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Abstract
Böhm approximations, used in the definition of Böhm trees, are a staple of the semantics of the
lambda-calculus. Introduced more recently by Ehrhard and Regnier, Taylor approximations provide
a quantitative account of the behavior of programs and are well-known to be connected to intersection
types. The key relation between these two notions of approximations is a commutation theorem,
roughly stating that Taylor approximations of Böhm trees are the same as Böhm trees of Taylor
approximations. Böhm and Taylor approximations are available for several variants or extensions of
the lambda-calculus and, in some cases, commutation theorems are known. In this paper, we define
Böhm and Taylor approximations and prove the commutation theorem in a very general setting.
We also introduce (non-idempotent) intersection types at this level of generality. From this, we show
how the commutation theorem and intersection types may be applied to any calculus embedding in
a sufficiently nice way into our general calculus. All known Böhm-Taylor commutation theorems, as
well as new ones, follow by this uniform construction.
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1 Introduction

Böhm trees [4, 5] and their variants are a staple of the semantics of λ-calculus. Intuitively, they
are possibly infinite normal forms representing the essence of the behavior of a λ-term. As
such, they may be seen as limits of a set of finite approximations, called Böhm approximations,
describing larger and larger portions of the Böhm tree.

More recently, Ehrhard and Regnier introduced another notion of approximation for the
λ-calculus, underlying their Taylor expansion [23, 25]. Based on the idea that programs
may be seen as analytic functions on certain topological vector spaces [16, 17], this notion
may be stripped of its quantitative aspects (the coefficients of the Taylor series) and, like
a Böhm tree, be presented as a set of finite approximations. These Taylor approximations
are syntactically very different from Böhm approximations: they are not necessarily normal
forms, and they are linear, in the sense of linear logic [27] (they are related to Boudol’s terms
with multiplicities [7]), so their execution length is bounded by their size.

Given a λ-term t, since a Böhm approximation is, essentially, also a λ-term, one may take
the set of all Taylor approximations of all Böhm approximations of t, yielding a set T (BT(t)).
On the other hand, since Taylor approximations always normalize, one may take the set of
all normal forms of all Taylor approximations of t, yielding a set NF(T (t)). A key result of
Ehrhard and Regnier, known as the commutation theorem, states that T (BT(t)) = NF(T (t)).
This connection between Böhm and Taylor approximations is a surprisingly powerful tool,
implying a wealth of fundamental theorems in the pure λ-calculus [3].
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26:2 Böhm and Taylor for All!

The theory of Taylor approximations has been extended to call-by-value [18], to call-by-
push-value [10] and to the λµ-calculus [2]. In the call-by-value setting, where a notion of
Böhm tree is available, the commutation theorem is known to hold [29]. These results exploit
the fact that, in reality, the notion of Taylor expansion exists in the much more general
setting of differential linear logic [20]. Informally, whenever a system S may be encoded in
differential linear logic, a notion of Taylor approximation for S may be “pulled back” along
the encoding.

Interestingly, usual Böhm trees, as well as call-by-value Böhm trees, may also be seen as
resulting from a general notion of “Böhm tree” for linear logic, pulled back along Girard’s
call-by-name and call-by-value encodings. It is natural to wonder whether the different forms
of the commutation theorem are also “pullbacks” of a more general commutation theorem.

The main goal of this paper is to give an affirmative answer to the above question. We
introduce a process calculus Proc corresponding to a form of differential linear logic, define
Böhm and Taylor approximations for it and prove the commutation theorem at this level of
generality. We also show that, as soon as a system S embeds in Proc in a sufficiently nice
way, then Böhm trees, Taylor expansion and the commutation theorem automatically “pull
back” to S. The known commutation theorems of [23, 25, 29] are covered by our results.
Furthermore, we show how Böhm trees for call-by-push-value and a fragment of the π-calculus
may also be defined.

It is well-known that intersection types [11, 6], in particular in their non-idempotent
version [26, 15], are strongly related to Taylor approximations [14, 18, 32]. We provide a
system of non-idempotent intersection types for Proc and show how it too “pulls back” along
embeddings, automatically characterizing the existence of normal forms via typability, as
long as these are properly reflected in Proc. Known examples, such as the above or those
of [8], fit in this picture. From [32], we know that other forms of intersection types (affine,
idempotent) may be treated in a similar way, but in this paper we restrict to the linear
non-idempotent case for briefness.

For the reader acquainted with proof nets, our calculus Proc is a process calculus
representation of untyped proof structures (i.e, not necessarily logically correct objects) of
differential linear logic. More precisely, of a non-polarized version of Honda and Laurent
proof structures [28]. In §5.1 we give a more precise statement about the connection with
linear logic proofs. The reduction rules of Proc reflect the process calculi tradition and are
less fine-grained than those of usual differential nets [24, 34, 33], while still being semantically
correct. We do not claim any canonicity of Proc: any other syntax for classical differential
linear logic (for instance, an extension of Accattoli’s syntax [1]) would probably work. The
only real merit of Proc is to provide a manageable syntax.

Another difference is that we do not consider formal sums. In the literature on differential
λ-calculi, formal sums as used to represent non-determinism: a non deterministic choice like
t → u1 and t → u2 is expressed by the deterministic reduction t → u1 + u2. By contrast, as
customary in process calculi, there are no formal sums in Proc and we allow uncontrolled
non-determinism (the calculus does not enjoy confluence). Also, our Taylor approximations
are rigid in the sense of [35, 32]. Intuitively, this is implicit in the usual communication rule
of polyadic process calculi, which is something like a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2}
(cf. Definition 7, rule ⊗/`). Non-rigid syntaxes like the ones traditionally considered for
defining Taylor approximations would correspond to b1, b2 being unordered in the output
a⟨b1, b2⟩ (i.e, they form a multiset rather than a list) and the above reduction would become
a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2} + P{b2/c1}{b1/c2}, that is, we consider every
possible ordering of the multiset and use formal sums to collect all results. Using rigidity and
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dispensing with sums yields great syntactic simplifications with essentially no semantic loss.
We do, however, neglect quantitative aspects (the coefficients of the Taylor series). Luckily,
in a great number of interesting cases (for instance those of [3]), these are not needed.

About the applicability of our work, we must stress that the fact that an embedding
S → Proc immediately establishes a nice theory of Böhm and Taylor approximations for
S does not say anything about the actual interest of this theory. First of all, as is, the
theory is formulated in the syntax of Proc, and reformulating it in “S-friendly” syntax is
not automatic (the call-by-push-value case of §6.1 is an example). Second, its relevance and
usefulness must be ascertained case by case. For example, we have not yet investigated the
Böhm trees for the stack calculus or for the fragment of the π-calculus presented in §6.2 and
§6.3.

Finally, we want to point out that our notion of embedding (Definition 1) is rather
naive. While sufficient for the examples shown in this paper, many encodings, especially of
process calculi, are not embeddings in the technical sense of this paper, typically because
they are up to some equivalence. For instance, the encoding of the λµ-calculus in the stack
calculus mentioned in §6.2 is up to β-equivalence, so it is not directly covered by this paper.
Extending our results of §4.3 and §5.2 to a more general class of embeddings is an interesting
subject for future work.

2 Preliminaries

In this paper we consider reduction systems, which are given by:
a set of objects, to be thought of as terms, proofs, programs, states. . .
a binary relation →∗ which is reflexive and transitive.

So a reduction system is exactly the same thing as a preorder.
A morphism of reduction systems f : S → T is just a monotonic function: s →∗ s′

implies f(s) →∗ f(s′).

▶ Definition 1 (embedding). An embedding f : S → T is a morphism such that, for every
object s of S, f(s) →∗ t′ implies that there exists s′ such that t′ →∗ f(s′) and s →∗ s′.

The following is straightforward:

▶ Lemma 2. If f : S → T and g : T → U are embeddings, then g ◦ f is an embedding.

3 Processes

We fix two disjoint, countably infinite sets of linear names, ranged over by a, b, c . . . and
cartesian names, ranged over by x, y, z . . . As customary in process calculi, we denote by ã

sequences (possibly empty) of linear names, and we write |ã| for the length of ã.

