
Free-cut elimination in linear logic and an
application to a feasible arithmetic

Anupam Das Patrick Baillot

LIP, Université de Lyon, CNRS, ENS de Lyon, INRIA, Université Claude-Bernard Lyon 1, Milyon

6th October, 2016

Bologne
ELICA meeting

1 / 20

Outline

Introduction

Normal forms in first-order linear logic

An arithmetic in linear logic

Bellantoni-Cook programs and the WFM for IΣN+

1

Conclusions

2 / 20

Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,

‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

1 Theories whose definable functions = given complexity class.

2 Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.

3 / 20

Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,

‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

1 Theories whose definable functions = given complexity class.

2 Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.

3 / 20

Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,

‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

1 Theories whose definable functions = given complexity class.

2 Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.

3 / 20

Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,

‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

1 Theories whose definable functions = given complexity class.

2 Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.

3 / 20

Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,

‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

1 Theories whose definable functions = given complexity class.

2 Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.

3 / 20

Provably convergent functions

Correspondence between a theory T and a class C:

T ` ∀x .∃y .A(x , y) ⇔ N |= ∀x .A(x , f(x)) for some f ∈ C

For example:

Theorem (Parsons ’68, Mints ’73, Buss ’95)

IΣ1 proves the totality of precisely the primitive recursive functions.

Parsons’ proof.

• Via a Dialectica-style functional interpretation.

• Extracted programs: higher-order variant of primitive recursive functions.

Buss’ and Mints’ proof.

• Via the witness function method.

• Extracted programs: regular primitive recursive functions of ground type.

4 / 20

Provably convergent functions

Correspondence between a theory T and a class C:

T ` ∀x .∃y .A(x , y) ⇔ N |= ∀x .A(x , f(x)) for some f ∈ C

For example:

Theorem (Parsons ’68, Mints ’73, Buss ’95)

IΣ1 proves the totality of precisely the primitive recursive functions.

Parsons’ proof.

• Via a Dialectica-style functional interpretation.

• Extracted programs: higher-order variant of primitive recursive functions.

Buss’ and Mints’ proof.

• Via the witness function method.

• Extracted programs: regular primitive recursive functions of ground type.

4 / 20

Provably convergent functions

Correspondence between a theory T and a class C:

T ` ∀x .∃y .A(x , y) ⇔ N |= ∀x .A(x , f(x)) for some f ∈ C

For example:

Theorem (Parsons ’68, Mints ’73, Buss ’95)

IΣ1 proves the totality of precisely the primitive recursive functions.

Parsons’ proof.

• Via a Dialectica-style functional interpretation.

• Extracted programs: higher-order variant of primitive recursive functions.

Buss’ and Mints’ proof.

• Via the witness function method.

• Extracted programs: regular primitive recursive functions of ground type.

4 / 20

Provably convergent functions

Correspondence between a theory T and a class C:

T ` ∀x .∃y .A(x , y) ⇔ N |= ∀x .A(x , f(x)) for some f ∈ C

For example:

Theorem (Parsons ’68, Mints ’73, Buss ’95)

IΣ1 proves the totality of precisely the primitive recursive functions.

Parsons’ proof.

• Via a Dialectica-style functional interpretation.

• Extracted programs: higher-order variant of primitive recursive functions.

Buss’ and Mints’ proof.

• Via the witness function method.

• Extracted programs: regular primitive recursive functions of ground type.

4 / 20

The witness function method (WFM)

The idea

• A formal witness predicate over N for each ‘tame’ formula.

• Arithmetic proofs functions from witnesses to witnesses:

π

Γ ` ∆

 f π :

{
witnesses

of
∧

Γ

}
→
{

witnesses
of
∨

∆

}

Crucial points

• π free-cut free: tames the complexity of formulae; no bad ∀.

• De Morgan normal form: only functions at ground type, i.e. Nk → N.

• Right-contraction: tests the witness predicate (should be decidable).

5 / 20

The witness function method (WFM)

The idea

• A formal witness predicate over N for each ‘tame’ formula.

• Arithmetic proofs functions from witnesses to witnesses:

π

Γ ` ∆

 f π :

{
witnesses

of
∧

Γ

}
→
{

witnesses
of
∨

∆

}

Crucial points

• π free-cut free: tames the complexity of formulae; no bad ∀.

