
TERMGRAPH 2006

Observational Equivalence for the Interaction
Combinators and Internal Separation

(Extended Abstract)

Damiano Mazza 1

Institut de Mathématiques de Luminy

Marseille, France

Abstract

We define an observational equivalence for Lafont’s interaction combinators, which
we prove to be the least discriminating non-trivial congruence on total nets (nets
admitting a deadlock-free normal form) respecting reduction. More interestingly,
this equivalence enjoys an internal separation property similar to that of Böhm’s
Theorem for the λ-calculus.

Key words: Interaction nets, interaction combinators,
observational equivalence, internal separation, Böhm’s Theorem.

1 Introduction

Lafont’s interaction combinators [4] are a graph-rewriting model of determin-
istic distributed computation. As in Turing machines, transitions are local,
but they can be performed in parallel; the determinism comes from the fact
that the resulting computation is unique up to permutation of rewriting steps.
They can be seen as a generalization of multiplicative linear logic proof-nets

[1], and in fact fit into the wider framework of interaction nets [3].

The original motivation behind the introduction of the interaction com-
binators was indeed the definition of a simple universal interaction net sys-

tem, i.e., a system capable of simulating all other interaction net systems.
The universality of the combinators, which automatically entails their Turing-
completeness, together with their extreme simplicity and elegance, are in our
opinion enough to justify the interest of studying this system as an autonomous
computational model, ignoring its relationship to general interaction nets.

In this paper, we define a notion of observational equivalence for nor-
mal nets of combinators, which is interesting because it is maximal (Proposi-

1 Email: mazza@iml.univ-mrs.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mazza

tion 3.4) and because it can be characterized by means of a rewriting relation
analogous to η-equivalence in the λ-calculus. In other words, we prove an
internal separation result similar to Böhm’s Theorem (Theorem 3.7): given
two non-equivalent normal nets, there exists a context separating them.

It is important to observe however that “separating” does not have exactly
the same sense as in Böhm’s classical result: in the λ-calculus, two distinct
βη-normal forms can be separated by sending them to any pair of distinct
βη-normal forms (the typical choice being the projections λxy.x and λxy.y);
in interaction combinators, the uninformative behavior of the ε combinator
forces it to be one the separation values, as no context can extract any infor-
mation from it. Therefore, we actually obtain something more akin to Hy-
land’s Theorem (sometimes referred to as “semi-separation”), which extends
Böhm’s result to non-normal terms. This reveals a sharp difference between
interaction combinators and the λ-calculus, as “full” separation already fails
for normal nets.

Non-normal (or rather non-normalizable) nets will not be addressed in
this extended abstract; indeed, even though an analysis of nets with possibly
infinite behavior is of clear interest, we prefer to keep it as a future extension
of the present work.

As to related work, we must mention Maribel Fernández and Ian Mackie’s
in-depth study on observational equivalence for interaction nets [2], in which
one can find the η-like rules we give at page 6. The other equivalence rules we
consider were already found by Lafont through a semantical analysis. Nev-
ertheless, no special property about these equivalences had previously been
proved (like maximality or internal separation).

2 Interaction Combinators

2.1 Combinators, nets, interaction rules

The interaction combinators are the three following cells :

γ εδ

Each cell has a number of ports; γ and δ have three, ε has only one. The
fundamental property of cells is that exactly one of their ports is principal

(drawn at the bottom in the above graphical representation), the others being
auxiliary.

Ports may be used to plug cells 2 together by means of wires to form nets,
as in the following example:

2 Here, and all throughout the rest of the paper, we shall make systematic confusion be-
tween cells and occurrences of cells.

2

Mazza

δ

δ γ γ

γ

γ

δ

ε

ε

ε ε

Wires can have one or both of their extremities not connected to any cell, in
which case the net has a free port, principal or auxiliary (or neither) depending
on the nature of the port of the cell connected to the other extremity of the
wire. The net above has for example 7 free ports, of which 1 is principal and
4 are auxiliary. The free ports of a net are referred to as its interface.

The distinction between principal and auxiliary ports comes into play when
defining the dynamics of nets. As a matter of fact, when two cells are con-
nected through their principal ports, they form an active pair, and they may
be replaced by another subnet according to the following interaction rules:
the annihilations

→

ε

ε

→

γ

γ

→

δ

δ

and the commutations

→

ε

α

ε ε→

γ

α ∈ {γ, δ}γ γ

δ δ

δ

When a net µ′ is obtained from µ after the application of one of the above
rules, we say that µ reduces in one step to µ′, and we write µ → µ′. We can
then define the reduction relation →∗ on nets of combinators as the reflexive-
transitive closure of →. We write µ ≃β µ′ iff there exists µ′′ such that µ →∗ µ′′

and µ′ →∗ µ′′.