▶ Definition 3 (pre-process, context). Pre-processes are defined as follows:

P, Q ::= 0
∣∣∣ P | Q

∣∣∣ a ↔ b
∣∣∣ a⟨̃b⟩

∣∣∣ a⟨̃b⟩ (linear pre-processes)∣∣∣ νxP
∣∣∣ a(x)P

∣∣∣ a(x)P
∣∣∣ x⟨a⟩

∣∣∣ x⟨a⟩
∣∣∣ !x(a).P

Linear pre-processes are those generated only by the first line. We use p, q . . . to range over
linear pre-processes. Pre-processes of the form !x(a).P are called boxes. In the literature on
process calculi, a ↔ b is usually called linear forwarder; we will call it axiom to stress the
connection with proof nets.

FSCD 2024
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Contexts are defined as pre-processes but with the addition of the hole {−}. As customary,
we consider only contexts having exactly one occurrence of the hole, and denote them by C.
We denote by C{P} the pre-process obtained by plugging pre-process P in the hole of C.

▶ Definition 4 (occurrences of names). We say that a linear name a occurs as subject in
a⟨̃b⟩, a⟨̃b⟩, a(x)P , a(x)P , a ↔ b and b ↔ a. All other occurrence of a are as object.

The notations νx, a(x) and a(x) are called cartesian binders: in νxP , a(x)P and a(x)P
the cartesian name x is bound, and α-equivalence applies as usual. A cartesian name which
is not bound is free.

If a cartesian name x appears elsewhere than in a binder, then we say that it appears as
subject, and such an occurrence is positive if it is of the form x⟨a⟩, or negative if it is of
the form x⟨a⟩ or !x(a).P .

▶ Definition 5 (process). A (linear) process is a (linear) pre-process verifying the following:
every linear name occurs at most twice. If it occurs once, we say that it is free, otherwise
it is bound and α-equivalence applies to it. We write fn(P ) for the set of free names of
P , both linear and cartesian.
In a(x)P (resp. a(x)P ) every free occurrence of x in P (if any) is positive (resp. negative).
In !x(a).P , fn(P ) = {a} ∪ X where X consists solely of cartesian variables with positive
occurrences in P (the case X = ∅ is allowed).

▶ Definition 6 (structural congruence). Structural congruence is the relfexive, symmetric,
transitive and contextual closure of the following rules:

(P | Q) | R ≡ P | (Q | R) P | 0 ≡ P P | Q ≡ Q | P νx0 ≡ 0

βP | Q ≡ β(P | Q) βγP ≡ γβP a ↔ b ≡ b ↔ a a ↔ b | P ≡ P{a/b},

where: in the bottom row, β and γ are cartesian binders and β binds x ̸∈ fn(Q); in the last
equation, we require b ∈ fn(P ), and P{a/b} means, as customary, that we rename the unique
free occurrence of b in P with a.

One may readily check that being a process is preserved under structural congruence.
For the reader acquainted with proof nets of differential linear logic, the following

“dictionary” may be helpful (the unacquainted reader may safely ignore this paragraph):
0 is the empty net; P | Q is juxtaposition of two nets; as mentioned above, a ↔ b is an
axiom; a⟨̃b⟩ and a⟨̃b⟩ are n-ary tensor and par nodes, respectively; νxP is an “exponential
cut” (“linear cuts” are represented as explained in Definition 8 below); a(x)P and a(x)P are
n-ary contraction and cocontraction, respectively (the arity is the number of occurrences
of x in P ); x⟨a⟩ and x⟨a⟩ are derelection and coderelection nodes, respectively; as already
mentioned, !x(a).P is an exponential box, with principal port x and as many auxiliary ports
as there are occurrences of free names in P . The idea is that the free names of a process
correspond to the conclusions of an untyped net. Structural congruence corresponds to
equality of nets (in the sense of graphical representations), plus elimination of cuts with
axioms (this is consistent with interaction nets [24], in which axioms are just wires).

▶ Definition 7 (reduction). The basic reduction rules are follows:

a⟨̃b⟩ | a⟨c̃⟩ | P →⊗/` P{b̃/c̃} |̃b| = |c̃|, c̃ ∈ fn(P )
a(x)P | a(x)Q →!/? νx(P | Q)

νx(x⟨a⟩ | x⟨b⟩ | P ) →cod0 νxP{a/b} b ∈ fn(P )
νx(C{x⟨a⟩} | !x(b).P ) →c νx(C{P{a/b}} | !x(b).P )

νx(!x(a).P | Q) →w νxQ x ̸∈ fn+(Q)
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plus the rule

νx(!y(c).C{x⟨a⟩} | x⟨b⟩ | P ) →cod! νx(!y(c).νwC{w⟨a⟩} | y⟨c⟩ | νz(C{z⟨a⟩} | z⟨b⟩) | P )

in which w and z are fresh names. In the w rule, x ̸∈ fn+(Q) means that x has no positive
free occurrence in Q.

If R → R′ by means of one of the above basic reductions, we write P → Q to say there
exists a context C such that P ≡ C{R} and Q ≡ C{R′}. We write →∗ for the reflexive-
transitive closure of →. This induces a reduction system Proc (resp. LinProc) whose objects
are processes (resp. linear processes) modulo structural equivalence.

▶ Definition 8 (cut-free process). A linear cut in a process is a linear name occurring twice
as subject. A cartesian cut is any subprocess of the form νxP . A process is cut-free if it
contains neither linear nor cartesian cuts. A process P has a cut-free form if P →∗ N with
N cut-free.

The next two paragraphs provide additional explanations for linear logic experts, which
unacquainted readers may ignore. The basic rules of Definition 7 are a reformulation of
cut-elimination steps of differential linear logic proof nets. The rule ⊗/` is the multiplicative
step. The rule !/? reduces a cut between a contraction and a cocontraction. However,
instead of the usual rule making the two commute with each other, this rule creates a
cartesian cut (which we could also call “exponential cut”). Cartesian cuts should be seen as
communication zones in the sense of Ehrhard and Laurent [22]: any number of derelictions
and coderelections/boxes (as many as the premises of the contraction and the cocontraction
originating the cut) may be paired up non-deterministically in a cartesian cut, using the
rules cod0 (derelection/codereliction), cod! (a codereliction interacting with the border of a
box) or c (a dereliction extracting one copy of a box). The rule w erases a box when there is
no dereliction left. Intuitively, we are taking communication zones as primitive, rather than
implementing them as Ehrhard and Laurent do in [22].

In fact, the usual presentation of cut-elimination of differential linear logic [24, 34, 33]
is based on finer-grained rules than ours. In their encoding of process calculi, Ehrhard
and Laurent use this finer granularity to implement “communication zones” ensuring that
inputs may interact with outputs [22]. This means, in particular, that our formulation is
semantically correct with respect to the usual one: the finer-granularity rules may simulate
our rules. However, our formulation has the advantage of matching the tradition of process
calculi, as well as solving the problems pointed out in [31], which are precisely due to the
fact that the usual cut-elimination rules are too fine-grained for expressing concurrency in
the same way as process calculi.

Nevertheless, Proc does exhibit some unusual features with respect to standard process
calculi. The most striking one is perhaps the presence of linear names and the convention that
a linear name is bound as soon as it appears twice. For instance, the process a⟨⟩ | a⟨⟩ | b⟨⟩
would be traditionally written νa(a⟨⟩ | a⟨⟩ | b⟨⟩). This would lead to a proliferation of ν’s, so
we chose to leave these name restrictions implicit.

Another remarkable difference is that we allow reduction to occur inside boxes, i.e, if
P → Q, then !x(a).P → !x(a).Q. This is useful for encoding λ-calculi whose reductions may
occur in arbitrary positions. It is essential for recovering usual Böhm trees, for example. In
§5.2 we will consider shallow reduction, which only happens outside of boxes and corresponds
to standard reduction of process calculi. This is the notion of reduction to which intersection
types are most immediately applicable. It is also useful for encoding weak reduction strategies
of λ-calculi, which do not reduce under λ.

