
An Axiomatic Notion of Approximation
for Programming Languages and Machines

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

1 Introduction

1.1 Axiomatizing Approximations

In the last couple of decades, the idea that a programming language may
be approximated by means of a (multi)linear calculus has seen an increasing
number of applications. The original, and perhaps best known example is the
so-called Taylor expansion of the untyped λ-calculus by means of the resource
λ-calculus introduced by Ehrhard and Regnier [ER06, ER08], which has been
linked to the theory of non-idempotent intersection types by de Carvalho, who
further showed how this may be used to infer exact bounds on the running
time of the Krivine abstract machine [dC07, dC18].

The purpose of this note is to propose an axiomatization of the notion
of computational approximation, including the multilinear setup mentioned
above. The general idea is that an approximation relation t @ M between an
approximating object t and a computational object M should induce a sort
of “adjunction” between computations and approximated computations: for
every computational object M and approximation object u,

M evaluates to N such that u @ N
there exists t @ M such that t evaluates to u iff

or, diagrammatically,

u t // u

A iff A

M // N M

The intuition is simple: if we consider approximations as pieces of informa-
tion, and read t @ M as saying that M contains information t, an approxi-
mation relation ensures that a computational object M evaluates to something
containing a piece of information u iff an approximation of M evaluates to u
itself. Notice the resemblance with topological continuity here.

In many cases, such as de Carvalho’s results mentioned above, approxi-
mations have been used to study quantitative properties of computation. The

1

basic setting above may be endowed with additional structure in order to
make quantitative applications possible.

First, we assume that the computational system under consideration has
a set of “observable values”, which may be thought of as the results of com-
putations. Such observable values must themselves be approximations, and
are suitably behaved with respect to the approximation relation (in particular,
every value approximates itself).

Second, we assume that there is a set C whose elements may be seen at
the same time as “costs” of evaluations in the computational system and as
“weights” of approximations: each computation ρ : M→ N has a cost c1(ρ) ∈
C and each approximation u has a weight c0(u) ∈ C. Then, we require that
the fundamental “adjunction of approximations relates costs to weights: for
every computational object M, observable value v and c ∈ C,

ρ : M→ v and the cost of ρ is c
there exists t @ M such that t→ v and the weight of t is c iff

i.e., the cost of the evaluation of M may be read directly from a suitable ap-
proximation of it. The main intuition here is given by Boolean circuits and
Turing machines: the former approximate the latter, and the size of a circuit
approximating a machine M applied to an input w basically corresponds to
the running time of M on w.

1.2 Results and Perspectives

In the primordial example of approximation system (the Taylor expansion),
and in many that were introduced afterwards in the literature (such as [Maz17,
MPV18, CT20]), what is being approximated is a programming language. In
this note, we will show the usefulness of the axiomatic presentation by apply-
ing it to the case where the main computational system is not a programming
language but an abstract machine for executing a programming language, or
even a plain Turing machine. In a way, this is a generalization of what de
Carvalho did originally with the Krivine abstract machine.

In particular, we will show that, once suitably instantiated, our axiomati-
zation gives the following results:

Theorem A. Let M be a closed λ-term. The following are equivalent:

1. M evaluates to ∗ in l computational steps on the Krivine abstract machine;

2. there exists a linear approximation t @ M such that t →∗ ∗ and the number l
may be read directly from t (it is essentially its size).

Theorem B. Let M be a closed λ-term. The following are equivalent:

1. M evaluates to ∗ in l steps and using space m (for a suitable measure of space)
on the interaction abstract machine;

2. there exists a simply-typed linear polyadic t @ M such that t →∗ ∗ and the
numbers l and m may be read directly from t (more precisely, from the types of
its subterms).

2

A precise formulation of Theorem A and Theorem B is given in Theorem 18
and Theorem 33 below, respectively. In the formal statements, we addition-
ally use the bridge between approximations and intersection types drawn in
[MPV18] to rephrase our results in terms of intersection type systems, which
is a useful viewpoint.

The above results are only partially new: Theorem A is proved and re-
proved in [ER06, dC07, ADLV21]. The part of Theorem B concerning the
execution length (i.e., the number l) was proved in [ADLV21]. The part of
Theorem B concerning space is new, although Accattoli, Dal Lago and Vanoni
independently developed a proof of the same result,1 discovering the idea
of using non-associative intersection types (which we call “polyadic types”
here). Nevertheless, we think that it is worth reproducing these results under
the general perspective of approximation systems.

Additionally, we show how axiomatic approximations instantiate to the
already mentioned case of Turing machines and Boolean circuits. From this,
we reformulate the proofs of three classic results from complexity theory:

1. NP-completeness of sat;

2. P-completeness of circuit value;

3. P has uniform polysize Boolean circuits.

It is well known that these may all be seen as different “avatars” of a single
result, which we could call the Cook-Levin theorem, albeit usually one refers
only to (1) by that name.

On the negative side, we must say that the current axiomatization is far
from being satisfactory: it is admittedly rather trivial and the general theorems
(the various versions of Theorem 2) are not very deep at all. It does, however,
have the virtue of encompassing many useful cases, as this note will hopefully
show.

It is important to emphasize that, although all approximations discussed in
this note are linear (in the computational sense of linear logic), our axiomatiza-
tion of approximation system and the concept of approximation itself is much
more general, as showcased by the framework developed in [Maz17, MPV18].
A more thorough understanding of this general notion and of its deep origins
is definitely a topic for further investigations, which we feel to be the right
path to finding a better, less superficial formulation of approximation system.

Finally, let us stress that, albeit useful, the categorical language we employ
is by no means necessary to state and, even more so, to prove the results of this
note. At the expense of less conceptual (and perhaps slightly more verbose)
definitions, everything we do here may be presented without ever mentioning
the words “category” or “functor”.

2 Approximation Systems

In many cases, a computational system (machine / calculus / programming
language) induces a (directed, multi)graph, whose nodes are states / terms /

1An ongoing work at the time of writing.

3

programs and whose edges are elementary transitions / rewrites / computa-
tions. It will be convenient to consider the free category generated by such a
graph. So, more generally, let us identify a computational system with a small
category.

The reason why a category is better than a graph is that functors are more
general than graph homomorphisms, and we need this extra generality for
the following notion. Let us define a protofibration as a functor between small
categories

E
p
��
B

such that, for every object e′ of E and for every arrow f : b→ p(e′) of B, there
exists an arrow g : e → e′ such that p(g) = f (one usually says that the arrow
f is “lifted” to g). Dually, a proto-opfibration is a functor p as above such that,
whenever e ∈ E and f : p(e) → b′ is an arrow of B, there exists an arrow
g : e → e′ in E such that p(g) = f . If, in the above definitions, existentials are
unique, we obtain the standard notion of discrete (op)fibration.

Definition 1 (approximation system) An approximation system is a span of
functors

Apx
p1

}}

p2

""
L M

where p1 is a proto-opfibration and p2 is a protofibration.

Given an approximation system as above and t ∈ L, M ∈ M, we write
t @ M (or, sometimes, M A t) if there exists an element a ∈ Apx such that
p1(a) = t and p2(a) = M. In fact, it will be convenient to write t @ M for the
object a of Apx itself, even though such an a is not necessarily unique. With
this notation in place, the following is a straightforward consequence of the
definition:

Theorem 2 (approximation theorem) Let L p1← Apx
p2→M be an approximation

system. Then, for any u ∈ L and M ∈ M, the following are equivalent:

1. there exists N A u and an arrow M→ N inM;

2. there exists t @ M and an arrow t→ u in L.

Proof. The proof is immediate, but let us give it anyway. Fix an object u of L
and an object M ofM.

(1)⇒(2): let N ∈ M be such that u @ N and such that there exists an
arrow f : M→ N inM. Since p2 is a protofibration, we may lift f to an arrow
g : (t @ M)→ (u @ N) for some t ∈ L, from which, by functoriality of p1, we
infer the existence of p1(g) : t→ u.

(2)⇒(1): let t ∈ L be such that t @ M and suppose that there is an arrow h :
t→ u in L. Since p1 is a proto-opfibration, there exists g : (t @ M)→ (u @ N)

4

for some N ∈ M and by functoriality of p2 we get an arrow p2(g) : M → N
inM. �

2.1 Böhm Approximation Systems

Let us say that an object N of a small category M is normal if, whenever
f : N → N′ is an arrow of M, we have that N′ = N and f = idN . Given an
object M ofM, we write

NF(M) := {N ∈ M | N is normal and there is an arrow M→ N}.

We extend the notation to sets of objects by setting NF(A) :=
⋃

M∈A NF(M).
Given an approximation system L ← A → M and M ∈ M, we may

define the following two sets:

T (M) := {t ∈ L | t @ M},
B(M) := {u ∈ L | u is normal, there is arrow M→ N and u @ N}.

Theorem 3 For every approximation system L ← A →M and M ∈ M,

NF(T (M)) = B(M).

Proof. By definition, u ∈ NF(T (M)) iff there exists t @ M and an arrow
t → u; by Theorem 2, this is equivalent to the existence of N A u and an
arrow M→ N; this, in turn is equivalent to u ∈ B(M) by definition. �

In the following, we will say that M is confluent if, whenever we have a
span of arrows N1 ← M → N2 in M with N1 6= N2, there is a cospan of
arrows N1 → M′ ← N2 inM.

Definition 4 (Böhm approximation system) A Böhm approximation system

is an approximation system L p1← A p2→M in which:

1. M is confluent;

2. p2 is conservative (for every morphism g of A, p2(g) is an identity iff g is an
identity);

3. p2 admits oplifts of normal approximations: for every a ∈ A such that p1(a) is
normal, every arrow f : p2(a) → M admits an oplifting g : a → b such that
p2(g) = f .

Proposition 5 Let L p1← A p2→M be a Böhm approximation system.

1. Whenever there is an arrow M→ N inM, we have B(M) = B(N).

2. Whenever N is normal, B(N) = T (N).

Proof. (1) That B(N) ⊆ B(M) is immediate. For the converse, let u ∈ B(M).
By definition, u is normal and u @ N′ such that there is an arrow M → N′.

If N′ = N, we are done. Otherwise, by confluence, we have a cospan N′
f→

5

M′ ← N. Now, since u is normal, the arrow f may be oplifted to an arrow
g of A such that p1(g) : u → u′ with u′ @ M. But, again, u is normal, so by
definition p1(g) = idu and u′ = u, which implies that u ∈ B(N), as desired.

(2) Since N is normal, we immediately have B(N) ⊆ T (N). For the con-
verse, by definition u ∈ T (N) means u @ N; if we show that u is normal, we
may conclude, because in that case we certainly have u ∈ B(N) by definition.
Let h : u→ u′ be an arrow of L. Since p1 is a proto-opfibration, we may oplift
it to an arrow g of A, which induces an arrow p2(g) : N → N′. Now, since
N is normal, by definition p2(g) = idN , which by conservativity of p2 implies
that g is an identity; but g is an oplift of h, so p1(g) = h, so h too is an identity
and u is indeed normal. �

If we take the original multilinear approximation system based on the Tay-
lor expansion [ER06, ER08] as a guideline, we may make the following infor-
mal identifications:

T (M) = “the support of the Taylor expansion of M”,

B(M) = “the support of the Taylor expansion of the Böhm tree of M”.

