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Abstract

It is well-known that many environment-based abstract machines
can be seen as strategies in lambda calculi with explicit substi-
tutions (ES). Recently, graphical syntaxes and linear logic led
to the linear substitution calculus (LSC), a new approach to ES
that is halfway between big-step calculi and traditional calculi
with ES. This paper studies the relationship between the LSC
and environment-based abstract machines. While traditional cal-
culi with ES simulate abstract machines, the LSC rather distills
them: some transitions are simulated while others vanish, as they
map to a notion of structural congruence. The distillation process
unveils that abstract machines in fact implement weak linear head
reduction, a notion of evaluation having a central role in the theory
of linear logic. We show that such a pattern applies uniformly in
call-by-name, call-by-value, and call-by-need, catching many ma-
chines in the literature. We start by distilling the KAM, the CEK,
and the ZINC, and then provide simplified versions of the SECD,
the lazy KAM, and Sestoft’s machine. Along the way we also in-
troduce some new machines with global environments. Moreover,
we show that distillation preserves the time complexity of the ex-
ecutions, i.e. the LSC is a complexity-preserving abstraction of
abstract machines.

Categories and Subject Descriptors CR-number [subcategory):
third-level

General Terms terml, term2

Keywords  Abstract machines, explicit substitutions, linear logic.

1. Introduction

In the theory of higher-order programming languages, abstract ma-
chines and explicit substitutions are two tools used to model the
execution of programs on real machines while omitting many de-
tails of the actual implementation. Abstract machines can usually
be seen as evaluation strategies in calculi of explicit substitutions
(see at least [12, 15, 25, 31]), that can in turn be interpreted as
small-step cut-elimination strategies in sequent calculi [10].
Another tool providing a fine analysis of higher-order evalu-
ation is linear logic, especially via the new perspectives on cut-
elimination provided by proof nets, its graphical syntax. Explicit
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substitutions (ES) have been connected to linear logic by Kesner
and co-authors in a sequence of works [21, 27, 28], culminating
in the linear substitution calculus (LSC), a new formalism with
ES behaviorally isomorphic to proof nets (introduced in [4], de-
veloped in [1-3, 5, 6], and bearing similarities with calculi by De
Bruijn [20], Nederpelt [37], and Milner [36]). Since linear logic can
model all evaluation schemes (call-by-name/value/need) [34], the
LSC can express them modularly, by minor variations on rewriting
rules and evaluation contexts. In this paper we revisit the relation-
ship between environment-based abstract machines and ES. Tradi-
tionally, ES simulate machines. The LSC, instead, distills them.

Traditional vs Contextual ES. Traditional calculi with ES (see
[26] for a survey) implement S-reduction (Ax.t)u —g t{z<u}
introducing an annotation (the explicit substitution [z+u]),

(Az.t)u —p  tlzeu]
and percolating it through the term structure,
(tw)[z<u] —a tlreu]w[zeu]
Az.t)[y—u] —x Az.t[y<u]
until they reach variable occurrences on which they finally substi-
tute or get garbage collected,

(C))

z[reu] Svar u
ylreu] - oy
The LSC, instead, is based on a contextual view of evaluation
and substitution, also known as at a distance. The idea is that one
can get rid of the rules percolating through the term structure —
i.e. @ and A — by introducing contexts C' (i.e. terms with a hole
(-)) and generalizing the base cases, obtaining just two rules, linear
substitution (1s) and garbage collection (gc):

Clo)[zcu] = Cu)

tlreu] —g t ifx ¢ £v(t)

Dually, the rule creating substitutions (B) is generalized to act up
to a context of substitutions [...<...] := [z1<w1]... [zrewy]
obtaining rule dB (B at a distance):

Azt)[...«... Ju —a treu][......]

Logical Perspective on the LSC. From a sequent calculus point
of view, rules @ and ), corresponding to commutative cut-
elimination cases, are removed and integrated — via the use of
contexts — directly in the definition of the principal cases B, var
and #, obtaining the contextual rules dB, 1s, and gc. This is the
term analogous of the removal of commutative cases provided by
proof nets. From a linear logic point of view, —4p can be identi-
fied with the multiplicative cut-elimination case —y, while —15 and
—gc correspond to exponential cut-elimination. Actually, garbage
collection has a special status, as it can always be postponed. We
will then identify exponential cut-elimination —. with linear sub-
stitution —1¢ alone.



The LSC has a simple meta-theory, and is halfway between
traditional calculi with ES — with whom it shares the small-step
dynamics — and A-calculus — of which it retains most of the
simplicity.

Distilling Abstract Machines. Abstract machines implement the
traditional approach to ES, by

1. Weak Evaluation: forbidding reduction under abstraction (no
rule — in (1)),

2. Evaluation Strategy: looking for redexes according to some
notion of weak evaluation context F,

3. Context Representation: using environments e (aka lists of sub-
stitutions) and stacks 7 (lists of terms) to keep track of the cur-
rent evaluation context.

The LSC distills — i.e. factorizes — abstract machines. The
idea is that one can represent the strategy of an abstract machine by
directly plugging the evaluation context in the contextual substitu-
tion/exponential rule, obtaining:

E(x)[z<u] Z. E(u)

and factoring out part of the machine that just looks for the next

redex to reduce. By defining — as the closure of Ee and —p
by evaluation contexts F, one gets a clean representation of the
machine strategy.

The mismatch between the two approaches is in rule —»a, that
contextually — by nature — cannot be captured. In order to get
out of this cul-de-sac, the very idea of simulation of an abstract
machine must be refined to that of distillation.

The crucial observation is that the equivalence = induced by
—a@ U —g has the same special status of —,, i.e. it can be
postponed without affecting reduction lengths. More abstractly, =
is a strong bisimulation with respect to —, i.e. it verifies (note one
step to one step, and viceversa)

t——Oor

U ——0¢q

Now, = can be considered as a structural equivalence on the lan-
guage. Indeed, the strong bisimulation property states that the trans-
formation expressed by = is irrelevant with respect to —o, in par-
ticular =-equivalent terms have —-evaluations of the same length
ending in =-equivalent terms (and this holds even locally).
Abstract machines then are distilled: the logically relevant part
of the substitution process is retained by — while both the search of
the redex —a and garbage collection —. are isolated into the equiv-
alence =. Essentially, — captures principal cases of cut-elimination
while = encapsulate the commutative ones (plus garbage collection,
corresponding to principal cut-elimination involving weakenings).

Case Studies. We will analyze along these lines many abstract
machines. Some are standard (KAM [29], CEK [23], ZINC [32]),
some are new (MAM, WAM), and of others we provide simpler
versions (SECD [30], Lazy KAM [15, 19], Sestoft’s [39]). The
previous explanation is a sketch of the distillation of the KAM, but
the approach applies mutatis mutandis to all the other machines,
encompassing most realizations of call-by-name, call-by-value, and
call-by need evaluation. The main contribution of the paper is
indeed a modular contextual theory of abstract machines. We start
by distilling some standard cases, and then rationally reconstruct
and simplify non-trivial machines as the SECD, the lazy KAM,
and Sestoft’s abstract machine for call-by-need (deemed SAM), by
enlightening their mechanisms as different encoding of evaluation
contexts, modularly represented in the LSC.

Call-by-Need. Along the way, we show that the contextual (or at
a distance) approach of the LSC naturally leads to simple machines
with just one global environment, as the newly introduced MAM
(M for Milner). Such a feature is then showed to be a key ingredient
of call-by-need machines, by using it to introduce a new and simple
call-by-need machine, the WAM (W for Wadsworth), and then
showing how to obtain (simplifications of) the Lazy KAM and the
SAM by simple tweaks.

Distillation is Complexity-Preserving. It is natural to wonder
what is lost in the distillation process. What is the asymptotic
impact of distilling machine executions into —? Does it affect in
any way the complexity of evaluation? We will show that nothing
is lost, as machine executions are only linearly longer than —.
More precisely, they are bilinear, i.e. they are linear in 1) the
length of —, and in 2) the size |¢| of the starting term ¢. In other
words, the search of redexes and garbage collection can be safely
ignored in quantitative (time) analyses, i.e. the LSC and — provide
a complexity-preserving abstraction of abstract machines. While in
call-by-name and call-by-value such an analysis follows from an
easy local property of machine executions, the call-by-need case is
subtler, as such a local property does not hold and bilinearity can
be established only via a global analysis.

Linear Logic and Weak Linear Head Reduction. Beyond the
contextual view, our work also unveils a deep connection between
abstract machines and linear logic. The strategies modularly en-
coding the various machines (generically noted — and paramet-
ric in a fixed notion of evaluation contexts) are in fact call-by-
name/value/need versions of weak linear head reduction (WLHR),
a fundamental notion in the theory of linear logic [2, 14, 17,22, 35].
This insight —- due to Danos and Regnier for the KAM [16] — is
not ours, but we develop it in a simpler and tighter way, modularly
lifting it to many other abstract machines.

Call-by-Name. The call-by-name case (catching the KAM and
the new MAM) is in fact special, as our distillation theorem has
three immediate corollaries, following from results about WLHR
in the literature:

1. Invariance: it implies that the length of a KAM/MAM execu-
tion is an an invariant time cost model (i.e. polynomially related
to, say, Turing machines, in both directions), given that in [3]
the same is shown for WLHR.

2. Evaluation as Communication: we implicitly establish a link
between the KAM/MAM and the m-calculus, given that the
evaluation of a term via WLHR is isomorphic to evaluation via
Milner’s encoding in the 7-calculus [2].

3. Plotkin’s Approach: our study complements the recent [6],
where it is shown that WLHR is a standard strategy of the LSC.
The two works together provide the lifting to explicit substi-
tutions of Plotkin’s approach of relating a machine (the SECD
machine in that case, the KAM/MAM in ours) and a calculus
(the call-by-value A-calculus and the LSC, respectively) via a
standardization theorem and a standard strategy [38].

Related Work. Beyond the already cited works, Danvy and coau-
thors have studied abstract machines in a number of works and
ways (see at least [7, 8, 11, 12, 19]). What here we call commutative
transitions essentially corresponds to what Danvy and Nielsen call
decompose phase in [18]. The call-by-need calculus we use—that
is a contextual re-formulation of Maraist, Odersky, and Wadler’s
calculus [33]—is a novelty of this paper. It is simpler than both Ar-
iola and Felleisen’s [9] and Maraist, Odersky, and Wadler’s calculi
because it does not need any re-association axioms. Morally, it is a
version with let-bindings (avatars of ES) of Chang and Felleisen’s
calculus [13]. A similar calculus is used by Danvy and Zerny in



[19], where, similarly to us, they explore various call-by-need ma-
chines in relation to various calculi. The differences are that 1) they
focus on the contrast between store-based and storeless machines,
2) they do not stress the value of contexts as we do here, 3) they do
not connect their study to linear logic. Another call-by-need ma-
chine, with whom we do not deal with, appears in [24].

2. Preliminaries on the Linear Substitution
Calculus

Terms and Contexts. The language of the weak linear substitution
calculus (WLSC) is generated by the following grammar:

tu,w,r,q,p = x| v|tu]|t[zeu] v u= Azt

The constructor t[z+wu] is called an explicit substitution (of u for
z in t). The usual (implicit) substitution is instead denoted by
t{z<u}. Both Az.t and t[z+wu] bind z in ¢, with the usual notion
of a-equivalence. Values, noted v, do not include variables: this is
a standard choice in the study of abstract machines.

Contexts are terms with one occurrence of the hole (-), an
additional constant. We will use many different contexts. The most
general ones will be weak contexts W (i.e. not under abstractions),
which are defined by:

WW’ = () [Wu [tW | W]zeu] | tlzeW]

The plugging W (t) (resp. W{(W')) of a term t (resp. context
W’) in a context W is defined as (t) := t (resp. (W') = W'),
(WY W'y == W(W')t (resp. (Wu){W') := W(W')u), and so
on. The set of free variables of a term ¢ (or context W) is denoted
by £v(t) (resp. £v(W)). Plugging in a context may capture free
variables (replacing holes on the left of substitutions). These no-
tions will be silently extended to all the contexts used in the paper.

Rewriting Rules. On the above terms, one may define several
variants of the LSC by considering two elementary rewriting rules,
distance-f3 (dB) and linear substitution (1s), each one coming in
two variants, call-by-name and call-by-value (the latter variants
being abbreviated by dBv and 1sv), and pairing them in different
ways and with respect to different evaluation contexts.

The rewriting rules rely in multiple ways on contexts. We start
by defining substitution contexts, generated by

L a= ()| Lloet].
A term of the form L(v) is an answer. Given a family of contexts

C, the two variants of the elementary rewriting rules, also called
root rules, are defined as follows:

Ldzt)u e L{t[zu])
LAzt)L'(v) —av  L{t[z<L'(v)])
Clz)[zeu] ~1s  Clu)[z—u]

Clo)z=L{v)]  P1ee L(C{v)[zv])

In the linear substitution rules, we assume that z € £v(C(z)),
i.e., the context C' does not capture the variable x, and we also
silently work modulo a-equivalence to avoid variable capture in

.. . c e}
the rewriting rules. Moreover, we use the notations —1s and —1gy
to specify the family of contexts used by the rules, with C' being
the meta-variable ranging over such contexts.

All of the above rules are at a distance (or contextual) because
their definition involves contexts. Distance-( and linear substitu-
tion correspond, respectively, to the so-called multiplicative and
exponential rules for cut-elimination in proof nets. The presence
of contexts is how locality on proof nets is reflected on terms.

A linear substitution calculus is defined by a choice of root
rules, i.e., one of dB/dBv and one of 1s/1sv, and a family of eval-
uation contexts. The chosen distance-S (resp. linear substitution)
root rule is generically denoted by . (resp. +.). If E ranges over

a fixed notion of evaluation context, the context-closures of the
root rules are denoted by —op:= E(~y) and —e:= E(—.), where
m (resp. e) stays for multiplicative (exponential). The rewriting re-
lation defining the calculus is then —o:=—op U —o,.

Calculi. We consider four calculi, noted Name, Value'®,
Value™, and Need, and defined in the left half of Tab. 1. They
correspond to four standard evaluation strategies for functional lan-
guages. We are actually slightly abusing the terminology, because
— as we will show — they are deterministic calculi and thus should
be considered as strategies. Our abuse is motivated by the fact that
they are not strategies in the same calculus.

