
Full Abstraction for Set-Based Models of the

Symmetric Interaction Combinators

Damiano Mazza1 and Neil J. Ross2

1 LIPN, UMR 7030 CNRS-Université Paris 13
Damiano.Mazza@lipn.univ-paris13.fr

http://www-lipn.univ-paris13.fr/~mazza
2 Department of Mathematics and Statistics, Dalhousie University

neil.jr.ross@dal.ca

Abstract. The symmetric interaction combinators are a model of dis-
tributed and deterministic computation based on Lafont’s interaction
nets, a special form of graph rewriting. The interest of the symmetric in-
teraction combinators lies in their universality, that is, the fact that they
may encode all other interaction net systems; for instance, several imple-
mentations of the lambda-calculus in the symmetric interaction combi-
nators exist, related to Lamping’s sharing graphs for optimal reduction.
A certain number of observational equivalences were introduced for this
system, by Lafont, Fernandez and Mackie, and the first author. In this
paper, we study the problem of full abstraction with respect to one of
these equivalences, using a class of very simple denotational models based
on pointed sets.

Keywords: Interaction nets, Observational equivalence, Denotational
semantics.

1 Introduction

The symmetric interaction combinators. Interaction nets are a model of dis-
tributed, deterministic computation introduced by Lafont [7]. By distributed we
mean that computation, which is based on graph rewriting, is such that ele-
mentary rewriting steps may be applied at different places in the graph, in a
completely asynchronous way. By deterministic we mean that such elementary
steps never overlap, so that the order in which they are executed does not matter,
and the computation is essentially unique.

In terms of expressiveness, interaction nets are extremely versatile; for in-
stance, Turing machines may be seen as special interaction nets, in which paral-
lelism is absent. Also, the optimal implementation of λ-calculus evaluation uses
certain systems of interaction nets, known as sharing graphs [9, 10].

Among all systems of interaction nets, the interaction combinators [8] are
of special interest, because of their simplicity and universality: in spite of being
composed of only 3 combinators with 6 rewriting rules, any system of interaction
nets may be encoded in the interaction combinators, preserving the parallelism

of computations. Additionally, the λ-calculus under certain reduction strategies
(such as head reduction) may be directly represented in the interaction combi-
nators [11].

The symmetric interaction combinators are a variant of the interaction com-
binators, also introduced by Lafont [8], having essentially the same expressive-
ness (for instance, the results of [11] may be immediately transported to the
symmetric interaction combinators). The advantage of considering this system
is that it is even simpler: although there are still 3 combinators and 6 rules, these
latter may actually be arranged in just 2 patterns (annihilations and commuta-
tions), and the systems lends itself to a simpler study from the point of view of
denotational semantics [12].

Contextual observational equivalences. As an abstract programming language,
the symmetric interaction combinators are not too far from the λ-calculus:
computation is based on a confluent rewriting relation (yielding the analog of
β-equivalence), there is a notion of normal form, a relation analogous to η-
equivalence, and so on. Additionally, one may also easily formulate the concept
of context, from which a rich class of observational equivalences may be defined.

As a matter of fact, after Morris [14], we have a general way of defining
observational equivalences in a language with an internal notion of context: given
a set of syntactic objects S, one defines, for any two syntactic objects t, u,

t ≃S u iff, for every context C, C[t] ∈ S iff C[u] ∈ S.

In languages like the λ-calculus, one usually considers S to be closed under
β-equivalence, so that this latter is automatically contained in ≃S . Morris him-
self introduced the first, still widely used, observational equivalence for the
λ-calculus, by taking S as the set of normalizable λ-terms; we denote such
equivalence by ≃n. Following this pattern, other interesting equivalences may
be defined; we refer the reader to [3] for a detailed survey.