FSCD 2024
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Observe that all basic reductions involve a cut. Therefore, a cut-free process is normal
with respect to reduction. The converse is false: for example, a⟨⟩ | a⟨b⟩ is a normal process
containing a cut with an “arity mismatch”. Cuts to which no reduction applies are called
irreducible. Other examples of irreducible linear cuts are “clashes” such as a⟨b⟩ | a(x)P or
a⟨b⟩ | a⟨c⟩, or “vicious circles” such as a ↔ a (for the acquainted reader: the first corresponds
to a cut beween a tensor and a contraction; the second to a cut between two tensors; the third
to a cut between the two conclusions of an axiom). Irreducible cartesian cuts are of the form
νx(x⟨a⟩ | P ) (resp. νx(x⟨a⟩ | P )) with P containing no negative (resp. positive) occurrence
of x (for the acquainted reader: the first corresponds to a cut between a dereliction and a
coweakening, the second to a cut between a codereliction and a weakening). In §5.1 we will
introduce types and correctness. The former eliminate clashes and arity mismatches, the
latter vicious circles. Irreducible cartesian cuts, instead, may be present even in well-typed
correct processes. They correspond to situations which, in the usual syntax of differential
linear logic using formal sums, reduce to the empty sum.

The following lemma will be useful later:

▶ Lemma 9. P →∗ Q implies P{a/b} →∗ Q{a/b}.

Proof. By induction on the length of the reduction, we reduce to the case of a single step
C{R} → C{R′}, which is proved by induction on C and by inspection of Definition 7. ◀

4 Approximations

4.1 Taylor Approximations
▶ Definition 10 (Taylor process). Taylor processes are linear processes in which certain inputs
and outputs are marked as “special” and denoted by a⟨⟨̃b⟩⟩ and a⟨⟨̃b⟩⟩. Reduction is defined
just as in linear processes, i.e, with rule ⊗/` of Definition 7, but restricted to special/special
and non-special/non-special pairs, that is, a⟨̃b⟩ | a⟨⟨c̃⟩⟩ is irreducible even in case |̃b| = |c̃|. We
denote by Tay the reduction system with Taylor processes as objects.

There is an obvious morphism Tay → LinProc which forgets the “special” annotations.
It is not an embedding: a⟨⟨⟩⟩ | a⟨⟩ is mapped to a⟨⟩ | a⟨⟩, which reduces to 0, but the original
process cannot reduce.

▶ Lemma 11. In Taylor processes, reduction is strongly confluent and terminating.

Proof. The only reduction steps are of kind ⊗/`, which cannot overlap, hence strong
confluence. For what concerns termination, define the size of a Taylor process to be the
number of axioms and subprocesses of the form a⟨̃b⟩, a⟨̃b⟩, a⟨⟨̃b⟩⟩, a⟨⟨̃b⟩⟩ which are present in
the process. By inspecting Definition 6 and the ⊗/` rule, we immediately see that size is
preserved by structural congruence and that it strictly decreases under reduction, which
implies termination. ◀

The Taylor approximation relation is defined in Fig. 1. It uses approximation judgments
of the form p ⊏ P ⊢ Ξ; Ξ′ where:

p is a Taylor process and P an arbitrary process;
Ξ and Ξ′ are disjoint finite sets of pairs of the form a ⊏ x, where a is a linear name not
appearing free in P and x a cartesian name, such that every linear name appears at most
once in Ξ ∪ Ξ′.
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0 ⊏ 0 ⊢;
p ⊏ P ⊢ Ξ; Ξ′ q ⊏ Q ⊢ Υ; Υ′

p | q ⊏ P | Q ⊢ Ξ, Υ; Ξ′, Υ′ a ↔ b ⊏ a ↔ b ⊢;

a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢; a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢;
p ⊏ P ⊢ Ξ, ã ⊏ x; Ξ′, b̃ ⊏ x

p{ã/b̃} ⊏ νxP ⊢ Ξ; Ξ′ |ã| = |̃b|

p ⊏ P ⊢ Ξ, b̃ ⊏ x; Ξ′

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ; Ξ′
x ̸∈ Ξ p ⊏ P ⊢ Ξ; Ξ′, b̃ ⊏ x

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ; Ξ′
x ̸∈ Ξ′

a ↔ b ⊏ x⟨b⟩ ⊢ a ⊏ x;
a ̸= b

a ↔ b ⊏ x⟨b⟩ ⊢; a ⊏ x
a ̸= b

p1 ⊏ P{a1/a} ⊢ Ξ1; . . . pn ⊏ P{an/a} ⊢ Ξn;
p1 | · · · | pn ⊏ !x(a).P ⊢ Ξ1, . . . , Ξn; a1 ⊏ x, . . . , an ⊏ x

∀i ai ̸∈ fn(P )

Figure 1 Taylor approximations.

The intuition is that a ⊏ x in Ξ (resp. Ξ′) means that the linear name a approximates one
positive (resp. negative) occurrence of the cartesian name x.

In the sequel, we will write p ⊏ P when a judgment of the form p ⊏ P ⊢ Ξ; Ξ′ is derivable
for some Ξ, Ξ′.

▶ Lemma 12. Let p ⊏ P . Then:
1. P = Q{a/b} iff p = q{a/b} for some q ⊏ Q;
2. P = C{Q} with fn(Q) = {a} ∪ X with X consisting of cartesian names with only positive

occurrences implies p ≡ t | q1 | · · · | qn for some qi and t such that t ⊏ C{x⟨a⟩} whenever
x ∈ fn(C{x⟨a⟩}), and qi ⊏ Q{ai/a} for all 1 ≤ i ≤ n and some pairwise distinct ai;

3. P ≡ P ′ (resp. p ≡ p′) implies p ≡ p′ for some p′ (resp. P ≡ P ′ for some P ′) such that
p′ ⊏ P ′.

Proof. Point (1) is proved by induction on P . Point (2) is proved by induction on C. Point
(3) is proved by checking every rule of Definition 6 and then by induction on contexts. ◀

Point (3) of Lemma 12 assures us that we may transparently use structural congruence with
Taylor approximations, which is what we will do from now on.

We now prove the two fundamental properties of Taylor approximations, namely that
they may be pulled back along arbitrary reductions and pushed forward along reductions to
cut-free forms.

▶ Lemma 13 (pull-back). Let P →∗ Q and q ⊏ Q. Then, there exists p ⊏ P such that
p →∗ q. Diagrammatically:

P
∗// Q P

∗// Q

⊏ =⇒ ⊏ ⊏

q p
∗// q

Proof. We start by proving the lemma when P = R, Q = R′ and R → R′ by means of one
of the basic rules of Definition 7. The cases ⊗/` and !/? are immediate applications of point

FSCD 2024
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(1) of Lemma 12. For the cases cod0, cod!, c and w, one shows that q ⊏ R′ implies q ⊏ R, so
the pull-back is the empty reduction. This claim is straightforward for the rules cod0, cod!
and w; for the rule c, point (2) of Lemma 12 is used.

Next, we prove the lemma for one-step reduction, that is, when P ≡ C{R}, Q ≡ C{R′}
and R → R′ by means of a basic rule. Define the depth of the context C to be number of
nested boxes within which the hole is located. The proof is by induction on the depth of
C. If the depth is zero, then C ≡ νz̃(S | {−}) for some S, from which we infer q ≡ (s | r′)σ
where s ⊏ S, r′ ⊏ R′ and σ is a substitution. We apply the result we proved above, and
obtain r ⊏ R such that r →∗ r′. Then, if we let p := (s | r)σ, we have p ⊏ P such that,
using Lemma 9, p →∗ q as desired. If C has depth d + 1, then C ≡ νz̃(S | !x(a).C′) for
some process S and context C′ of depth d. We therefore have q ≡ (s | q1 | · · · | qn)σ with
s ⊏ S and qi ⊏ C′{R′}{ai/a} for all 1 ≤ i ≤ n. By hypothesis and Lemma 9, we have
C′{R}{ai/a} → C′{R′}{ai/a}, so we apply the induction hypothesis to each qi and obtain
pi ⊏ C′{R}{ai/a} such that pi →∗ qi. Then, if we let p := (s | p1 | · · · | pn)σ, we have p ⊏ P

such that p →∗ q, and we conclude.
Finally, we prove the general version of the lemma by induction on the length of the

reduction P →∗ Q. The statement is trivial for length zero because P ≡ Q. For length k + 1,
we have P → P1 →∗ Q with P1 →∗ Q of length k. Given q ⊏ Q, the induction hypothesis
gives us p1 ⊏ P1 such that p1 →∗ q. Then, we apply the one-step case proved above to p1
and obtain the desired p ⊏ P such that p →∗ p1 →∗ q. ◀

▶ Lemma 14. Let p ⊏ P such that p has a cut-free form and p → p′ (one-step reduction).
Then, there exist reductions p′ →∗ q and P → Q such that q ⊏ Q. Diagrammatically:

P P // Q

⊏ =⇒ ⊏ ⊏

p // p′ p // p′ ∗// q

Proof. The proof is by induction on the structure of P . We only include the complicated
cases, which are when P is a parallel composition, a box or a restriction. If P = P1 | P2,
then we know that p = p1 | p2 with pi ⊏ Pi. The reduction may be performed within one of
the pi, in which case we use the induction hypothesis to conclude, or it may be a reduction
between an output in, say, p1 and an input in p2. By Fig. 1, this means that P1 is of the
form a⟨̃b⟩ | P ′

1 or a(x)P ′
1, and P2 of the dual form, so P may perform a matching reduction.

If P = !x(a).P ′, then p = p1 | · · · | pn with pi ⊏ P ′{ai/a}. We claim that the step p → p′

cannot happen because of a communication between two distinct pi. If this were the case,
then we would have a free name b occurring as input subject in some pi. Now, we cannot have
b = ai, because ai does not appear in any other pj with j ̸= i. Then, since boxes may have
no free linear name, b must approximate a free cartesian name of P ′, but this is impossible,
because free cartesian names of boxes may only appear as outputs, and approximations
of outputs are still outputs. So pj → p′

j for some j, and p′ = p1 | · · · | p′
j | · · · | pn. Since

approximations do not introduce cuts, the cut reduced in pj → p′
j comes from a cut of

P ′. Such a cut induces a cut in every pi, because these all approximate P ′. But p has
a cut-free form, so all these cuts are reducible, therefore pi → p′

i for all i. The induction
hypothesis gives us p′

i →∗ qi and P ′ → Q′
i such that qi ⊏ Q′

i. However, since it is the same
cut of P ′ that is being reduced in each P ′ → Q′

i, all Q′
i are actually equal to some Q′, so

!x(a).P →∗ !x(a).Q′ and q1 | · · · | qn ⊏ !x(a).Q′, as desired.
If P = νxP1, then p = p1{ã/b̃} with p1 ⊏ P1 and ã, b̃ approximate x as output and input,

respectively. In case the reduction p → p′ is already present in p1, i.e, in case p′ = p′
1{ã/b̃}
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with p1 → p′
1, the induction hypothesis allows us to conclude immediately. Otherwise, the

reduction is made possible by the substitution of ai to bi for some i, which means that there
is an occurrence of x as input matching an occurrence of x as output in P1. Such occurrences
are uniquely determined by the index i and induce a one-step reduction in P . More precisely,
we have P = νxC{R} and R →x R′ where x is one of cod0, cod! or c. At this point, the proof
splits in two cases, according to the shape of C. If C is shallow (i.e, the hole is not under a
box), then we conclude straightforwardly (we omit the details). In case the hole is under a
box, we use the same argument given above (for the case P = !x(a).P ′) to conclude that
the step p → p′ may be “completed” by reducing the other cuts in p approximating the cut
corresponding to R →x R′, yielding the desired push-forward. ◀

▶ Lemma 15 (push-forward). Let p ⊏ P and p →∗ n such that n is cut-free. Then, there
exists a reduction P →∗ Q such that n ⊏ Q. Diagrammatically:

P P
∗// Q

⊏ =⇒ ⊏ ⊏

p
∗// n p

∗// n

Proof. We prove the following stronger result, which is a generalization of Lemma 14 to
reductions of arbitrary length: for all p ⊏ P with p having a cut-free form and for all p →∗ p′,
there exist p′ →∗ q and P →∗ Q such that q ⊏ Q. Diagrammatically:

P P
∗// Q

⊏ =⇒ ⊏ ⊏

p
∗// p′ p

∗// p′ ∗// q

The lemma is the special case in which p′ is cut-free, which implies q = p′.
The proof is by induction on the length of the reduction p →∗ p′. If the length is zero,

then p is itself cut-free and the claim is immediate. Now suppose that the length is k + 1,
which means p → p1 →k p′, with →k denoting reduction in k steps. Diagrammatically, the
proof may be depicted as follows:

P //

(1)

Q1
∗// Q

⊏ ⊏ (3) ⊏

p

$$

q1
k//

(2)

q′ ∗// q

p1
k//

∗ ::

p′

∗
::

where (1) holds by Lemma 14, (2) by Lemma 11 (strong confluence) and (3) by the induction
hypothesis. Let us spell out the details. By Lemma 14, there exist reductions p1 →∗ q1 and
P →∗ Q1 such that q1 ⊏ Q1. Now, it is well known that, in a strongly confluent system, the
two sides of confluence diamonds have the same length, that is, if t →m t′ and t →n t′′, there
there exists u such that t′ →n u and t′′ →m u. Therefore, by Lemma 11, there exists q′ such
that p′ →∗ q′ and q1 →k q′. But q1 still has a cut-free form, because it is a reduct of p, so
the induction hypothesis allows us to conclude. ◀

Lemma 15 is why “special” inputs and outputs are needed in Taylor approximations. If, for
instance, a(x)P where approximated by a⟨̃b⟩ | p rather than a⟨⟨̃b⟩⟩ | p, then the push-forward
property would fail: for example, a(x) | a⟨⟩ cannot reduce, but would be approximated by
a⟨⟩ | a⟨⟩, which reduces to 0. This is related to the failure of the forgetful map Tay → LinProc

to be an embedding, as pointed out above.

FSCD 2024
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4.2 Böhm Approximations and the Commutation Theorem
▶ Definition 16 (Böhm approximations). We define P ≤0 Q just if P is obtained from Q by
replacing any number of its boxes (i.e, subprocesses of the form !x(a).R) with 0. The Böhm
approximation relation is defined as follows: N < P iff N is cut-free and there exists P ′

such that P →∗ P ′ and N ≤0 P ′.

Observe that Definition 16 applies to Taylor processes as well. However, in that case,
≤0 degenerates to equality, because there are no boxes in Taylor processes, so n < p simply
means that n is the cut-free form of p (not all Taylor processes have one).

▶ Lemma 17. For every cut-free Taylor process n, n ⊏ P iff there exists a cut-free process
N such that n ⊏ N ≤0 P .

Proof. Formally, both directions are by induction on P . Rather than detailing all cases, let
us give the intuition. For the forward direction, the key point is that the only way Taylor
approximations may “forget” cuts is by approximating a box with 0. So, if n ⊏ P with n

cut-free, either P is already cut-free, and we are done, or all of its cuts are within boxes
approximated by 0 in n. Therefore, we define N as P in which those same boxes are replaced
with 0, and obtain N cut-free such that n ⊏ N ≤0 P .

The converse does not even rely on cut-freeness: we have n ⊏ N and N is obtained from
P by replacing some boxes with 0, but 0 is a Taylor approximation of any box, so n ⊏ P . ◀

▶ Theorem 18 (Böhm-Taylor commutation). The relations ⊏< and <⊏ coincide.

Proof. The proof is in the following diagram:

P
∗// Q ≥0 N

⊏ (1) ⊏ (2) ⊏

p
∗// n = n

Indeed, observe that, by definition, n ⊏< P is equivalent to the situation depicted in the
red part of the diagram, for some Q and cut-free N . Similarly, n <⊏ P is equivalent to the
situation depicted in the green part of the diagram, for some p.

For red implies green, notice that Taylor approximations do not introduce cuts, so N

cut-free implies n cut-free. Then, Lemma 17 gives us square (2), and Lemma 13 gives us
square (1).

For green implies red, square (1) is given by Lemma 15 and square (2) by Lemma 17. ◀

4.3 Pulling Back the Commutation Theorem
In what follows, we fix an arbitrary reduction system S equipped with an embedding
f : S → Proc (in the technical sense of Definition 1).

▶ Definition 19 (Böhm tree). Let s be an objects of S. A Böhm approximation of s is a
cut-free process N such that s →∗ s′ and N ≤0 f(s′). The Böhm tree of s, denoted by BT(s),
is the set of all Böhm approximations of s.

Observe that we could have defined Böhm approximations by asking that f(s) →∗ f(s′)
and N ≤0 f(s′). We now prove that this is equivalent, because f is an embedding.

▶ Lemma 20. For every process P and cut-free process N , N ≤0 P and P →∗ P ′ implies
N ≤0 P ′.
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Proof. Since N is cut-free, and since N differs from P only by the fact that some boxes of
P are replaced by 0 in N , then any cut of P is inside a box. Therefore, P ′ differs from P

only inside some boxes, and replacing them with 0 yields again N . ◀

▶ Lemma 21. For every object s of S, N is a Böhm approximation of s iff f(s) →∗ f(s′)
such that N ≤0 f(s′).

Proof. The forward reduction is immediate: by definition, we have a reduction s →∗ s′ in S
such that N ≤0 f(s′), so we take the reduction f(s) →∗ f(s′) which we have by monotonicity.
For the converse, suppose that f(s) →∗ f(s′). By definition of embedding, there exists s′′

such that f(s′) →∗ f(s′′) and s →∗ s′′. But by Lemma 20, N ≤0 f(s′) implies N ≤0 f(s′′),
so we conclude. ◀

The terminology “Böhm tree” is somewhat abusive because, strictly speaking, BT(s) has
nothing of a tree. In good cases, however, it does have the properties of Böhm trees. First of
all, it follows immediately from the definition that s →∗ s′ implies BT(s′) ⊆ BT(s). In case
S is confluent, i.e, if any span of the form s →∗ s1, s →∗ s2 may be closed by reductions
s1 →∗ s′ and s2 →∗ s′, then the converse implication also holds:

▶ Proposition 22. Let S be confluent. Then, s →∗ s′ implies BT(s) = BT(s′).

Proof. We only need to show that BT(s) ⊆ BT(s′). Let N ∈ BT(s). By definition, s →∗ s1
such that N ≤0 f(s1). By confluence, there exists s′′ such that s′ →∗ s′′ and s1 →∗ s′′, so
we conclude by Lemma 20. ◀

Additionally, when S is confluent, BT(s) may be seen as a possibly infinite cut-free
process, in the sense of taking the construct !x(a).P coinductively:

▶ Lemma 23. Let S be confluent. Then, BT(s) is either empty or an ideal w.r.t. ≤0.

Proof. Downward closure is immediate from the definition and transitivity of ≤0. It remains
to prove that N1, N2 ∈ BT(s) implies that there is N ∈ BT(s) such that N1, N2 ≤0 N . We
start by proving that, given an arbitrary process P , the poset {Q | Q ≤0 P} ordered by ≤0
has binary suprema. Let τP be the rooted forest whose nodes are the boxes of P and such
that there is an edge from R to S if S is a subprocess of R. By definition, Q ≤0 P iff Q is
obtained by replacing some boxes of P with 0, so the poset {Q | Q ≤0 P} is isomorphic to
the poset {τ | τ is a rooted subforest of τP } ordered by rooted inclusion of forests, and the
latter obviously has binary suprema.

Now, by definition, N1, N2 ∈ BT(s) means that s →∗ s1 and s →∗ s2 such that
N1 ≤0 f(s1) and N2 ≤0 f(s2). By confluence, we have s′ such that s1 →∗ s′ and s2 →∗ s′.
By Lemma 20 and the fact that f is a morphism, N1, N2 ≤0 f(s′), so we take N to be the
supremum of N1 and N2. ◀

▶ Definition 24 (Taylor expansion). Let s be an object of S. A Taylor approximation of s is
a Taylor process p such that p ⊏ f(s). The Taylor expansion of s, denoted by T (s), is the
set of all Taylor approximations of s.

The Taylor expansion of the Böhm tree of s is the following set of Taylor processes:

T (BT(s)) := {n ⊏ N | N ∈ BT(s)}.

Notice that, since Böhm approximations are cut-free, T (BT(s)) is actually a set of cut-free
linear processes.
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⊢; ; A⊥, A

⊢ Θ1; Θ′
1; Γ, A⊥ ⊢ Θ2; Θ′

2; ∆, A

⊢ Θ1, Θ2; Θ′
1, Θ′

2; Γ, ∆
⊢ Θ1, A⊥, . . . , A⊥; Θ′

1; Γ ⊢ Θ2; Θ′
2, A; ∆

⊢ Θ1, Θ2; Θ′
1, Θ′

2; Γ, ∆

⊢ Θ1; Θ′
1; Γ1, A1 . . . ⊢ Θ1; Θ′

n; Γn, An

⊢ Θ1, . . . , Θn; Θ′
1, . . . , Θ′

n; Γ1, . . . , Γn, A1 ⊗ · · · ⊗ An

⊢ Θ; Θ′; Γ, A1, . . . , An

⊢ Θ; Θ′; Γ, A1 ` · · · ` An

⊢ Θ; Θ′; Γ, A

⊢ Θ, A; Θ′; Γ
⊢ Θ, A, . . . , A; Θ′; Γ

⊢ Θ; Θ′; Γ, ?A

⊢ Θ; ; A

⊢ Θ; A;
⊢ Θ; Θ′, A; Γ
⊢ Θ; Θ′; Γ, !A

Figure 2 Linear logic. Exchange rules (applicable within every segment of sequents) are implicit.

Given an arbitrary set of Taylor processes X, we define NF(X) as the set of cut-free
forms of processes in X: NF(X) := {n cut-free | ∃p ∈ X such that p →∗ n}.

▶ Theorem 25 (Böhm-Taylor commutation, pulled back). For every object s of S,

NF(T (s)) = T (BT(s)).

Proof. Unfolding the definitions, we have n ∈ NF(T (s)) iff n <⊏ f(s). Similarly, n ∈
T (BT(s)) iff n ⊏< f(s): the forward implication is immediate from the definitions and
the fact that f is a morphism; the converse follows from Lemma 21. We then conclude by
Theorem 18. ◀

5 Linear Logic

5.1 Proofs as Processes
The sequent calculus of classical linear logic is presented in Fig. 2. We leave out additive
connectives as they are unessential for our purposes. Sequents are divided in three segments,
conveniently matching our process calculus. It is an exercise to show that this is equivalent
to a more standard presentation, such as Girard’s original one [27], in the following sense:

▶ Proposition 26. A sequent ⊢ Θ; Θ′; Γ is provable in the sequent calculus of Fig. 2 iff the
sequent ⊢ ?Θ, !Θ′, Γ is provable in the sequent calculus of classical linear logic given in [27].

Proof. Observe that the translation of each rule of Fig. 2 is derivable in Girard’s calculus.
Conversely, every rule of Girard’s calculus is derivable in ours. Deriving contraction and
promotion introduces cuts, using the derivability of ⊢ A; ; !A⊥. ◀

The sequent calculus of Fig. 2 may be decorated with processes and converted to a type
system. This would be a “Curry-style” presentation of the correspondence between our
processes and classical linear logic. We opt instead for a “Church-style” presentation:

▶ Definition 27 (typed process). A typed process is a process in which every occurrence of
name (except in binders) is decorated by a formula of linear logic, in such a way that:

in aA ↔ bB, B = A⊥;
two occurrences of the same linear name are decorated by the same formula if one is
subject and the other object, or by dual formulas if they are both subject or both object;
in aA⟨bB1

1 , . . . , bBn
n ⟩ (resp. aA⟨bB1

1 , . . . , bBn
n ⟩), A = B1 ⊗· · ·⊗Bn (resp. A = B1`· · ·`Bn);
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a ̸= b

a ↔ b ▷ Ξ; ; a, b

P ▷ Ξ; Ξ′
1; Γ, a Q ▷ Ξ; Ξ′

2; ∆, a

P | Q ▷ Ξ; Ξ′
1, Ξ′

2; Γ, ∆

a⟨̃b⟩ ▷ Ξ; ; a, b̃

P ▷ Ξ; Ξ′; Γ, b̃

a⟨̃b⟩ | P ▷ Ξ; Ξ′; Γ, a

P ▷ Ξ, x; Ξ′
1; Γ Q ▷ Ξ; Ξ′

2, x; ∆
νx(P | Q) ▷ Ξ; Ξ′

1, Ξ′
2; Γ, ∆

x⟨a⟩ ▷ Ξ, x; ; a

P ▷ Ξ, x; Ξ′; Γ
a(x)P ▷ Ξ; Ξ′; Γ, a

P ▷ Ξ; ; a

!x(a).P ▷ Ξ; x;
P ▷ Ξ; Ξ′, x; Γ

a(x)P ▷ Ξ; Ξ′; Γ, a

Figure 3 Correct processes.

all occurrences of same polarity of a cartesian name are decorated by the same formula;
in νxP , positive and negative occurrences of x (if any) are decorated by dual formulas;
in aA(x)P (resp. aA(x)P ), A = ?B (resp. A = !B), where B is the formula decorating x

in P , or is arbitrary if x ̸∈ fn(P );
in xA⟨aB⟩ and xA⟨aB⟩, we have A = B; similarly, in !xA(a).P , the decoration of a in P

(which must appear) is A.
The type of a free occurrence of name as subject (resp. as object) is its decoration (resp.
the negation of its decoration). We say that ⊢ Θ; Θ′; Γ is a sequent associated with P if Θ
(resp. Θ′, Γ) contains all types of all positive cartesian (resp. negative cartesian, linear) free
occurrences of variables. This is unique up to a permutation of the occurrences, so in the
sequel we will simply speak of “the” sequent associated with P .

It is important to observe that typed does not imply logically correct: for example,
aA ↔ aA⊥ is typed, but its associated sequent is empty. In the literature on linear logic,
there are correctness criteria [27, 13] for isolating “proof-like” objects. Here, we rely on
an inductive presentation, given in Fig. 3, where a judgment P ▷ Ξ; Ξ′; Γ means that P is
correct and its free positive cartesian (resp. negative cartesian, linear) names are in Ξ (resp.
Ξ′, Γ). Observe that, in accordance with the yoga of linear logic, typability and correctness
are independent notions: a correct process need not be typable.

▶ Proposition 28. A sequent is provable in the sequent calculus of Fig. 2 iff it is associated
with a correct typed process. Moreover, cut-free proofs correspond to cut-free processes.

Proof. Both directions are by induction, on the last rule of the sequent calculus proof or on
the last rule of the correctness derivation. ◀

So correct typed processes may be regarded as linear logic proofs, and reduction as a
cut-elimination procedure. If one wished, confluence and termination could be proved for
correct typed processes, but this is beyond the scope of this paper. We do observe, however,
that Fig. 3 may easily be extended to include correctness for non-deterministic processes. It
suffices to replace the last rule of Fig. 3 with the rule below on the left, and to add the rule
below on the right:

P1 ▷ Ξ; Ξ′
1, x; Γ1 . . . Pn ▷ Ξ; Ξ′

n, x; Γn

a(x)(P1 | · · · | Pn) ▷ Ξ; Ξ′
1, . . . , Ξ′

n; Γ1, . . . , Γn, a x⟨a⟩ ▷ Ξ; x; a

Correct (for this extended notion of correctness) typed processes are in correspondence with
proofs of differential linear logic (with promotion but without zero and sums).
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0 ⊢; ;
P ⊢ Ξ1; Ξ′

1; Γ, [a : A] Q ⊢ Ξ2; Ξ′
2; ∆, [a : A⊥]

P | Q ⊢ Ξ1, Ξ2; Ξ′
1, Ξ′

2; Γ, ∆ a ↔ b ⊢; ; a : A, b : A⊥

a⟨b1, . . . , bn⟩ ⊢; ; a :
⊗

i Ai, b1 : A⊥
1 . . . , bn : A⊥

n

a⟨b1, . . . , bn⟩ ⊢; ; a :
˙

i Ai, b1 : A⊥
1 . . . , bn : A⊥

n

P ⊢ Ξ1, x : A1, . . . , x : An; Ξ′
1; Γ Q ⊢ Ξ2; Ξ′

2, x : A⊥
1 , . . . , x : A⊥

n ; ∆
νx(P | Q) ⊢ Ξ1, Ξ2; Ξ′

1, Ξ′
2; Γ, ∆

P ⊢ Ξ, x : A1, . . . , x : An; Ξ′; Γ
a(x)P ⊢ Ξ; Ξ′; Γ, a :

∨
i Ai

P1 ⊢ Ξ1; Ξ′
1, x : A1; Γ1 . . . Pn ⊢ Ξn; Ξ′

n, x : An; Γn

a(x)(P1 | · · · | Pn) ⊢ Ξ1, . . . , Ξn; Ξ′
1, . . . , Ξ′

n; Γ1, . . . , Γn, a :
∧

i Ai

x⟨a⟩ ⊢ x : A; ; a : A⊥ x⟨a⟩ ⊢; x : A; a : A⊥

P ⊢ Ξ1; ; a : A1 . . . P ⊢ Ξn; ; a : An

!x(a).P ⊢ Ξ1, . . . , Ξn; x : A1, . . . , x : An;

Figure 4 Intersection types. In the second rule at the top, the declarations a : A and a : A⊥ are
either both present or both absent (the rule is a cut in the first case, a mix in the second).

One may also add correctness of the so-called mix rules:

0 ▷; ;
P ▷ Ξ; Ξ′

1; Γ Q ▷ Ξ; Ξ′
2; ∆

P | Q ▷ Ξ; Ξ′
1, Ξ′

2; Γ, ∆

This more general notion of correctness, for non-deterministic processes and with mix rules,
is the one we will consider in the next section.

5.2 Intersection Types
Intersection types are defined as follows:

A, B ::= X | X⊥ | A1 ⊗ · · · ⊗ An | A1 ` · · · ` An | A1 ∧ · · · ∧ An | A1 ∨ · · · ∨ An.

Duality (i.e, linear negation) is defined as usual, with ∧ dual to ∨.
An intersection type judgment is of the form P ⊢ Ξ; Ξ′; Γ where Ξ and Ξ′ (resp. Γ) contain

type declarations of the form x : A (resp. a : A) with x a cartesian name (resp. a a linear
name) and A an intersection type. The same cartesian name may appear in multiple type
declarations in Ξ and Ξ′, even multiple times with the same type (this means that we are
considering non-idempotent intersection types). By contrast, a linear name may only be
declared once in Γ. The intersection type system for processes is given in Fig. 4.
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A typed Taylor process is defined as in Definition 27, with the addition of the constraints
that in aA⟨⟨bB1

1 , . . . , bBn
n ⟩⟩ (resp. aA⟨⟨bB1

1 , . . . , bBn
n ⟩⟩) we have A = B1 ∨ · · · ∨ Bn (resp. A =

B1 ∧ · · · ∧ Bn). Taylor processes do not have cartesian names, so the associated sequent of a
typed Taylor process is of the form ⊢; ; Γ, which we just write ⊢ Γ. If p is a typed Taylor
process, we write p− for the underlying process, without the decorations. In the following,
correctness is meant in the generalized sense of the end of §5.1 (with mix).

▶ Lemma 29. If p is a correct typed Taylor process, then p− has a cut-free form.

Proof. Taylor processes are linear, so reduction always terminates (Lemma 11). Therefore, it
is enough to show that there are no irreducible cuts. This is straightforward: irreducible cuts
are incorrect or not typable and reduction preserves correctness and type decorations. ◀

The following is a reformulation of the results of [32], where a general connection between
Taylor approximations and intersection types is described in detail. We state it without
proof, but one may intuitively justify the result by observing that Fig. 4 is a superposition of
Fig. 1 and Fig. 3 (with the additional rules given at the end of §5.1), annotated with types.

▶ Proposition 30. The judgment P ⊢ Ξ; Ξ′; Γ is derivable in the system of Fig. 4 iff there
exists a correct typed Taylor process p whose associated sequent is ⊢ Ξ, Ξ′, Γ such that p− ⊏ P .

▶ Lemma 31 (subject expansion). If Q ⊢ Ξ; Ξ′; Γ is derivable and P is correct such that
P → Q, then P ⊢ Ξ; Ξ′; Γ is derivable.

Proof. Modulo Proposition 30, this is Lemma 13, except that we need to add type decorations.
Correctness of P ensures that the pullback approximation is also correct. ◀

We say that a context is shallow if the hole does not appear inside a box. Shallow
reduction is defined by modifying Definition 7 as follows: the reduction rule cod! is discarded,
c is restricted to the case C = Q | {−}, with Q arbitrary, and the reduction rules are only
closed under shallow contexts. We write →0 for shallow reduction. A process is said to be
shallow cut-free if all of its cuts, if any, are inside boxes.

▶ Lemma 32 (progress). Let P ⊢ Ξ; Ξ′; Γ be derivable and let p be the associated typed Taylor
process according to Proposition 30. Then, either P is shallow cut-free or P →∗

0 Q and there
is a derivation Q ⊢ Ξ; Ξ′; Γ whose associated Taylor process q is such that p− → q−.

Proof. By inspection of Fig. 1, we see that a shallow cut in P yields a cut in p. As observed in
Lemma 29, such a cut cannot be irreducible, so we have p → q by reducing it. Removing type
annotations, we have p− ⊏ P and p− → q−, so we apply Lemma 15 and Proposition 30. ◀

Observe that Lemma 32 does not hold for general cuts: since boxes may be approximated by
0, P may contain a cut inside a box which is invisible to the intersection type derivation.

▶ Theorem 33. A process P is typable as in Fig. 4 iff it is correct (in the generalized sense
of the end of §5.1) and P →∗

0 P0 with P0 shallow cut-free.

Proof. Let P be typable. Correctness is immediate from the typing rules: they are essentially
a decoration of Fig. 3 plus the extra correctness rules at the end of §5.1. We need to show
that P reduces to a shallow cut-free process. Let p be the typed Taylor approximation given
by Proposition 30. We reason by induction on the size of p−, as defined in the proof of
Lemma 11. We apply Lemma 32 and either conclude immediately because P is shallow
cut-free or obtain P →∗ Q with Q typable with an associated approximation q such that

FSCD 2024



26:16 Böhm and Taylor for All!

p− → q−. This implies that the size of q− is strictly smaller than the size of p−, so we
conclude by the induction hypothesis.

Suppose now that P →∗
0 P0 with P0 shallow cut-free. It is straighforward to prove, by

induction on P0, that P0 is typable (intuitively, we approximate all boxes by 0 and then
typability is guaranteed by correctness and absence of cuts), so we conclude by Lemma 31. ◀

If f : S → Proc is a morphism of reduction systems, then we may say that an object of s

is typable in intersection types if f(s) is typable according to Fig. 4.
Let Proc0 be the reduction system with processes as objects but with →∗

0 as preorder. In
the following, we consider a reduction system S with a distinguished set of objects suggestively
called “normal”. We say that an embedding f : S → Proc0 is sound if

for every object s, f(s) is correct (in the generalized sense);
for every object s0, s0 is normal iff f(s0) is shallow cut-free.

▶ Theorem 34. Let f : S → Proc0 be a sound embedding. Then, an object s of S is typable
in intersection types iff s →∗ s0 with s0 normal.

Proof. Suppose that s is typable, which means that f(s) is. By Theorem 33, f(s) →∗
0 P0

with P0 shallow cut-free. Since f is an embedding, we have P0 →∗
0 f(s0) such that s →∗ s0.

But P0 is shallow cut-free, so f(s0) = P0 and we conclude s0 normal by soundness.
Suppose now that s →∗ s0 with s0 normal. This implies f(s) →∗

0 f(s0). By soundness,
f(s0) is correct and shallow cut-free, so it is typable. By soundness and Lemma 31, f(s) is
typable, so s is typable by definition. ◀

6 Applications

6.1 Call by Push Value
It is known that Paul Levy’s call-by-push-value [30] may be expressed in intuitionistic linear
logic [19], yielding the bang-calculus [21]. We use a recent reformulation due to Bucciarelli
et al. [8], which allows us to show at the same time how Accattoli and Kesner’s explicit
substitutions “at a distance” may be handled painlessly. Terms are defined by

t, u ::= x | λx.t | tu | !t | der t | t[x := u],

where x ranges over a countable set of variables, which, for convenience, we take to be the
set of cartesian names. Contexts are defined as expected (add a hole {−} to the above
definition). We use the notation t[−] for a term of the form t[x1 := u1] · · · [xn := un] (n
may be zero). The constructor !(−) binds more strongly than binary constructors, i.e, !tu
and !t[x := u] are to be understood as (!t)u and (!t)[x := u], respectively. Reduction is the
contextual closure of the following rules:

(λx.t)[−]u → t[x := u][−] t[x := !u[−]] → t{u/x}[−] der(!t[−]) → t[−]

where t{u/x} denotes, as usual, the capture-free substitution of u to all free occurrences
of x in t. This induces a reduction system Λ!. We inductively define a family of maps
L−Ma : Λ! → Proc parametric in a linear name a:

LxMa := x⟨a⟩ Lλx.tMa := a⟨c, d⟩ | c(x)LtMd
LtuMa := LtMb | b⟨c, a⟩ | LuMc L!tMa := a(z)!z(b).LtMb

Lder tMa := c(z)z⟨a⟩ | LtMc Lt[x := u]Ma := b(x)LtMa | LuMb.
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The paper [8] also introduces weak reduction for the bang-calculus, which does not reduce
under !(−). We denote by Λw

! the corresponding reduction system. In this system, we take
normal forms to be terms whose redexes and clashes (undesirable configurations defined
in [8]) only appear under a !(−).

▶ Proposition 35. For any linear name a, L−Ma is an embedding. Moreover, considered as a
map Λw

! → Proc0, it is a sound embedding.

With a bit of work (which we spare the reader), the results of §4.3 may be formulated
directly in the syntax of the bang-calculus. Böhm trees are as expected: given a bang-calculus
term t, if weak reduction for t does not terminate, then BT(t) = ⊥. Otherwise, it terminates
on a term of the form C{!u1, . . . , !un} where C is a multi-hole context containing no !(−).
Then, BT(t) = C{!BT(u1), . . . , !BT(un)}. Notice that ⊥ and !⊥ are different Böhm trees.

The Taylor expansion of call by push value has already been defined and studied in [10].
Here, we find a reformulation in the context of the bang-calculus with explicit substitutions.
Taylor approximation terms are defined as follows:

r, s ::= a | λ⟨ã⟩.r | rs | ⟨r1, . . . , rn⟩ | der r | r[⟨ã⟩ := s],

where a ranges over linear variables, i.e, no variable occurs twice and every variable of ã in
binders λ⟨ã⟩.t or t[⟨ã⟩ := u] must occur free in t. The reduction rules are as follows:

(λ⟨ã⟩.r)s → r[⟨ã⟩ := s] r[⟨ã⟩ := ⟨s̃⟩] → r{s̃/ã} der⟨r⟩ → r,

with the condition that, in the second rule, |ã| = |s̃|. The approximation relation is defined
using judgments Ξ ⊢ r ⊏ t with Ξ consisting of declarations of the form a ⊏ x, with no linear
variable appearing twice in Ξ. The relation is defined as follows:

a ⊏ x ⊢ a ⊏ x

Ξ, ã ⊏ x ⊢ r ⊏ t

Ξ ⊢ λ⟨ã⟩.r ⊏ λx.t
Ξ ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ, Υ ⊢ rs ⊏ tu

Ξ1 ⊢ r1 ⊏ t . . . Ξn ⊢ rn ⊏ t

Ξ1, . . . , Ξn ⊢ ⟨r̃⟩ ⊏ !t
Ξ ⊢ r ⊏ t

Ξ ⊢ der r ⊏ der t

Ξ, ã ⊏ x ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ, Υ ⊢ r[⟨ã⟩ := s] ⊏ t[x := u]

By Proposition 35 and Theorem 25, we know that the above Böhm trees and Taylor
approximations interact well.

Proposition 35 also entails the results of §5.2. We will not detail them here, but these
allow us to obtain for free the intersection type system of [8], along with the property that it
characterizes terms with weakly clash-free normal forms.