The evaluation contexts for Name are called weak head contexts
and implement a strategy known as weak linear head reduction.
The original presentation of this strategy does not use explicit
substitutions [16, 35]. The presentation in use here has already
appeared in [2, 6] (see also [1, 3]) as the weak head strategy of the
linear substitution calculus (which is obtained by considering all
contexts as evaluation contexts), and it avoids many technicalities
of the original one. In particular, its relationship with the KAM is
extremely natural, as we will show.

For call-by-value calculi, left-to-right (Value™) and right-to-
left (Value™) refer to the evaluation order of applications, i.e. they
correspond to function body first and argument first, respectively.
The two calculi we consider here can be seen as strategies of a
small-step variant of the value substitution calculus, the (big-step)
call-by-value calculus at a distance introduced and studied in [5].

The call-by-need calculus Need is a novelty of this paper, and
can be seen either as a version at a distance of the calculi of [9, 33]
or as a version with explicit substitution of the one in [13]. It
fully exploits the fact that the two variants of the root rules may
be combined: the [S-rule is call-by-name, which reflects the fact
that, operationally, the strategy is by name, but substitution is call-
by-value, which forces arguments to be evaluated before being
substituted, reflecting the by need content of the strategy. Note that
its evaluation contexts extends the weak head contexts for call-by-
name with a clause (N'(x) [z« N]) turning them into hereditarily
weak head contexts. This new clause is how sharing is implemented
by the reduction strategy. The general (non-deterministic) calculus
is obtained by closing the root rules by all contexts, but its study
is omitted. What we deal with here can be thought as its standard
strategy (stopping on a sort of weak head normal form).

As mentioned above, an essential property of all these four
calculi is that they are deterministic, because they implement a
reduction strategy.

Proposition 2.1 (Determinism). The reduction relations of the four
calculi of Tab. 1 are deterministic: in each calculus, if E1, E2 are
evaluation contexts and if r1,r2 are redexes (i.e., terms matching
the left hand side of the root rules defining the calculus), E1{(r1) =
Ex(ro) implies E1 = Ea and m1 = 12, so that there is at most one
way to reduce a term.

Proof. See Sect. A in the appendix (page 13). O

Structural equivalence. Another common feature of the four
calculi is that they come with a notion of structural equivalence,
denoted by =. Consider Fig. 1. For call-by-name and call-by-value
calculi, = is defined as the smallest equivalence relation containing
the closure by weak contexts of = U =gc U Zqup U Za@ U Zcom
u =[] where =, is a-equivalence. Call-by-need evaluates inside
some substitutions (but not any substitution) and thus axioms as
=qup and =@ are too strong. Therefore, the structural equivalence
for call-by-need is the one generated by =a; U =com U =[]

Structural equivalence represents the fact that certain manipula-
tions on explicit substitutions are computationally irrelevant, in the



Calculus | Evaluation contexts Pn | e —°n —e

Name H == ()| Ht| H[z+t] 4B 'Els H{~as) H(£15>
Value™ |V u= ()| Vit | L{v)V | V][zet] rasy | orar | V(mas) | V(01s)
Value®™ | §:= () | SL{v) | £S | S[zt] rany | e | S(vas) | S(51s)
Need N = () | Nt | N[z<t] | N'{@)[zN] | e | S1e0 | Nias) | N{S1s)

Table 1. The four linear substitution calculi.

tlzeu] =40 ¢ ifx ¢ fv(t)
Hoeullyew] zem fyowllzeu] ifys tv(u)
tlecullycw] =1 trculycw]] ifyfiv(?)

Hocu]  Zauwp 1ty [zou][ycu]
(tw)[z<u] =e  tr<u]w[z<u] '
(tw)[z<u] =ar tzculw ifx ¢ fv(w)

Figure 1. Axioms for structural equivalences. In =g,, t[,], denotes a term obtained from ¢ by renaming some (possibly none) occurrences

of x as y.

sense that they yield behaviorally equivalent terms. Technically, it
is a strong bisimulation:

Proposition 2.2 (= is a Strong Bisimulation). Let —oy, —. and =
be the reduction relations and the structural equivalence relation
of any of the calculi of Tab. 1, and let x € {m,e}. Then, t = u and
t —ox t' implies that there exists u' such that u —oy v’ and t' = u'.

Proof. See Sect. B of the appendix (page 14). O

The essential property of strong bisimulations is that they can
be postponed. In fact, it is immediate to prove the following, which
holds for all four calculi:

Lemma 2.3 (= Postponement). If ¢ (—on U — U=)" u then
t (—onw U —e)* = u and the number of —oy, and —. steps in the
two reduction sequences is exactly the same.

In the simulation theorems for machines with a global environ-
ment (see Sect. 7.1 and Sect. 8) we will also use the following com-
mutation property between substitutions and evaluation contexts
via the structural equivalence of every evaluation scheme, proved
by an easy induction on the actual definition of evaluation contexts.

Lemma 2.4 (ES Commute with Evaluation Contexts via =). For
every evaluation scheme let C' denote an evaluation context s.t.
x ¢ £v(C) and = be its structural equivalence. Then C(t)[x+u] =
C(t[z<u]l).

3. Preliminaries on Abstract Machines.

Codes. All the abstract machines we will consider execute pure
A-terms. In our syntax, these are nothing but terms without ex-
plicit substitutions. Moreover, while for calculi we work implic-
itly modulo «, for machines we will not consider terms up to «, as
the handling of a-equivalence characterizes different approaches to
abstract machines. To stress these facts, we use the metavariables
t,w,w,T for pure A-terms (not up to «) and ¥ for pure values.

States. A machine state s will have various components, of
which the first will always be the code, i.e. a pure A-term t. The
others (environment, stack, dump) are all considered as lists, whose
constructors are the empty list € and the concatenation operator ::. A
state s of a machine is initial if its code t is closed (i.e., £v(t) = @)
and all other components are empty. An execution p is a sequence
of transitions of the machine so - s from an initial state so. In
that case, we say that s is a reachable state, and if £ is the code of
so then t is the initial code of s.

Invariants. For every machine our study will rely on a lemma
about some dynamic invariants, i.e. some properties of the reach-

able states that are stable by executions. The lemma is always
proved by a straightforward induction on the length of the execu-
tion and the proof is omitted.

Environments and Closures. There will be two types of ma-
chines, those with many local environments and those with just one
global environment. Machines with local environments are based
on the mutually recursive definition of closure (ranged over by c)
and environment (e):

c u= (te) e u= e]|[zec]ue

Global environments are defined by E ::= € | [z+t] :: E, and global
environment machines will have just one global closure (%, F).

Well-Named and Closed Closures. The explicit treatment of a-
equivalence, is based on particular representants of a-classes de-
fined via the notion of support. The support A of codes, environ-
ments, and closures is defined by:

* A(t) is the multiset of its bound names (e.g.
A(Ax. Ay Az.(zx))
= [z, z,y).

* A(e) is the multiset of names captured by e (for exam-
ple A([z«c1][y<c2][z<cs]) = [x,x,y]), and similarly for
A(E).

* A(t,e) = A(t) + A(e) and A(L, E) :== A(t) + A(E).

A code/environment/closure is well-named if its support is a set
(i.e. a multiset with no repetitions). Moreover, a closure (t,e) (resp.
(t, E)) is closed if £v(t) ¢ A(e) (resp. £v(t) € A(E)).

4. Distilleries

This section presents an abstract, high-level view of the relationship
between abstract machines and linear substitution calculi, via the
notion of distillery.

Definition 4.1. A distillery D = (M, C, =, - ) is given by:

1. An abstract machine V, given by

(a) a deterministic labeled transition system — on states s;

(b) a distinguished class of states called initials (in bijection
with closed A-terms, and from which applying — one ob-
tains the reachable states);

(c) a partition of its labels as:

* several commutative transitions, collectively noted —.;
* two principal transitions, denoted by —,, and —. (for
multiplicative and exponential);



2. a linear substitution calculus C given by a pair (—on, —¢) of
rewriting relations on terms with ES;
3. a structural equivalence = on terms s.t. it is a strong bisimula-
tion with respect to —op and —os;
4. adistillation -, i.e. a decoding function from states to terms, s.t.
on reachable states:
» Commutative: s —. s" implies s
* Multiplicative: s =, s’ implies s
* Exponential: s —. s’ implies s —oo=

_

=s.
!

—“n=S5;

S
S

Given a distillery, the simulation theorem holds abstractly. Let
|p| (resp. |d]), |p|m (resp. |d|m), |ole (resp. |d|c), and |p|, denote the
number of unspecified, multiplicative, exponential, and principal
steps in an execution (resp. derivation).

Theorem 4.2 (Simulation). Let D be a distillery. Then for every
execution p : s —* s’ there is a derivation d : s —*= §' s.t.
ol = [dlm, ple = |d|e, and |pl, = |d].

Proof. By induction on |p| and by the properties of the decoding,
it follows that there is a derivation e : s(—=)*s’ s.t. the number
|plp = |e|. The witness d for the statement is obtained by applying
the postponement of strong bisimulations (Lemma 2.3) to e. O

Reflection. Given a distillery, one would also expect that reduc-
tion in the calculus is reflected in the machine. This result in fact
requires two additional abstract properties.

Definition 4.3 (Reflective Distillery). A distillery is reflective
when:

Termination: —. terminates (on reachable states); hence, by de-
terminism, every state s has a unique commutative normal form
nf.(s);

Progress: if s is reachable, nf.(s) = sand s —g t withx € {m, e},
then there exists s’ such that s -« s, i.e., s is not final.

Then, we may prove the following reflection of steps in full
generality:

Proposition 4.4 (Reflection). Let D be a reflective distillery, s be a
reachable state, and x € {m,e}. Then, s —x u implies that there
exists a state s’ s.t. nf.(s) —x s’ and 8" = u.

In other words, every rewriting step on the calculus can be also
performed on the machine, up to commutative transitions.

Proof. The proof is by induction on the number n of transitions
leading from s to nf.(s).

* Base case n = 0: by the progress property, we have s —,s s’
for some state s’ and x" € {m,e}. By Theorem 4.2, we have
5 —op u' = s’ and we may conclude because x’ = x and v’ = u
by determinisim of the calculus (Proposition 2.1).

* Inductive case n > 0: by hypothesis, we have s —. si. By The-
orem 4.2, s = s1. The hypothesis and the strong bisimulation
property (Proposition 2.2) then give us s1 —x u1 = u. But the
induction hypothesis holds for s1, giving us a state s” such that
nf.(s1) —»x s’ and s’ = u1 = u. We may now conclude because
nf.(s) =nf.(s1). O

The reflection can then be extended to a reverse simulation.

Corollary 4.5 (Reverse Simulation). Let D be a reflective distillery
and s an initial state. Given a derivation d : s —* t there is an
execution p : s »* ' s.it. t = 8" and |p|lm = |dm, |ple = |dl, and
lplp = |d].

Proof. By induction on the length of d, using Proposition 4.4. [

In the following sections we shall introduce abstract machines
and distillations for which we will prove that they form reflective
distilleries with respect to the calculi of Sect. 2. For each machine
we will prove 1) that the decoding is in fact a distillation, and 2) the
progress property. We will instead assume the termination property,
whose proof is delayed to the quantitative study of the second part
of the paper, where we will actually prove stronger results, giving
explicit bounds.

5. Call-by-Name: the KAM

The Krivine Abstract Machine (KAM) is the simplest machine
studied in the paper. A KAM state (s) is made out of a closure
and of a stack (r):

T ou= elenw s == (e,m)

For readability, we will use the notation ¢ | e | 7 for a state (c,7)
where ¢ = (¢, ¢). The transitions of the KAM then are:

tu e T e t e (u,e) =m
At | e | cam —on  t | [mec]ue T
x e T e t e’ T

where —,, takes place only if e = " :: [x(t,€’)] = €.

A key point of our study is that environments and stacks rather
immediately become contexts of the LSC, through the following
decoding:

1]
—

) [zec]ze = e(()[zec])
(t) cam = m(()c)
(e{t))

The decoding satisfies the following static properties, shown by
easy inductions on the definition.

I

€
(i,e) =
tle|m =

12

Lemma 5.1 (Contextual Decoding). e is a substitution context, and
both w and m{e) are evaluation contexts.

Next, we need the dynamic invariants of the machine.

Lemma 5.2 (KAM Invariants). Let s = @ | e | m be a KAM
reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;

2. Subterm: any code in s is a literal subterm of t.

3. Name: any closure in s is well-named.

4. Environment Size: the length of any environment in s is bound
by [t].

Abstract Considerations on Concrete Implementations. The
name invariant is the abstract property that allows to avoid a-
equivalence in KAM executions. In addition, forbidding repetitions
in the support of an environment, it allows to bound the length of
any environment with the names in ¢, i.e. with [¢]. This fact is im-
portant, as the static bound on the size of environments guarantees
that —. and —. — the transitions looking-up and copying environ-
ments — can be implemented (independently of the chosen con-
crete representation of terms) in at worst linear time in [¢], so that
an execution p can be implemented in O(|p| - |t|). The same will
hold for every machine with local environments.

The previous considerations are based on the name and environ-
ment size invariants. The closure invariant is used in the progress
part of the next theorem, and the subterm invariant is used in the
quantitative analysis in Sect. 10 (Theorem 10.3), subsuming the
termination condition of reflective distilleries.



Theorem 5.3 (KAM Distillation). (KAM, Name, =, -) is a reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative: if s —. s’ then s = 5.
2. Multiplicative: if s =, s" then s —og i
3. Exponential: if s —. s then s —e=s';

Proof. Properties of the decoding:
1. Commutative. We have tu | e | m —. t|e]| (u,e) = m, and:

tule|m =

Ardle|lczm = x(
—m K(
t

The rewriting step can be applied because by contextual decod-
ing (Lemma 5.1) it takes place in an evaluation context.
3. Exponential. x | €' :: [z(t,e)] =€ | m —e t|e]|m, and

m(e”(e/(x)[ze(t)]))
s g’jg(,< Nlz—e(t)]))
<‘t>>

z|e [z (te)]=e’"|m =

Il u:m* J)

o
—AA
o 1o

Note that e”(e(e(t)) [ze(t)]) =5 e(t) holds because e(t) is
closed by point 1 of Lemma 5.2, and so all the substitutions
around it can be garbage collected.

Termination. Given by (forthcoming) Theorem 10.3 (future proofs
of distillery theorems will omit termination).

Progress. Let s = t | e | m be a commutative normal form s.t.
s —ou. Iftis

* an application uw. Then a — . transition applies and s is not a
commutative normal form, absurd.