The presence of contexts allows more generally to consider the notion of
congruence on the syntax, i.e., an equivalence relation ∼ such that t ∼ u implies
C[t] ∼ C[u], for all objects t, u and context C. Obviously, a Morris observational
equivalence is a congruence. Given a congruence ∼, it is natural to ask whether
and how it relates to a particular observational equivalence ≃. We say that ∼
is an abstraction of ≃ when ≃⊆∼; it is adequate with respect to ≃ when ∼⊆≃.
These two properties are most frequently investigated when ∼ is induced by a
denotational model; in particular, one seeks a model whose induced congruence
enjoys both of them, in which case the model is said to be fully abstract.

The observational equivalence ≃n on λ-terms has been widely studied and
characterized in several different ways: it is the congruence =BTη

induced by
equality of η-normal Bhöm trees [6]; and it is the congruence induced by equality
in Coppo, Dezani-Ciancaglini and Zacchi’s filter model defined in [2].

Back to the symmetric interaction combinators. It is fairly natural to attempt re-
formulating all of the above congruences, and the questions concerning them, in
the symmetric interaction combinators. After Lafont’s initial work [8], Fernández

and Mackie were the first to formulate a notion of observational equivalence for
interaction nets [4]. More recently, the first author [13] introduced a notion of
solvability for nets of symmetric interaction combinators, together with the con-
cept of observable axiom, corresponding to a “head variable”. With these, comes
a notion of edifice, which is a sort of infinite normal form for nets, analogous
to a Bhöm tree. According to these notions, Fernández and Mackie’s observa-
tional equivalence turns out to be quite strong: it is not sensible, i.e., it does not
identify all unsolvable nets. Alternatively, in analogy with the λ-calculus, it is
possible to consider the following two congruences on nets: one which we still de-
note by ≃n, the Morris observational equivalence induced by normalizable nets;
and =Eη

, the congruence induced by equality of η-expanded edifices, analogous
to =BTη

.
Perhaps surprisingly, it turns out that these two congruences are distinct:

in fact, in the symmetric interaction combinators, ≃n is not even semi-sensible,
i.e., it equates a solvable and an unsolvable net; this is due to the purely local
nature of reduction in interaction nets, in which diverging computations cannot
be erased.

Interestingly, equality of η-expanded edifices does correspond to an obser-
vational equivalence on nets, called finitary axiom-equivalence, also introduced
in [13]. Rephrased in terms of Bhöm trees, this would correspond to the Morris
equivalence ≃Bf

, where Bf is the set of λ-terms whose Böhm tree is finite. In the
λ-calculus, it coincides with ≃n (to prove ≃n⊆≃Bf

, simply observe that =BTη

obviously discriminates between terms in and not in Bf ; to prove ≃Bf
⊆≃n,

consider the contrapositive, and use Böhm’s theorem to find a context discrim-
inating with respect to Bf); in the symmetric interaction combinators, it is a
wholly different equivalence.

The contribution of this paper. Our present objective is to study the question
of full abstraction for finitary axiom-equivalence in terms of set-based models,
which have a more “abstract” flavor than edifices (just like, say, Plotkin’s model
Pω [1] is more “abstract” than Bhöm trees). These models, which were intro-
duced by the first author [12], interpret nets as pointed sets, and are based on
the notion of experiment, first used by Girard for linear logic [5]. The interest
of set-based models lies in their simplicity and concreteness: in many cases, the
denotational interpretation of a net may be explicitly computed with ease.

Technically, these models are given by an interaction set, which is a pointed
set X together with two pointed bijections ontoX⊕X (the product of X with it-
self), satisfying a certain commutation property. We give sufficient conditions for
an interaction set to be fully abstract with respect to finitary axiom-equivalence,
and we provide a concrete example of such an interaction set, which thus plays
the role, in interaction nets, that Coppo, Dezani-Ciancaglini and Zacchi’s filter
model [2] plays in the λ-calculus. The conditions we give are all related to some
kind of approximation property, i.e., the fact that the denotation of a net is
entirely determined by the denotation of its approximations.

Acknowledgments. This work was partially supported by ANR project Logoi.

δ

δ ζ ζ

ζ

ζ

δ

ε

ε

ε ε

Fig. 1. A net.