• De Morgan normal form: only functions at ground type, i.e. Nk → N.

• Right-contraction: tests the witness predicate (should be decidable).

5 / 20

The witness function method (WFM)

The idea

• A formal witness predicate over N for each ‘tame’ formula.

• Arithmetic proofs functions from witnesses to witnesses:

π

Γ ` ∆

 f π :

{
witnesses

of
∧

Γ

}
→
{

witnesses
of
∨

∆

}

Crucial points

• π free-cut free: tames the complexity of formulae; no bad ∀.

• De Morgan normal form: only functions at ground type, i.e. Nk → N.

• Right-contraction: tests the witness predicate (should be decidable).

5 / 20

The witness function method (WFM)

The idea

• A formal witness predicate over N for each ‘tame’ formula.

• Arithmetic proofs functions from witnesses to witnesses:

π

Γ ` ∆

 f π :

{
witnesses

of
∧

Γ

}
→
{

witnesses
of
∨

∆

}

Crucial points

• π free-cut free: tames the complexity of formulae; no bad ∀.

• De Morgan normal form: only functions at ground type, i.e. Nk → N.

• Right-contraction: tests the witness predicate (should be decidable).

5 / 20

Context and motivation

Free-cut elimination

• Used in various forms by Gentzen, Parikh, Paris & Wilkie, Cook,
Kraj́ıcek,...

• First presented for general fragments of PA by Takeuti.

• Further generalised by Buss and others.

Witness function method

• Due to Buss and Mints.

• bounded arithmetic. Theories for NCi ,ACi ,P,PH,...

• The best method available to delineate hierarchies of classical theories.

Question
Can WFM be useful for characterising complexity classes via linear logic?

6 / 20

Context and motivation

Free-cut elimination

• Used in various forms by Gentzen, Parikh, Paris & Wilkie, Cook,
Kraj́ıcek,...

• First presented for general fragments of PA by Takeuti.

• Further generalised by Buss and others.

Witness function method

• Due to Buss and Mints.

• bounded arithmetic. Theories for NCi ,ACi ,P,PH,...

• The best method available to delineate hierarchies of classical theories.

Question
Can WFM be useful for characterising complexity classes via linear logic?

6 / 20

Context and motivation

Free-cut elimination

• Used in various forms by Gentzen, Parikh, Paris & Wilkie, Cook,
Kraj́ıcek,...

• First presented for general fragments of PA by Takeuti.

• Further generalised by Buss and others.

Witness function method

• Due to Buss and Mints.

• bounded arithmetic. Theories for NCi ,ACi ,P,PH,...

• The best method available to delineate hierarchies of classical theories.

Question
Can WFM be useful for characterising complexity classes via linear logic?

6 / 20

Outline

Introduction

Normal forms in first-order linear logic

An arithmetic in linear logic

Bellantoni-Cook programs and the WFM for IΣN+

1

Conclusions

7 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Linear logic (LL)

• LL is a substructural logic:

A` A 0 A A 0 A` B

• It distinguishes multiplicative and additive rules by separate connectives:

Γ,A ∆,B

Γ,∆,A⊗ B

Γ,A Γ,B

Γ,A&B

• Controlled access to structural rules via modalities:

!A ` !A⊗!A

(otherwise ! behaves just like � in S4)

• De Morgan duality is everywhere!

8 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Free-cut elimination in linear logic

A nonlogical rule has the following format:

{!Γ,Σi ` ∆i , ?Π}i∈I

!Γ,Σ ` ∆, ?Π

The formulae in Σ and ∆ are considered principal.

A cut step is anchored if:

• its cut-formulae are (almost) principal on both sides.

• on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

• Proof similar to usual cut-elimination arguments.

• Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.