* an abstraction Az.u: if m = € then s = e(Ax.u), which is —-
normal, absurd. Hence, a —,, transition applies.

* avariable x: by point 1 of Lemma 5.2.1, we must have e = ¢’
[z<c]:€e”, so a —. transition applies; O

6. Call-by-Value: the CEK and the LAM

Here we deal with two variants in call-by-value of the KAM,
namely Felleisen and Friedman’s CEK machine [23] (without con-
trol operators) and a machine abstracting Leroy’s ZINC machine
[32], deemed Leroy abstract machine (LAM). They differ on how
they behave with respect to applications: the CEK implements left-
to-right call-by-value, i.e. it first evaluates the function part, the
LAM gives instead precedence to arguments, realizing right-to-left
call-by-value.

The states of the two machines have the same shape of those
of the KAM, i.e. they are given by a closure plus a stack. The
difference is that they use call-by-value stacks, whose elements are
labelled either as functions or arguments, so that the machine may
know whether it is launching the evaluation of an argument or it is
at the end of such an evaluation. They are re-defined and decoded
by (cis a closure):

7 u= e|f(c)umlale)um
f(e) =
a(c)

-‘-\ -‘-\\m
I
EREE

The states of both machines are decoded exactly as for the KAM,
ie t|e|m:=m(e(t)).

6.1 Left-to Right Call-by-Value: the CEK machine.
The transitions of the CEK are:

tu|e T —e e a(u,e)=m
vle| a(@,e)um —e T e f(v,e) =
vle|f(Azt,e)um -, t][z(D,e)] ¢ T
zle T —e T e T

where —,, takes place only if e = €'’ :: [z (£, e')] = €’

While one can still statically prove that environments decode
to substitution contexts, to prove that w and m(e) are evaluation
contexts we need the dynamic invariants of the machine.

Lemma 6.1 (CEK Invariants). Let s =u | e | w be a CEK reachable
state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;

2. Subterm: any code in s is a literal subterm of t;

3. Value: any code in e is a value and, for every element of w of
the form £(u, e'), w is a value;

4. Contextual Decoding: w and m(e) are left-to-right call-by-value
evaluation contexts.

5. Name: any closure in s is well-named.

6. Environment Size: the length of any environment in s is bound
by [t].

We have everything we need:

Theorem 6.2 (CEK Distillation). (CEK,Value'®, =, - ) isa reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s >, s' thens=s';
!

2. Commutative 2: if s =, s then s = s'.
3. Multiplicative: if s »m s then s —op 8';
4. Exponential: if s — s’ then s —e= s';

Proof. Properties of the decoding: in the following cases, evalua-
tion will always takes place under a context that by Lemma 6.1.4
will be a left-to-right call-by-value evaluation context, and simi-
larly structural equivalence will alway be used in a weak context,
as it should be.

1. Commutative 1. We have tu | e | 7 —¢, t]e]|a(u,e)=m
and:
tulelm = =mle(tm) =4

t)e|la(u,e)=m

2. Commutative 2. We have ¥ | e | a(u,e’) =7 —¢, u|e|

f(v,e) =, and:
Tlela(@e)in = mle@@) -

ule | f(v,e)um

3. Multiplicative. We have ¥ | e | f(\x.t,e’) = m1 —m T
[z<(v,e)] € | m, and:

vle|f(Axte)um =

4. Exponential. Let e = ¢”
T = t|e'|m,and:



(e(z)) =
§i<6l(x>[w<—e 1)) —e
(

(e (e (t) [xt])))
£)

We can apply —. since by Lgmrna 6.1.3, t is a value. We also
use that by Lemma 6.1.1, €(t) is a closed term to ensure that
e’ and "’ can be garbage collected.

c

1} ?QIII* <L

tle|m

Progress. Let s = t | e | m be a commutative normal form s.t.

s —ou. Iftis

* an application ww. Then a —., transition applies and s is not a
commutative normal form, absurd.

* an abstraction U: by hypothesis, 7 cannot be of the form a(c) =:
7', Suppose it is equal to e. We would then have s = (),
which is a call-by-value normal form, because e is a substitution
context. This would contradict our hypothesis, so 7 must be
of the form f(u,e’) :: 7'. By point 3 of Lemma 6.1, @ is an
abstraction, hence a —, transition applies.

* a variable x: by point 1 of Lemma 6.1, e must be of the form
e’ = [zec]:e”, soa—, transition applies; O

6.2 Right-to-Left Call-by-Value: the Leroy Abstract Machine
The transitions of the LAM are:

tu | e 0 —c U e f(t,e) um

v |e| ft,e)um - T e a(v,e)um
Azt | e| a(c)zm -, | [zec]ue T

x e T —e e T

where —,, takes place only if e = €'’ :: [z (£,€')] = "’
We omit all the proofs (that can be found in the appendix, page
22) because they are minimal variations on those for the CEK.

Lemma 6.3 (LAM Invariants). Let s = u | e | w be a LAM
reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;

2. Subterm: any code in s is a literal subterm of t;

3. Value: any code in e is a value and, for every element of © of
the form a(u, e'), @ is a value;

4. Contexts Decoding: m and w(e) are right-to-left call-by-value
evaluation contexts.

5. Name: any closure in s is well-named.

6. Environment Size: the length of any environment in s is bound
by [¢).

Theorem 6.4 (LAM Distillation). (LAM,Value™ =, -) is a re-
flective distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s », s’ then s = i
2. Commutative 2: if § ¢, s’ then s = ,i
3. Multiplicative: if s =, " then s —o i
4. Exponential: if s —¢ s then § —0e= s';

7. Towards Call-by-Need: the MAM and the Split
CEK

In this section we study two further machines:

1. The Milner Abstract Machine (MAM), that is a variation over
the KAM with only one global environment and without the
concept of closure. Essentially, it unveils the content of distance
rules at the machine level.

2. The Split CEK (SCEK), obtained disentangling the two uses of
the stack (for arguments and for functions) in the CEK. The
split CEK can be seen as a simplification of Landin’s SECD
machine [30].

The ideas at work in these two case studies will be combined in the
next section, obtaining a new simple call-by-need machine.

7.1 Milner Abstract Machine

The linear substitution calculus suggests the design of a simpler
version of the KAM, the Milner Abstract Machine (MAM), that
avoids the concept of closure. At the language level, the idea is
that, by repeatedly applying the axioms =4, and =@ of the struc-
tural equivalence, explicit substitutions can be folded and brought
outside. At the machine level, the local environments in the clo-
sures are replaced by just one global environment that closes the
code and the stack, as well as the global environment itself.

Of course, naively turning to a global environment breaks the
well-named invariant of the machine. This point is addressed using
an a-renaming in the variable transition, i.e. when substitution
takes place. Here we employ the global environments £ of Sect. 3
and we redefine stacks as m = € | £ = m. A state of the MAM is
given by a code ¢, a stack 7 and a global environment E. Note that
the code and the stack together now form a code.

The transitions of the MAM are:

tu T E —-. tl|lu=~n E
et |wew | E - 8 T [x<u] = E
€T T E -. T FE

where —,, takes place only if E = E”(E'[xz+%]) and "~ is a well-
named code a-equivalent to £ and s.t. any bound name in ¢~ is fresh
with respect to those in 7 and E'.

The decoding of a MAM state ¢ | = | E is similar to the
decoding of a KAM state, but the stack and the environment context
are applied in reverse order (this is why stack and environment in
MAM states are swapped with respect to KAM states):

. ON [z<t]= E E((-)[z<t])
tum = w((-)f) tim|E = E(x(t))

We call global closure associated to state t | 7 | E the pair (tx, E).
As for the KAM, the decoding of contexts can be done statically,
i.e. it does not need dynamic invariants.

T

Lemma 7.1 (Contextual Decoding). E is a substitution context,
and both w and w(E) are evaluation contexts.

For the dynamic invariants we need a different notion of closed
closure.

Definition 7.2. Given a global environment E and a code t,
we define by mutual induction two predicates E is closed and
(t, E) is closed as follows:

€ is closed
(t,E)isclosed = [z+<t]: Eisclosed
fv(t) S A(E) A Eisclosed = (t,F) is closed

The dynamic invariants are:

Lemma 7.3 (MAM invariants). Let s =% | 7 | E be a MAM state
reached by an execution p of initial well-named code t. Then:

! The well-named invariant can be restored also in another way. One can
simply substitute 7 (instead of £) but modify — » as follows (with y fresh):

.t ‘ wnT ‘ E -y t{z+y} ‘ ™ ‘ [ycu] = FE



tu e ™ D
v e (t,e)um D
v e € ((Azt,e),m)=D
x e [z(v,e')] e’ ™ D

—>e; t e (w,e) =m D
ey ? e € ((v,e),m) =D
> t [z<(v,e)] = € T D
—e v e iy D

Figure 2. The Split CEK, aka the revisited SECD.

1. Global Closure: the global closure (tm, E) of s is closed;

2. Subterm: any code in s is a literal subterm of t;

3. Names: the global closure of s is well-named;

4. Environment Size: the length of the global environment in s is
bound by |p|m.-

Abstract Considerations on Concrete Implementations. Note the
new environment size invariant, whose bound is laxer than for local
environment machines. Let p be a execution of initial code . If
one implements —. looking for z in E sequentially, then each
— transition has cost |p|» (more precisely, linear in the number
of preceding —,, transitions) and the cost of implementing p is
easily seen to become quadratic in |p|. An efficient implementation
would then employ a representation of codes such that variables are
pointers, so that looking for « in E takes constant time. The name
invariant guarantees that variables can indeed taken as pointers, as
there is no name clash. Note that the cost of a —. transition is
not constant, as the renaming operation actually makes —. linear
in [t| (by the subterm invariant). So, assuming a pointer-based
representation, p can be implemented in time O(|p|-|t]), as for local
machines, and the same will hold for every global environment
machine.

Theorem 7.4 (MAM Distillation). (MAM,Name, =, - ) is a reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative: if s >a s' thens=s';
2. Multiplicative: if s = s’ then s —op= i
3. Exponential: if s —, s then s —o=¢ 5.
Proof. Properties of the decoding (progress is as for the KAM):
1. Commutative. In contrast to the KAM, —. gives a true identity:
tu|m|E = E{(x(tu)) = t|lu:=n|E

2. Multiplicative. Since substitutions and evaluation contexts com-
mute via = (Lemma 2.4), —,,, maps to:

Met|uzm|E = E

E(
<

(E)\x t)u)) —on
(t[x+a]))
(t
|

\>l \>\

ocl) -

[zeu] =

=H:1

3. Exponential. The erasure of part of the environment of the
KAM is replaced by an explicit use of a-equivalence:

x|m|E:[zeu] = B

S [y [
[SISES
A=A

Digression about =. Note that in the distillation theorem struc-
tural equivalence is used only to commute with stacks. The calcu-
lus and the machine in fact form a distillery also with respect to the
following simpler notion of structural equivalence. Let =yau be the

smallest equivalence relation generated by the closure by (call-by-
name) evaluation contexts of the axiom =q; in Fig. 1 (page 4). The
next lemma guarantees that =y is a strong bisimulation (the proof
is in the appendix, page 23), and so =yau provides another MAM
distillery.

Lemma 7.5. =,y is a strong bisimulation with respect to —.

7.2 The Split CEK, or Revisiting the SECD Machine

For the CEK machine we proved that the stack, that collects
both arguments and functions, decodes to an evaluation context
(Lemma 6.1.4). The new CBV machine in Fig. 2, deemed Split
CEK, has two stacks: one for arguments and one for functions. Both
will decode to evaluation contexts. The argument stack is identical
to the stack of the KAM, and, accordingly, will decode to an ap-
plicative context. Roughly, the function stack decodes to contexts
of the form H(v(-)). More precisely, an entry of the function stack
is a pair (c,7), where c is a closure (T,e), and the three com-
ponents v, e, and 7 together correspond to the evaluation context
7(e(v(-))). For the acquainted reader, this new stack corresponds
to the dump of Landin’s SECD machine [30].

Let us explain the main idea. Whenever the code is an abstrac-
tion T and the argument stack 7 is non-empty (i.e. ™ = ¢ = 7),
the machine saves the active closure, given by current code v and
environment e, and the tail of the stack 7’ by pushing a new entry
((v,e),n") on the dump, and then starts evaluating the first closure
c of the stack. The syntax for dumps then is

D:=¢|(¢,m)=D
Every dump decodes to a context according to:
e = () ((W,e),m) =D = D{m(e(v())))
The decoding of terms, environments, closures, and stacks is as

for the KAM. The decoding of states is defined as ¢ | e |7 | D :=
D(m(e(t))). The proofs for the Split CEK are in the appendix (page
23).

Lemma 7.6 (Split CEK Invariants). Let s =u | e | 7 | D be a Split
CEK reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;

2. Subterm: any code in s is a literal subterm of t;

3. Value: the code of any closure in the dump or in any environ-
ment in s is a value;

4. Contextual Decoding: D, D(x), and D{(x(e)) are left-to-right
call-by-value evaluation context.

5. Name: any closure in s is well-named.

6. Environment Size: the length of any environment in s is bound
by [¢).

Theorem 7.7 (Split CEK Distillation). (Split CEK,Value™, ) is
a reflective distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s >, s' then
2. Commutative 2: if s =, s then s
3. Multiplicative: if s —>m s' then s —oy 8';

4. Exponential: if s —. s’ then s —o= s’

VAV



tu T D E - t unT D FE
Azt unm D FE —m t s [z<u] = FE
x 7 D Ey i [zt] = Eo ey t € (Ev,z,m) =D E,
v € (E17l’771') =D E2 —e 7% g D E1 I [;m—ﬂ] I3 E2
Figure 3. The Wadsworth Abstract Machine (WAM).
8. Call-by-Need: the WAM and the Merged WAM 2. Commutative 2:
A new abstract machine for call-by-need, deemed Wadsworth Ab- z|m|D|Ey:[zt]=Ey = E3(Ei(D{n(z)))[zt])
stract Machine (WAM)), is shown in Fig. 3. It is obtained from the tle|(Ey,z,m)=D|Es
KAM by two tweaks:
3. Multiplicative.
1. It uses the.dump-l}k.e apprgach of the Split CEK/SECD to Nel|uzn|D|E = ED@(Oed)a)) —o
evaluate inside explicit substitutions MRAhE Sl S A B
2. Tt uses the global environment approach of the MAM to imple- E<Q(E<E[SE<_UL))) =Lem.2.4
ment memoization; E<f(ﬂ<’|5> ) [5”‘:“] ) =

Whenever the code is a variable = and the environment has the
form E; = [x<t] :: Fa, the machine jumps to evaluate ¢ saving
the prefix of the environment Ellthe variable  on which it will
substitute the result of evaluating ¢, and the stack 7. In Sect. 9, we
will present a variant of the WAM that avoids the splitting of the
environment saving F; in a dump entry.