2 The Symmetric Interaction Combinators

2.1 Nets

Computation in the symmetric interaction combinators (or, henceforth, simply
the symmetric combinators) is a special form of graph rewriting. The graphs on
which computation is performed are called nets, which are composed by cells
and wires.

Each cell carries a symbol, and has a number of ports, exactly one of which is
principal, the other being auxiliary. There are three symbols: δ, ε, and ζ. We shall
use the letters α, β to range over symbols. Cells of type δ or ζ have two auxiliary
ports, hence are called binary, and are represented by a triangle; the principal
port is represented by one of the “tips” of the triangle, while the auxiliary ports
are on the opposite edge. Auxiliary ports are numbered: port 1 (resp. 2) is the
“left” (resp. “right”) auxiliary port when the cell is represented with its principal
port pointing “down”, and the numbering is preserved by rotations. Cells of type
ε have no auxiliary port, hence are called nullary, and are represented by a circle.

A wire has exactly two extremities, which may be connected to the ports of
cells. A loop is a wire with its extremities connected together. A wire which is
not a loop is called proper.

A net is a finite (possibly empty) collection of cells and wires, such that each
port of each cell is attached to the extremity of a wire. Nets will be ranged
over by µ, ν. A net may contain proper wires with one or both extremities not
connected to any cell; these are called the free ports of the net. If a net has
n free ports, they are supposed to be numbered by the integers 1, . . . , n. As an
example, the net in Fig. 1 has 11 cells, of which 4 nullary, 1 loop, 16 proper wires,
and 7 free ports, assumed to be numbered increasingly from “left” to “right”.

Let us introduce some remarkable nets, which will be useful in the sequel. A
wiring is a net containing no cell and no loop. Wirings are permutations of free
ports; they are ranged over by ω. We shall often use ω also to denote a single
wire.

The net with n free ports consisting of n ε cells is denoted by En.
A tree is a net defined by induction as follows. A single ε cell is a tree with no

leaf, denoted by ε; a proper wire is a tree with one leaf, denoted by •; if τ1, τ2 are
two trees with resp. n1, n2 leaves, and if α is a binary symbol, the net obtained by

plugging the root of τi into the auxiliary port i of an α cell, with i ∈ {1, 2}, is a
tree with n1+n2 leaves, denoted by α(τ1, τ2). Trees are represented adopting the
same graphical notations as cells. We shall avoid possible ambiguities by never
using δ, ε, ζ to denote trees, and by using α, β exclusively to range over cell
symbols, so that a triangle annotated with α or β will unambiguously represent
a single cell.

An active pair is a net consisting of two cells whose principal ports are
connected by a wire.

It is also useful to define some special sorts of wires in nets. An axiom is a
proper wire such that none of its extremities is the principal port of a cell. A cut
is a proper wire connecting two principal ports. An axiom-cut is either a loop,
or a proper wire connecting the root of a tree to one of its own leaves. We say
that a net is cut-free if it contains no cuts and no axiom-cuts. Note that cuts
are in one-to-one correspondence with active pairs. As an example, consider the
net in Fig. 1, in which the reader should find 7 axioms, 2 cuts (or active pairs),
and 2 axiom-cuts.

The following result is proved by induction on the number of cells.

Lemma 1 (Shape). Let ν be a cut-free net with n free ports. Then, for each
1 ≤ i ≤ n there exist a unique tree τi, and there exists a unique wiring ω such
that the equality below on the left holds. Let µ be a net with n free ports and k
cuts and axiom-cuts. Then, there exists a cut-free net ν with n + 2k free ports
such that the equality below on the right holds.

ν ν

.
µ =

.

. . .

τ1 τn

ω

=

Note that we use rectangles to represent generic nets, including wirings. How-
ever, ω will always denote a wiring. Observe that all wires in the wiring ω of the
left equality are axioms; in fact, that is the shape of a generic cut-free proof net
of multiplicative linear logic [5], with the axiom links in ω and the logical links
in τ1, . . . , τn, whence our terminology. Also observe that the net ν of the right
equality is unique as soon as µ does not contain axiom-cuts.