9 / 20

Outline

Introduction

Normal forms in first-order linear logic

An arithmetic in linear logic

Bellantoni-Cook programs and the WFM for IΣN+

1

Conclusions

10 / 20

An arithmetic in linear logic

We consider an axiomatisation inspired by Bellantoni & Hofmann:

Ncntr ∀xN .(N(x)⊗ N(x))

Nε N(ε)
N0 ∀xN .N(s0x)
N1 ∀xN .N(s1x)
ε ∀xN .(ε 6= s0x ⊗ ε 6= s1x)

inj0 ∀xN , yN .(s0x = s0y (x = y)
inj1 ∀xN , yN .(s1x = s1y (x = y)
tree ∀xN .s0x 6= s1x
surj ∀xN .(x = ε⊕ ∃yN .x = s0y ⊕ ∃yN .x = s1y)

PIND

A(ε)
(!(∀x !N .(A(x)(A(s0x)))
(!(∀x !N .(A(x)(A(s1x)))
(∀x !N .A(x)

Peano’s N predicate: N(t) := “t is a natural number”.

11 / 20

Convergence

Functions are specified by equational programs. E.g.:

Φ

add(0, x) = x
add(su, x) = s(add(u, y))

mult(0, x) = 0
mult(su, x) = add(x , mult(u, x))

Convergence statement:

∀x!N .Φ(x)(∀xN , yN .N(mult(x , y))

We will consider the theory IΣN+

1 , admitting PIND only over:

E ::= N(t) | s = t | s 6= t | E ` E | E ⊗ E | ∃x .E

12 / 20

Convergence

Functions are specified by equational programs. E.g.:

Φ

add(0, x) = x
add(su, x) = s(add(u, y))

mult(0, x) = 0
mult(su, x) = add(x , mult(u, x))

Convergence statement:

∀x!N .Φ(x)(∀xN , yN .N(mult(x , y))

We will consider the theory IΣN+

1 , admitting PIND only over:

E ::= N(t) | s = t | s 6= t | E ` E | E ⊗ E | ∃x .E

12 / 20

Convergence

Functions are specified by equational programs. E.g.:

Φ

add(0, x) = x
add(su, x) = s(add(u, y))

mult(0, x) = 0
mult(su, x) = add(x , mult(u, x))

Convergence statement:

∀x!N .Φ(x)(∀xN , yN .N(mult(x , y))

We will consider the theory IΣN+

1 , admitting PIND only over:

E ::= N(t) | s = t | s 6= t | E ` E | E ⊗ E | ∃x .E

12 / 20

Outline

Introduction

Normal forms in first-order linear logic

An arithmetic in linear logic

Bellantoni-Cook programs and the WFM for IΣN+

1

Conclusions

13 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f (u; x)

Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g , h0, h1 are BC then so is f defined by:

f (ε, v; x) = g(v; x)
f (s0u, v; x) = h0(u, v; x, f (u, v; x))
f (s1u, v; x) = h1(u, v; x, f (u, v; x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook ’92)

BC programs compute just the polynomial-time functions.

14 / 20

Multiplication again. . .

add(0; x) = x
add(su; x) = s(add(u; y))

mult(0, x ;) = 0
mult(su, x ;) = add(x ; mult(u, x))

15 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Main results

Theorem
Every BC program is provably convergent in IΣN+

1 .

Proof.
Straightforward. Similar to previous arguments by Leivant, Bellantoni &
Hofmann, Cantini, taking care to respect linear considerations.

Theorem
Every function provably convergent in IΣN+

1 is polynomial-time computable.

Main proof intuitions.

Via the WFM.

• Free-cut elimination:
No ∀-formulae witness predicates of ground type, no ∀-right.
No ?-formulae no contraction-right.

• !-formulae: normal inputs for the witness functions.

• !, ?-free PIND: predicative recursion.

• Anchored cuts: safe composition of functions.

16 / 20

Example case: induction

• By deduction and invertibility, we can assume PIND occurs as:

!Γ ` A(ε), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆

!N(t), !Γ ` A(t), ?∆

• By free-cut elimination we can assume ∆ is empty.

• By inductive hypothesis suppose we have functions:

g
(
uΓ;
)

hi
(
uN(a), uΓ; xA(a)

)
• Define f by PRN:

f
(
0, uΓ;

)
:= g

(
uΓ;
)

f
(
siu

N(t), uΓ;
)

:= hi
(
uN(t), uΓ; f

(
uN(t), uΓ;

))

17 / 20

Example case: induction

• By deduction and invertibility, we can assume PIND occurs as:

!Γ ` A(ε), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆

!N(t), !Γ ` A(t), ?∆

• By free-cut elimination we can assume ∆ is empty.