Both [10] and [8] consider the well-known embeddings of call-by-name and call-by-value
λ-calculus in call by push value, and extrapolate from these embeddings suitable notions
of Taylor approximations and intersection type systems for call-by-name and call-by-value,
recovering the results of [23, 25, 18, 29] and [26, 14, 15, 18]. In our setting, these are
embeddings in the technical sense of Definition 1, and since embeddings compose, we also
recover these results in a uniform manner. Additionally, we recover usual Böhm trees [4] and
the call-by-value Böhm trees of [29], as well as the related commutation theorems [23, 25, 29].

6.2 Classical Logic
The stack calculus [9] is a simple calculus for classical computation, embedding the λµ-calculus.
Its syntax has stacks π, terms t and processes P , defined as follows:

π ::= α | t · π | tl(π) t ::= µα.P | hd(π) P ::= ⟨t, π⟩,
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where α ranges over a countably infinite set of stack variables, which, for technical convenience,
we take to be a subset of cartesian names of our processes. The construct µα is a binder.
Reduction is defined as follows:

⟨µα.P, π⟩ → P{π/α} hd(t · π) → t tl(t · π) → π.

Let Stk, T erm amd StkProc be the reduction systems induced by the above definitions,
with stacks, terms and processes as objects, respectively. We define two families of maps
L−Ma : Stk → Proc and L−Ma : T erm → Proc parametric in a linear name a, as well as a
map L−M : StkProc → Proc, as follows:

LαMa := α⟨a⟩ Lt · πMa := a⟨b, c⟩ | b(x)!x(d).LtMd | c(y)!y(e).LπMe

Lµα.P Ma := a(α)LP M Lhd(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(x⟨a⟩)
L⟨t, π⟩M := LtMa | a(x)!x(b).LπMb Ltl(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(y⟨a⟩).

▶ Proposition 36. The above maps are embeddings.

As mentioned in the introduction, the encoding of the λµ-calculus in the stack calculus
is not an embedding in our technical sense, so we cannot directly apply our results to the
λµ-calculus. Nevertheless, now we do have a working theory of Böhm trees and Taylor
expansion for a calculus Curry-Howard-isomorphic to classical logic, which is a novelty as far
as we know (in the context of the λµ-calculus, it is mentioned as an open question in [2]).
We leave the investigation of this theory, in particular the significance of Böhm trees, to
future work.

6.3 Concurrent Computation
The asynchronous polyadic π-calculus is defined as follows:

P, Q ::= 0
∣∣∣ P | Q

∣∣∣ νxP
∣∣∣ x⟨ỹ⟩

∣∣∣ !x(ỹ).P,

where we suppose names to be cartesian names of our processes. Structural congruence and
reduction are standard, with the rules

x⟨ỹ⟩ | !x(z̃).P → P{ỹ/z̃} | !x(z̃).P νx(!x(ỹ).P | Q) → νxQ

with the proviso, in the second rule, that x does not occur as subject of an output in Q.
We consider here the hyperlocalized variant of the calculus [12], which is defined by

restricting to processes such that, in !x(ỹ).P , no free name of P occurs as subject of an input.
Also, reduction is allowed only under a restriction. As shown in [12], this is a reasonably
expressive calculus, with full non-determinism, locks, etc.

Let Π be the reduction system corresponding to the above calculus. Using the notation
(z ⇒ y) := !z(c).y⟨c⟩ (as a process of Proc), we define a map L−M : Π → Proc0 by letting

Lx⟨y1, . . . , yn⟩M := x⟨a⟩ | a⟨b1, . . . , bn⟩ | b1(z1)(z1 ⇒ y1) | · · · | bn(zn)(zn ⇒ yn)
L!x(y1, . . . , yn).P M := !x(a).(a⟨b1, . . . , bn⟩ | b1(y1) · · · bn(yn)LP M)

and by making L−M act homomorphically on 0, parallel composition and restriction.

▶ Proposition 37. The map L−M is an embedding.

Unfortunately, the above embedding is not sound with respect to any reasonable notion
of normal form for the π-calculus, because LP M is not necessarily correct (processes may have
all sorts of vicious cycles). However, this does not prevent from taking the intersection type
system of §5.2 and use it as a starting point for coming up with a working intersection type
system for the hyperlocalized π-calculus. This is exactly the genesis of the paper [12].



A. Dufour and D. Mazza 26:19

References
1 Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination in linear

logic. Log. Methods Comput. Sci., 19(4), 2023.
2 Davide Barbarossa. Resource approximation for the λµ-calculus. In Proceedings of LICS,

pages 27:1–27:12, 2022.
3 Davide Barbarossa and Giulio Manzonetto. Taylor subsumes Scott, Berry, Kahn and Plotkin.

Proc. ACM Program. Lang., 4(POPL):1:1–1:23, 2020.
4 Henk Barendregt. The type free lambda calculus. In Jon Barwise, editor, Handbook of

Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
1091–1132. Elsevier, 1977.

5 Henk Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in
logic and the foundations of mathematics. North-Holland, 1985.

6 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983.

7 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Proceedings of CONCUR,
volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer, 1993.

8 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. Inf. Comput., 293:105047, 2023.

9 Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. The stack calculus. In Proceedings
of LSFA, volume 113 of EPTCS, pages 93–108, 2012.

10 Jules Chouquet and Christine Tasson. Taylor expansion for call-by-push-value. In Proceedings
of CSL, volume 152 of LIPIcs, pages 16:1–16:16, 2020.

11 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Log., 21(4):685–693, 1980.

12 Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types
and runtime errors in the pi-calculus. Proceedings of the ACM on Programming Languages,
3(POPL:7), 2019.

13 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Log.,
28(3):181–203, 1989.

14 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Ph.D. thesis,
Université de la Méditerranée–Aix-Marseille 2, 2007.

15 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018.

16 Thomas Ehrhard. On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci.,
12(5):579–623, 2002.

17 Thomas Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615–646, 2005.
18 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Proceedings of CSL,

volume 16 of LIPIcs, pages 259–273, 2012.
19 Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Proceedings of

ESOP, volume 9632 of Lecture Notes in Computer Science, pages 202–228, 2016.
20 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-

tiderivatives. Math. Struct. Comput. Sci., 28(7):995–1060, 2018.
21 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus

generalizing call-by-name and call-by-value. In Proceedings of PPDP, pages 174–187, 2016.
22 Thomas Ehrhard and Olivier Laurent. Acyclic solos and differential interaction nets. Log.

Methods Comput. Sci., 6(3), 2010.
23 Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor

expansion of lambda-terms. In Proceedings of CiE 2006, volume 3988 of Lecture Notes in
Computer Science, pages 186–197, 2006.

24 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

FSCD 2024



26:20 Böhm and Taylor for All!

25 Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

26 Philippa Gardner. Discovering needed reductions using type theory. In Proceedings of TACS,
pages 555–574, 1994.

27 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
28 Kohei Honda and Olivier Laurent. An exact correspondence between a typed pi-calculus and

polarised proof-nets. Theor. Comput. Sci., 411(22-24):2223–2238, 2010.
29 Axel Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting call-by-value Böhm trees in

light of their taylor expansion. Log. Methods Comput. Sci., 16(3), 2020.
30 Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of

Semantics Structures in Computation. Springer, 2004.
31 Damiano Mazza. The true concurrency of differential interaction nets. Math. Struct. Comput.

Sci., 28(7):1097–1125, 2018.
32 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and

intersection types. Proceedings of the ACM on Programming Languages, 2(POPL:6), 2018.
33 Michele Pagani and Paolo Tranquilli. The conservation theorem for differential nets. Math.

Struct. Comput. Sci., 27(6):939–992, 2017.
34 Paolo Tranquilli. Confluence of pure differential nets with promotion. In Proceedings of CSL,

volume 5771 of Lecture Notes in Computer Science, pages 500–514, 2009.
35 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource

terms. In Proceedings of LICS, pages 1–12, 2017.


	1 Introduction
	2 Preliminaries
	3 Processes
	4 Approximations
	4.1 Taylor Approximations
	4.2 Böhm Approximations and the Commutation Theorem
	4.3 Pulling Back the Commutation Theorem

	5 Linear Logic
	5.1 Proofs as Processes
	5.2 Intersection Types

	6 Applications
	6.1 Call by Push Value
	6.2 Classical Logic
	6.3 Concurrent Computation