We conclude this section with the essential notion of context :

Definition 1 (Context, test). Let µ be a net with n free ports. A context for
µ is a net C with at least n free ports. We denote by C[µ] the application of C
to µ, which is the net obtained by plugging the free port i of µ to the free port
i of C, with i ∈ {1, . . . , n}. A test for µ is a particular context consisting of n
trees τ1, . . . , τn such that the root of each τi is the free port i.

In the sequel, when we use the notation C[µ] we implicitly assume that C has
enough ports so that µ can be plugged into it. Moreover, we shall say that µ′ is
a subnet of µ if there exists C such that µ = C[µ′].

. . .

→β

α

α

β β

β α
. . .

. . .

.

.

. . .

. . .

α

α

≃η

α

α αβ β

β

≃η

.

.

.

→β

α

α
. . .

. . .

. . .

Fig. 2. The rules and equations defining β-reduction and η-equivalence. We assume
α 6= β. In the left β-rule, the right member is empty in case α = ε. In the left η-
equation, α is binary.

2.2 Reductions and equivalences

Computation in the symmetric combinators is performed by rewriting active
pairs. We define →β as the contextual closure of the rules of Fig. 2, and denote
by →∗

β its reflexive-transitive closure. Since active pairs are always disjoint, the
relation →β trivially satisfies the diamond property, i.e., reduction is strongly
confluent. A confluent rewriting relation always induces an equivalence relation
(in this case, a congruence): we define µ ≃β µ

′ iff there is ν such that µ →∗
β ν

and µ′ →∗
β ν. As usual, a net is normal when no β-reduction applies to it. Note

that cut-free nets are always normal, but normal nets need not be cut-free.
There is also a notion of η-equivalence, first introduced by Lafont [8] and

Fernández and Mackie [4]. Unlike in the λ-calculus, it cannot be presented as
the symmetrization of a rewriting relation, because the rightmost equation of
Fig. 2 when both α, β are binary is intrinsically non orientable. We define ≃η as
the reflexive, transitive, and contextual closure of the equations of Fig. 2. Then,
we define βη-equivalence as ≃βη= (≃β ∪ ≃η)

+.
The following definitions were introduced by the first author in [13], and are

inspired by similar notions in the λ-calculus [1].

Definition 2 (Solvability). A quasi-wire is a net of the following shape:

µ0

where µ0 is any net with no free ports (including the empty net). A net µ is
solvable if there exists a test θ such that θ[µ] →∗

β W , where W is a quasi-wire.
A net is unsolvable if it is not solvable.

We write µ→ε µ
′ if µ = C[µ0], µ

′ = C[En], and µ0 is an unsolvable net with
n free ports different from En. We then define →βε as the union of →β and →ε,
and denote by →∗

βε its reflexive-transitive closure. The relation →∗
βε too may

be proved to enjoy the diamond property [13], so we may consider its induced
congruence ≃βε, and set ≃βηε= (≃βε ∪ ≃η)

+ (the transitive closure of union).
The following Morris observational equivalence was also introduced in [13].

Definition 3 (Finitary axiom-equivalence). Let µ be a net with n free ports.
We write µ ⇚ if µ is βε-normalizable; otherwise, we write µ ⇛ . Let µ, µ′ be two
nets with the same number of free ports. We say that they are finitarily axiom-
equivalent, and we write µ ∼= µ′, if, for every context C, C[µ] ⇚ iff C[µ′] ⇚ .

3 Denotational Semantics

Informally, a denotational semantics of a programming language with a notion
of evaluation (denoted by →β) and a notion of context is an interpretation J·K of
the syntax into some kind of mathematical structure (which might be the syntax
itself) which satisfies the following, for all syntactic objects t, u:

Invariance: t→β u implies JtK = JuK;
Congruence: for every context C, JtK = JuK implies JC[t]K = JC[u]K.