In §3.2 we will see how the axiomatization may be instantiated so that this
is literally true, but in general this is only an intuition, because our setting is
too abstract to offer a meaningful definition of Taylor expansion or Böhm tree.
Nevertheless, a Böhm approximation system guarantees that these notions
behave as expected: B(M) is an invariant of computation (Proposition 5.1),
and, on normal forms, “fictitious Böhm trees” behave like real Böhm trees, in
the sense that they are trivial (the Böhm tree of a normal λ-term N is N itself,
which is the claim of Proposition 5.2).

Moreover, Theorem 3, which is valid even in non-Böhm approximation
systems, tells us that “the support of the Taylor expansion of the Böhm tree of
M” may be computed by taking the normal forms of “the support of the Taylor
expansion of M”. The acquainted reader will recognize here a generalized
form of an important result of [ER06, ER08] (we will expand on this in §3.2).

2.2 Values

Computational systems usually come with special states / terms / programs
representing results of computations. We may incorporate this into approxi-
mation systems by slightly modifying the definition:

Definition 6 (approximation system with observable values) Let us say that
a computational context is a small category together with a distinguished set of
objects, called observable values.

A (Böhm) approximation system with observable values is a (Böhm) approx-
imation system L p1← Apx

p2→ M in which L and M are computational contexts
whose observable values are in bijection (which we will abusively but without loss of
generality assume to be the identity), such that, for every observable value v, we have
v @ v and, for any M ∈ M, v @ M implies M = v.

6

The intuition behind the two additional conditions of Definition 6 with
respect to Definition 1 is that observable values are “finite”, in that they ap-
proximate themselves, and, moreover, they represent “complete” information
to which nothing may be added: if a state/term/program contains an observ-
able value, then it must coincide with it.

In presence of observable values, Theorem 2 may be restated in a slightly
more compact form (although of course the original form still holds):

Theorem 7 (approximation theorem, with values) Let L p1← Apx
p2→ M be an

approximation system with observable values. Then, for any observable value v and
M ∈ M, the following are equivalent:

1. there is an arrow M→ v inM;

2. there exists t @ M and an arrow t→ v in L.

So an approximation system with observable values ensures that a state /
term / program has an observable value iff an approximation of it has that
value.

2.3 Quantitative Information

In a sense, the above axiomatizations of approximation system are purely
qualitative. However, the results that are truly of interest to us (and that will
be derived in this note) are quantitative. To this end, we equip approximation
systems with a little more structure.

Below, given a small category C, we denote by C0 and C1 its set of objects
and arrows, respectively.

Definition 8 (quantitative approximation system) A quantitative (Böhm) ap-
proximation system is a (Böhm) approximation system with observable values
L p1←− A p2−→M together with two cost functions

L0

c0

M1

c1~~
C

where C is an arbitrary set of costs, such that, for every arrow g : a → b of A such
that p2(b) is an observable value, we have c0(p1(a)) = c1(p2(g)).

In the quantitative case, approximation systems ensure that a state / term
/ program M evaluates to an observable value v with cost c iff there exists an
approximation t of M evaluating to v and, moreover, the cost c may be read
directly from t. This is formalized by the following variant of Theorem 2, the
proof of which is just as immediate:

Theorem 9 (quantitative approximation theorem) Let L ←− A −→ M and
L0

c0−→ C
c1←− M1 form a quantitative approximation system. Then, for every

observable value v, M ∈ M and cost c ∈ C, the following are equivalent:

1. there is an arrow f : M→ v such that c1(f) = c;

2. there exists t @ M and an arrow h : t→ v such that c0(t) = c.

7

3 The Original Example

3.1 The Lambda-Calculus

We consider the untyped λ-calculus with a constant ∗, representing the
generic result of computations:

M, N, P, Q ::= x | λx.M | MN | ∗.

We write fv(M) for the set of free variables of M and we denote by M{N/x}
the capture-free substitution of N to every free occurrence of x in M. We
write C for one-hole contexts, i.e., terms containing exactly one occurrence of
a special variable {·}, called hole, and we denote by C{M} the term resulting
from plugging M into the hole of C (as usual, this may capture free variables
of M).

The applicative depth of a context C is the number of nested arguments of
applications under which the hole is found. Inductively:

• the applicative depth of {·} is 0;

• if the applicative depth of C is n, then the applicative depth of any im-
mediately larger context is still n except for the case MC, in which it is
n + 1.

Given a context λx.C respecting Barendregt’s convention (i.e., no variable
appears both free and bound and every binder binds a different variable), its
index is defined to be the positive integer i + 1 such that i is the number of
occurrences of the variable x appearing to the left of the hole in C.

Terms are evaluated by means of the standard β-rule:

(λx.M)N → M{N/x}.

We define closed reduction to be reduction restricted to β-rules as the above in
which N is closed.

We denote by Λ (resp. Λ•) the free category on the graph whose nodes are
(closed) λ-terms and whose edges are (closed) one-step reductions. We turn
Λ• into a computational context by letting ∗ be the only observable value.

3.2 The Taylor Expansion

The purpose of this section is to show how the original notion of (multi-
linear) approximation given by resource λ-terms and the Taylor expansion
[ER06, ER06] fits within our axiomatization. It is intended for readers already
familiar with the topic. The uninterested reader may safely skip this section
and resume with §4, where the definitions are spelled out in detail.

Let R be the category whose objects are resource λ-terms (including ∗)
and whose arrows from t to u are reductions t →∗ u + S for some sum of
terms S. Composition is as follows: if ρ : t → t′ and ρ′ : t′ → t′′, by definition
there are reductions t →∗ t′ + S′ and t′ →∗ t′′ + S′′; these may be composed
into a reduction t →∗ t′′ + S′ + S′′, which we take to be the witness of the
arrow ρ′ ◦ ρ.

8

Let now T ay be the category whose objects are pairs t @ M such that M
is a λ-term and t is in the support of the Taylor expansion of M as defined in
[ER08], and such that an arrow (t @ M) → (t′ @ M′) is a pair of reductions
ξ : t →∗ t′ + S and ρ : M →∗ M′ such that ξ “follows” ρ (in the intuitive
sense).

Lemma 10 The two obvious projection functors

T ay
p1

}}

p2

!!
R Λ

form a Böhm approximation system.

This is arguably the “original” approximation system. In this setting, The-
orem 3 takes the form of a particularly important statement, namely that the
support of the Taylor expansion commutes with taking normal forms, a result
first established by Ehrhard and Regnier [ER06, ER08]. In the λ-calculus, the
“normal form” of a term M should be understood in the generalized sense of
taking the Böhm tree of M, which we denote by BT(M). Below, we denote
by T (BT(M)) the support of the Taylor expansion of the Böhm tree of M, as
defined in [ER08].

Lemma 11 For every λ-term M, T (BT(M)) = B(M).

Proof. The equality is basically by definition of Taylor expansion of a Böhm
tree. First, let’s consider the case in which M has no head normal form, which
means that BT(M) = ⊥ and T (BT(M)) = ∅. It is easy to see that, if P is not
a head normal form and w @ P, then w is not normal, therefore B(M) = ∅ as
well. So, in what follows, we suppose that the Böhm tree of M is not ⊥.

If u ∈ T (BT(M)), then u @ N for some “Böhm approximation” N of M,
i.e., N is a finite portion of BT(M) where some subtrees (always arguments
of applications) are replaced by ⊥, and occurrences of ⊥ are approximated
by empty multisets in u. But this means, on the one hand, that u is normal,
and, on the other hand, that M →∗ N′ such that N may be obtained from
N′ by substituting some subterms (always arguments of applications) with ⊥,
which implies that u @ N′, so u ∈ B(M) by definition.

For the converse, u ∈ B(M) means that u is normal and u @ N such
that M →∗ N. Since u is normal, we certainly have u ∈ T (BT(N)), but
BT(N) = BT(M), and we conclude. �

Theorem 12 ([ER06, ER08]) For every λ-term M, NF(T (M)) = T (BT(M)).

Proof. An instance of Theorem 3, modulo Lemma 11. �

To be fair, Theorem 12 is a slightly weakened form of Ehrhard and Reg-
nier’s Theorem 2 from [ER06]: indeed, Theorem 12 may be restated as
“u ∈ T (BT(M)) iff there exists t ∈ T (M) such that t →∗ u + S”, and
Ehrhard and Regnier additionally prove that, if it exists, such a t is unique.

9

This uniqueness is related to the fact that the functor p2 above is a discrete fi-
bration, but that property alone is not enough, in our current axiomatization,
to fully obtain Theorem 2 of [ER06].

More importantly, we must mention that a large part of [ER08] is in fact
devoted to accounting for the coefficients appearing in the Taylor expansion,
whereas here we merely account for its support. We ignore whether it is pos-
sible to define an approximation system including coefficients in R and T ay
and reflecting more faithfully Ehrhard and Regnier’s result. If it is, proving
that it is indeed an approximation system would certainly be more delicate.

While we are at it, let us mention the connection with non-idempotent
intersection types discovered by de Carvalho. Borrowing Accattoli’s terminol-
ogy, resource λ-terms may be typed with multitypes

A, B ::= α | [A1, . . . , An](B,

where α ranges over a set of base types and [A1, . . . , An] is the multiset con-
taining A1, . . . , An. The typing judgments are of the form Γ ` t : A where t is
a resource λ-term, A a multitype and Γ a list, permutable at will, of declara-
tion of the form x : µ where µ is a non-empty multiset of multitypes and, as
usual, Γ contains at most one declaration per variable. The typing rules are as
follows:

x : [A] ` x : A
Γ, x : [A1, . . . , An] ` t : B

Γ ` λx.t : [A1, . . . , An](B
Γ ` t : B

Γ ` λx.t : [](B
x 6∈ Γ

Γ ` t : [A1, . . . , An](B ∆1 ` u1 : A1 . . . ∆n ` un : An

Γ + ∑n
i=1 ∆i ` t[u1, . . . , un] : B

where the context Γ+∑n
i=1 ∆i is defined as follows. First, let X be the set of all

variables declared in at least one of Γ, ∆1, . . . , ∆n. We define µΓ
x (resp. µ

∆i
x with

1 ≤ i ≤ n) to be the multiset µ if x : µ appears in Γ (resp. ∆i), or the empty
multiset otherwise. Then, for each x ∈ X, we set µx = µΓ

x + ∑n
i=1 µ

∆i
x , where

+ denotes multiset sum, and define Γ + ∑n
i=1 ∆i to contain the declarations

x : µx for all x ∈ X.
The above type system is Curry-style, but of course we may consider

Church-style typed resource λ-terms by writing the type annotations directly
inside the terms. We may then define the categories

• Rtyped, whose objects are Church-style typed resource λ-terms and ar-
rows are just like in R (reduction preserves types);

• T aytyped, which is defined just like T ay but on objects t @ M such that
t is a Church-style typed resource λ-term.