Notice that interaction rules are purely local; if we add to this the fact
that cells have exactly one principal port, we immediately obtain that → is
confluent, which implies that the reduction process is also (strongly) confluent.
This ensures that the computation is unique up to permutation of rules, and
that ≃β is an equivalence relation. We remark here a substantial difference
with respect to reduction in the λ-calculus: if a net is normalizable, then it is
strongly so.

A net may contain configurations which cannot be removed through inter-
action, like

3

Mazza

γ

γ

γ

γ

in which clearly no cell can interact first (there is a sort of deadlock). The
following case is yet simpler:

Deadlocked configurations like those above are called vicious circles:

Definition 2.1 (Vicious circle) A straight path in a net is a simple path
(i.e., not using any wire more than once) which never crosses consecutively
two auxiliary ports of the same cell. A vicious circle is a cyclic straight path.

A net containing no active pair and no vicious circle is said to be cut-free. 3

A net admitting a cut-free form (necessarily unique by confluence) is said to
be total ; on the contrary, a net whose reduction goes on forever, or which
reduces to a net containing a vicious circle will be called partial.

Cut-free nets are the “true” normal forms of the reduction; they can be
seen as the final result of a computation. On the other hand, partial nets
represent deadlocked or divergent computations.

2.2 Basic nets

Wirings. A net containing no cells but just wires will be called a wiring. We
shall represent the generic wiring as

. . .

. . .

σ ω

. . .

or

The following are examples of wirings:

We also allow the free ports of a wiring to belong to ε cells, in which case
we speak of an ε-wiring and we use the notation σ̃ or ω̃. The following are
examples of ε-wirings:

3 Lafont uses the term reduced ; we prefer cut-free on the grounds that it does not conflict
with standard rewriting terminology and that it makes sense (even though there is no room
for explanations here) to say that vicious circles actually hide irreducible logical cuts.

4

Mazza

ε ε εε ε

Trees. Trees are defined inductively as follows. The wiring

is a tree with one leaf (it is arbitrary which of the two extremities is the root
and which is the leaf). If τ1 and τ2 are two trees with resp. n1 and n2 leaves,
then we can define a tree τ with n1 + n2 leaves as

τ

τ1 τ2

α

=

. . .

.

where α ∈ {γ, δ}.

It is not hard to verify that any cut-free net ν with n free ports can be
decomposed in terms of trees and ε-wirings as follows:

ω̃

τ1 τn

. . .

.

. . .

ν =

Principal nets and packages. A principal net of arity n is either a single wire
(in which case n = 1), or a cut-free net with n free auxiliary ports and 1 free
principal port. If n = 0 (resp. n = 1), we say that the net is a package (resp. a
test). Principal nets can be seen as “compound” cells, and will be drawn just
like ordinary cells. Notice that trees are particular examples principal nets.

3 Observational equivalence

The system of interaction combinators can be seen as an abstract program-
ming language, in which total nets are deadlock-free and terminating pro-
grams/data. As such, it may be of interest to define on it a notion of obser-

vational equivalence. In this paper, we shall restrict our attention to total
nets with one free port, although everything we shall say can be generalized
to total nets with arbitrary interfaces. Therefore, unless otherwise stated, in
the sequel “net” will mean “net with one free port”.

Let µ be a total net, and θ a test. If we plug the free port of µ to the
principal free port of θ (or to any of its free ports in case θ is a wire), we

5

Mazza

obtain a net µ′. If µ′ is total 4 , and its cut-free form is π, we write θ[µ] = π,
otherwise we write θ[µ] = Ω.

Definition 3.1 (Finite test) Let µ, µ′ be two total nets. A test θ is said to
be (µ, µ′)-finite iff θ[µ] 6= Ω and θ[µ′] 6= Ω.

Definition 3.2 (ε-package) An ε-package is a tree whose leaves are all con-
nected to principal ports of ε cells.

Definition 3.3 (Observational equivalence) Let µ, µ′ be two total nets.
We say that µ is observationally equivalent to µ′, notation µ ≃◦ µ′, iff for any
(µ, µ′)-finite test θ, θ[µ] is an ε-package iff θ[µ′] is.

Proposition 3.4 (Maximality) ≃◦ is the greatest non-trivial congruence on

total nets containing ≃β, i.e., if ≈ is a congruence such that ≃β ⊆ ≈, then

either ≈ ⊆ ≃◦, or µ ≈ µ′ for all µ, µ′.

The above proposition can be proved independently of what we shall do in
the sequel, but the proof is rather tedious, so we prefer to state it as a corollary
of Theorem 3.7, Sect. 3.2. As a matter of fact, we shall prove that ≃◦ can
actually be defined in a much more concrete way, indeed as an equivalence
relation generated by ≃β plus the following equalities:

≃η

γ δ

≃η ≃η

ε ε

α
ε

γ δ

γ

γ γδ δ

δ

≃η

α ∈ {γ, δ}

The top-right and bottom equations were already considered by Lafont [4];
in particular, the top-right rule states the equivalence of all ε-packages to the
ε combinator. On the other hand, the top-left equations can be found in
the work of Fernández and Mackie as part of a larger study on operational
equivalence for interaction nets [2].

Definition 3.5 (Equivalence) Two nets µ, µ′ are η-equivalent, notation
µ ≃η µ′, iff they can be rewritten one into the other by means of the above
equalities. We write ≃ for the transitive closure of ≃β ∪ ≃η, and if µ ≃ µ′,
we say that µ and µ′ are equivalent.

4 Totality is obviously semi-decidable; this will not be a concern for us here.

6

Mazza

We point out that there is no reasonable orientation for the equations defin-
ing η-equivalence, so there are no canonical representatives for the equivalence
classes of ≃ (as opposed to βη-normal forms in the λ-calculus).

3.1 Adequacy

To prove that ≃ ⊆ ≃◦, we need the following lemma, which tells us that
η-equivalence is a weak bisimilarity (the proof is omitted):

Lemma 3.6 Let µ1, µ2 be two η-equivalent nets such that µ1 → µ′

1
. Then,

there exists a net µ′

2 such that µ2 →
∗ µ′

2 and µ′

2 ≃η µ′

1.

Now, if µ is a total net, ν its cut-free form, and θ a test, by confluence we
have θ[µ] = θ[ν], hence it is enough to consider cut-free nets. So let ν, ν ′ be two
equivalent cut-free nets, and let ν̃, ν̃ ′ be the nets obtained by plugging them
into a generic (ν, ν ′)-finite test θ. By hypothesis, ν̃ ≃η ν̃ ′, and by Lemma 3.6
we conclude that θ[ν] ≃η θ[ν ′]. It is easy to see that the rules defining η-
equivalence are such that a package π and an ε-package are η-equivalent iff π

is itself an ε-package, so ν ≃◦ ν ′.

3.2 Full-abstraction

In what follows, we write ε for the package consisting of the sole ε combinator,
and δ for the package consisting of a δ combinator whose two auxiliary ports
are connected by a wire.

Theorem 3.7 (Separation) Let µ, µ′ be two total nets such that µ 6≃ µ′.

Then, there exists a test θ such that θ[µ] = ε and θ[µ′] = δ, or vice versa.

The above result proves in particular that ≃◦ ⊆ ≃, and gives us a quick
argument to prove Proposition 3.4. In fact, if ≈ is a congruence such that
≃β ⊆ ≈, and if µ ≈ µ′ for two nets such that µ 6≃◦ µ′, by adequacy and by
Theorem 3.7 we have a test θ such that, for example, θ[µ] = ε and θ[µ′] = δ.
Now put

π

θ

δ

=θπ

where π is any package. It is not hard to verify that θπ[µ] = ε, while θπ[µ′] = π.
But ≈ is preserved through reduction, so µ ≈ µ′ implies θπ[µ] ≈ θπ[µ′], which
means that ε ≈ π, for all π.

We shall now sketch the proof of Theorem 3.7. First of all, as already
observed in Sect. 3.1, it is enough to prove our result for packages, because
we always consider total nets. We need three fundamental results, which we
state in the sequel. All proofs are omitted.

7

Mazza

Lemma 3.8 (Anti-tree) For any tree τ , there exists a net τ ∗, called the

anti-tree of τ , of the form

τ0

σ
. . .

. . .

τ∗

. . .

=

such that

→∗

. . .

τ

τ∗

. . .

. . .

Lemma 3.9 (Equivalence lemma) Let π be a package. Then, for any tree

τ with n leaves, there exists a cut-free net ν with n free ports such that

ν
. . .

τ≃ηπ

In the following, ε2 is a net with two free ports consisting of two ε combina-
tors, and we use the notation (θ1, θ2)[ν] to denote the result of the application
of the tests θ1, θ2 to a net ν with 2 free ports.

Lemma 3.10 (Wire separation) Let ω be a single wire, and ν a cut-free

net with 2 free ports, such that ν 6≃ ω. Then, there exist two tests θ1, θ2 such

that (θ1, θ2)[ω] = ω and (θ1, θ2)[ν] = ε2, or viceversa.

Let now π, π′ be two packages such that π 6≃η π′. Suppose that

ω̃

τ=π

. . .

By the Equivalence Lemma 3.9, there exists a cut-free net ν such that

ν

τ≃ηπ′

. . .

so it does not harm to assume that π and π′ “end” with the same tree.

Now, at least one of the following two situations must apply:

(a) there exists a leaf of τ which is connected to an ε combinator of ω̃, but
is connected to something not equivalent to ε in ν;

(b) there exist two leaves of τ which are connected by a wire of ω̃, whereas

8

Mazza

in ν the same two leaves are either not connected, or their connection is
not equivalent to a wire.

As a matter of fact, if neither (a) nor (b) applied, we would have proved that
π ≃η π′, against our hypothesis.

Suppose that situation (a) applies, and suppose w.l.o.g. that the leaf in
question is the “leftmost” one, i.e., we have

τ

ε ω̃′

. . .

π =

By hypothesis, the “leftmost” free port of ν, let us call it x, is connected to
something not equivalent to ε; this means that if we “go up” the tree rooted
at x in ν, let us call it τ0, we must find a leaf of τ0 connected by a wire to
some other tree of ν. It may happen that all connections are within τ0 itself,
i.e., we have

ν

. . .

= τ0

ω̃0

. . .

ν′

. . .

(for graphical convenience, we have assumed w.l.o.g. that there is a direct
connection between the “leftmost” two leaves of τ0). Under such assumptions,
using Lemma 3.8 one can verify that the test

. . .
ε ε

. . .
ε ε

δ

θ =

τ∗

τ∗

0

is such that θ[π′] = δ, whereas θ[π] = ε. Suppose instead that τ0 is con-
nected to some other tree of ν, and suppose w.l.o.g. that this tree is the one
immediately “to the right” of τ0, let us call it τ1:

τ0 τ1

ν′

. . .

=

. . .

ν
.

(again, in the picture we have made a convenient assumption about the con-
nection between τ0 and τ1, without affecting the generality of our argument).
Always using Lemma 3.8, and the fact that cut-free nets can be erased by ε

cells, one may check that the test

9

Mazza

ε ε
. . .

ε ε
. . .

ε ε
. . .

θ =

τ∗

τ∗

0
τ∗

1

δ

is such that θ[π′] = δ and θ[π] = ε.

Let us now consider situation (b), i.e., π has a direct connection for τ

which π′ is missing. Then, we can use the anti-tree τ ∗ and isolate the two
leaves involved in the connection:

τ

τ∗

ω̃′′

. . .

. . .

ε ε

→∗

τ

τ∗

. . .

. . .

ε ε

→∗

ν

ν0

(as usual, for graphical purposes we have supposed w.l.o.g. that the two leaves
in question are the “leftmost” ones). There is no room for the details here,
but it is not hard to show that, under the hypotheses we have, ν0 cannot be
equivalent to a wire. Hence, the Wire Separation Lemma 3.10 applies, giving
us two packages θ1 and θ2 which are able to distinguish between the wire and
ν0. Therefore, if we define

ε ε
. . .

τ∗θ =

θ1 θ2

δ

we have θ[π] = ε and θ[π′] = δ, or viceversa, which completes the proof.

References

[1] Danos, V. and L. Regnier, The structure of multiplicatives, Archive for
Mathematical Logic 28 (1989), pp. 181–203.

[2] Fernández, M. and I. Mackie, Operational equivalence for interaction nets,
Theoretical Computer Science 297 (2003), pp. 157–181.

[3] Lafont, Y., Interaction nets, in: Conference Record of POPL’90, ACM SIGACT
and SIGPLAN (1990), pp. 95–108.

[4] Lafont, Y., Interaction combinators, Information and Computation 137 (1997),
pp. 69–101.

10

	Introduction
	Interaction Combinators
	Combinators, nets, interaction rules
	Basic nets

	Observational equivalence
	Adequacy
	Full-abstraction

	References