By definition, a denotational semantics induces a congruence on the syntax,
by setting t ∼ u iff JtK = JuK. We make the following important remark, con-
cerning the adequacy property. If ≃S is the Morris observational equivalence
based on a set S, it is easy to see that it is the greatest congruence contained in
(S × S) ∪ (∁S × ∁S); therefore, the semantic congruence is adequate w.r.t. ≃S

iff JtK = JuK implies that either both t, u are in S, or neither is.

3.1 Interaction sets

The first set-based denotational semantics for the symmetric combinators was
introduced in [12]. It is based on pointed sets, i.e., sets with a distinguished el-
ement, which we denote by 0. A morphism of pointed sets, or pointed function,
is a function between the underlying sets which preserves the distinguished el-
ement. Pointed sets and their morphisms form a category, which is equivalent
to the category of sets and partial functions. This category has a zero object
(the pointed set {0}) and biproducts: given a family of pointed sets (Xi)i∈I ,
their biproduct

⊕
i∈I Xi is the pointed set whose underlying set is the prod-

uct of the underlying sets of the family, and whose distinguished element is the
everywhere-zero sequence.

Definition 4 (Interaction set). An interaction set is a triple (X, 〈·, ·〉, [·, ·])
where X is a pointed set, and 〈·, ·〉 and [·, ·] are isomorphisms between X ⊕ X

and X satisfying
〈[x, y], [z, w]〉 = [〈x, z〉, 〈y, w〉],

for all x, y, z, w ∈ X. An interaction set is non-trivial if X 6= {0}.
Let ϕ, ψ : X → X ⊕X be the inverses of 〈·, ·〉 and [·, ·], respectively, and let

π1, π2 : X ⊕X → X be the projections associated with the biproduct. Then, for
i ∈ {1, 2}, we define δi = πi ◦ ϕ and ζi = πi ◦ ψ. In other words, for all x ∈ X,
δ1(x) and δ2(x) are the unique elements of X such that 〈δ1(x), δ2(x)〉 = x, and
similarly for ζi and [·, ·].

In the sequel, we shall denote interaction sets by specifying only their underlying
pointed set, leaving the bijections implicit.

Every interaction set X induces a denotational semantics of the symmetric
combinators. A net with n free ports is interpreted as a pointed subset of Xn =
X ⊕ · · · ⊕X (n times), as follows.

Definition 5 (Experiment, interpretation). Let X be an interaction set,
and let µ be a net with n free ports. An experiment on µ in X is a function e

from the ports of µ (including the free ports) to X such that:

– if p, q are two ports connected by a wire, e(p) = e(q);
– if p1, p2 are auxiliary ports number 1 and 2 of a δ (resp. ζ) cell whose prin-

cipal port is q, then e(q) = 〈e(p1), e(p2)〉 (resp. e(q) = [e(p1), e(p2)]);
– if q is the principal port of a ε cell, then e(q) = 0.

If p1 < . . . < pn are the free ports of µ, the sequence (e(p1), . . . , e(pn)) is said
to be the result of e. We use the notation e : µ as a shorthand for “e is an
experiment on µ” (the interaction set will always be clear from the context), and
we denote by |e| the result of e.

The interpretation of µ in X, denoted by JµK, is the set containing all results
of all experiments on µ in X.

Note that JEnK = {(0, . . . ,0)}. The fact that JµK is a pointed set is then
immediate:

Lemma 2. For every net µ with n free ports, JEnK ⊆ JµK.

Proof. The function assigning 0 to all ports of µ is always an experiment. ⊓⊔

Proposition 1. For all nets µ, µ′, µ ≃βη µ
′ implies JµK = Jµ′K. Moreover, J·K

enjoys the congruence property.

Proof. To prove invariance under reduction, given µ →β µ′, it is enough to
show that, for every experiment on µ, there is an experiment on µ′ yielding the
same result, and vice versa. Invariance under η-equivalence is proved in the same
way. The congruence property is an immediate consequence of the definition of
experiment. Details may be found in [12]. ