
Coloured Petri net refinement specification
and correctness proof with Coq

Christine Choppy, Micaela Mayero and Laure Petrucci ∗

LIPN, UMR CNRS 7030, Université Paris 13
FRANCE

firstname.lastname@lipn.univ-paris13.fr

Abstract

In this work, we address the formalisation of symmetric nets, a subclass of coloured Petri nets,
refinement in COQ. We first provide a formalisation of the net models, and of their type refinement in
COQ. Then the COQ proof assistant is used to prove the refinement correctness lemma. An example
adapted from a protocol example illustrates our work.

1 Introduction

Modelling and analysing large and complex systems requires elaborate techniques and support. To har-
ness the problems inherent to designing and model-checking a large system (such as the state space
explosion problem), a specification is often developed step by step. First, an abstract model is designed,
and its properties are verified. Once it is proven correct, a refinement step takes place, introducing further
detail. Such an addition can either be enhancing the description of the actual functioning of part of the
system, or introducing an additional part. This new refined model is then verified, and another refinement
step can take place. This process is applied until an adequate level of description is obtained.

There are several advantages to using refinement and hence to start with a more abstract model. It
gives a better and more structured view of the system under study. The components within the system
are clearly identified and the modelling process is eased. The modeller does not have to bother with
spurious details. The validation process also becomes easier: the system properties are checked at each
step. Thus, abstract models are validated before new details are added. Moreover, when model-checking
is used, the analysis of a full concrete model may not be amenable, due to its very large state space.
Refinement helps in coping with this problem since it may preserve some properties, or analysis results
obtained at an earlier step for a more abstract model may be used for the analysis of the refined model.
For example, Lakos and Lewis [9] use the state space of the abstract model to compute the state space
of the refined one: some tests for enabledness of transitions are avoided, as well as the construction of
partial markings that have already been computed. Moreover, the state space can be structured. Hence,
this approach saves both space and time in the analysis, countering the state space explosion problem.

In this paper, we consider specifications written as symmetric nets, a subclass of coloured Petri
nets [7]. Lakos and Lewis [8, 9] consider three kinds of Petri nets refinements for coloured Petri nets,
node (place or transition) refinement, subnet refinement, and type refinement. Our work provides a
formalisation in COQ [5] of both the abstract Petri net and the refined net, as well as refinement correction
lemmas, together with the refinement correction proof.

In a previous work [4], we considered mainly place/transition Petri nets (sketching how coloured nets
might be taken into account), and the subnet refinement (the node refinement processing being similar).

In this paper, we address coloured nets, which are more complex in nature, and the formalisation
in COQ had to be significantly changed to take the typing issues into account. The type refinement
formalisation and correction lemma are also addressed, thus pursuing the initial work of [4]. A protocol
example adapted from [7] illustrates our work.

∗http://www-lipn.univ-paris13.fr/~lastname

1

firstname.lastname@lipn.univ-paris13.fr
http://www-lipn.univ-paris13.fr/~lastname


Coloured Petri net refinement Choppy, Mayero and Petrucci

This type refinement is interesting as it allows for specification of concrete and useful properties in
practice. It requires a more complete formalisation, since colours (seen as types) are necessary. When
compared to places/transitions nets, the use of colours lead to decrease the size of nets, leading to more
amenable models.

The paper is structured as follows. Section 2 recalls the definitions of coloured Petri nets. Section 3
recalls the different refinements. Then, section 4 describes the case study (a protocol example) and
formalisations for proving the type refinement of the net in this example. Conclusions and future work
are finally discussed in section 5.

2 Coloured Petri nets definition

The definition of coloured Petri nets [8, 9] used in this paper is the following:

Definition 2.1 (Coloured Petri net). A Coloured Petri net R is an 8-tuple R = 〈P,T,A,C,E,M,Y,M0〉
where:

1. P is a set of places

2. T is a set of transitions, such that P∩T = /0

3. A is a set of arcs, such that A⊆ (P×T )∪ (T ×P)

4. C: P∪T → Σ where Σ is a universe of non-empty colour sets (or types), determines the colours of
places and the transition modes.

5. E: A→ΦΣ yields the arc inscriptions, such that E(p, t),E(t, p): C(t)→ µC(p)

6. M = µ{(p,c)|p ∈ P,c ∈C(p)} is a set of markings, that associate a value c with a place p of P.

7. Y = µ{(t,c)|t ∈ T,c ∈C(t)} is a set of steps (multisets of transitions with their firing mode).

8. M0 is the initial marking, M0 ∈M.

where ΦΣ is a function over Σ defined by ΦΣ = {X→Y | X ,Y ∈ Σ} and µX = {X→N} are multisets
over a set X, where N is the set of natural numbers.

In the example in Figure 1, the marking of place PacketsToSend is the multiset
1‘1++1‘2++1‘3++1‘4++1‘5++1‘6, where 1‘6 denotes one occurrence of value 6, and ++ denotes the
multiset addition operator.

Definition 2.2. [8] The incremental effects E+,E− : Y→M of the occurrence of a step Y are given by:

1. E−(Y ) = ∑(t,m)∈Y ∑(p,t)∈A{p}×E(p, t)(m)

2. E+(Y ) = ∑(t,m)∈Y ∑(t,p)∈A{p}×E(t, p)(m)

E− defines the input arc inscriptions while E+ defines the output arc inscriptions.

2



Coloured Petri net refinement Choppy, Mayero and Petrucci

Type refinement modifies the information carried by the tokens (a colour is a value of a token) while
the net structure is unchanged. Type refinement brings additional information, which may be done e.g.
by adding components in a tuple, or by representing an abstract data type by a more concrete one. The
properties of the refined type should be preserved, that is if type A is refined by type B, then type B
should satisfy the properties of A after an adequate syntactic translation. As for nets, it should always be
possible to associate a behaviour of the abstract net with a behaviour of the refined one. Type refinement
issue is associated with the issue of abstraction and implementation in the context of formal specifications
(e.g. algebraic specifications [12]), and with studies on subtyping in the context of object-oriented pro-
gramming languages [11, 3]. In this work (as in the work of Lakos [8, 9]), the type refinement considered
is adding components in a tuple.

Since coloured Petri nets can use very general types and functions over these types which are thus not
amenable, we here restrict ourselves to the symmetric Petri nets subclass. Symmetric nets are defined as
coloured Petri nets that allow only the use of particular types and functions: enumerated types, booleans,
integer intervals, tuples and combinations of these, as well as the associated functions. We actually also
handle lists of such types that can easily be manipulated by the COQ theorem prover.

3 Definitions of refinements

As mentioned previously, Lakos and Lewis [8, 9] consider three kinds of Petri nets refinements, node
(place or transition) refinement, subnet refinement, and type refinement. Node refinement consists in re-
placing a place (transition) by a place- (transition-) bordered subnet. Subnet refinement consists in adding
net components (places, transitions and arcs or even additional tokens). In this section the definition of
type refinement is recalled, and we give the corresponding correctness lemma. The lemmas for subnet
and node refinements can be found in [4]. Very little work as been achieved concerning type refinement.

In the following definition of type refinement [8], Na = 〈P,T,A,C,E,M,Y,M0〉 is the abstract net
and Nr is the refined net.

Definition 3.1 (Type refinement). A morphism φ : Na→Nr is a type refinement if:

1. φ is the identity function on P, T, A, i.e. ∀p ∈ P: φ(p) = p, etc.

2. ∀x ∈ P∪T : C(x) <: φ(C)(x)

3. ∀x ∈ P∪T : ∀c ∈C(x): φ(1‘ (x,c)) = 1‘ (x,Πφ(C)(x)(c))

4. ∀(p, t) ∈ A: ∀(t,c) ∈ Y:
φ(E−(1‘ (t,c)))(p) = Πφ(C)(p)(E(p, t)(c)) = φ(E)(p, t)(Πφ(C)(t)(c))
∀(t, p) ∈ A: ∀(t,c) ∈ Y:
φ(E+(1‘ (t,c)))(p) = Πφ(C)(p)(E(t, p)(c)) = φ(E)(t, p)(Πφ(C)(t)(c))

The following interpretation will be used in section 4.2,

Lemma 3.2.

1. The network structure (places, transitions and arcs) is kept unchanged, i.e. P = P′, T = T ′, uA =
uA′ where P′, T ′ et uA′ are resp. the sets of places, transitions and arcs (without their associated
type) of the refined net while P, T and uA are those of the abstract net.

3



Coloured Petri net refinement Choppy, Mayero and Petrucci

2. For any token 1‘(x′,c′), of value x′ for colour c′ in the initial marking of the refined net, there exists
a corresponding token 1‘(x,c) in the initial marking of the abstract net. They must be such that
both the sub-typing and projection relations (resp. denoted <: and ∏) are satisfied: c <: c′ and
c = ∏c(c′).

3. The arc expressions are refined according to the token refinement: ∏Cr(p)(Ca(arc))=Cr(arc)(Cr(t)).

According to the formal definition of type refinement in [10], the net structure is unchanged. Since
type refinement consists in incorporating additional information in token values, a token type in the
refined net is a subtype of the one in the abstract net.

4 Case study: the simple protocol

4.1 Description

In this section, the correction lemma is illustrated by a simple protocol example adapted from [7].

Figure 1: Example of a simple protocol

Figure 1 describes this simple protocol. The left-hand side part models the sender, the right-hand side
the receiver while the middle part represents the network. The sender state is modelled by two places:
PacketsToSend and NextSend. The receiver state is modelled by the DataReceived place. Places A, B, C
and D constitute the network.

Note that place PacketsToSend is initially marked by six tokens with integer values. The textual
inscriptions under a place is called “the colour set” of this place, which represents the available set of
token colours. For example, the tokens in place NextSend always have an integer value. Here, the colour
set NO is used to model sequence numbers. The inscription at the right top of place NextSend specifies
that the initial marking of this place contains a single token with colour (value) 1. Informally, 1‘1 means
that the data packet number 1 is to be sent. Finally, we will eventually obtain in place DataReceived a
list of natural numbers: [6,5,4,3,2,1]. Let us note that arc expressions yield token values together with
their multiplicity. However, when the multiplicity is 1, it is omitted, thus n denotes 1‘n.

4



Coloured Petri net refinement Choppy, Mayero and Petrucci

This example is refined by associating additional information with tokens (while the net structure in
terms of places and transitions is unchanged). The refined net is presented in Figure 2.

Figure 2: Refined protocol example

The colour sets of places PacketsToSend, A, B and DataReceived are extended from NO to NO×DATA
which is defined as the cartesian product of the sets describing types NO and DATA. Note that here some
places are not refined, e.g. NextSend is still of type NO.

The type refinement achieved in Figure 2 not only changes the type of tokens and places but also
modifies the arcs expressions accordingly. Note that there exists a subtyping relation between e.g. (x)
and (x,1).

4.2 Formalisation and proof in COQ

The simple protocol example is now formalised. Tokens carry complex information, and several func-
tions are required to certify the system. In this example, the arc expressions are of four possible types
(all with an integer multiplicity).

nat ∗

(nat)
(nat ∗ string)
(list nat)
(list nat ∗ string)

In COQ, these kinds of arcs are defined by an inductive type:

Definition nat_Tuple := list nat.

Inductive arc_type : Type :=
|bi_types: nat*nat -> arc_type
|tri_types: nat*(nat*string) -> arc_type
|bi_n_tuples: nat*nat_Tuple -> arc_type
|tri_tuples: nat*(nat_Tuple*string) -> arc_type.

5



Coloured Petri net refinement Choppy, Mayero and Petrucci

Then, places and transitions are indexed by natural numbers:

Record Place : Type := mkPlace
{ Pr : nat }.

Record Transition : Type := mkTransition
{ Tr : nat }.

We now present an excerpt of the definitions of places, transitions and arcs for our example. Sets of
places, transitions or arcs (both the untyped arc, i.e. the edge in the graph, and the arc expression) are
represented by lists:

Definition P1_PackToSend := mkPlace 1.
...
Definition list_P:= P1_PackToSend::P2_A::P3_B::P4_NextRec::

P5_DataRec::P6_C::P7_D::P8_NextSend::nil.

Definition T1_SendPack := mkTransition 1.
...
Definition list_T:= T1_SendPack::T2_TransPack::T3_RecPack::

T4_TransAck::T5_RecAck::nil.

Definition uAP1T1 := (P1_PackToSend,T1_SendPack).
...
Definition AP1T1 := (P1_PackToSend,T1_SendPack,bi_types (1,1)).
...
Definition list_APT := AP1T1::AP2T2::AP3T3::AP4T3::AP5T3::

AP6T4::AP7T5::AP8T5::AP8T1::nil.
Definition list_ATP := AT1P2 ::AT2P3::AT3P4::AT3P5::AT3P6::

AT4P7::AT5P8::AT1P8::nil.
Definition list_ATP := uAT1P2...
...
Definition list_APT’ := A’P1T1::A’P2T2::A’P3T3::A’P4T3::A’P5T3::A’P6T4::

A’P7T5::A’P8T5::A’P8T1::nil.
Definition list_ATP’ := A’T1P2 ::A’T2P3::A’T3P4::A’T3P5::A’T3P6::

A’T4P7::A’T5P8::A’T1P8::nil.

The most interesting aspect of type refinement is due to arc expressions. Type refinement can be seen
as a relation between types, which is subtyping. For example, the following table presents subtyping
relations involved in our refinement of the simple protocol (note that the first line is unchanged by the
refinement, and this still needs to be checked):

6



Coloured Petri net refinement Choppy, Mayero and Petrucci

ARC EXPRESSIONS EXAMPLE OF VALUE TYPE COQ arc_type
ARC VALUES

if n=k then k+1 else k 1‘6 nat*nat bi_types

n 1‘6 nat*nat bi_types
(n, d) 1‘(6, ”COL”) nat*(nat*string) tri_types

if n=k then n::f else f 1‘[6] nat*list nat bi_n_tuples
if n=k then (n::f, d::data) else (f, data) 1‘([6], ”COL”) nat*(list nat*string) tri_tuples

f 1‘[6]) nat*list nat bi_n_tuples
(f, data) 1‘(6, ”COL”) nat*(list nat*string) tri_tuples

The subtyping relation must be formalised for this example. We begin by defining a function
is_sub which gives a relation between types of arc_type. This relation is then extended to tuples
(is_sub_tupl_apt) and lists of tuples (is_sub_l_apt) for describing arcs from places to transitions.
Similar extensions are defined for arcs from transitions to places.

Definition is_sub (subtyp:arc_type)(typ:arc_type) : Prop :=
match subtyp, typ with
| (bi_types _), (bi_types _) => True
| (tri_types _), (bi_types _) => True
| (tri_tuples _), (bi_n_tuples _) => True
| _, _ => False
end.

Definition is_sub_tupl_apt (subtupl: Place * Transition * arc_type)
(tupl: Place * Transition * arc_type) : Prop :=
(is_sub (snd subtupl) (snd tupl)).

Fixpoint is_sub_l_apt (subl: list (Place * Transition * arc_type))
(l: list (Place * Transition * arc_type)) {struct subl} : Prop :=

match subl, l with
| nil, nil => True
| (cons a tla), (cons b tlb) =>

(is_sub_tupl_apt a b) /\ (is_sub_l_apt tla tlb)
| _, _ => False
end.