The syntax for dumps is

D:u=¢|(E,z,m) =D
Every dump stack decodes to a context according to:
e = () Earm):=D = E(D(x(x)[r()]

The decoding of terms, environments, and staclgs is defined as
for the KAM. The decoding of states is defined as ¢ |7 | D | E :=
E(D(x(t))). The decoding of contexts is static:

Lemma 8.1 (Contextual Decoding). D, D(x), E(D), and
E(D(x)) are call-by-need evaluation contexts.

Closed closures are defined as for the MAM. Given a state

s=t|m|D|EowithD = (E1,z1,m1) ... (Ep,Tn, ), its
closures are (m(t), Fo) and, fori € {1,...,n},
(mifw:), Bi = [wiemia(wia)] .o [wren(t)] = Eo).

The dynamic invariants are:

Lemma 8.2 (WAM invariants). Let s = t | = | D | Eo be a
WAM reachable state whose initial code t is well-named, and s.t.
D=(Ei,z1,m) ... (En,Tn, 7). Then:

1. Global Closure: the closures of s are closed;
2. Subterm: any code in s is a literal subterm of t;
3. Names: the closures of s are well-named.

For the properties of the decoding function please note that,
as defined in Sect. 2, the structural congruence for call-by-need is
different from before.

Theorem 8.3 (WAM Distillation). (WAM, Need, - ) is a reflective
distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s >, s’ then s = s';

2. Commutative 2: if s >, s’ then s =s';
3. Multiplicative: if s =, s" then s —op=5';
4. Exponential: if s —. s' then s —oo=¢

Proof. 1. Commutative 1.

tu|m|D|E=E(D(r(tu)))=t|u:n

Note that to apply Lemma 2.4 we use the global closure invari-
ant, as u, being on the stack, is closed by E and so D does not
capture its free variables.

4. Exponential.

Ul|e|(Ey,z,m)=D|Ey =

D(m(x)
D{x(o))[z-v))
D{x(W)zo)

i [xeT] = Ea

Progress. Let s =t | 7 | D | E be a commutative normal form s.t.
s —ou. Iftis

1. an application uw. Then a —., transition applies and s is not a
commutative normal form, absurd.

2. an abstraction v. The decoding s is of the form E({D(m(v))).
The stack 7 and the dump D cannot both be empty, since then
s = E(v) would be normal. So either the stack is empty and
a —. transition applies, or the stack is not empty and a —,,
transition applies.

3. a variable x. By Lemma 8.2.1 it must be bound by E, so a
—, transition applies, and s is not a commutative normal form,
absurd. O

8.1 The Merged WAM, or Revisiting the Lazy KAM

Splitting the stack of the CEK machine in two we obtained a
simpler form of the SECD machine. In this section we apply to the
‘WAM the reverse transformation. The result is a machine, deemed
merged WAM, having only one stack and that can be seen as a
simpler version of the lazy KAM.

To distinguish the two kinds of objects on the stack we use a
marker, as for the CEK and the LAM. Formally, the syntax for
stacks is:

mu=cla(t):m|h(E,x) =
where a(t) denotes a term to be used as an argument (as for the
CEK) and h(F, z, ) is morally an entry of the dump of the WAM,
where however there is no need to save the current stack. The
transitions of the Merged WAM are in Fig. 4.
The decoding is defined as follows

—
~

€ =

[z<t]=E = E((:)[zt])

h(E,z)sm = B(x{z))[z()]
at)zm = w{()F)
t|m|E = E(x(?)



tu T FE - t a(u) =m FE
Azt a(u) =m FE —m t bis [z<u] = FE
T T Ey i [zt] = Eo ey t h(Ei,z) = E,
v h(Ehm) s Es —>e < s FEq: [ay—@] = By
Figure 4. The Merged WAM.
tu 7r D E = t W D E
.t ao € E —my t ™ € [z<u] = B
Azt | w=w (y,7") =D Eq = [y<0O] = By g € 7r (y,7") =D By« [ye0] = [zeu] = Ea
T T D FEy = [x<—ﬂ : By ey t € (z,m) =D Ey :[z<0O] : B
v € (z,m) =D Eq = [z<0O] = B —e o ™ D Eq [z B

Figure 5. The Pointing WAM.

Lemma 8.4 (Contextual Decoding). 7 and E(x) are call-by-need
evaluation contexts.

The dynamic invariants of the Merged WAM are exactly the
same of the WAM, with respect to an analogous set of closures
associated to a state (whose exact definition is omitted). The proof
of the following theorem — almost identical to that of the WAM
— is in the appendix (page 23).

Theorem 8.5 (Merged WAM Distillation).
(Merged WAM, Need, - ) is a reflective distillery. In particu-
lar, on a reachable state s we have:

1. Commutative 1. if s >, s then s=5;
2. Commutative 2: if s >, s’ then s =s';
3. Multiplicative: if s =, " then s —o=5';
4. Exponential: if s -, s’ then § —e=q

9. The Pointing WAM, or Revisiting Sestoft’s AM

In the WAM, the global environment is divided between the envi-
ronment of the machine and the entries of the dump. On one hand,
this choice makes the decoding very natural. On the other hand, one
would like to keep the environment in just one place, letting the
dump only collect variables and stacks. This is what we do here,
exploiting the fact that variable names can be taken as pointers (see
the discussion after the invariants in Sect. 7.1). The new machine,
called Pointing WAM, is in Fig. 5, and uses a new dummy constant
O for the substitutions whose variable is in the dump. It can be seen
as a simpler version of Sestoft’s abstract machine [39]. Dumps and
environments (called hyperstacks and heap by Sestoft) are defined
by:

D
E

| @m) =D
e|[z<t] = E|[z<O] = E

A substitution of the form [z+«0O] is dumped, and we also say
that x is dumped.

Note that the variables of the entries in D appear in reverse order
with respect to the corresponding substitutions in E. We will show
that fact is an invariant, called duality.

Definition 9.1 (Duality E1 D). Duality E1D between environ-
ments and dumps is defined by

€le;
[z<t]LD if E1D;

1.
2.
3. [z<O]L(x,7) = Dif ELD.

E:
E:

Note that in a dual pair the environment is always long at least
as the dump. A dual pair £ 1D decodes to a context as follows:

(E7€) =
(E = [x<—|:|7]7 (z,m) = D)
(£ [z<t], (y,m) = D)

E

(B, D)(x{a))[w+()]
(B, (y,m) 2 D)[w+-F]

The analysis of the Pointing WAM is based on a complex
invariant that includes duality plus a generalization of the global
closure invariant. We need an auxiliary definition:

Definition 9.2. Given an environment E, we define its slice 1 as
the sequence of substitutions after the rightmost dumped substitu-
tion. Formally:

€] = €
(E = [zt])1 = FE1:[z<t]
(Bx[eeo])l = ¢

Moreover, if an environment E is of the form E = [x<0O] = Ea, we
define E1,:= F11: [z<0O] : Eo.

The notion of closed closure with global environment (Sect. 7.1)
is extended to dummy constants O as expected.

Lemma 9.3 (Pointing WAM invariants). Lets=t| E |w| D bea
Pointing WAM reachable state whose initial code t is well-named.
Then:

1. Subterm: any code in s is a literal subterm of t;

2. Names: the global closure of s is well-named.

3. Dump-Environment Duality:
(a) (n(t), E1) is closed;
(b) for every pair (z,7") in D, (z'{x), E14) is closed;
(¢) ELD holds.

4. Contextual Decoding: (E, D) is a call-by-need evaluation con-

text.
Proof. In the appendix, page 24. O
The decoding of a state is defined as t|w|D|E :=
(B, D)(x(t))-
Theorem 94 (Pointing WAM Distillation).

(Pointing WAM, Need, - ) is a reflective distillery. In particu-
lar, on a reachable state s we have:

1. Commutative 1 & 2: if s —¢, ' or s —», s’ then s =

U
sy
2. Multiplicative | & 2: if 8 =y 8" 0r s =, s’ then s —op= s’

Sy



3. Exponential: if s —. s then s —oo=¢ 8';
Proof. Properties of the decoding:
1. Conmutative 1. We have

ta|n|D|E = (E,D)x{Ew) = tlu:n|D|E

2. Conmutative 2. Note that F/>» has no dumped substitutions, since
Ey i [z<0O] : Ea1(x,m) = D. Then:
x| 7| D|Ey:[zt] = Eo =
e2((E1, D)(n(z))[zt]) =

|e| (z,m) =D | Ey = [z<D] = Ey

3. Multiplicative, empty dump.

Axt|uzn|elE = Q(E(E)\m.t)ﬂ)) —on
eln(ilzeal) = Lem2d
e(xdeet]) -
t|m|e|[z<u] = E

4. Multiplicative, non-empty dump.
Mrdt|usmw|(y,n') = D|Ey = [y<0] = Ea =
ea((Er, D) (' (y) [y<m((Az.t) u)]) —n
ea( (B, D) (' (y) [y<x(t[z<u])])
e2{(E1, D)(r(y) [y (t)][z<u]) =
t| 7| (y,m") = D| By [y«0] = [z<u] = Es

5. Exponential.
vle|(z,m)=D|Ey=[zeO] =By =
e2((E1, D)(x(x))[x<v]) —e
e2((E1, D)(z(v))[z<v])
e2((E1, D)(x(v®))[zv]) =
| 7| D|Ey i [zev]: B

Progress. Let s =t | w | D | E be a commutative normal form s.t.
s —ou. Iftis

* an application uw. Then a —., transition applies and s is not a
commutative normal form, absurd.

* avariable x. By the machine invariant, z must be bound by E'1.
So E = Fy :: [x<u] :: E2, a -, transition applies, and s is not
a commutative normal form, absurd.

* an abstraction v. Two cases:

» The stack m is empty. The dump D cannot be empty, since if
D = e we have that s = e(7) is normal. So D = (z,7") = D".
By duality, £ = E; = [x<0O] : E2 and a —. transition
applies.

= The stack  is non-empty. If the dump D is empty, the
first case of —,,, applies. If D = (x,7") = D', by duality
E = E; = [z<0O] = FE> and the second case of —,
applies. O

10. Distillation Preserves Complexity

Here, for every abstract machine we bound the number of commu-
tative steps |p|. in an execution p in terms of

1. the number of principal steps |p|p,
2. the size |t] of the initial code .

The analysis only concerns the machines, but via the distillation
theorems it expresses the length of the machine executions as a
linear function of the length of the distilled derivations in the
calculi. For every distillery, we will prove that the relationship is
linear in both parameters, namely |p|. = O(]t| - |plp) holds.

Definition 10.1. Let M be a distilled abstract machine and p : s —*
s’ be an execution of initial code t. M is

1. Globally bilinear if |p|. = O(([t| + 1) - |plp).
2. Locally linear if whenever s' - s then k = O([{]).

The next lemma shows that local linearity is a sufficient condi-
tion for global bilinearity.

Proposition 10.2 (Locally Linear = Globally Bilinear). Let M be
a locally linear distilled abstract machine, and p an execution of
initial code t. Then M is globally bilinear.

Proof. The execution p writes uniquely as N —>Zl .. ohm —>;§"".

By hypothesis k; = O(]t]) foreveryi € {1,...,m}. Fromm < |pl,
follows that |p|. = O([t] - |l ). We conclude with [p| = |p|, + |p|c =
lolp + O([t] - lplp) = O(([t] + 1) - [plp). O

Call-by-name and call-by-value machines are easily seen to be
locally linear, and thus globally bilinear.

Theorem 10.3. KAM, MAM, CEK, LAM, and the Split CEK are
locally linear, and so also globally bilinear.

Proof. 1. KAM/MAM .Jmmediate: —. reduces the size of the code,
that is bounded by |¢| by the subterm invariant.
2. CEK. Consider the following measure for states:

[a| + |w| if7=a(w,e):n’

#(ule|m) = {W otherwise
By direct inspection of the rules, it can be seen that both —,
and —, transitions decrease the value of # for CEK states,
and so the relation —., U —., terminates (on reachable states).
Moreover, both [u| and [w] are bounded by |t| by the subterm
invariant (Lemma 6.1.2), and so k < 2 - |t| = O([t]).

3. LAM and Split CEK. Minor variations over the CEK, see the
appendix (page 25) O

Call-by-need machines are not locally linear, because a se-
quence of —, steps (remember —.:=—., U —.,) can be as long
as the environment e, that is not bound by [¢| (as for the MAM).
Luckily, being locally linear is not a necessary condition for global
bilinearity. We are in fact going to show that call-by-need machines
are globally bilinear. The key observation is that |p|c, is not only
locally but also globally bound by |p|p, as the next lemma formal-
izes.

We treat the WAM. The reasoning for the Merged WAM and for
the Pointing WAM is analogous. Define |¢| := 0 and |(E,z,7) =
D|:=1+|D|. We have:

Lemma 104. Let s =t | w | D | E be a WAM state, reached by
the execution p. Then

1. |pley =|ple +[DI.
2. |E[+|D| < |plm
3. |ples < lple + |plm = |olp

Proof. 1. Immediate, as —., is the only transition that pushes
elements on D and —. is the only transition that pops them.

2. The only rule that produces substitutions is —,,. Note that 1)
—, and — preserve the global number of substitutions in a
state; 2) e and D are made out of substitutions, if one considers
every entry (e, x, ) of the dump as a substitution on x (and so
the statement follows); 3) the inequality is given by the fact that
an entry of the dump stocks an environment (counting for many
substitutions).

3. Substitute Point 2 in Point 1. O



Theorem 10.5. The WAM has globally linear commutations.