We then have the following:

Lemma 13 The two obvious projection functors

T aytyped
p1

yy

p2

##
Rtyped Λ

10

form a Böhm approximation system in which, moreover, p2 is both a proto-opfibration
and a discrete fibration.

Now, a proper formulation of the link between Lemma 13 and non-
idempotent intersection types requires a 2-categorical framework like the one
employed in [MPV18], but let us try and give the idea: in the spirit of Melliès
and Zeilberger’s “functors are type systems” viewpoint [MZ15], the functor
p2 may be seen as a type system for the λ-calculus. In this system, the type
derivations of a judgment Γ ` M : A are objects δ of T aytyped such that
p2(δ) = M and p1(δ) is a Church-style resource λ-term term Γ ` t : A. In par-
ticular, the types of the system are just multitypes. Moreover, by definition we
have t @ M, and the inductive definition of the approximation relation (which
we did not give here but which may be found e.g. in [ER06, ER08]) matches the
rules for assigning multitypes to resource λ-terms, so the type system results
from superposing the two definitions, and is exactly de Carvalho’s “system
R” [dC07].

A variant of such a non-idempotent intersection type system had in
fact been introduced earlier by Gardner [Gar94] (and also discussed by
Kfoury [Kfo00]), the difference being that it was not based on multitypes as
defined above, but on types in which, instead of multisets, one uses sequences.
Gardner’s system allows one to permute the elements of the sequences at will,
so it is in fact equivalent to System R (which de Carvalho introduced indepen-
dently). We will define this sequence-based system in detail in §4.4.

Some properties of this type system may be deduced directly from the
axiomatic setting. For example, the fact that p2 is a proto-bifibration hints
to the type system enjoying subject reduction and subject expansion, albeit,
strictly speaking, such properties are not provable in our present axiomatiza-
tion because types do not appear explicitly (we would need a 2-categorical
formulation for that). Subject reduction and subject expansion tell us that the
set of types assigned to a λ-term is an invariant of β-reduction. Indeed, the
type system coming from Lemma 13 is just a way of defining the so-called
relational semantics of the λ-calculus, and was in fact de Carvalho’s original
motivation for his system R (“R” stands for “relational”).

4 Approximating the Milner Abstract Machine

4.1 The Milner Abstract Machine

An assignment is an object of the form [e := M] where x is a variable and M a
λ-term not containing x free. We say that x is declared by the assignment.

A state of the Milner abstract machine (MAM) is a triple

M | S | E

where M is a λ-term, S is a stack of λ-terms and E, which is referred to as the
environment, is a stack of assignments. We will assume that all terms appearing
in a state respect Barendregt’s convention, and that the state as whole respects
the convention, with variables declared in environments behaving like bound
variables. We may also assume the following closure constraints:

11

x S E′[x := M]E′′ →v Mα S E′[x := M]E′′

MN S E →a M N · S E
λx.M N · S E →l M S [x := N]E
∗ · E′[x := N]E′′ →gc ∗ · E′E′′

Figure 1: Transitions of the MAM. The notation Mα means an α-renaming of
M using fresh variables (i.e., variables not appearing in the previous state).

• the free variables of M and of all terms appearing in S are declared in E;

• if E = E′[x := N]E′′, then the free variables of N are declared in E′′.

The transitions of the MAM are given in Fig. 1. It is easy to check that the
transitions preserve the above closure constraints. A state is initial if it is of
the form M | · | · with M closed (and respecting Barendregt’s convention). A
state is reachable if it results from a finite number of transitions from an initial
state.

We defineMAM to be the free category on the graph such that:

• its nodes are reachable MAM states;

• its edges are single transitions.

We turnMAM into a computational context by declaring the state ∗ | · | · to
be the only observable value.

4.2 The Delayed Substitution Calculus

Terms of the delayed substitution calculus are defined as follows:

t, u, w ::= x | λ〈x1, . . . , xn〉.t | t〈u1, . . . , un〉 | t[〈x1, . . . , xn〉 := 〈u1, . . . , um〉] | ∗,

where we require variables to appear linearly. The notation t[〈x1, . . . , xn〉 :=
〈u1, . . . , um〉] is an explicit substitution and binds x1, . . . , xn in t. We use bold
metavariables for sequences of metavariables, i.e., x and t stand for x1, . . . , xn
and t1, . . . , tn, with the number n left unspecified. We will further abbreviate
λ〈x〉.t, t〈u〉 and t[〈x〉 := 〈t〉] into λx.t, tu and t[x := u], respectively.

The definition of reduction follows the “at a distance” approach: first, we
introduce substitution contexts

[−] ::= {·} | [−][x := u],

and we write t[−] for [−]{t}; then, the basic reduction rules are:

(λx.t)[−]u →db t[x := u][−],
t[〈x, x〉 := 〈u, u〉[−]] →ls t{u/x}[x := u][−],

t[〈〉 := 〈〉[−]] →gc t[−].

12

y @ x ` y @ x
Ξ, x1 @ x, . . . , xn @ x ` t @ M

Ξ ` λ〈x1, . . . , xn〉.t @ λx.M

Ξ ` t @ M Υ1 ` u1 @ N . . . Υn ` un @ N
Ξ, Υ1, . . . , Υn ` t〈u1, . . . , un〉 @ MN ` ∗ @ ∗

(a) Approximating terms.

` {·} @ ·
u1 @ N . . . un @ N Ξ ` [−] @ E

Ξ, x1 @ x, . . . , xn @ x ` {·}[〈x1, . . . , xn〉 := 〈u1, . . . , un〉][−] @ [x := N]E

(b) Approximating environments. The second rule uses the approximation relation
introduced in Fig. 2a, without specifying the contexts, which are irrelevant (under the
closure assumption, the variables declared therein will be also declared in Ξ).

Ξ ` w @ MN1 · · ·Nn Ξ ` [−] @ E
w[−] @ M | N1 · · ·Nn | E

(c) Approximating states. The left premise uses the relation introduced in Fig. 2a,
whereas the right premise uses the relation introduced in Fig. 2b.

Figure 2: Linear polyadic approximations for the MAM.

We also define structural congruence by means of the following rule:

t[x := u]w ≡ tw[x := u],

where we ask that none of the variables in x is free in w. It is well known
(see e.g. [ABM14]) that ≡ is a bisimulation, in the sense that t→x u and t′ ≡ t
implies t′ →x u′ such that u′ ≡ u.

We let DelSub• be the free category on the graph such that:

• its nodes are closed terms of the delayed substitution calculus;

• its edges are either one-step reductions or structural equivalences.

We turn DelSub• into a computational context by letting ∗ be the only observ-
able value.

4.3 Linear Approximations for the MAM

We define the approximation relation @ between terms of the delayed substi-
tution calculus and states of the MAM in Fig. 2. From this, we approximate
transitions with reductions, as follows. The general definition will have the
shape

t
ξ // u

A A

U
σ

// V

13

which means that we are declaring reduction ξ to approximate transition σ,
as long as t @ U holds:

• if σ is U →v V, then ξ is a reduction of the form

xu1 · · · un[−][〈x, y〉 := 〈v, w〉][−]′ → vu1 · · · un[−][y := w][−]′.

• If σ is U →a V, then ξ is the empty reduction.

• If σ is U →l V, then ξ is a reduction of the form

(λx.t)uu1 · · · un[−] → t[x := u]u1 · · · un[−].

• If σ is U →gc V, then ξ is the reduction

∗[−][〈〉 := 〈〉][−]′ → ∗[−][−]′.

Notice that if ξ : t→∗ u, σ : U →x V and ξ @ σ, then u @ V except when
x = l, in which case we have u ≡@ V. This observation allows to com-
positionally approximate sequences of MAM transitions with alternations of
reductions and structural equivalence relations in the delayed substitution cal-
culus: if ρ = σ1 · · · σn is a sequence of MAM transitions, we write ξ @ ρ just
if ξ = (ξ1≡) · · · (ξn≡) such that ξi @ σi for all 1 ≤ i ≤ n. Such alternations
of reductions and structural equivalence are arrows of DelSub•, so we may
define a category ApxMAM as follows:

• its objects are pairs t @ U where t is a closed term of the delayed substi-
tution calculus and U a reachable state of the MAM;

• its arrows (t @ U)→ (t′ @ U′) are pairs consisting of an arrow ξ : t→ t′

of DelSub• and a sequence of transitions ρ : U →∗ U′ such that ξ @ ρ;

• composition is concatenation.

It is now straightforward to check the following:

Lemma 14 The span

ApxMAM
p1

xx

p2

&&
DelSub• MAM

induced by the two obvious projection functors is a Böhm approximation system with
observable values (which, we recall, are ∗ for DelSub• and ∗ | · | · forMAM).

4.4 Non-Idempotent Intersection Types

As shown in [MPV18], Fig. 2a is the basis of the standard idempotent in-
tersection type system first introduced by Gardner [Gar94] and de Car-
valho [dC07, dC18], whose derivations are given in Fig. 3.

14

`∗ ∗ : unit xi : A `xi x : A
Γ, xi1 : A1, . . . , xin : An `t M : B

Γ `λ〈xi1
,...,xin 〉.t λx.M : A1 ∧ · · · ∧ An → B

Γ `t M : A1 ∧ · · · ∧ An → B ∆1 `u1 N : A1 . . . ∆n `un N : An

Γ, ∆1, . . . , ∆n `t〈u1,...,un〉 MN : B

Figure 3: Non-idempotent intersection types, decorated with the underlying
linear approximation. In the abstraction rule, we ask that xi does not appear
in Γ for any i.

The types of the system are given by

A, B ::= unit | A1 ∧ · · · ∧ An → B.

In the arrow type, the case n = 0 is allowed and written > → B. Type
judgments are of the form Γ ` M : A where Γ is a finite set (finite repetition-
free list permutable at will) of declarations of the form xi : B, where x is a free
variable of M and i ∈ N. Observe that it is not required that all free variables
of M be declared in Γ. Indeed, in the abstraction rule we may have n = 0, in
which case λx.M gets type > → B.

If we change ∧ to ⊗ and→ to(, we see that intersection types are isomor-
phic to a subset of multiplicative linear logic formulas, with which delayed
substitution terms may be typed in the standard way. Modulo this isomor-
phism, we have:

Proposition 15 ([MPV18]) A type derivation Γ ` M : A in non-idempotent inter-
section types is the same thing as an approximation t @ M such that Γ ` t : A.

The approximation corresponding to the derivation is given as the gray anno-
tation in Fig. 3.

Notice that explicit substitutions are not used in (terms corresponding to)
intersection type derivations. However, they are needed to properly approxi-
mate the MAM.

4.5 Time Complexity of the MAM

Lemma 16 Let ρ : U0 →x1 U1 →x2 · · · →xn Un be a sequence of MAM transitions.
Then, ξ @ ρ implies that ξ = ξ1ξ2 · · · ξn and, for all 1 ≤ i ≤ n:

• if xi = v, then ξi is→ls;

• if xi = a, then ξi is =;

• if xi = l, then ξi is→db≡;

• if xi = gc, then ξi is→gc.

15

Proof. Immediate from the definitions. �

We define three measures on terms of the delayed substitution calculus,
with x ∈ {λ, @, s}:

‖x‖x := 0

‖λx.t‖x := ‖t‖x + lx

‖t〈u1, . . . , un〉‖x := ax + ‖t‖x +
n

∑
i=1
‖ui‖x

‖t[x := 〈u1, . . . , un〉]‖x := ax + ‖t‖x +
n

∑
i=1
‖ui‖x

where lx and ax are defined as follows:

• lλ := 1 and aλ := 0;

• l@ := 0 and a@ := 1;

• ls := 0 and as := n.

In other words, ‖t‖λ, ‖t‖@ and ‖t‖s are the number of λ’s, the number of
sequences and the total length of sequences in t, respectively.

Lemma 17 (quantitative approximation system for the MAM) Let c0 be the
function from closed terms of the delayed substitution calculus to N3 defined by

c0(t) := (‖t‖λ, ‖t‖s, ‖t‖@).

Let c1 be the function from sequences of transitions of the MAM to N3 defined by

c1(ρ) := (l, v, g)

where l, v and g are the number of transitions of ρ of type l, v and gc, respectively.
With these cost functions, the span of Lemma 14 is a quantitative Böhm approximation
system.

Proof. Given ϕ : (t @ U) → (∗ @ ∗ | · | ·), we need to show that c0(t) =
c1(p2(ϕ)). By definition, the latter is a triple (l, v, g) such that l, v and g are
the number of l-, v- and gc-transitions in the execution p2(ϕ) : U →∗ ∗ | · | ·
of the MAM. Since, by definition p1(ϕ) @ p2(ϕ), by Lemma 16 we have that
the arrow p1(ϕ) : t→ ∗ is a composition of exactly l instances of →db≡, v
instances of →ls and g instances of →gc. By inspection, we may now check
that, for any delayed substitution term u such that u→x u′, we have:

• if x = db, then ‖u‖λ = ‖u′‖λ + 1, ‖u‖s = ‖u′‖s and ‖u‖@ = ‖u′‖@;

• if x = ls, then ‖u‖λ = ‖u′‖λ, ‖u‖s = ‖u′‖s + 1 and ‖u‖@ = ‖u′‖@;

• if x = db, then ‖u‖λ = ‖u′‖λ, ‖u‖s = ‖u′‖s and ‖u‖@ = ‖u′‖@ + 1.

16

Moreover, still by inspection, we have that u ≡ u′ implies ‖u‖λ = ‖u′‖λ,
‖u‖s = ‖u′‖s and ‖u‖@ = ‖u′‖@. Therefore, since c0(∗) = (0, 0, 0), we must
have c0(t) = (l, v, g), as desired. �

We may now prove a slightly refined version (from the quantitative view-
point) of the results of [ER06] and [dC07, dC18]:2

Theorem 18 Let M be a closed λ-term. The following are equivalent:

1. M | · | · →∗ ∗ | · | · on the MAM and the number of l-transitions, v-
transitions and gc-transitions is l, v and g, respectively;

2. there exists t @ M such that t→∗ ∗ and ‖t‖λ = l, ‖t‖s = v and ‖t‖@ = g;

3. there is a non-idempotent intersection type derivation of ` M : unit such that
the number of abstraction rules, the sum of the arities of application rules, and
the number of application rules are l, v and g, respectively.

Proof. The equivalence between (1) and (2) is an instance of Theorem 9, via
Lemma 17. The equivalence between (2) and (3) is Proposition 15, modulo
the observation that terms underlying intersection types derivations do not
contain explicit substitutions, hence sequences only appear as arguments of
applications and the measures ‖ · ‖s and ‖ · ‖@ therefore count the total arities
of applications and the number of applications, respectively. �

Transitions of type a of the MAM are not accounted for by approxima-
tions/intersection types. From the complexity viewpoint, this is not an issue,
because of the following quantitative result from [AB17], refining a result in
[ABM14] and stating that the number of a transitions is linearly related to the
number of other transitions:

Lemma 19 For every execution of the MAM starting from a state of the form M | ε |
ε with M closed and consisting of a, l and v transitions of type a, l and v, respectively,
we have a = O((|M|+ 1)(l + v)).

5 Approximating the Interaction Abstract Machine

5.1 The Interaction Abstract Machine

An exponential signature, which we generically denote by σ, is a finite non-
empty ordered tree (in the sense that the children of a node are linearly
ordered) whose nodes are labelled by positive integers. We write σ =
i〈σ1, . . . , σk〉 to denote an exponential signature whose root is labelled by i
and whose immediate subtrees are σ1, . . . , σk, in that order. We denote by Σ
the set of exponential signatures.

A multiplicative (resp. exponential) stack is a finite sequence over {q, ∗} ∪ Σ
(resp. Σ). We denote by |S| the length of a stack S and by α · S the stack
obtained by adjoining the symbol α to S.

2Those papers actually talk about the KAM (Krivine abstract machine), but it is well known
that the executions of the KAM and MAM on any closed term are isomorphic [ABM14].

17

N x C{λx.C′} S σ1 · · · σk · B ↔ Hλx.C′{x} C i〈σ1, . . . , σk〉 · S B
Nλx.M C q · S B ↔ NM C{λx.{·}} S B
NMN C S B ↔ NM C{{·}N} q · S B
HN C{M{·}} S σ · B ↔ NM C{{·}N} σ · S B
N ∗ C q · S B ↔ H ∗ C ∗ · S B

Figure 4: The transitions of the IAM. In the first transition, k and i are the
applicative depth and the index of λx.C′, respectively (as defined in §3.1).

A state of the interaction abstract machine (IAM) is a quintuple

�M | C | S | B

where � ∈ {N,H}, M is a λ-term, C is a context such that C{M} is a closed
term respecting Barendregt’s convention (i.e., every binder binds a distinct
variable), S is a multiplicative stack and B is an exponential stack.

The transitions of the IAM are given in Fig. 4. The notation↔ means that
transitions are reversible, in the sense that, for each such transition of the form

�1 M1 | C1 | S1 | B1 → �2 M2 | C2 | S2 | B2,

the transition

�∗2 M2 | C2 | S2 | B2 → �∗1 M1 | C1 | S1 | B1

is also a transition of the IAM, where N∗ := H and H∗ := N.

Definition 20 (GoI path) Let M be a λ-term. A GoI path of M is a sequence of
transitions of the IAM

�N | C | S | B →∗ �′ N′ | C′ | S′ | B′

such that C{N} = M (and, as a consequence, C′{N′} = M as well). Notice that,
given a GoI path ϕ, we may unambiguously retrieve from it the term of which it is a
path, which we denote by tm(ϕ). A path of M is closed if � = N, �′ = H, N = N′,
C = C′ and B = B′, and no intermediate state is of the form �′′ N | C | S′′ | B′′. A
closed path is principal if, furthermore, N = M, C = {·} and B is empty. In that
case, S and S′ are called the endpoints of the path.

Lemma 21 (invariance) There is a functor

Paths : Λop
• −→ Set

sending a closed λ-term M to its set of principal paths, such that, for any closed
reduction ρ : M→∗ M′, the function Paths(ρ) is an endpoint-preserving bijection.

Proof. This is “the” GoI theorem, proved in several different contexts in the
literature, starting with Girard’s original paper [Gir89]. The classical argu-
ment goes through proof nets, where the result is particularly intuitive. A
proof for the formulation we use is in [ADLV20]. The only thing we add here
is functoriality, which is implicit in all these proofs. �

We denote by
∫

Paths the category of elements of Paths. Explicitly, this is
(isomorphic to) the category such that

18

• its objects are principal paths, varying over all closed λ-terms;

• its arrows ϕ → ϕ′ are closed reductions ρ : tm(ϕ) →∗ tm(ϕ′) such that
Paths(ρ)(ϕ′) = ϕ, i.e., ϕ is the principal path corresponding to ϕ′ via the
reduction ρ;

• composition is composition of reductions.

By standard categorical lore, the functor∫
Paths

tm
��

Λ•

sending each principal path ϕ to its underlying term tm(ϕ) is a discrete fi-
bration (in fact, Lemma 21 tells us that it is a discrete bifibration, i.e., it is a
discrete opfibration as well, but we will not use this).

For completeness, let us state the (restricted) soundness of the IAM, al-
though we will not need it in these notes:

Proposition 22 (soundness of the IAM) Let M be a closed λ-term such that
M→∗ ∗. Then,

NM | {·} | q | · →∗ HM | {·} | ∗ | ·.

Proof. It is not hard to prove that M →∗ ∗ by means of a closed reduction
ρ. The result is then immediate from Lemma 21, by taking the image of the
principal path N ∗ | {·} | q | · → H ∗ | {·} | ∗ | · under Paths(ρ). �

5.2 The Simply-Typed Linear Polyadic Calculus

An address is a finite sequence of positive integers. We denote by A the set of
addresses and use α, β to range over them. Given α, β ∈ A, we write:

• α · β for the concatenation of α and β;

• α < β if α strictly precedes β in the lexicographic order;

• α # β if α and β are not prefixes of one another.

A pattern is a finite, possibly empty sequence τ = α1 < · · · < αn of ad-
dresses such that, for all i 6= j, αi # αj. If τ = β1 < · · · < βn is a pattern and α
an address, we define

α(τ) := α · β1 < · · · < α · βn,

which is still a pattern. If τ = α1 < · · · < αn and, for all 1 ≤ i ≤ n, τ′i are
patterns, we define

τ(τ′1, . . . , τ′n) := α1(τ
′
1) < · · · < αn(τ

′
n),

19

A, B ::= unit | τ(A1, . . . , An)(B

(a) Types, where τ = α1 < · · · < αn ranges of patterns.

x : α(A) ` x : A
Γ, x : τ(A) ` t : B

Γ ` λτ(x).t : τ(A)(B ` ∗ : unit

Γ ` t : τ(A1, . . . , An)(B ∆1 ` u1 : A1 . . . ∆n ` un : An

Γ, τ(∆1, . . . , ∆n) ` tτ(u1, . . . , un) : B

(b) Typing rules.

Figure 5: The simply-typed linear polyadic calculus.

which is still a pattern. Intuitively, a pattern is a finite tree whose leaves are
its addresses, and τ(τ′1, . . . , τ′n) is the tree obtained by “grafting” τ′1, . . . , τ′n on
top of the leaves of τ.

Linear polyadic terms are defined as follows:

t, u, v, w ::= x | λτ(x1, . . . , xn).t | tτ(u1, . . . , un) | ∗

where τ ranges over patterns and each variable is required to occur at most
once in a term. In λτ(x1, . . . , xn).t and tτ(u1, . . . , un), we require τ to be of the
form α1 < · · · < αn and we say that αi is the address of xi and ui, respectively.
Using the abbreviation of §4.2, we may write λτ(x).t and tτ(u) for the above
terms. In case τ is empty, which is possible, we simply write λ().t and t().
With these notations, reduction is defined by

(λτ(x).t) τ(u) → t{u/x}.

Simply-typed linear polyadic terms are defined in Fig. 5. In Fig. 5a, τ is a
pattern and, just like for terms, we require it to be of the form α1 < · · · < αn
and say that αi is the address of the type Ai. The empty pattern is allowed,
yielding the type () (B. Type judgments are of the form Γ ` t : A where
t is a term, A is a type, and Γ is a list, permutable at will, of declarations
of the form x : α(B) where x is a variable, B a type and α an address, and
in which no variable is declared twice. Whenever a list of declarations x1 :
α1(A1), . . . , xn : αn(An) is such that τ := α1 < · · · < αn is a pattern, we write
more succintly x : τ(A), where x = x1, . . . , xn and A = A1, . . . An. The case
n = 0 is possible: we may derive Γ ` λ().t : ()(B from Γ ` t : B. If α is an
address and ∆ = x1 : β1(B1), . . . xn : βn(Bn), we define

α(∆) := x1 : α · β1(B1), . . . xn : α · βn(Bn).

In the application rule, by definition, τ must be of the form α1 < · · · < αn, so
we set

τ(∆1, . . . , ∆n) := α1(∆1), . . . , αn(∆n).

20

N xi c{λτ(x).c′} s ↔ Hλτ(x).c′{xi} c α · s
Nλτ(x).t c q · s ↔ N t c{λτ(x).{·}} s
N tτ(u) c s ↔ N t c{{·}τ(u)} q · s
H ui c{tτ(u1, . . . , {·}, . . . , un)} s ↔ N t c{{·}τ(u)} α · s
N ∗ c q · s ↔ H ∗ c ∗ · s

Figure 6: The transitions of the pIAM. In the first transition, x = x1, . . . , xn
and α is the address of xi. In the fourth transition, u = u1, . . . , un and α is the
address of ui.

We let LinPoly• be the free category on the graph whose nodes are closed,
simply-typed linear polyadic terms and whose edges are one-step reductions.
(By “simply-typed” we mean in the Church sense, i.e., each object of LinPoly•
is a term equipped with type decorations). We turn it into a computational
context by taking ∗ as the only observable value.

5.3 The IAM for Polyadic Terms

Linear polyadic terms may be executed on a machine similar to the IAM,
which we call pIAM (“p” is for “polyadic”), whose states are of the form

� t | c | s

where � ∈ {N,H}, t and c are a polyadic term and a polyadic context, respec-
tively, such that c{t} is closed and respects Barendregt’s convention, and s is
a stack of elements of the set

{q, ∗} ∪A,

where we remind that A is the set of addresses.
The transitions of the pIAM are given in Fig. 6. The concept of GoI path,

closed path and principal path (with its endpoints) are just as in Definition 20.
In the linear case, invariance holds without any restriction on reduction:

Lemma 23 (invariance, linear case) There is a functor

LinPaths : LinPoly• −→ Set

sending a linear polyadic term t to the set of its principal paths such that, for every
reduction ξ : t→ t′, the function LinPaths(ξ) is an endpoint-preserving bijection.

Proof. Another classic of the GoI. �

We denote by
∫

LinPaths the category of elements of LinPaths. Explicitly,
this is (isomorphic to) the category such that

• its objects are principal paths, varying over all closed linear polyadic
terms;

• its arrows ψ → ψ′ are reductions ξ : tm(t) →∗ tm(t′) such that ψ′ =
LinPaths(ξ)(ψ);

21

q : unit ∗ : unit

s : B
q · s : τ(A)(B

s : Ai α is the address of Ai

α · s : τ(A1, . . . , An)(B

Figure 7: Types of pIAM stacks.

• composition is composition of reductions.

By standard categorical lore, the functor∫
LinPaths

tm
��

LinPoly•

sending each principal path ψ to its underlying term tm(ψ) is a discrete op-
fibration (in fact, Lemma 23 tells us that it is a discrete bifibration, i.e., it is a
discrete fibration as well, but we will not use this).

We will actually need finer invariants of the pIAM than Lemma 23. In
order to state them, let us first define typability of stacks. We say that a pIAM
stack s has type A, and we write s : A, if the typing may be derived from the
rules of Fig. 7. Notice that A is just a linear polyadic type, and that the empty
stack is not typable. We say that a state ♦ t | c | s of the pIAM is well-typed if
t has type A and s : A and, in case A = unit, then s = q if ♦ = N, otherwise
s = ∗ if ♦ = H.

Lemma 24 pIAM transitions preserve well-typedness of states.

Proof. Case inspection. �

We define the size of a linear polyadic type A as follows:

‖unit‖ := 1

‖τ(A1, . . . , An)(B‖ := ‖B‖+
n

∑
i=1
‖Ai‖

So, the size of a type is the number of occurrences of unit appearing in it.

Lemma 25 Let t be a closed term of type unit such that ξ : t →∗ ∗. Let ψ0 be the
unique principal path of ∗ and let

ψ := LinPaths(ξ)−1(ψ0).

Then, for every occurrence of subterm u of t of type A with t = c{u}, ψ contains
‖A‖ closed subpaths on u, i.e., of the form N u | c | s→∗ H u | c | s′. Moreover, each
state of ψ going through u is the extremity of one such closed path.

22

Proof. By induction on the length of ξ. The lemma is obviously veri-
fied for t = ∗, so the proof amounts to checking a generic reduction step
t = c{(λτ(x).p)τ(q)} → c{p{q/x}} such that c{p{q/x}} →∗ ∗ and where
we denote by ψ, ψ′ the inverse image of ψ0 in c{(λτ(x).p)τ(q)}, c{p{q/x}},
respectively.

Let q = q1, . . . , qn, p : B and qi : Ai for 1 ≤ i ≤ n. By the induction
hypothesis, we have

ψ′ = θ0χ′1 · · · θ‖B‖−1χ′‖B‖θ‖B‖

where each χ′j is a closed path of the form

N p{q/x} | c | sj →∗ H p{q/x} | c | s′j.

Observe that the χ′i are disjoint, i.e., they cannot be nested, because they are
on the same subterm. By construction,

ψ = θ0χ1 · · · θ‖B‖−1χ‖B‖θ‖B‖

where each χj is a closed path of the form

N (λτ(x).p)τ(q) | c | sj →∗ H (λτ(x).p)τ(q) | c | s′j

arising from χ′j. Now, if u is a subterm of t which is not a subterm of the redex
(λτ(x).p)τ(q), then u appears in the θk’s, which are (essentially) identical in
ψ and ψ′, so the lemma holds because it holds on ψ′. Otherwise, u appears in
the χj’s, and we will verify the lemma by inspecting such paths more closely.

First, observe that χj is obtained from χ′j by “lengthening” the paths in χ′j
passing through the qi’s; for the rest, χj and χ′j are (essentially) identical. That
is, if χ′j is of the form

N p{q/x} | c | sj
1→∗ N qi | ci | sj,i

2→∗ H qi | ci | s′j,i
3→∗ H p{q/x} | c | s′j

then χj is of the form

N (λτ(x).p)τ(q) | c | sj → Nλτ(x).p | c{{·}τ(q)} | q · sj → N p | c{(λτ(x).{·})τ(q)} | sj
1→∗ N xi | ci | sj,i → Hλτ(x).p | c{{·}τ(q)} | α · sj,i → N qi | c′i | sj,i
2→∗ H qi | c′i | s′j,i → Nλτ(x).p | c{{·}τ(q)} | α · s′j,i → H xi | ci | s′j,i
3→∗ H p | c{(λτ(x).{·})τ(q)} | s′j → Hλτ(x).p | c{{·}τ(q)} | q · s′j
→ H (λτ(x).p)τ(q) | c | s′j

where c′i = c{(λτ(x).p)τ(q1, . . . , {·}, . . . , qn)}, α is the address of qi and the
three paths marked by 1, 2, 3 are (essentially) the same as in χ′j. Notice that
the closed path on qi depicted in χ′j (marked by 2) may be one of many, for
several different i’s, or there may even be none of such paths. The important
thing is that each of them, if present, is transformed as depicted in χj.

So, if u is a subterm of t occurring inside a path marked by 1, 2 or 3, then
it will be crossed in ψ as many times as in ψ′, thus verifying the lemma. The
only subterms of t that are left to verify are therefore:

23

α(y) @ x ` y @ x
Ξ, τ(x) @ x ` t @ M
Ξ ` λτ(x).t @ λx.M

x not in Ξ ` ∗ @ ∗

Ξ ` t @ M Υ1 ` u1 @ N . . . Υn ` un @ N
Ξ, τ(Υ1, . . . , Υn) ` tτ(u1, . . . , un) @ MN

τ pattern

Figure 8: Linear polyadic approximations of λ-terms.

• (λτ(x).p)τ(q), which is of type B. There are ‖B‖ closed paths on it in
ψ, namely the χj’s.

• λτ(x).p, which is of type τ(A1, . . . , An) (B. Notice that each χj con-
tains 1 + k j closed paths on this subterm, where k j is the number of
paths marked by 2 in χj. These are closed paths on the qi’s, and the
induction hypothesis tells us that in ψ′ there are, for each 1 ≤ i ≤ n,
exactly ‖Ai‖ of these, so ∑

‖B‖
j=1 k j = ∑n

i=1 ‖Ai‖, so the total number of

closed paths on λx.p in ψ is ∑
‖B‖
j=1 1 + k j = ‖B‖ + ∑n

i=1 ‖Ai‖, which is
exactly ‖τ(A1, . . . , An)(B‖.

• p, which is of type B. Each χj contains exactly one closed path on p, so
by induction there are ‖B‖ of them in ψ.

• the qi’s, which are of type Ai. For a given i, each χj contains k j,i closed
paths on qi, among those marked by 2. These are found also in χ′j, and

the induction hypothesis tells us that ∑
‖B‖
j=1 k j,i = ‖Ai‖.

In each case, the lemma is verified, so we may conclude. �

5.4 Linear Approximations for the IAM

We start by defining polyadic approximations for λ-terms in Fig. 8, which is
a generalization of Fig. 2a. Approximation judgments are still of the form
Ξ ` t @ M where t is a simply-typed linear polyadic term (of which we omit
the type information) and M a λ-term, but now Ξ is a list, permutable at will,
of declarations of the form α(y) @ x where x is a λ-calculus variable, y is a
variable of the linear polyadic calculus and α an address. We succintly write
τ(x) @ x for a sequence of declarations α1(x1) @ x, . . . , αn(xn) @ x such that
τ = α1 < · · · < αn is a pattern, where x = x1, . . . , xn. The case n = 0 gives us
Ξ ` λ().t @ λx.M as soon as Ξ ` t @ M and x does not appear in Ξ. Also,
given Ξ = β1(y1) @ x1, . . . , βn(yn) @ xn and an address α, we let

α(Ξ) := α · β1(y1) @ x1, . . . , α · βn(yn) @ xn,

and, if τ = α1 < · · · < αn and Υ1, . . . , Υn are lists of declarations, we set

τ(Υ1, . . . , Υn) := α1(Υ1), . . . , αn(Υn),

which is empty in case τ is empty.

24

Lemma 26 We have that Ξ ` w @ M{N/x} iff there exist terms t, u = u1, . . . un,
a pattern τ and approximation contexts Υ0, Υ1, . . . , Υn such that:

• w = t{u/x} and Ξ = Υ0, τ(Υ1, . . . , Υn),

• Υ0, τ(x) @ x ` t @ M

• and Υi ` ui @ N for all 1 ≤ i ≤ n.

Proof. By induction on M. �

In what follows, if ϕ : M→∗ M′ is a reduction, we write C{ϕ} for the
reduction C{M} →∗ C{M′} performing ϕ under the context C. We use the
same notation for reductions in the polyadic calculus. In fact, we extend it as
follows: if ξ1, . . . , ξn are reductions such that ξi : ui →∗ u′i for all 1 ≤ i ≤ n,
and if t and τ(x1, . . . , xn) are a term and a pattern, then we have one reduction
of the form

tτ(u1, . . . , un)→∗ tτ(u′1, . . . , u′n)

for each possible way of interleaving the steps of ξ1, . . . , ξn. We abusively
denote by tτ(ξ1, . . . , ξn) any such reduction.

Let σ0 : (λx.M)N → M{N/x} be a β-rule, let σ := C{σ0} be a reduction
step and let ξ be a reduction in the linear polyadic calculus. We define the
relation Ξ ` ξ @ σ by induction on C:

• Ξ ` ξ @ σ0 holds just if ξ is a reduction step such that

(λτ(x).t)τ(u)
ξ // t{u/x}

A A

(λx.M)N
σ0

// M{N/x}

where the approximation relations between terms hold under Ξ.

• Ξ ` ξ @ λx.C′{σ0} holds whenever ξ = λτ.ξ0 such that Ξ, τ @ x ` ξ0 @
C′{σ0} holds.

• Ξ ` ξ @ C′{σ0}Q holds whenever ξ = ξ0τ(q) such that Ξ0 ` ξ0 @
C′{σ0}, Υi ` qi @ Q for all 1 ≤ i ≤ n and Ξ = 〈Ξ0, τ(Υ1, . . . , Υn)〉.

• Ξ ` ξ @ PC′{σ0} whenever ξ is of the form pτ(ξ1, . . . , ξn) such that Ξ0 `
p @ P, Υi ` ξi @ C′{σ0} for all 1 ≤ i ≤ n and Ξ = 〈Ξ0, τ(Υ1, . . . , Υn)〉

Now, if ϕ = σ1 · · · σn is an arbitrary reduction in the λ-calculus composed
of β-steps σi, and if ξ is a reduction in the polyadic calculus, then we define
Ξ ` ξ @ ϕ just if ξ = ξ1 · · · ξn such that Ξ ` ξi @ σi for each 1 ≤ i ≤ n.
In particular, the identity reduction on M is approximated under Ξ by the
identity reduction on any t such that Ξ ` t @ M.

We define an approximation relation Ξ ` c @ C between contexts of the
linear polyadic calculus and contexts of the λ-calculus adapting Fig. 8. We
only give the two non-trivial cases, the others are immediate:

` {·} @ {·}
Ξ ` t @ M Υ ` c @ C

Ξ, Υ ` tτ(u1, . . . , c, . . . , un) @ MC

25

q @ q ∗ @ ∗
s @ S

q · s @ q · S
s @ S α linearization of σ

α · s @ σ · S

Figure 9: Approximating multiplicative stacks.

where τ is an arbitrary pattern and u1, . . . , un arbitrary terms. We write c @ C
when c and C are closed.

The linearization of an exponential signature i〈σ1, . . . , σk〉 is the address
defined inductively as

i · α1 · · · αk

where αi is the linearization of σi, for all 1 ≤ i ≤ k. Let s and S be a stack of
the pIAM and a multiplicative stack of the IAM, respectively. We define the
approximation relation s @ S in Fig. 9.

We define an approximation relation between states of the pIAM and states
of the IAM as follows. We write

♦ t | c | s @ �M | C | S | B

just if:

1. ♦ = �;

2. c @ C and c{t} @ C{M};

3. s @ S.

One may check that (2) implies Ξ ` t @ M for some Ξ.
Finally, we define an approximation relation ψ @ ϕ between GoI paths of

the pIAM and GoI paths of the IAM. The definition is by induction on the
length of ϕ, so it boils down to going through each transition of Fig. 4 and
defining the approximating transition of the pIAM:

N xi | c{λx.c′} | s oo // Hλx.c′{xi} | c | α · s

A A A

N x | C{λx.C′} | S | σ1 · · · σk · B oo // Hλx.C′{x} | C | j〈σ1, . . . , σk〉 · S | B

Nλτ(x).t | c | q · s oo // N t | c{λτ(x).{·}} | s

A A A

Nλx.M | C | q · S | B oo // NM | C{λx.{·}} | S | B

N tτ(u) | c | s oo // N t | c{{·}τ(u)} | q · s

A A A

NMN | C | S | B oo // NM | C{{·}N} | q · S | B

26

H ui | c{tτ(u1, . . . , {·}, . . . , un)} | s oo // N t | c{{·}τ(u)} | α · s

A A A

HN | C{M{·}} | S | σ · B oo // NM | C{{·}N} | σ · S | B

N ∗ | c | q · s oo // H ∗ | c | ∗ · s
A A A

N ∗ | C | q · S | B oo // H ∗ | C | ∗ · S | B

Notice that ψ @ ϕ implies tm(ψ) @ tm(ϕ).
We may now define a category ApxIAM as follows:

• its objects are pairs ψ @ ϕ as defined above;

• its arrows (ψ @ ϕ) → (ψ′ @ ϕ′) are pairs (ξ, ρ) s.t. ξ : tm(ψ)→∗ tm(ψ′)
is a reduction and ρ : tm(ϕ)→∗ tm(ϕ′) is a closed reduction such that
ξ @ ρ and ψ, ψ′ correspond to each other via ξ and ϕ, ϕ′ correspond to
each other via ρ;

• composition is concatenation of reductions.

The following is now a tedious but unsurprising verification:

Lemma 27 The span

ApxIAM
p1

xx

p2

%%∫
LinPaths

∫
Paths

composed of the obvious projection functors is an approximation system.

Recall the observations made in §5.1 and §5.2 about the functors tm :
LinPaths → LinPoly• and tm : Paths → Λ• being a discrete opfibration
and a discrete fibration, respectively. This means, in particular, that these are
a proto-opfibration and a protofibration. Since proto(op)fibrations compose,
by Lemma 27 we obtain

Lemma 28 The span

ApxIAM
p1

xx

p2

%%∫
LinPaths

tm
��

∫
Paths

tm
��

LinPoly• Λ•

is a Böhm approximation system with observable values (which, we recall, is ∗ both
in LinPoly• and Λ•).

27

x : α(A) ` x : A
Γ, x : τ(A) ` M : B

Γ ` λx.M : τ(A)(B
x not in Γ ` ∗ : unit

Γ ` M : τ(A1, . . . , An)(B ∆1 ` N : A1 . . . ∆n ` N : An

Γ, τ(∆1, . . . , ∆n) ` MN : B

Figure 10: Polyadic types for the λ-calculus.

5.5 Polyadic Types for the λ-Calculus

Following [MPV18], we know that as soon as we have a well-behaved notion of
simply-typed approximation for λ-terms, we have an intersection type system
corresponding to it. In particular, simply-typed linear polyadic terms yield
the type derivations whose rules are defined in Fig. 10. These are a non-
associative variant of intersection types, which we will simply call polyadic
types.

Typing judgments are of the form Γ ` M : A where M is a λ-term, A a
polyadic type (Fig. 5a) and Γ is a list, permutable at will, of typing declarations
of the form x : α(B), where x is a λ-calculus variable, B a polyadic type and
α an address. Contrarily to Fig. 5, a variable may be declared more than
once, even with the same type (polyadic types are “non-idempotent”), but
never with the same address. We write x : τ(A) for the typing context x :
α1(A1), . . . , x : αn(An) in which τ = α1 < · · · < αn is a pattern, and A =
A1, . . . , An. This notation is used in the abstraction rule. The case n = 0 gives
us Γ ` λx.M : () (B from Γ ` M : B, as long as x does not appear in
Γ. In the application rule, the context Γ, τ(∆1, . . . ∆n) is defined just as in the
corresponding rule of Fig. 5b.

Notice how, as expected, the type system of Fig. 10 results from superpos-
ing Fig. 5b and Fig. 8, just as non-idempotent intersection types (Fig. 3) result
from superposing the standard system of simple types for delayed substitu-
tion terms (ignoring explicit substitutions) and Fig. 2a. Therefore, a similar
result as Proposition 15, which is about non-idempotent intersection types,
holds for polyadic types:

Proposition 29 A type derivation Γ ` M : A in polyadic types (Fig. 10) is the same
thing as a linear polyadic approximation t @ M (Fig. 8) such that Γ ` t : A (Fig. 5b).

5.6 Complexity of the IAM

We define the size of exponential signatures of the IAM inductively: if the
sizes of σ1, . . . , σk are n1, . . . , nk, respectively, then the size of i〈σ1, . . . , σk〉 is
1 + ∑k

i=1 ni.
Let ϕ be a GoI path of the IAM. We write:

• len(ϕ) for its length (i.e., the number of transitions of the IAM);

28

• h(ϕ) for the maximum length of the multiplicative stacks appearing in
ϕ;

• e(ϕ) for the maximum size of exponential signatures appearing in ϕ.

The first two quantities may be defined identically for a GoI path ψ of
the pIAM. The third quantity is replaced by the length of the longest address
appearing in ψ, which is denoted by a(ψ).

Let M be a closed λ-term such that M →∗ ∗. Obviously, ∗ has a unique
principal path, so by Lemma 21 M too has a unique principal path, which
we denote by M∗. The same may be said of any closed simply-typed linear
polyadic term t : unit, because typability implies t→∗ ∗, and we use the same
notation t∗. Notice that M∗ (resp. t∗) is just the execution of the IAM (resp.
pIAM) from the initial state NM | {·} | q | · (resp. N t | {·} | q).

Lemma 30 Let M be a closed λ-term such that M→∗ ∗ and let ψ be a GoI path of
the pIAM such that ψ @ M∗. Then:

1. len(M∗) = len(ψ);

2. h(M∗) = h(ψ);

3. e(M∗) = a(ψ).

Proof. Point (1) is immediate from the definition of approximation relation.
Also by definition, we have that if �N | C | S | B and ♦ u | c | s are two corre-
sponding states of M∗ and ψ (i.e., the n-th state of M∗ and the n-th state of ψ
for some 0 ≤ n ≤ len(M∗)), then ♦ u | c | s @ �N | C | S | B, which implies
s @ S, which in turn implies, again by definition, that S and s have equal
length, yielding point (2); moreover, if the i-th element of S is an exponential
signature σ, then the i-th element of s is an address α which is the linearization
of σ, so the length of α is exactly the size of σ, proving point (3). �

Let A be a polyadic type. Recall that in §5.3 we defined ‖A‖ to be the
number of occurrences of unit in A. We now define the height of A as follows:

hgt(unit) := 1

hgt(τ(A1, . . . , An)(B) := max
(

max
1≤i≤n

hgt(Ai), hgt(B)
)
+ 1

We also define the pattern height of a type A as follows:

ph(unit) := 0

ph(τ(A1, . . . , An)(B) := max
(

max
1≤i≤n

ph(Ai), ph(B), hgt(τ)
)

Let t be a closed simply-typed linear polyadic term. We write:

• ‖t‖ for the sum of all ‖A‖ for each occurrence of subterm of t of type A;

• hgt(t) and ph(t) for the maximum of hgt(A) and ph(A), respectively,
with A ranging over the types of subterms of t.

29

Lemma 31 For every closed linear polyadic term t : unit, we have:

1. len(t∗) = 2‖t‖ − 1;

2. h(t∗) = hgt(t);

3. a(t∗) = ph(t).

Proof. For point 1, Lemma 25 tells us that t∗ goes through each occurrence of
subterm of t of type A exactly 2‖A‖ times, once “upwards” and once “down-
wards”. So t∗ goes through exactly 2‖t‖ states, hence the result.

Points 2 and 3 are immediate consequences of Lemma 24. �

Lemma 32 (quantitative approximation system for the IAM) Let us define c0
to be the function from closed linear polyadic terms to N3 such that

c0(t) := (2‖t‖ − 1, hgt(t), ph(t)).

Let c1 be the function from closed reductions over closed λ-terms ρ : M→∗ N to N3

such that

c1(ρ) :=
{

c if N 6= ∗
(len(M∗), h(M∗), e(M∗)) if N = ∗

where c ∈N3 is some fixed triple whose value is irrelevant. With these cost functions,
the span of Lemma 28 is a quantitative Böhm approximation system.

Proof. We need to prove that, given an arrow χ : (ψ @ M∗) → (∗ @ ∗)
of ApxIAM (where we abusively denoted by ∗ the unique principal path of
the linear polyadic term / λ-term ∗), we have c0(tm(ψ)) = c1(tm(p2(χ))).
Notice that, since tm(ψ) is typable by definition and tm(ψ)→∗ ∗, we have
tm(ψ) : unit. Therefore, we may write

c0(tm(ψ)) = (2‖tm(ψ)‖ − 1, hgt(tm(ψ)), ph(tm(ψ))) by definition,

= (len(ψ), h(ψ), a(ψ)) by Lemma 31,

= (len(M∗), h(M∗), e(M∗)) by Lemma 30,

= c1(tm(p2(χ))) by definition,

which proves the claim. �

In the following, we apply the notations ‖ · ‖, hgt(·) and ph(·) to polyadic
type derivations (Fig. 10), knowing that these, by definition, are isomorphic to
simply-typed linear polyadic terms.

Theorem 33 Let M be a closed λ-term. The following are equivalent:

1. M→∗ ∗ and len(M∗) = l, h(M∗) = h and e(M∗) = e;

2. there exists t @ M such that t : unit and l = 2‖t‖ − 1, hgt(t) = h and
ph(t) = e;

3. there is a polyadic type derivation δ of ` M : unit such that 2‖δ‖ − 1 = l,
hgt(δ) = h and ph(δ) = e.

30

Proof. The equivalence between (1) and (2) is an instance of Theorem 9, via
Lemma 32. The equivalence between (2) and (3) is Proposition 29. �

Corollary 34 Let M be a closed λ-term of size n and applicative depth d such that
M→∗ ∗. Then, the following are equivalent:

1. there exist l, h, e ∈ N such that the execution of the IAM on M may be
simulated by a deterministic Turing machine in time poly(nl) and space
1 + (1 + (h + d)e) log n;

2. there exists t @ M such that t : unit and ‖t‖ = l, hgt(t) = h and ph(t) = e.

Proof. For the time bound, a step of the IAM may be simulated with a
polynomial slowdown including at least a linear slowdown in the size of the
term being executed, so we conclude by Theorem 33.

For the space bound, simply observe that a state of the IAM executing M
has size bounded by

1 + log n + h(M∗) e(M∗) log n + d e(M∗) log n :

the 1 is the direction bit; the log n is for the pointer to the current subterm
of M; e(M∗) log n is for representing exponential signatures, which are trees
with at most e(M∗) nodes decorated by integers smaller than n; therefore,
the second to last and last term in the sum are for representing the multi-
plicative stack and the exponential stack, respectively (the length of the latter
being bounded by d, a standard invariant of the IAM). We then conclude by
Theorem 33. �

6 Approximating Turing Machines

6.1 Turing Machines

Let Σ be a finite alphabet including a blank symbol �, Q a finite set of states
and [d] = {1, . . . , d} with d > 0. Let H := Σ + (Σ × Q). A one-tape Tur-
ing machine M on the alphabet Σ, with set of states Q and degree of non-
determinism d (i.e., the maximum number of choices in its transition table)
may be presented by a function

δM : H3 × [d] −→ H

such that, for all s−1, s0, s1 ∈ Σ and 1 ≤ j ≤ d:

• δM(s−1, s0, s1, j) = s0;

• for all q ∈ Q, exactly one of δM(s−1, s0, (s1, q)), δM(s−1, (s0, q), s1) and
δM((s−1, q), s0, s1) belongs to Σ×Q (the other being all in Σ).

A Turing machine M may be thought of as acting on infinite strings φ :
Z→ H verifying that

• φ(i) = � except for finitely many i ∈ Z;

31

• there exists a unique i ∈ Z such that φ(i) ∈ Σ × Q. Such an i is the
current position of the head on the tape, and π2φ(i) is the current state.

We call such infinite strings infinitary configurations. Given φ, φ′ : Z → H and

1 ≤ j ≤ d, we write φ
j→ φ′ just if, for all i ∈ Z,

φ′(i) := δM(φ(i− 1), φ(i), φ(i + 1), j).

The constraints on δM guarantee that φ′ is an infinitary configuration when-
ever φ is.

What is usually called a configuration of M is just a finite string γ ∈ H∗

containing exactly one symbol of type Σ× Q. We say that M has a transition

from γ to γ′, and we write γ
j→ γ′, just if:

• γ and γ′ have equal length m;

• there exist two infinitary configurations φ, φ′ such that φ
j→ φ′ and k ∈ Z

such that, for all 1 ≤ i ≤ m, γi = φ(k + i) and γ′i = φ′(k + i), where γi, γ′i
is the i-th symbol of γ, γ′, respectively, whereas, for all j ∈ Z, j < k + 1
or j > k + m implies φ(j) = φ′(j) = �.

We denote by NT ur the free category on the graph:

• whose nodes are either the Boolean constants 0 and 1 or pairs (M, γ)
where M is a Turing machine and γ a configuration of M;

• such that there is an edge (M, γ)→ (M′, γ′) just if M′ = M and γ→ γ′

is a transition of M, and there is an edge (M, γ) → b with b = 1 (resp.
b = 0) just if γ = (s, q)γ′ and q is an accepting (resp. rejecting) state of
M (i.e., γ is a halting configuration and the head is placed on the first
symbol).

We turn this into computational contexts by letting the observable values be
the Boolean constants 0 and 1.

6.2 Turing Circuits

Given a Turing machine M with alphabet Σ, states Q and degree of non-
determinism d, M-circuits are defined as follows:

C, C′ ::= x | C[x := C′] | H(C) | O(C1, C2, C3; C4) | h | j | b

where x ranges over a countable set of variables, whereas h, j and b range
over H := Σ + (Σ×Q), [d] and {0, 1} respectively. These are called the ground
constants. In C[x := C′], the variable x is bound in C. This represents sharing.
A circuit is closed if it has no free variables.

M-circuits may be typed according to the rules of Fig. 11. There are three
types: symb, choice and bool, standing form the sets H = Σ + (Σ×Q), [d] and
{0, 1}, respectively. Notice that there are no variables of type bool and that
the only terms of type choice are constants and variables. In the sharing rule,

32

A ∈ {symb, choice}
x : A ` x : A

Γ ` C′ : A ∆, x1 : A, . . . , xn : A ` C : B
Γ, ∆ ` C{x/x1, . . . , xn}[x := C′] : B

Γ ` C : symb

Γ ` H(C) : bool
Γi ` Ci : symb ∆ ` C′ : choice

Γ1, Γ2, Γ3, ∆ ` O(C1, C2, C3; C′) : symb

Γi ` Ci : symb ∆ ` C′ : choice
Γ1, Γ2, ∆ ` B(C1, C2; C′) : symb

Γi ` Ci : symb ∆ ` C′ : choice
Γ1, Γ2, ∆ ` C(C1, C2; C′) : symb

` h : symb ` j : choice
b ∈ {0, 1}
` b : bool

Figure 11: Typing rules for Turing circuits.

n = 0 is allowed, which means that sharing also encapsulates discarding. We
write C[− := C′] to mean C[x := C′] where x does not appear free in C.

The evaluation rules are as follows:

H((s, q)) →
{

1 if q is an accepting state of M
0 if q is a rejecting state of M

O(h−1, h0, h1; j) → δM(h−1, h0, h1, j)

C[x := h] → C{h/x} h is a ground constant

where C{h/x} denotes, as usual, the substitution of h to all free occurrences
of x in C.

We let BoolCirc• be the posetal category whose

• objects are either the Boolean constants 0, 1 or pairs (M, C) such that
M is a Turing machine and C a closed M-circuit other than a Boolean
ground constant;

• there is an arrow (M, C) → (M′, C′) just if M = M′ and C evaluates to
C′, or (M, C)→ b with b ∈ {0, 1} just if C evaluates to b.

6.3 Approximating Turing Machines

Given p ∈N and m > 0, we are now going to define the canonical M-circuit of
depth p and width m. Such a circuit, denoted by Cm

p (M), will have exactly p free
variables y1, . . . , yp of type choice and m free variables x1, . . . , xm of type symb.
We write Cm

p (M)(C′1, . . . , C′m) for Cm
p (M){C′1/x1} · · · {C′1/x1}. The definition

is by induction on p, as follows:

Cm
0 (M) := H(x1)[− := x2] · · · [− := xm]

Cm
p+1(M) := Cm

p (M)(O(�, z1, z2; u),O(z1, z2, z3; u), . . . ,

O(zm−2, zm−1, zm; u),O(zm−1, zm,�; u))[z := x][u := yp+1]

33

where we used the abbreviation [z := x] for [z1 := x1] · · · [zm := xm].
A closed canonical M-circuit is either a Boolean ground constant or of the

form

Cp
m(M)(γ; j) := Cp

m(M){γ1/x1} · · · {γm/xm}{j1/y1} · · · {jp/yp}

where γ is a configuration of M of length m and γi is the ground constant
corresponding to the i-th symbol of γ, and j ∈ [d]p with ji being the ground
constant corresponding to i-th element of j.

We denote by CanCirc• the subposet of BoolCirc• of closed canonical cir-
cuits and Boolean constants. We turn this into a computational context by
letting the Boolean constants be the only observable values.

