, pp. 423, 2001

[2] F. Bourdoncle, “Abstract debugging of higher-
order imperative languages”Proc. of the ACM
SIGPLAN PLDI 1993Albuquerque, New Mex-
ico, pp. 46 - 55, 1993

[3] E. Clarke, O. Grumberg, D. E. Long, “Model
Checking and Abstraction”,ACM Transactions
on Programming Languages and Systems, Vol.
16, pp. 1512–1542, 1994

[4] P. & R.Cousot, “Compositional Separate Modu-
lar Static Analysis of Programs by Abstract In-
terpretation”Proc. of the Second International
Conference on Advances in Infrastructure for E-
Business, E-Science and E-Education on the In-
ternet, SSGRR 2001, Compact disk, L’Aquila,
Roma, Italy, 612 August, 2001.

[5] D. Geist and al. “A methodology for the verifi-
cation of a system on chip” inProc. of the 36th
ACM/IEEE conference on Design automation,
New Orleans, Louisiana, United State, pp. 574
- 579, 1999

[6] L. Gonnord and N. Halbwachs “Combining
Widening and Acceleration in Linear Relation
Analysis” in Proc. of the 13th Static Analysis
Symposium, 2006

[7] D. Gopan and T. W. Reps “Lookahead Widen-
ing” in Proc. of the 18th Conference on Com-
puter Aided Verification, Seattle, WA, USA, pp.
452 - 4466, 2006

[8] Shaz Qadeer, “Algorithms and Methodology for
Scalable Model Checking,”Ph.D. thesis, Uni-
versity of California at Berkeley, October 1999.