Proof. Let p be an execution of initial code ¢. Define —_¢,:=—.
U —m U —, and note |p|-., the number of its steps in p. We
estimate —.:=—., U —, by studying its components separately.
For —,, Lemma 10.4.3 proves |p|c, < |plp = O(|plp). For —c,,
as for the KAM, the length of a maximal —., subsequence of p is
bounded by [t|. The number of —., maximal subsequences of p is
bounded by |p|-c, , that by Lemma 10.4.3 is linear in O(|p|,). Then
|ple; = O([t] - |p|p). Summing up,

|ples +1pler = Olplp) + O([t] - plp) = O(([E] + 1) - 1plp) O

11. Conclusions

The novelty of our study consists in using the linear substitution
calculus (LSC) to discriminate between abstract machine transi-
tions: some of them — the principal ones — are simulated, and thus
shown to be logically relevant, while the others — the commutative
ones — are sent on the structural congruence and have to be consid-
ered as bookkeeping operations. On one hand, the LSC is a sharp
tool to study abstract machines. On the other hand, it provide an
alternative framework which is simpler while being conservative at
the level of complexity analysis.
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A. Technical Appendix: proofs of the
determinism of the calculi (Proposition 2.1)

A.1 Call-by-Name

Lett = Hi(r1) = Ha(r2). By induction on the structure of ¢. Cases:

* Variable or an abstraction. Vacuously true, because there is
no redex.

Application. Let ¢ = uw. Suppose that one of the two evalu-
ation contexts, for instance H1, is equal to (-). Then, we must
have u = Az.u’, but in that case it is easy to see that the re-
sult holds, because H2 cannot have its hole to the right of an
application (in w) or under an abstraction (in u"). We may then
assume that none of H1, H is equal to (-). In that case, we must
have Hy = H{w and Hs = Hjw, and we conclude by induction
hypothesis.

Substitution. Let ¢ = u[x<w]. This case is entirely analogous
to the previous one.

A.2 Left-to-Right Call-by-Value

We prove the following statement, of which the determinism of the
reduction is a consequence.

Lemma A.1. Let t be a term. Then t has at most one subterm u
that verifies both (i) and (ii):

(i) Either u is a variable x, or u is an application L{v)L'(v"), for
v,v" being values.

(ii) w is under a left-to-right call-by-value evaluation context, i.e.
t=V{(u).

From the statement it follows that there is at most one —-redex
in t, i.e. —o is deterministic.

Proof. by induction on the structure of ¢:

* t is a variable. There is only one subterm, under the empty
evaluation context.

* t is an abstraction. There are no subterms that verify both (i)
and (ii), since the only possible evaluation context is the empty
one.

* ¢ is an application w r. There are three possible situations:

* The left subterm w is not of the form L{v). Then u cannot
be at the root, i.e. u # ¢. Since w(-) is not an evaluation
context, u must be internal to (-}, which is an evaluation
context. We conclude by i.A..

The left subterm w is of the form L{v) with v a value, but

the right subterm r is not. Then u cannot be a subterm of

w, and also u # t. Hence, if there is a subterm u as in the

statement, it must be internal to the evaluation context w(-).

We conclude by i.h..

Both subterms have that form, i.e. w = L{v) and r = L'(v")

with v and v’ values. The only subterm that verifies both (i)

and (ii) is u = t.

* ¢t is a substitution w[z<r]. Any occurrence of u must be
internal to w (because w[z+«(-)] is not an evaluation context).
We conclude by i.A. that there is at most one such occurrence.

O

A.3 Right-to-Left Call-by-Value

Exactly as in the case for left-to-right call-by-value, we prove
the following property, from which determinism of the reduction
follows.

Lemma A.2. Let t be a term. Then t has at most one subterm u
that verifies both (i) and (ii):

(i) w is either a variable x or an application L{v)L'(v'), where v
and v’ are values.

(ii) w is under a right-to-left call-by-value evaluation context, i.e.
t=S(u).

As a corollary, any term ¢ has at most one —-redex.

Proof. By induction on the structure of ¢:

* Variable or abstraction. Immediate.
* Application. If ¢ = w r, there are three cases:
® The right subterm r is not of the form L'(v"). Then u cannot
be at the root. Since (-) r is not an evaluation context, u must
be internal to r and we conclude by i./..
* The right subterm r is of the form L'(v") but the left subterm
w is not. Again u cannot be at the root. Moreover, r has
no applications or variables under an evaluation context.
Therefore u must be internal to w and we conclude by i./..
* Both subterms have that form, i.e. w = L{v) and r =
L’{v"). We first note that w and r have no applications or
variables under an evaluation context. The only possibility
that remains is that u is at the root, i.e. u = ¢.
* Substitution. If ¢ = w[z+r] is a substitution, v must be
internal to w (because w[z+«(-)] is not an evaluation context),
and we conclude by i.A..

O

A4 Call-by-Need

We first need an auxiliary result:

Lemma A.3. Let ¢ := N(x) for an evaluation context N such that
x € fv(t). Then:

1. for every substitution context L and abstraction v, t + L{v);

2. for every evaluation context N' and variable y, t = N'(y)
implies N' = N and y = x;

3. tis a call-by-need normal form.

Proof. In all points we use a structural induction on N. For point 1:

* N = (-): obvious.

* N = Nju: obvious.

* N = Ni[y<w]: suppose that L = L'[y«w] (for otherwise the
result is obvious); then we apply the induction hypothesis to Ny
to obtain Ny{z) # L' (v).

N = Ni{y)[y<N2]: suppose that L = L'[y<Na(z)] (for
otherwise the result is obvious); then we apply the induction
hypothesis to N; to obtain Ni{y) = L'(v).

For point 2:

N = (-): obvious.

* N = Nju: we must necessarily have N’ = Nju and we
conclude by induction hypothesis.

N = Ni[z«u]: in principle, there are two cases. First, we may
have N’ = Nj[z<u], which allows us to conclude immedi-
ately by induction hypothesis, as above. The second possibility
wouldbe N’ = Ni(z)[2+ N3], with N3(y) = u, but this is actu-
ally impossible. In fact, it would imply N1 {x) = Nj(z), which
by induction hypothesis would give us z = x, contradicting the
hypothesis z € £v(t).

N = Ni(z)[ 2z« N2]: by symmetry with the above case, the only
possibility is N’ = Ny (z)[2+ N3], which allows us to conclude
immediately by induction hypothesis.



For point 3, let r be a redex (i.e., a term matching the left hand
side of r4p Or 15,) and let N’ be an evaluation context. We will
show by structural induction on N that ¢ # N'(r). We will do this
by considering, in each inductive case, all the possible shapes of
N’

* N = {(-): obvious.

* N = Nju: the result is obvious unless N’ = (-) or N' = Nju.
In the latter case, we conclude by induction hypothesis (on Ny).
In the former case, since r is a redex, we are forced to have
r = L{v)u’ for some abstraction v, substitution context L and
term u’. Now, even supposing u’ = u, we are still allowed to
conclude because N1 (z) # L{v) by point 1.

* N = Ni[y«u]: the result is obvious unless:

= N’ = (-): this time, the fact that 7 is a redex forces r =
Ni{y)[y+<u]. Even if we admit that v = L(v), we may
still conclude because z # y (by the hypothesis x € £v(t)),
hence Ni(x) # Ni(y) by point 2.

= N’ = Ni[y+u]: immediate by induction hypothesis on Nj.

* N' = Ni(y)[y<Ns3]: even if No(r) = u, we may still
conclude because, again, x # y implies N1{z) # Nj(y)

by point 2.
* N = N1(y)[y< N2]: again, the result is obvious unless:
= N' = (): the fact that r is a redex implies r =

Ni{y)[y<L{v)]. Even assuming N; = N1, we may still
conclude because Na(z) # L{v) by point 1.
* N' = Ni[y<Na(z)]: since y € £v(N1(y)), we conclude
because the induction hypothesis gives us N1(y) # Nj(r).
* N' = Ni(y)[y«N3]: we conclude at once by applying the
induction hypothesis to Ns.

O

Now, the proof of Proposition 2.1 is by structural induction on
t := N1(r1) = Na(rz). Cases:

* Variable or abstraction. Impossible, since variables and ab-
stractions are both call-by-need normal.

* Application, i.e. ¢ = uw. This case is treated exactly as in the
corresponding case of the proof of Proposition 2.1.

* Substitution, i.e. ¢ = u[z<w]. Cases:

» Both contexts have their holes in u or w. It follows from the
i.h..

* One of the contexts—say N1—is empty, i.e. u = N3(z), w =
L(v), and r1 = Ns(x)[z«<L{v)]. This case is impossible.
Indeed, 1) the hole of N2 cannot be in L(v), because it
is call-by-need normal, and 2) it cannot be inside N3(z)
because by Lemma A.3.3 N(z) is call-by-need normal.

» One of the contexts—say Ni1—has its hole in w and the
other one has its hole in u, i.e. Nu = Ns(z)[z<N4]
and Ny = Ns[z+<w]. This case is impossible, because by
Lemma A.3.3 N3(z) is call-by-need normal.

B. Technical Appendix: proofs of strong
bisimulation

B.1 Proof of Proposition 2.2 (= is a strong bisimulation) for
call-by-name

Before proving the main result, we need two auxiliary lemmas,
proved by straightforward inductions on H:

Lemma B.1. Let t be a term, H be a call-by-name evaluation
context not capturing any variable in £v(t), and x ¢ £v(H (y)).
Then H(t[z+u]) = H(t)[z+<u].

Lemma B.2. The equivalence relation = as defined for call-by-
name preserves the shape of H(x). More precisely, if H(x) = t,
with x not captured by H, then t is of the form H'{x), with x not
captured by H'.

Now we turn to the proof of Proposition 2.2 itself.

Let < be the symmetric closure of the union of the axioms
defining = for call-by-name, that is of =gc U Zgup U Za@ U Zcom
U =[. Note that = is the reflexive—transitive closure of <. The
proof is in two parts:

(I) Prove the property holds for <, i.e. if t —, v and t <= w,
there exists r s.t. w —oq 7 and u = r.

(II) Prove the property holds for = (i.e. for many steps of <)
by resorting to (I).

The proof of (II) is immediate by induction on the number
of < steps. The proof of (I) goes by induction on the rewriting
step — (that, since — is closed by evaluation contexts, becomes a
proof by induction on the evaluation context H). In principle, we
should always consider the two directions of <=. Most of the time,
however, one direction is obtained by simply reading the diagram
of the other direction bottom-up, instead than top-down; these cases
are simply omitted, we distinguish the two directions only when it
is relevant.

1. Base case 1: multiplicative root step ¢t = L{\z.t')u’ —a
L{t'[z<u']) = u.
If the <= step is internal to u or internal to one of the substitu-
tions in L, the pattern of the <= redex does not overlap with the
—gp step, and the proof is immediate, the two steps commute.
Otherwise, we consider every possible case for <:

(a) Garbage Collection =4.. The garbage collected substitution
must be one of the substitutions in L, i.e. L must be of the
form L'(L"[y«<w']). Let L := L'(L"). Then:

Lzt —E 0 L{t'[zeu'])
=gc =gc
T N, ! dB T /4! /
Lzt ----- O L{t'[z<u])
(b) Duplication =4,,,,. The duplicated substitution must be one

of the substitutions in L, i.e. L must be of the form
L'(L"[y«<w']). Then:

L{L" () [yew' ' ——=— oty
Zdup Zdup
tg--------- d ? ******* O ts
where

ty = L(L"{t' [zeu'])[y=w']),
to = L'( (L (Az.t"))y, [yew'[zew] ),
ta s= L'{ ("¢ [we' ), [y T[] ).

(¢) Commutation with application =e. Here =a can only be
applied in one direction. The diagram is:



Lyt weq W oeq] = b
|
idB | dB
o
ta to
Zdup
“a tg
E:om
ts =[] to
where

t1 = (Lt ) [z<q'],

ta = L{t' [y=u'[zq']])[z4'],

L{t'[y=u{zy}y=d 1) [z<d],

L{t'[y=u'{z—y}]ly=q ) [zd].

(d) Commutation of independent substitutions =com. The sub-
stitutions that are commuted by the =c.., rule must be both

in L, i.e. L must be of the form L' (L"[y«<w"][2+7']) with
z ¢ fv(w’). Let L = L'(L"[2+r"][y<w’]). Then:

t5 =

te =

Lzt W —= 0 L{t'[zeu'])

TOw.t)u' -~ 2 -0 T{t [zeu'])
(e) Composition of substitutions =[.]. The substitutions that ap-
pear in the left-hand side of the =[.j rule must both be in
L, i.e. L must be of the form L'(L"[y«w'][z<r']) with
z ¢ fv(L'(Mx.t')). Let T = L'(L"[y—w'[z<7"]]). Ex-
actly as in the previous case:

Lzt W —2 5 L{t'[z+u])

=[] =[]

2. Base case 2: exponential root step ¢ = H'(x)[x<t'] 15
H'(t")[z+t'] = u. If the < step is internal to ¢', the proof
is immediate, since there is no overlap with the pattern of the
15 redex. Similarly, if the <= step is internal to H(z), the
proof is straightforward by resorting to Lemma B.2.

Now we proceed by case analysis on the < step:

(a) Garbage collection =,4.. Note that =;,. cannot remove
[z+t'], because by hypothesis = does occur in its scope.
If the removed substitution belongs to H', ie. H' =
H"(H"[y<u']). Let H := H"(H""). Then:

H(z)[zet'] —=—0 H'(')[z<t']

Zgc Zgc
—_— 1 —_—
() [wet'] - === 0 Tt ) [wet]
If =4. adds a substitution as topmost constructor the dia-
gram is analogous.
(b) Duplication =q,,. TWo sub-cases:

i. The equivalence =g, acts on a substitution internal to
H'. This case goes as for Garbage collection.

ii. The equivalence =qyp acts on [x«t']. There are two
further sub-cases:

* The substituted occurrence is renamed by =g4up:

H'(z)[zt'] —=—0 H'(t')[zt']

=gc =gc

H[,y]m (y) [zt [y=t'] --2- ot

where t1 = H[,j (t')[zt'][y~t'] and H[, is
the context obtained from H' by renaming some
(possibly none) occurrences of = as y.

* The substituted occurrence is not renamed by =qy,p.
Essentially as in the previous case:

H'(x)[z<t'] —= o H'(t")[zt']

=dup =dup

Hiyy, (o) et Tyt -- =2 - ot

where t1 := H[,y (t')[zt"][y<t"].

(¢) Commutation with application =a. Two sub-cases:
i. The equivalence =a acts on a substitution internal to
H'. This case goes as for Garbage collection.

ii. The equivalence =a acts on [z+t']. It must be the case
that H' is of the form H"u’. Then:

(H"(z)u)[zt'] —=—0 1
=@ =@
tg ****** ! s - O t3

where

(d) Commutation of independent substitutions =coy,. TWo sub-
cases:
i. The equivalence =com, acts on two substitutions internal
to H'. This case goes as for Garbage collection.
ii. The equivalence =com acts on [x+<t']. It must be the
case that H' is of the form H". Then:

H"(z)[yu'[zt'] ——0 H"(t')[yu')[zt]

=com =com

H (@) [e—t)yu'] -~ 50 H"(t) vt ][y']

(e) Composition of substitutions =[.1. Two sub-cases:
i. The equivalence =[.y acts on two substitutions internal
to H'. This case goes as for Garbage collection.

ii. The equivalence =[] acts on [z+t']. Note that the equiv-
alence =[.j cannot be applied from left to right to [z«t'],
because H'(z) must be of the form H" (z)[y«u'] with
x ¢ £v(H"(x)), which is clearly not possible. It can be
applied from right to left. The diagram is:



H@)a—tly-u]] =0
ils (})15
ta to

= by Lemma B.1 Sdup
ts t3
=] Scom
ts =a t7
where

ty = H'(w)[at'|[y<u],

ta = H'(t) [zt [yeu],

ts = H'(t {y<z}) [zt ][zeully<u],

ta = H'(t'[y—u]) [zt [y—u]],

ts = H'(t)[y—u] [zt [y<ul],

te := H'(t')[y<u][z<t'][y<u],

tr = H'(t {yz})[zu] [zt [[y-u].

3. Inductive case 1: left of an application H = H'q. The situa-
tion is:
t:t'q—oau'q:u

for terms ¢, such that either t’ —op u’ or t' —o u’. Two sub-

cases:

(a) The t < w step is internal to t'. The proof simply uses the
i.h. applied to the (strictly smaller) evaluation context of the
step t’ —oq u’.

(b) The t <= w step involves the topmost application. The <
step can only be a commutation with the root application.
Moreover, for t'q to match with the right-hand side of the
=q rule, ¢’ must have the form w'[z«7'] and ¢ the form
q'[z+7'], so that the < is:

w=(wq)[rer]za wzer]q [zr] =t
Three sub-cases:
i. The rewriting step is internal to w'. Then the two steps
trivially commute. Let a € {dB,1s}:
w' [zer']q [zer] —2* 5 w'' [zer']q [xr']
=a =@

(w'q')[:m—r'] ____a -0 (w"q')[:m—r']
ii. dB-step not internal to w'. Exactly as the multiplicative
root case 1c (read in the other direction).

(c) 1s-step not internal to w'. Not possible: the topmost con-
structor is an application, consequently any —, has to take
place in w'.

. Inductive case 2: left of a substitution H = H'[z«<q]. The
situation is:
t=t[zeq] = u'[zeq]=u

with t' = H'(t"). If the < step is internal to H'(t'), the proof

we conclude using the i.A.. Otherwise:

(a) Garbage Collection =4.. If the garbage collected substitu-
tion is [z+q] then:

t'[req] —o0 u'[z+q]

Egc Egc

If the substitution is introduced out of the blue,
ie. t'[xeq] =40 t[xq]ly<q] or t'[z<q] =4¢
t'[y<q'][z+q] the diagram is analogous.
(b) Duplication =g4y,. If the duplicated substitution is [z+<q]
then:
t'[x—q] ——0 u'[zq]

Zdup Zdup

th1. [reqlly—q] - - -0 ufy;, [v+q]

If duplication is applied in the other direction, i.e. t' =
t"[y+q] and

t[zeq] =t"[y—ql[zq] Zaup t"{y<z}[rq] = '[1+q]

the interesting case is when ¢ = H"(y) and the step is
exponential:

H"())[y<q][z<q] —0 H"(g)[y+q][z+q]

H"(z){y<a}[x—q] -0 H"(g){yz}[rq]
If t' is H"(x) it is an already treated base case and if ¢’ has
another form the rewriting step does not interact with the
duplication, and so they simply commute.
(c) Commutation with application =a. Then t' = t""u". Three
sub-cases:

i. The —o step is internal to t" . Then:
mnr o rr

(t"u") ] ———0 (t"u")[zq]
=a =a
t"[zeqlu"[zq] - - -0 t"[vq]u"[z+q]

ii. The —o step is a multiplicative step. If t"" = L{\y.t"")
then it goes like the diagram of the multiplicative root
case lc (read in the other direction).

iii. The — step is an exponential step. Then it must be
[z+q] that substitutes on the head variable, but this case
has already been treated as a base case (case 2c).

(d) Commutation of independent substitutions =com. It must
be ¢ = t'[y<q] with =z ¢ £v(¢'), so that
t"[y<q'1[x+q] Zcom t"'[z+q][y<q']. Three sub-cases:

i. Reduction takes place in t". Then reduction and the
equivalence simply commute, as in case 4(c)i.
ii. Exponential steps involving [x<q]. This is an already
treated base case (case 2(d)ii).
iii. Exponential step involving [y«q']. This case is solved
reading bottom-up the diagram of case 2(d)ii.

(e) Composition of substitutions =pj. It must be t =
t"[y<q'] with = ¢ £v(t"), so that t"[y—q'][zq] =[;
t"[z+q[y«<q']]. Three sub-cases:

i. Reduction takes place in t". Then reduction and the
equivalence simply commute, as in case 4(c)i.
ii. Exponential steps involving [x+<q]. This case is solved
reading bottom-up the diagram of case 2(e)ii.
iii. Exponential step involving [y«<q']. Impossible, because
by hypothesis = ¢ £v(t").

B.2 Proof of Proposition 2.2 (= is a strong bisimulation) for
left-to-right call-by-value

We follow the structure of the proof in Sect. B.1 for call-by-name.
Structural equivalence for call-by-value is defined exactly in the
same way.



Before proving the main result, we need the following auxil-

iary lemmas, proved by straightforward inductions on the contexts.
Lemma B.3.2 is the adaptation of Lemma B.2 already stated for

call-by-name:

Lemma B.3. The equivalence relation = preserves the “shapes”

of L{v) and V (z). Formally:
1. If L{v) = t, then t is of the form L'(v').

2. If V{z) = t, with x not bound by V, then t is of the form V' (x),

with x not bound by V'.
Lemma B4. L{t[z<u]) = L{t[x<L{u)])

Proof. By induction on L. The base case is trivial. For L
L'{-)[y<w], by i.h. we have:

Li(tlz<ul)[yw] = L'(t{zL'(u) ) [y<w]

Let (L'(u))r.1, be the result of replacing all occurrences of y by z
in L'(u). Then:

L/t L' u)]) [yw)
Sap Lt (D {u) a1, Dyw][zw]
=com  L'{t[z=(L{u))pa, J[zw])ly—w]
=t Li{tle=(L ), [eow]Dy—w]
=a  L'{t[z<L'u)[y-w]])[y-w]
O O
Now we prove the strong bisimulation property, by induction on
1. Base case 1: multiplicative root step ¢ = L{\z.t')L'(v) gy

u = L{t'[x<L'(v)]). The nontrivial cases are when the <
= step overlaps the pattern of the dBv-redex. Note that by
Lemma B.3.1, if the < is internal to L' (v}, the proof is direct,
since the dBv-redex is preserved. More precisely, if L'(v) <
L"(v"), we have:

L(Amt')L'(v) _——— 0O L(t,[mﬁL’«U)])
L()\x.t,)L"(U'> ,,,,,,,,,, o L(t’[aﬂ—L"(v')])

Consider the remaining possibilities for <=:

(a) Garbage collection =,4.. The garbage collected substitution
must be in L, i.e. L must be of the form L (L2 [y« L" (v')])
with y ¢ £v(L2(Az.t')). Let L := L1{L2). Then:

dBv

L\x.t') L' (v) ——————o0 L{t'[z«L'(v)])

=gc =gc
LOzt')L'(v) -----==--- O L(t'[z<L (v)])
(b) Duplication =4y,. The duplicated substitution must be in

L, i.e. L must be of the form Li{Lo[y«<u']). Let T =
Ly ((-)[y«<u'][#<u']). Then:

L{Az.t') L' (v) ———=——o0 L(t'[xL'(v)])
L{(LaAz '), ) () - =" -0 1

where t1 := f((LQ(t'[ZU“L’@)]))[Z]y )-

(¢) Commutation with application =a. The axiom can be ap-
plied only in one direction and there must be the same ex-
plicit substitution [y«<q] as topmost constructor of each of
the two sides of the application. The diagram is:

where

ty = L{t' [z« L (v)[y<q]])[z+a],
to = L{t' [z« L' (v))[y+q].
To prove the equivalence on the right, let L'(v)., denote

the result of replacing all occurrences of = by a fresh vari-
able z in L'(v). The equivalence holds because:

L{t"[y<L'(v)])[xq]
Zdup L(tu[y*L,(v)[z]w])[W—QJ[Z‘—(I]
com  L{U'[y=L(v)z1, )[zq]) [2q]
=1 L{'[y=L{v)), [2-a]])z—q]
=a  L{t"[y=L{v)[xq]])[rq]

(d) Commutation of independent substitutions =com. The com-
mutation of substitutions must be in L, i.e. L must be
of the form Li{La[y«u'][2+w']) with z ¢ fv(u'). Let
L := Ly(La[z<w'][y<u']). Then:

Lzt') L' (v) ——= o L{t'[z<L"(v)])
LOwt' )L (v) ----- O L' [we L (v)])

(e) Composition of substitutions =[.;. The composition of sub-
stitutions must be in L, ie. L must be of the form
Li(Lo[y+u'][z+w']) with 2 ¢ £v(Lo(Az.t')). Let L :=
Li(La[y<u'[z<w']]). As in the previous case:

. Base case 2: exponential root step ¢ = V(x)[x+L(v)] —1sv

u = L{V{v)[xz+<wv]). Consider first the case when the <-redex
is internal to V(z). By Lemma B.3.2 we know <= preserves the
shape of V(x), i.e. V(z) < V(z). Then:

1sv

Vi) [z L(v)] ——————0 L(V{v)[z<v])

If the < -redex is internal to one of the substitutions in L, the
proof is straightforward. Note that the <=-redex has always a
substitution at the root. The remaining possibilities are such that
substitution is in L, or that it is precisely [z« L(v)]. Axiom by
axiom:



(a) Garbage collection =g4.. If the garbage collected substitu-
tion is in L, let L be L without such substitution. Then:

1sv

Viz)[zeL{v)] —————0 L(V{v)[zv])

=gc =gc

Vig)weL(v)] -=-------=- o L{V(v)[z+v])

The garbage collected substitution cannot be [z+L(v)],
since this would imply = ¢ fv(V(z)), which is a contra-
diction.

(b) Duplication = 4., If the duplicated substitution is in L, then
Lis of the form Ly (La[y«t']). Let L = L1 ([y«t'][z+t']).
Then:

1sv

V{z)[zeL{v)] —————0 L(V{v)[z<v])

Zdup Zdup

where

t1:= V(z)[e=L(La.y, (v, )],
to = Z(Lz[z]y (V<U[z]y >['T<—U[Z]y]))

If the duplicated substitution is [z« L(v)], there are two
possibilities, depending on whether the occurrence of x
substituted by the 15, step is replaced by the fresh variable
y, or left untouched. If it is not replaced:

Vi) [z=L(v)] = o L{V({v)[zv])
Zdup
Sdup t2
= (Lemma B.4)
fg-mmmmmmm--- e e oty
where

t2 == L{(V(v)) 1, [zev][y<v]),

3= LV (o)), [o=v][y=L{v))),

ta = (V(@)) gy, Lo (o) ][y L{v)].

If the occurrence of x substituted by the 15, step is re-

placed by the fresh variable y, the situation is essentially
analogous.

~

(c) Commutation with application =a. The only possibility is
that the substitution [z« L(v)] is commuted with the outer-
most application in V (z). Two cases:

i. The substitution acts on the left of the application, i.e.

V=Vt
(V'(@)t")[weL{v)] ———o0t
=0
=a to

where

~
&

= L((V'(v) 1) [zev]),

b2 = L{V/ () o)L [w]),
o 1= V(@) L{o) ¢ [oe L)),
ty = L{V'{(v)[zev])t' [x<L{v)].

~

ii. The substitution acts on the right of the application, i.e.
V = L'(v')V'. Similar to the previous case:

(L' (W) V(@) [w-L{v)] ———o0 ts
Za to
1sv EE]
t3 ************** O t4
where
ty:= L{(L'(v") V' (v)) [z0]),
t2 = L(L' (') [z o]} L{V'{v)[z<]),
ts = L'(v") [z L(v)]V'(z) [z L{v)],
ta = L'(o") [z L) L{V'{v) [zv]).

(d) Commutation of independent substitutions =com. If the
commuted substitutions both belong to L, let T be the re-
sult of commuting them, and the situation is exactly as for
Garbage collection.

The remaining possibility is that V' = V'[y«t'] and
[z« L{v)] commutes with [y«¢t'] (which implies = ¢
£v(t")). Then:

V(@) [yt'[wL{v)] ————0 L(V'{v)[yt'][zv])

=com =*
=com

V(@) [z L(v)][y—t'] - -~ -7 -0 L(V(v)[z0])[y~t]

(e) Composition of substitutions =[.;. If the composed substi-
tutions both belong to L, let T be the result of composing
them, and the situation is exactly as for Garbage collection.
The remaining possibility is that [z« L(v)] is the outermost
substitution composed by =(. This is not possible if the
rule is applied from left to right, since it would imply that
V{z) = V'(z)[y«t'] with z ¢ V'(zx), which is a contradic-
tion.

Finally, if the =[j rule is applied from right to left, L is of
the form L'[y«t'] and:

Via)[zL'(v)[y=t']] ————0 L'(V(v)[zv])[yt]

=01 =

1sv

Vi) [z L (0))ly<t'] -------- o L{V({z)[zv])[yt']

3. Inductive case 1: left of an application V' = V'q. The situation

is:

t=V(thg—=V'{u)g=u
If the <= step is internal to V'(t'), the result follows by i...
The proof is also direct if <= is internal to ¢q. The nontrivial
case is when the < step overlaps V'(t') and q. There are
two possibilities. The first is trivial: =4 is used to introduce

a substitution out of the blue, but this case clearly commutes
with reduction.



The second is that the application is commuted with a substitu-

tion via the =q rule (applied from right to left). There are two

cases:

(a) The substitution comes from t'. That is, V' = (-) and ¢
has a substitution at its root. Then ¢’ must be a ~1y-redex
t'" = V"{z)[z<L{v)]. Moreover ¢ = ¢'[z<L{v)]. We
have:

V(@) [z L{v)] ¢[w-L{v)] ——0 tr

where
t1 = L(V"(v)[z=0]) ¢'[2 L{v)],
ta = (V" () ¢")[w=L{v)],
ts = L{(V"(v) ¢")[z=0]).

For the equivalence on the right note that:

LV () [=v])  [2- L{v)]
=t LV (u)lzeo]) Lig [ov])
=i LV ()zeo]q/[vv))
=0 L{(V"{0)¢)[zev))

(b) The substitution comes from V'. Thatis: V' = V" [z<w'].
Moreover, g = ¢’ [z+w']. The proof is then straightforward:

V"t zew'] ¢ [z+w'] ————o t1

=@ =a

where
b= V() oew' ] [veu'],
ta = (V'(t") ¢ ) [zw'],
ts = (V" (') ) [ae'].

4. Inductive case 2: right of an application V = L(v)V’. The
situation is:

t=L{v)V'{t') = L{v) V'(u') =u

Reasoning as in the previous case (left of an application), it
the < step is internal to V'(t’), the result follows by i.k.,
and if it is internal to L(v), it is straightforward to close the
diagram by resorting to the fact that = preserves the shape of
L(v) (Lemma B.3).
The remaining possibility is that the <= step overlaps both
L{v) and V'(t'). As in the previous case, this can only be
possible if =4, introduces a substitution out of the blue, which
is a trivial case, or because of a Commutation with application
rule (=@, from right to left). This again leaves two possibilities:
(a) The substitution comes from t'. That is, V' = () and ¢
is a mig-redex t' = V' (y)[y<L'(v')]. Moreover, L =
L"[y«~L'{(v")]. Then:

where

t = L") [y« L' ()] L'(V" (") [y<2']),
ta = (L"{0) V" (y) [y« L (v)],
ts = L'((L"{v) V" (")) [y<0'])-

Exactly as in the previous case, for the equivalence on the
right consider:

e
© O
O

(b) The substitution comes from V'. Thatis, V' = V" [z+<w'].
Moreover, L = L'[z<w']. This case is then straightfor-
ward:

L' ()[z«w' V" {t' ) z+w'] ——o0 L'{(v)[z«w' ] V" {u')[z+w']

. Inductive case 3: left of a substitution V' = V'[z+q]. The

situation is:
t=V'{t")req] — V(W) rq] =

If the < step is internal to V'(t'), the result follows by i.h..

If it is internal to g, the steps are orthogonal, which makes the

diagram trivial. If the equivalence =, introduces a substitution

out of the blue the steps trivially commute.

The remaining possibility is that the substitution [z«q] is in-

volved in the < redex. By case analysis on the kind of the step

=p

(a) Garbage collection =4.. We know = ¢ £v(V'(t')) and
therefore also = ¢ £v(V'(u')). We get:

VAt weq] —————0 V'(u)[zq]

—gc —gc

(b) Duplication =g4,,. The important fact is that if V'(t') —o
V'{u') and V'(t'),), denotes the result of renaming
some (arbitrary) occurrences of by y in V'(t'), then
V't 1. — V(') g, where V/(u')p,, denotes the re-
sult of renaming some occurrences of z by y in V'(u’). By
this we conclude:

Vit [weq] —————0 V'(u)[xq]

=dup Zdup

V(N1 le=qlly=q] ------- o (V{u'))y1, [x=q]ly<q]

(c) Commutation with application =a. V'(t') must be an appli-
cation. This allows for three possibilities:
i. The application comes from t'. That is, V' = (-) and
t' is a —gpy-redex t' = L{A\y.t") L'(v). The diagram
is exactly as for the multiplicative base case 1c (read
bottom-up).



ii. The application comes from V', left case. Thatis, V' =
V" w'. This case is direct:

(V”(t/) w/)[q;(_q] —S) tl

=@ =@

where
b= (V" () ') [weq,
to = V"(t/)[zeq] w/[w—q],
ts = V" {u')[zeq]w'[zq].

iii. The application comes from V', right case. That is,
V' = L{v) V". Analogous to the previous case.

(d) Commutation of independent substitutions =com. Since
V'{t') must have a substitution at the root, there are two
possibilities:

i. The substitution comes fromt'. Thatis, V' = (-) and t’ is
arigy-redex t' = V'(y) [y« L{v)], with z ¢ £v(L(v)).

B.4 Proof of Proposition 2.2 (= is a strong bisimulation) for
call-by-need

We need two preliminary lemmas, proved by straightforward in-
ductions on N:

Lemma B.5. Let t be a term, N be a call-by-need evaluation
context not capturing any variable in £v(t), and x ¢ £v(N(y)).
Then N(t[z+u]) = N(t)[z<u].

Lemma B.6. The equivalence relation = as defined for call-by-
need preserves the shape of N{(z). More precisely, if N(z) = t,
with x not captured by N, then t is of the form N'{(z), with x not
captured by N'.

We follow the structure of the previous proofs of strong bisim-
ulation, in particular the proof is by induction on —. Remember
that for call-by-need the definition of the structural equivalence is
different, it is the one given only by axioms =a, =com., and =[].

1. Base case 1: multiplicative root step t = L(\z.t')q e u =
L{t'[z+q]). Every application of = inside g or inside one of
the substitutions in L trivially commutes with the step. The

Then: interesting cases are those where structural equivalence has a
critical pair with the step:
V" (y)[y«L{v)][z+q] — ™ 5 L{(V"{(v)[y«v])[z<q] () Commutation with left of an application =a;. If L =
L'[y«r] then
V' (y)[z=qlly=L(v)] - -~ -~ - -0 L{V"(v)[zq][y-v]) L'(Az.t')[yerlq ————0 L'{t'[z=q])[y-7]

ii. The substitution comes from V'. That is, V' =
V"[y«<w'] with z ¢ £v(w"). This case is direct:

V() [yew'|[zeq] ———0 V" (u')[yw'][zq]
V() zeq]lyew'] - - - -F5 - - 0 V(U ) [zeq][y=w']

(e) Composition of substitutions =[.. As in the previous case,
there are two possibilities:
i. The substitution comes from t'. That is, V' = (-) and
t'is a mig-redex t' = V' {y)[y<L(v)], with = ¢
£v(V"(y)). Then:

(L'PztYg)yer] --------~ o L'{t'[z—q])[y<r]

(b) Commutation of independent substitutions =con,. The sub-
stitutions that are commuted by the =c., rule must be both
in L, i.e. L must be of the form L'(L"[y«<w"][2+7']) with
z¢ fv(w'). Let L = L'(L"[zr"][y<w']). Then:

Lzt —= 0 L{t' [zu'])

=com =com

Lt ) -- 25 L(t' [z<u])

(c) Composition of substitutions =.]. The substitutions that ap-

1 1sv ” pear in the left-hand side of the = rule must both be in
Vi) y—L{v)][z+q] o LV (u)ly=v])zed] L, i.e. L must be of the form L'(L"[y«w'][2+7']) with
- _ z ¢ fv(L"(Dz.t')). Let L = L'(L"[y«w'[z+7"]]). Ex-
L] actly as in the previous case:
” 1sv ”
Vi y)lly<Lw)z—q]] -------- o L(V"(v)ly—v])[zq]

ii. The substitution comes from V' . That is, V' =
V" [y«w'] withx ¢ £v(V"(t')). The proof for this cas
is direct:

V() yew'][req] ———0 V(i) [y~w'][z+q]

]
V) y<w'[zq]]

=[]
o V" {u')[y-w'[zq]]

B.3 Proof of Proposition 2.2 (= is a strong bisimulation) for
right-to-left call-by-value

The proof is obtained as a minimal variation over the proof for
left-to-right call-by-value (previous subsection), and is therefore
omitted.

L)Xzt —® 5 L{t'[z<u'])

[]

-- R0 T [aeu])

2. Base case 2: exponential root step ¢t = N(z)[z<L(v)] —1sv
u = L{N(v)[xz«<wv]). Consider first the case when the <=-redex

is internal to N (z). By Lemma B.6 we know <> preserves the
shape of N(z), i.e. N(z) < N{(z). Then:

N(z)[zeL{v)] ———=——0 L(N(v)[z+v])
N{z)[zL{v)] ----- - --0 L{N(v)[z+v])

If the <=-redex is internal to one of the substitutions in L, the
proof is straightforward. Note that the <=-redex has always a



substitution at the root. The remaining possibilities are that such
substitution is in L, or that it is precisely [z« L(v)]. Axiom by
axiom:

(a) Commutation with the left of an application =@;. The only
possibility is that the substitution [z« L{v)] is commuted
with the outermost application in N(z), i.e. N = N't'. The

diagram is:
(N'(@) ") [weL(v)] ———"——0 L{(N'{v)t")[z<v])
=al =@
N'(z)[zL()]t' -----T-- -0 L(N"(v)[z<v]) ¢’

(b) Commutation of independent substitutions =com. Two sub-
cases:
i. The commuted substitutions both belong to L. Let T be
the result of commuting them, and the diagram is:

N(z)[z+L{v)] ————0 L(N{v)[z+v])
N(z)[z+L{v)] ----- - - -0 I(N(v)[z+0])

ii. One of the commuted substitutions is [z<L{v)]. Then
N = N'[y«t'] and [z« L(v)] commutes with [y«t']
(which implies z ¢ £v(t)). Then:

t' = N"(z)[z+L{v)]. We have:

N"(@)[zL(v)] g —————0 L{N"(v)[z<v])q
=l =
(N"(z) g)[wL(v)] -~ - ===~ -0 L{(N"(v) g) [z+v])

(b) The substitution comes from N'. Thatis: N' = N"[z<w'].
The proof is then straightforward:

N"(t")[z<w'] g ———————0 N"(u)[z<w']q

=@l =al
Nty lecw'] --------- o (N"(u) g)lzew']

4. Inductive case 2: left of a substitution N = N'[z«<q]. The
situation is:

t=N'(t")w—q] — N'(u)[zq] =u

If the < step is internal to N'(t'), the result follows by i.h.. If

it is internal to g, the steps are orthogonal, which makes the di-

agram trivial. The remaining possibility is that the substitution

[z+q] is involved in the <= redex. By case analysis on the kind

of the step =:

(a) Commutation with the left of an application =a;. N'(t')
must be an application. Two possibilities:

i. The application comes from t'. Thatis, N' = {-) and t' is
a—gp-redex t' = L{\y.t") r. This is exactly as the base
case la (read bottom-up).

ii. The application comes from N', i.e. N’ = N" w'. This

N'(z)[yt'|[w—L{v)] ——=—o0 L{(N"(v)[y<t'][z<v]) is exactly as the inductive case 3b (read bottom-up).
(b) Commutation of independent substitutions =com. Since
Zcom =5 N'(t") must have a substitution at the root, there are two
N@)oL)ly—t'] - - 2= -0 LN ) weolly=t] PPy e

(c) Composition of substitutions =[.]. Two sub-cases:
i. The composed substitutions both belong to L. Analo-
gous to case 2(b)i.
ii. One of the composed subtitutions is [+ L(v)]. This
is not possible if the rule is applied from left to right,

i. The substitution comes fromt'. Thatis, N' = (-) and ' is
arigy-redex t' = N (y) [y« L{v)], with z ¢ £v(L(v)).
This case is exactly as the base exponential case 2(b)ii
(read bottom-up).

ii. The substitution comes from N'. That is, N' =
N"[y«w'] with z ¢ £v(w"). The diagram is:

since it would imply that N(z) = N'(z)[y<t'] with N ' Lov 5 N (w Ny 1Tz
x ¢ N'(x), which is a contradiction. () ly—w]lzd] ()ly—w]lwd]
Finally, if the =) rule is applied from right to left, L is =eom =eom
of the form L'[y«t'] and: .
Nt z-qlly-w'] ----=--- O N"(u')[zq][y~w']
’ ’ 1sv ’ ’

N{(z)[zeL'(v)[y<t']] ————0 L'(N{v)[zv])[y<t'] (c) Composition of substitutions =.1. As in the previous case,

B B there are two possibilities:

=0 - i. The substitution comes from t'. That is, N’ = (-) and
N{z)[zL' (V)] [yt] - - - -2~ - -0 L'(N(z)[z<v])[yt'] t'is a mgpredex t' = N"(y)[y<L(v)], with = ¢

3. Inductive case 1: left of an application N = N'q. The situa-
tion is:

t=N'(t'Yg— N{u)g=u

If the <= step is internal to N'(¢'), the result follows by i.h..
The proof is also direct if < is internal to q. The nontrivial
cases are those where <> overlaps N'(t') and g. The only
possible case is that a substitution commutes with the topmost
application via =q; (applied from right to left). There are two
cases:
(@) The substitution comes from t'. That is, N’ = (-) and ¢
has a substitution at its root. Then ¢’ must be a —1s,-redex

£v(N"(y)). This case is exactly as the base exponential
case 2(c)ii (read bottom-up).

ii. The substitution comes from N'. That is, N’ =
N"[y<w'] with = ¢ £v(N"(t')). The diagram is:

Nt y—w'][zq] —————0 N"(u)[y<w'][zq]

[ [
N"({t")Nyw'[zq]] -------- o N"(u)[y~w'[z<q]]

5. Inductive case 3: inside a hereditary head substitution N =
N'{z)[z+N"]. The situation is:

t=N'(z)[zN"{q)] = N'(z)[z=N"(¢)] = u



If < is internal to N'(z) the two steps clearly commutes. If diagram is:
<> is internal to N"'(g) we conclude using the i.h.. The remain-

ing cases are when < overlaps with the topmost constructor. N'(z)[x=N""(y)[y-L({v)]] ———o0 t1

Axiom by axiom:

(a) Commutation with the left of an application =a;. It must be = zf]
that N'(z) = N""{z)r with x ¢ £v(r). Then the two steps by ——mmmm - oL O ts
simply commute:

where
(N"(z)r) [z N"(q)] ————0 (N""(z)r)[z<N"(q')] tr:= N'(z)[a—L(N""(v)[y<v])],  (5)
Za =al ta:= N'(z)[a=N"(y)][y=L(v)],  (©
N""(z)[z+N"{(g)]r -------- o N""(z)[z<N"{¢')]r ts = L(N'(z)[z=N""(v)][y=v]). (D

(b) Commutation of independent substitutions =com . It must be B.5  Proofs for the LAM
that N'(x) = N""(z)[y«r] with = ¢ £v(r). Then the two Invariants, Lemma 6.3. By induction on the length of the execution
steps simply commute: leading to s, and straightforward inspection of the transition rules.

O

N"(z)[yr][z=N"(¢)] —ot
Distillation, Theorem 6.4. 1. Commutative 1. We have tu | ¢ |

=ai =a T —e ulel|f(t,e):m, and:
tg-------------- O t3
where tule|m = mle(tu)) =a mle(be(@) = ule|f(te)=m
t1:= N""(z)[y=r][z-=N"(d")], As before, we use that 7 is a right-to-left call-by-value evalua-

tion context, which enables us to use the =@ rule.

N "
b2 1= N z) [z N a)llyr], 2. Commutative 2. We have ¥ | e | f(f,€') =7 —¢, t] €|

ts == N""(z)[z=N"{¢)][y<r]. a(v,e) : m, and:
(c) Composition of substitutions =[.]. There are various sub-
cases vlelf(t,e):m = m(e(t)e(@) = t|e|a(v,e)unm
i. [x<N"(q)] enters in a substitution. Tt must be that
N'(x) = N1(y)[y+No(x)] with z ¢ £v(N1(y)). Then 3. Multiplicative. We have Az.T | e | a(c) =7 —, | [zec] =
the diagram is: e |, and:

Ni(y)[y=Na(z)][z<N"(q)] —o0 ta - i} _
Ax.tlela(e)=m = m(e(Ax.dt)e) —n w(e(t[zc]))

fo —mmmmm e O ts whichis equal to ¢ | [zc] = e | 7.

4. Exponential. Let e = € :: [z (f,e')] = e"”. We have z | ¢ |
T = t]e |, and:

ts := Ni{y)[y—Na(z)[z=N"(¢)]]. zle|m = mle(x)) —. m(e(("(D)[zt]))) =5 m(E(H))
ii. a substitution pops out of [x<N"{q)]. Two sub-cases: Note that by Lemma 6.3.3, t is an abstraction, and thus we are
A. The substitution comes from N''. Then N"{q) = able to apply —o.. Moreover, by Lemma 6.3.1, e binds variables
N""{q)[y+r]. The diagram is: to closures, and €'(f) is closed; this allows e” and e to be
garbage collected. For doing so, the =4, rule must be applied
N'(z)[z=N""{q)[y-r]] ————o t1 below a right-to-left call-by-value evaluation context, which

follows from Lemma 6.3.4.
Progress. Let s = ¢ | e | 7 be a commutative normal form s.t.
s —u. Iftis

=0

tg-------------- O3
* an application ww. Then a —, transition applies and s is not a
where commutative normal form, absurd.
ty = N'{(z) [z N""(¢"\[yr]], ) * an abstraction A\x.7u. Then s = m(e(Az.u)) is not in normal
, . form. There can only be a —y-redex, so = must be of the form
tz = N(x)[z=N"(q)][y<r], 3) 7((-)c). This implies there is a —, transition from s. O
ts = N'(z)[z=N""(¢"V][y<r]. 4) * a variable x. Then s = m(e(x)) is not in normal form. There

can only be a —.-redex, and it must involve z, thus e =
B. The substitution comes from q. Then N” = () and e’ (e"[x«<€ (v)]). This implies there is a — transition from
q is a mig-redex t' = N""(y)[y«<L(v)] and the 5.



B.6 Proofs for the MAM

Proof. Let < be the symmetric and contextual closure of the ~
rule by which =yv is defined. Note =yay is the reflexive—transitive
closure of <. It suffices to show that the property holds for <,
i.e. that w <>—o u implies w —o=yay u. The fact that <" is a
bisimulation then follows by induction on the number of < steps.

Let w < t — u. The proof of w —=ysu u© goes by induction
on the call-by-need context /N under which the —-redex in ¢ is
contracted. Note that since ¢; ~ t2 determines a bijection between
the redexes of ¢; and ¢», it suffices to check the cases when ~ is
applied from left to right (i.e. ¢ ~ w). For the right-to-left cases, all
diagrams can be considered from bottom to top.

* Base case, i.e. empty context N = (-). Two cases, depending
on the — step contracting a +>g4g Or a 15 redex:

1. Case t = L{A\z.t')u’ —a L{t'[r<u’]). There are no ~
redexes in t, since any application in ¢ must be either ¢
itself or below Ax, which is not a call-by-name evaluation
context.

2. Caset = N(x)[z<t'] =15 N(t')[z+t']. Any ~ redex must
be internal to N, in the sense that N = N'((N"u')[y«<w'])
with y ¢ £v(u'). Let N = N'(N"[y<w']u’). Then:

1s

N(z)[zet'] ——— N(t')[zt']

N@)laet] -~ === R(t') 2t

* Inductive case N = N’q. Since the application of <= must be
internal to N’, the result follows directly by i.A..

* Inductive case N = N'[x+q]. If the < step is internal to
N’, the result follows again by applying i.h.. The remaining
possibility is that N'(t) is an application. Here there are two
cases:

1. N' = (-), i.e. ~ interacts with a redex. The redex in ques-
tion must be a dB-redex, since it must have an application at
the root. The situation is the following, with = ¢ fv(u'):

dB

(L{Ay ") u') [zq]

L{My.t')[z—q]u'

2. N’ = N"t, i.e. there is no interaction between ~ and a
redex. This case is straightforward, since the contraction of
the — redex and the application of ~ are orthogonal. O

B.7 Proofs for the Split CEK
Split CEK Distillation, Theorem 7.7. Properties of the decoding:

1. Commutative 1. We havetu | e |m| D —c, t|e| (u,e) = 7|
D, and:
tule|w|D =

D(x(e(tw)) — =h

D(n(e(t) efm))) =
tle|(u,e)=m|D

2. Commutative 2. We have T | e | (t,e') s m | D >y t] e | €|
((v,e),m) = D, and:

vle|(t,e)un|D =

L{t'[y<u'])[z<q]

7777777777777 » L{t'[y«u'])[z—q]

3. Multiplicative. We have ¥ | e | € | (A\z.t,€'),m) = D =, t |
[z<(D,e)] =€ | 7| D, and:
vlele|((Mvte),m):D =
D(m(e((Azt)efv)))) —>m
D(z(e/(t[ze(v)]))) =

t|[z(v,e)] e || D
4. Exponential. We have x | e :: [z (T,e)] mez |7 | D —c 7|
e|n| D, and:

z|er s [z—(v,e)]mex || D =
D(n{es(er(z)[z—e@®])) e
D(m(ez(efer(v)[z0])))) =gc
D(x(e(v))) =

vle|w|D

We use that ¢(v) is closed by Lemma 7.6.1 to ensure that e1,
ez, and [x+7] can be garbage collected.

Progress. Let s = t | e | ™ be a commutative normal form s.t.

s —u. Iftis

* an application uw. Then a —., transition applies and s is not a
commutative normal form, absurd.
* an abstraction v. The decoding s = D(m(e(v))) must have
a multiplicative redex, because it must have a redex and v is
not a variable. So v is applied to something, i.e. there must be
at least one application node in D(m). Moreover, the stack
must be empty, otherwise there would be an administrative —,
transition, contradicting the hypothesis. So D is not empty. Let
D = ((w,e'),n") = D'. By point 3 of Lemma 7.6, u must be a
value, and a —,, transition applies.
a variable x. By point 1 of Lemma 7.6, x must be bound by e,
soe=ey : [z+(TU,e’)] = ez and a — transition applies.

O

B.8 Proofs for the Merged WAM
Distillation, Theorem 8.5. 1. Commutative 1. We have tw | 7 |
E —. t|a(u) 7| FE,and:
tu|m|E=E(x(tu))=t|a(u)=n|FE

2. Commutative 2. We have x | w | E1 == [zt] = FEa —¢, t |

h(E1,z) = 7| E2, and:
w|m|Bysfzct]= By = Ea(Bi(n(e))[zt]) =
t|h(E,z) =7 | B2

3. Multiplicative. We have Azt | a(u) = 7w | E »p ¢ | 7 |
[x<u] = E, and:

Neila@sn|B = B((eD)) -
E(n(t[z<u])) SLem.2.4
E(ﬂ(t)[fﬂeu]) =
t|m|[z<u] =

4. Exponential. We have T | h(E1,z) = 7w | B2 . 0% | 7| Eq =
[z<7v] = B2, and:

vl h(By,z) =7 | B = Ex(Ey(x(z))[z0]) —e
Ex(Eqy(n(v))[z<0]) =a
Q(&(ﬂ(va))[ﬂﬁ v]) =
v || By i [xeT] = Ea

Progress. Let s = t | m | E be a commutative normal form s.t.
s —u. Iftis



1.

2.

an application tw. Then a —., transition applies and s is not a
commutative normal form, absurd.

an abstraction v. The decoding s is of the form E(m(v)). The
stack 7 cannot be empty, since then s = E(v) would be normal.
So either the a — or a —,, transition applies.

. a variable x. By the global closure invariant, = is bound by

E. Then a —., transition applies and s is not a commutative
normal form, absurd. O

B.9 Proofs for the Pointing WAM

Pointing WAM Invariants, Lemma 9.3. By induction on the length
of the execution. Points 1 and 2 are by direct inspection of the rules.
Assuming E'L D, point 4 is immediate by induction on the length
of D.

Thus we are only left to check point 3. We use point 2, i.e. that

substitutions in £ bind pairwise distinct variables. Following we
show that transitions preserve the invariant:

1.

2.

Conmutative 1. We have:

tu|m|D|E—c t|lusn|D|E
Trivial, since the dump and the environment are the same and
(w=m)(t) = m(tw).

Conmutative 2. We have s —., s’ with:
s=xz|m|D|FE1:[zt]: Ea

s'=t|e|(x,m) = D|Ey = [ze0]: B

Note that since by i.h. (w{z), (F1 = [zt] : E2)1) is closed
and x is free in w(x), there cannot be any dumped substitutions
in Eo. Then (E1 :: [x«<t] = E2)1= E11: [x<t] = E2 and we
know:

(m{z), E11: [zt] = E2) is closed (8)
For 3a, note (E1 = [z+<0O] = E2) 1= E>. Then we must show
(t, E2) is closed, which is implied by (8).

For 3b, there are two cases:
* If the pair is (z, ), we must show
(zw{z), (E1 = [z+<0O] = E2)14) is closed, i.e.
(m(z), E11: [z<0O] :: E2) is closed
which is implied by (8).
* If the pair is (y, 7') in D, with y # z, note first that
(By = [zet] = B2)1y= E1lys [zt] = B
And similarly for (E; = [z<0O] = E2)1,. Moreover, by the
invariant on s we know
(z'(y), E1 1y [xt] = E2) is closed
and this implies
(z'{y), Ex1y: [x<0O] = E2) is closed
as required.
For 3c, we have already observed that E> has no dumped
substitutions. Then [z+0O] is the rightmost dumped substitution
in the environment of s’, while (z, ) is the leftmost pair in the

dump. We conclude by the fact that the invariant already holds
for s.

. Multiplicative, empty dump. We have s —,, s’ with:

s=Xzt|uunw|e|E

s=t|n|e|[zeu] = E
First note that, since the environment and the dump are dual in
s, there are no dumped substitutions in E.

For point 3a, we know that:

(zm{(A\x.t)u), E) is closed )
and we have to check:

(z(t), [x<u] = E) is closed

Lety € £v(z(t)). Then either y = x, which is bound by [z <],
or y € fv(m(Az.t)), in which case y is bound by E. Moreover,
since m is an application context, by (9) we get (u, E) is closed.

Points 3b and 3c are trivial since the dump is empty and the
environment has no dumped substitutions.

4. Multiplicative, non-empty dump. We have s -, s’ with:

s=dzt|uzn|(y,n")=D|FE = [ye0] = B

s'=t|7|(y, ") = D| Ey = [y<0] = [zeu] = Ba
Note first that since the invariant holds for s, we know [y«O]
is the rightmost dumped substitution in the environment of both
sand s'. Therefore (F1 = [y«<0O] = E3)1= Es
For proving point 3a, we have:
(m{(Az.t) ), E») is closed
and we must show:
(z(t), [x<u] = E2) is closed
The situation is exactly as in point 3a for the —,, transition,
empty dump case.

For point 3b, let (z,7'") be any pair in (y, ') :: D. Let also

P FEi1 ify==z
V71 E11.  otherwise

and note that (B = [y«0] = E)1y= Ef = [y«<0O] = E for any
environment E that contains no dumped substitutions. By the
invariant on s, we have that:

(z”{2), E1 = [y«0O] = E2) is closed
Moreover, from point 3a we know (, E>) is closed. Both im-
ply:
(z"(2), E1 = [y«<0O] = [z<u] = E2) is closed
as required.

For point 3c, just note that the substitution [z+<u] added to
the environment is not dumped, and so duality holds because
it holds for s by i.A..

. Exponential. We have s —. s’ with:

s=v|e|(x,m) =D | Fy:[z<0]: Ea

s =0 |7 |D|Eyu[z<0] By
First note that since the environment and the dump are dual in
s, we know E has no dumped substitutions.

For proving point 3a, by resorting to point 3a on the state s, for
which the invariant already holds, we have that:

(v, E2) is closed (10)

Moreover, by point 3b on s, specialized on the pair (z,7), we
also know:

(z{x), E11: [x<0] :: E2) is closed (11)
We must check that:
(z(v), B11: [x<D] = E2) is closed



Any free variable in 7(v®) is either free in 7, in which case
by (10) it must be bound by E; 1: [z«<O] :: Ea, or free in 7,
in which case by (10) it must be bound by F-. In both cases it
is bound by F1 1:: [z«<7] = Eq, as required. To conclude the
proof of point 3a, note that by combining (10) and (11) we get
Eq11: [z<v] = By is closed.

For proving point 3b, let (y,7') be a pair in D. Using that
x # y, by the invariant on s we know:
(z'{y), E11y: [x+0O] = E2) is closed
and this implies:
(r'(y), E11y: [z0] = E2) is closed
as wanted.

Point 3¢ is immediate, given that the environment and the dump
are already dual in s.

O

B.10 Proofs for Distillation is Complexity Preserving

Theorem 10.3. 1. LAM. As for the CEK, using the corresponding
subterm invariant and the following measure:

[a| + [w| if7="Ff(w,e)=n
[zl otherwise

#me\w):{

2. Split CEK. As for the CEK, using the corresponding subterm
invariant and the following measure:

[a] + [w| if7=(w,e)x=n
[a] otherwise

#(a|e|w|D>:z{