The type refinement correctness lemma can now be written, with the help of lemma 3.2 (where, for
the sake of readability, we indicate in parenthesis to which item the COQ code relates):

Lemma type_colour_refined:
eqlist Place list_P list_P’ /\ (1.)
eqlist Transition list_T list_T’ /\ (1.)
eqlist (Place*Transition) list_uAPT list_uAPT’ /\ (1.)
eqlist (Transition*Place) list_uATP list_uATP’ /\ (1.)
eqlist (list (nat*nat)) list_MP (hd_list list_MP’)/\ (2.)
is_sub_l_apt list_APT’ list_APT /\ (3.)
is_sub_l_atp list_ATP’ list_ATP. (3.)

7



Coloured Petri net refinement Choppy, Mayero and Petrucci

where eqlist is an equality between lists and l = l′ is equivalent to l ⊆ l′ and l′ ⊆ l, list_MP and
list_MP’ define the initial markings, and function hd_list is defined as follows:

Fixpoint hd_list_couple (l:list (nat*(nat*string))):=
match l with

| nil=>nil
|(a,(b,c))::tl=>(a,b)::(hd_list_couple tl)

end.

Fixpoint hd_list (l:list (list (nat*(nat*string)))):=
match l with
|nil=>nil
|a::tl=>(hd_list_couple a)::(hd_list tl)

end.

Thanks to our simple and general formalisation, the formal correctness proof is almost automatic.

Proof.
repeat split;unfold incl;tauto.
Qed.

Note that this simple formalisation was obtained after carefully studying different possibilities for
encoding Petri net elements in COQ. These are detailed in [4]. Moreover, the proof could be simplified
using powerful constructs such as the split tactic, which is particularly well-suited for our purposes.
This tactic applies to inductive types with a single constructor, which is the case for the /\ operator in
the lemma type_colour_refined.

When the proof fails, it still gives valuable information w.r.t. the refinement to be proven: either the
lists representing the net graph elements (places, transitions, or edges) do not match, and the refinement
relation does not hold ; or the error occurs when examining arc expressions. It may then be the case that
refinement does not hold, but also that the type refinement between the supposedly refined and abstract
arc expression cannot be automatically proven.

The full development is available at http://www-lipn.univ-paris13.fr/~mayero/CPNCoq/
Jensen_protocol_NFM.v.

5 Conclusion

When modelling and validating critical systems, one often proceeds in a step-by-step fashion: a first
abstract model is designed and validated ; it is then refined so as to take into account additional details ;
and this process is repeated as many times as necessary. In order to guarantee that the behaviour of the
system is preserved by refinement, it should obey some rules. Three kinds of refinements of coloured
Petri nets were formally defined in [9]. Our aim here was to show that the proof of refinement — i.e.
that a refined net actually is a refinement of an abstract net — can be automated using theorem-proving
techniques, thus avoiding error-prone and lengthy manual proofs.

Previous work focussed on two kinds of refinements: node refinement and subnet refinement, while
the third one was scarcely mentioned. This paper has shown that when restricting coloured Petri nets to
an appropriate subclass, type refinement can also be handled.

8

http://www-lipn.univ-paris13.fr/~mayero/CPNCoq/Jensen_protocol_NFM.v
http://www-lipn.univ-paris13.fr/~mayero/CPNCoq/Jensen_protocol_NFM.v


Coloured Petri net refinement Choppy, Mayero and Petrucci

This work confirms that our choices of formalisation, made in [4], are suitable. The prerequisite to
the refinements is the formalisation of a given Petri net. This formalisation is probably the most tedious
part of our work and requires a significant automation. Since the refinement issues we tackle are meant
to be integrated within a step-by-step modelling process, the refined net should be designed by the user
starting from the abstract net. Therefore, places and transitions that are in both nets should remain exactly
the same and can be identified by their name. Hence, we do not address the problem of proving that a
net is a refinement of another one, starting from arbitrary nets.