Let now M be a Turing machine, with degree of non-determinism equal
to d, let γ be a configuration of M of length m, and let C be an M-circuit. We
write (M, C) @ (M, γ) just if C = Cp

m(M)(γ; j) for some p ∈ N and j ∈ [d]p.
From this, we define a category ApxNTur whose:

• objects are either pairs b @ b with b ∈ {0, 1} or (M, C) @ (M, γ) as
above;

• an arrow ((M, C) @ (M, γ)) → ((M, C′) @ (M, γ′)) is a sequence of
transitions of M

γ
j1→ γ1

j2→ · · · jn−1→ γn−1
jn→ γ′

where the length of the configurations is m and there exist p ∈ N, j′ ∈
[d]p such that, if we set j = jn · · · j1, we have C = Cp+n

m (M)(γ; j′j) and
C′ = Cp

m(M)(γ′; j′). An arrow ((M, C) @ (M, γ)) → (b @ b) with
b ∈ {0, 1} is a sequence of transitions of M

γ
j1→ γ1

j2→ · · · jn−1→ γn−1
jn→ γ′

where the length of the configurations is m and, if we set j = jn · · · j1,
we have C = Cn

m(M)(γ; j)→∗ b.

• Composition is concatenation (in both cases above, n = 0 is allowed).

Lemma 35 Equipped with the obvious projection functors, the span

ApxNTur
p1

||

p2

!!
CanCirc• NT ur

is an approximation system with observable values (which, we recall, are the Boolean
constants).

6.4 Running Time of Turing Machines via Circuits

Lemma 36 (quantitative approximation system for Turing machines) Let c0
be the function assigning to a closed canonical M-circuit C the pair (p, m) ∈ N2

34

where p and m are the height and width of the canonical M-circuit underlying C,
respectively.

Let c1 be the function assigning to an arrow f of NT ur the pair (l, m) ∈ N2

where l and m are the number of transitions and the length of the configurations
appearing in f , respectively.

With these cost functions, the span of Lemma 28 is a quantitative approximation
system.

Proof. Immediate from the definitions. �

In the following, given w ∈ (Σ \ {�})∗ of length n and m ≥ n, we define
the configuration initk(w) := (w1, q0)w2 · · ·wn�m−n, where wi is the i-th letter
of w and q0 the initial state of M. A configuration of length m > 0 is accepting
if it is of the form (s, q)w for some s ∈ Σ, w ∈ Σm−1. We say that M accepts w
if there is m and a finite number of transitions from initm(w) to an accepting
state.

Theorem 37 Let M be a Turing machine with alphabet Σ and degree of non deter-
minism d. Then, the following are equivalent:

• M accepts w ∈ (Σ \ {�})∗ in l steps and using at most m cells of its tape;

• there exists j ∈ [d]l such that Cl
m(M)(initm(w); j)→∗ 1.

The above result is an instance of Theorem 9, via Lemma 36, although of
course it may be proved directly and immediately from the definitions. The
goal here is not to do more work than necessary to prove an essentially trivial
result, but to show that it also fits in our framework of approximations. This
is remarkable because Theorem 37 has a number of important consequences.

We start by observing that, if we make the innocuous assumption that, for
any halting state q of any Turing machine M, we have, for all s, s−1, s0, s1 ∈
Σ and j ∈ [d], δM((s, q), s0, s1, j) = s0, δM(s−1, (sq), s1, j) = (s, q) and
δM(s−1, s0, (s, q), j) = s0 (i.e., M acting on halting configurations does noth-
ing), we obtain the following:

Lemma 38 If Cp
m(γ; j)→∗ b with b ∈ {0, 1}, then for any k ∈N and any j′ ∈ [d]k,

Cp+k
m (γ; j′j)→∗ b.

With the help of the above result, the first application of Theorem 37 is the
famous Cook-Levin theorem:

Theorem 39 (Cook-Levin) sat is NP-complete with respect to logspace reductions.

Proof. Membership is obvious, the non-trivial part is showing hardness.
There is a well-known logspace reduction from circuit sat to sat (see e.g.
[Pap94]), so it is enough to show that circuit sat is NP-hard with respect to
logspace reductions. We remind that circuit sat is the following problem:
given a Boolean circuit, is there a way to set its inputs so that it evaluates to
1?

So let L ∈ NP. We need to exhibit a logspace-computable function r such
that, for every w ∈ {0, 1}∗, w ∈ L iff r(w) ∈ circuit sat. Since L ∈ NP, there

35

is a non-deterministic Turing machine M deciding L in polynomial time. Let
Σ, Q, d and p be the alphabet, set of states, degree of non-determinism and
polynomial bounding the running time of M, respectively.

Now, the key observation is that, since δM is a finite function, modulo an
(arbitrary) encoding of the elements of H := Σ + (Σ × Q) as binary strings,
δM may be computed by a finite family (Bi(M))1≤i≤k of Boolean circuits with
3k + log d inputs (supposing that integers are represented in binary), where
k is an integer such that 2k ≥ |H|, depending on the encoding. Given the
binary encodings of h−1, h0, h1 ∈ H and j ∈ [d], each Bi(M) computes the
i-th bit of the binary encoding of δM(h−1, h0, h1, j). The same holds for the
function H → {0, 1} mapping (s, q) ∈ Σ×Q to 1 whenever q is accepting, and
mapping anything else to 0: since it is a finite function, it may be implemented
by a Boolean circuit with k inputs and one output.

If T urCirc and BoolCirc are the categories of (not necessarily closed) Tur-
ing circuits and Boolean circuits, respectively, with evaluations as arrows, the
above defines a functor

enc : T urCirc −→ BoolCirc

mapping every closed canonical circuit to its implementation. Notice that
every free variable of type choice of C will induce log d inputs in enc(C).

Given w ∈ (Σ \�)∗ of length n, we know that M terminates in at most
p(n) steps, during which it cannot use more that p(n) cells of the tape. So let

r(w) := enc(Cp(n)
p(n)(M)(initp(n)(w);−)),

where the dash indicates that we leave unset the p(n) log d inputs correspond-
ing to the p(n) free variables of type choice of Cp(n)

p(n)(M). Now:

w ∈ L iff M accepts w in p(n) steps using p(n) cells

iff there exists j ∈ [d]p(n) such that r(w)(j)→∗ 1

iff r(w) ∈ circuit sat

where by r(w)(j) we denote the closed Boolean circuit obtained by setting the
inputs of r(w) to the encodings of the various elements of j. The first double
implication is given by definition and Lemma 38 (even if, in general, M might
take strictly less than p(n) steps, that lemma tells us that we may round up to
p(n) by adding some “do nothing” transitions), the second double implication
is Theorem 37 and the third is again by definition.

To conclude the proof, we need to check that r is logspace computable.
This is clear because |r(w)| = O(p(n)2), as Cp(n)

p(n)(M)(initp(n)(w);−) contains

p(n)2 occurrences of O, one occurrence of H and O(p(n)) ground constants,
and these are all mapped to circuits of constant size. �

In the special case of deterministic Turing machines, the above proof gives
another famous result:

Theorem 40 (Ladner) circuit value is P-complete with respect to logspace reduc-
tions.

36

Proof. Recall that circuit value is the following problem: given a closed
Boolean circuit (i.e., with no unfixed input), does it evaluate to 1? As above,
membership in P is obvious, so we need to prove P-hardness.

Now, by inspecting the proof of Theorem 39, we see that the Boolean cir-
cuit r(w) has p(n) log d unset inputs. Hence, if the polytime machine M is
deterministic, d = 1 and r(w) is a closed Boolean circuit (indeed, the canoni-
cal M-circuits Cp

m(M) do not depend on their free variable of type choice). So,
if L happens to be decided by a polytime deterministic Turing machine, r re-
duces L to circuit value. But the class of problems decided by deterministic
polytime Turing machines is exactly P. �

Finally, we have yet another avatar of the Cook-Levin theorem:

Theorem 41 P is the class of languages decided by DLOGTIME-uniform families of
Boolean circuits of polynomial size.

Proof. That a DLOGTIME-uniform family of Boolean circuits decides a lan-
guage in P is immediate. For the converse, let L ∈ P be decided by a machine
M with a polynomial bound p and let, for n ∈ N, Cn be the Boolean circuit
enc(Cp(n)

p(n)(M))((x1, q0)x2 · · · xn�p(n)−n), where by this notation we mean that
we fixed the inputs so that the state is the initial one and the tape is filled with
blanks, except for the first n symbols, the corresponding inputs of which are
left unset. By Theorem 37, (Cn)n∈N is a family of Boolean circuits deciding
L. It is of polynomial size: as already observed in the proof of Theorem 39,
the size of Cn is O(p(n)2). The fact that it is DLOGTIME-uniform is a stan-
dard result that we do not wish to prove here, as it would require too many
additional technical definitions. �

References

[AB17] Beniamino Accattoli and Bruno Barras. Environments and the
complexity of abstract machines. In Proceedings of PPDP, pages
4–16, 2017.

[ABM14] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Dis-
tilling abstract machines. In Proceedings of ICFP, pages 363–376,
2014.

[ADLV20] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The
machinery of interaction. In Proceedings of PPDP, pages 4:1–4:15,
2020.

[ADLV21] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The
(in)efficiency of interaction. Proceedings of the ACM on Programming
Languages, 5(POPL), 2021.

[CT20] Jules Chouquet and Christine Tasson. Taylor expansion for call-by-
push-value. In Proceedings of CSL, pages 16:1–16:16, 2020.

37

[dC07] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de
calcul. Ph.d. thesis, Université de la Méditerranée – Aix-Marseille
2, 2007.

[dC18] Daniel de Carvalho. Execution time of λ-terms via denota-
tional semantics and intersection types. Math. Struct. Comput. Sci.,
28(7):1169–1203, 2018.

[ER06] Thomas Ehrhard and Laurent Regnier. Böhm trees, krivine’s ma-
chine and the taylor expansion of lambda-terms. In Proceedings of
CiE, pages 186–197, 2006.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor
expansion of ordinary lambda-terms. Theor. Comput. Sci., 403(2-
3):347–372, 2008.

[Gar94] Philippa Gardner. Discovering needed reductions using type the-
ory. In Proceedings of TACS, pages 555–574, 1994.

[Gir89] Jean-Yves Girard. Geometry of interaction I: Interpretation of sys-
tem F. In Proceedings of Logic Colloquium 1988, pages 221–260, 1989.

[Kfo00] A. J. Kfoury. A linearization of the lambda-calculus and conse-
quences. J. Log. Comput., 10(3):411–436, 2000.

[Maz17] Damiano Mazza. Polyadic Approximations in Logic and Computation.
Habilitation thesis, Université Paris 13, 2017.

[MPV18] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approx-
imations, fibrations and intersection types. Proceedings of the ACM
on Programming Languages, 2(POPL:6), 2018.

[MZ15] Paul-André Melliès and Noam Zeilberger. Functors are type re-
finement systems. In Proceedings POPL, pages 3–16, 2015.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

38

