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Implicit computational complexity (ICC)

In a nutshell:

ICC studies correspondences between features of logic and complexity classes

Proof-theoretic approach

For a logic or theory,
‘representable’ functions = given complexity class

where representability can mean definability, typability etc.

We distinguish the following two methodologies:

@ Theories whose definable functions = given complexity class.

® Logics that type terms with normalisation complexity of a given class.

This work is about the first methodology.
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For example:

Theorem (Parsons '68, Mints '73, Buss '95)

IZ1 proves the totality of precisely the primitive recursive functions.

Parsons’ proof.

e Via a Dialectica-style functional interpretation.

o Extracted programs: higher-order variant of primitive recursive functions.

(I
Buss' and Mints' proof.

e Via the witness function method.

o Extracted programs: regular primitive recursive functions of ground type.

O
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The witness function method (WFM)

The idea
o A formal witness predicate over N for each ‘tame’ formula.

o Arithmetic proofs ~» functions from witnesses to witnesses:
- T witnesses N witnesses
’ of AT of \/ A
r-=A

Crucial points

o 7 free-cut free: tames the complexity of formulae; no bad V.

e De Morgan normal form: only functions at ground type, i.e. N¥ — N.

e Right-contraction: tests the witness predicate (should be decidable).
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Context and motivation

Free-cut elimination

e Used in various forms by Gentzen, Parikh, Paris & Wilkie, Cook,
Krajicek,...

o First presented for general fragments of PA by Takeuti.

o Further generalised by Buss and others.

Witness function method
e Due to Buss and Mints.
e ~~ bounded arithmetic. Theories for NC;, AC;, P, PH,...

e The best method available to delineate hierarchies of classical theories.

Question
Can WFM be useful for characterising complexity classes via linear logic?
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Linear logic (LL)

LL is a substructural logic:

ABAFA AFARB

rA AB T,ATB
AA®B r,A&B

Controlled access to structural rules via modalities:

1A FHI1ARIA

(otherwise ! behaves just like O in 54)

De Morgan duality is everywhere!

It distinguishes multiplicative and additive rules by separate connectives:
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Free-cut elimination in linear logic

A nonlogical rule has the following format:

(N5 F A, MY,
T, A, M

The formulae in £ and A are considered principal.

A cut step is anchored if:
e its cut-formulae are (almost) principal on both sides.

e on at least one side it is (almost) principal for a nonlogical step.

Theorem
Any linear logic proof can be transformed into one where all cuts are anchored.

e Proof similar to usual cut-elimination arguments.

e Special cases due to Lincoln et al., Baelde & Miller,...

Corollary

Every theorem has a proof where all formulae are subformulae of the conclusion
or a principal formula of a nonlogical step.
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An arithmetic in linear logic

We consider an axiomatisation inspired by Bellantoni & Hofmann:

Ncntr

N
No
Ny
€
injo
injy
tree
surj

PIND

VXN.(N(X) ® N(x))

N(e)

vx" . N(sox)

VxN.N(s1x)

VxN (e # sox ® € # s1x)

VxN yN (sox = spy —o x = y)
VxV yN (six = s1y —o x = y)

xN.sox # s1x

VxV(x=e®Iy".x = soy @ Iy x = s1y)

Ae)
. !(Vx:N.(A(X) —o A(s0x)))
—o 1(Vx™M (A(x) — A(s1x)))
—o VX!N.A(X)

Peano’s N predicate: N(t) := “t is a natural number”.
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Convergence

Functions are specified by equational programs. E.g.:

add(0,x) = x
add(su,x) = s(add(u,y))
[0)
mult(0,x) = O
mult(su,x) = add(x,mult(u,x))

Convergence statement:

vx'M.d(x) — Vx", yV . N(mult(x, y))

We will consider the theory I):{W, admitting PIND only over:

E == N{t)|s=t|s#t|ERE|EQRE|3IE

o
n
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Bellantoni-Cook characterisation of polytime functions

Arguments of a function are separated into normal and safe inputs:

f(u; x)
Normal: left of ; so u above. Safe: right of ; so x above.

Predicative recursion on notation
If g, ho, h1 are BC then so is f defined by:

f(e,v;x) = g(v;x)
f(sou,v;x) = ho(u,v;x, f(u,v;x))
f(siu,v;x) = hi(u,v;x, f(u,v;x))

Safe composition
Can compose functions as long as safe inputs are hereditarily safe.

(Also an adequate stock of initial functions.)

Theorem (Bellantoni & Cook '92)
BC programs compute just the polynomial-time functions.



Multiplication again. . .

add(0;x) = x
add(su; x) s(add(u; y))

mult(0, x;) 0
mult(su,x;) = add(x;mult(u,x))
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Hofmann, Cantini, taking care to respect linear considerations. O
Theorem

Every function provably convergent in | Z{w is polynomial-time computable.

Main proof intuitions.
Via the WFM.
e Free-cut elimination:

m No V-formulae ~» witness predicates of ground type, no V-right.
m No ?-formulae ~» no contraction-right.

o I-formulae: normal inputs for the witness functions.
o | 7-free PIND: predicative recursion.

e Anchored cuts: safe composition of functions.
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Example case: induction

By deduction and invertibility, we can assume

IT - A(e),?2A  IN(a),!T, A(a) - A(s0a), ?A

PIND occurs as:
IN(a),!T, A(a) - A(soa), ?A

IN(t),IT - A(t), ?A

g (u")
h; (uN(a), u XA(a))

Define f by PRN:

-
—~
>
<
el
~—
I

g (u")
hi (uN(t u’

-
~
u
<

=2
O
<
- h
~—
|

By free-cut elimination we can assume A is empty.

By inductive hypothesis suppose we have functions:

qe)
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Conclusions

Summary
o General form of free-cut elimination for first-order linear logic.
e Induces useful normal forms for arithmetic proofs.

e Soundness and completeness of an arithmetic for BC-programs.

Further work
e Bounded arithmetic style approach.

m Finer use of the witness predicate: evaluation in polynomial-time.

m Relationships to BC-versions of equational theory PV?

o Characterise polynomial hierarchy via minimisation principles.
m Functions conditional on X7 tests.
m Relies on evaluation of witness predicate in Af.
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Thank you.
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