The possibility to easily integrate automation at a later stage was a key issue in the work presented
in this paper. For example, as seen in section 4, to define all the places, all the transitions and all the arcs
manually is certainly not efficient, especially if the net has more than 50 places/transitions.

We plan to solve this problem using an interface to PNML (Petri Net Markup Language, [2]). PNML
is currently being standardised within ISO/IEC 15909-2. It aims at becoming the common language for
Petri nets tools, e.g. CPN-AMI [1], CPN-Tools [6] or other tools supporting Petri nets. Such files can be
directly translated into COQ to generate the places, transitions and arcs.

We think that our method scales up rather well. Indeed, the proof is generic and does not change
with the nets considered. The only modifications are sub-typing relations and type definitions. Moreover,
when proceeding step-by-step, refinements are applied one at a time. Therefore, the nets to be considered
are only slightly different.

To complete this work, we should consider refinement as part of a modular design process. In
such a framework, a type refinement can affect several modules which could be checked separately for
refinement, and one must ensure that type refinement has been applied consistently in all modules.

Acknowledgments Implementation of this work in COQ was achieved with the help of Yibei Yu, a
trainee supervised by the authors.

References

[1] CPN-AMI: Home Page. http://www-src.lip6.fr/logiciels/mars/CPNAMI/.
[2] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post, C. Stehno, and

M. Weber. The Petri Net Markup Language: Concepts, technology and tools. In Proc. 24th Int. Conf.
Application and Theory of Petri Nets (ICATPN’2003), Eindhoven, The Netherlands, June 2003, volume 2679
of Lecture Notes in Computer Science, pages 483–505. Springer, 2003.

[3] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. ACM Comput.
Surv., 17(4):471–522, 1985.

[4] Christine Choppy, Micaela Mayero, and Laure Petrucci. Experimenting Formal Proofs of Petri Nets Refine-
ments. Electr. Notes Theor. Comput. Sci., 214:231–254, 2008.

[5] The Coq proof assistant. http://coq.inria.fr.
[6] cpntools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.
[7] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets, Modelling and Validation of Concurrent Systems.

Monograph to be published by Springer Verlag, 2008.
[8] Charles Lakos. Composing abstractions of coloured Petri nets. In Nielsen, M. and Simpson, D., editors,

Lecture Notes in Computer Science: 21st International Conference on Application and Theory of Petri Nets
(ICATPN 2000), Aarhus, Denmark, June 2000, volume 1825, pages 323–345. Springer-Verlag, 2000.

[9] Charles Lakos and Glen Lewis. Incremental state space construction of coloured Petri nets. In Proc. 22nd
Int. Conf. Application and Theory of Petri Nets (ICATPN’01), Newcastle, UK, June 2001, volume 2075 of
Lecture Notes in Computer Science, pages 263–282. Springer, 2001.

9

http://www-src.lip6.fr/logiciels/mars/CPNAMI/
http://coq.inria.fr
http://wiki.daimi.au.dk/cpntools/cpntools.wiki


Coloured Petri net refinement Choppy, Mayero and Petrucci

[10] Glen Lewis. Incremental specification and analysis in the context of coloured Petri nets. PhD thesis, Univer-
sity of Hobart, Tasmania, 2002.

[11] Barbara Liskov and Jeannette M. Wing. A new definition of the subtype relation. In ECOOP ’93: Proceed-
ings of the 7th European Conference on Object-Oriented Programming, pages 118–141, London, UK, 1993.
Springer-Verlag.

[12] Fernando Orejas, Marisa Navarro, and Ana Sanchez. Algebraic implementation of abstract data types: a
survey of concepts and new compositionality results. Mathematical Structures in Computer Science, pages
33–67, 1996.

10


	Introduction
	Coloured Petri nets definition
	Definitions of refinements
	Case study: the simple protocol
	Description
	Formalisation and proof in Coq

	Conclusion