• By inductive hypothesis suppose we have functions:

g
(
uΓ;
)

hi
(
uN(a), uΓ; xA(a)

)
• Define f by PRN:

f
(
0, uΓ;

)
:= g

(
uΓ;
)

f
(
siu

N(t), uΓ;
)

:= hi
(
uN(t), uΓ; f

(
uN(t), uΓ;

))

17 / 20

Example case: induction

• By deduction and invertibility, we can assume PIND occurs as:

!Γ ` A(ε), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆

!N(t), !Γ ` A(t), ?∆

• By free-cut elimination we can assume ∆ is empty.

• By inductive hypothesis suppose we have functions:

g
(
uΓ;
)

hi
(
uN(a), uΓ; xA(a)

)
• Define f by PRN:

f
(
0, uΓ;

)
:= g

(
uΓ;
)

f
(
siu

N(t), uΓ;
)

:= hi
(
uN(t), uΓ; f

(
uN(t), uΓ;

))

17 / 20

Example case: induction

• By deduction and invertibility, we can assume PIND occurs as:

!Γ ` A(ε), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆

!N(t), !Γ ` A(t), ?∆

• By free-cut elimination we can assume ∆ is empty.

• By inductive hypothesis suppose we have functions:

g
(
uΓ;
)

hi
(
uN(a), uΓ; xA(a)

)

• Define f by PRN:

f
(
0, uΓ;

)
:= g

(
uΓ;
)

f
(
siu

N(t), uΓ;
)

:= hi
(
uN(t), uΓ; f

(
uN(t), uΓ;

))

17 / 20

Example case: induction

• By deduction and invertibility, we can assume PIND occurs as:

!Γ ` A(ε), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆ !N(a), !Γ,A(a) ` A(s0a), ?∆

!N(t), !Γ ` A(t), ?∆

• By free-cut elimination we can assume ∆ is empty.

• By inductive hypothesis suppose we have functions:

g
(
uΓ;
)

hi
(
uN(a), uΓ; xA(a)

)
• Define f by PRN:

f
(
0, uΓ;

)
:= g

(
uΓ;
)

f
(
siu

N(t), uΓ;
)

:= hi
(
uN(t), uΓ; f

(
uN(t), uΓ;

))

17 / 20

Outline

Introduction

Normal forms in first-order linear logic

An arithmetic in linear logic

Bellantoni-Cook programs and the WFM for IΣN+

1

Conclusions

18 / 20

Conclusions

Summary

• General form of free-cut elimination for first-order linear logic.

• Induces useful normal forms for arithmetic proofs.

• Soundness and completeness of an arithmetic for BC-programs.

Further work
• Bounded arithmetic style approach.

Finer use of the witness predicate: evaluation in polynomial-time.
Relationships to BC-versions of equational theory PV ?

• Characterise polynomial hierarchy via minimisation principles.
Functions conditional on Σp

i tests.

Relies on evaluation of witness predicate in ∆p
i .

19 / 20

Conclusions

Summary

• General form of free-cut elimination for first-order linear logic.

• Induces useful normal forms for arithmetic proofs.

• Soundness and completeness of an arithmetic for BC-programs.

Further work
• Bounded arithmetic style approach.

Finer use of the witness predicate: evaluation in polynomial-time.
Relationships to BC-versions of equational theory PV ?

• Characterise polynomial hierarchy via minimisation principles.
Functions conditional on Σp

i tests.

Relies on evaluation of witness predicate in ∆p
i .

19 / 20

Conclusions

Summary

• General form of free-cut elimination for first-order linear logic.

• Induces useful normal forms for arithmetic proofs.

• Soundness and completeness of an arithmetic for BC-programs.

Further work
• Bounded arithmetic style approach.

Finer use of the witness predicate: evaluation in polynomial-time.
Relationships to BC-versions of equational theory PV ?

• Characterise polynomial hierarchy via minimisation principles.
Functions conditional on Σp

i tests.

Relies on evaluation of witness predicate in ∆p
i .

19 / 20

Thank you.

20 / 20

	Introduction
	Normal forms in first-order linear logic
	An arithmetic in linear logic
	Bellantoni-Cook programs and the WFM for IN+1
	Conclusions

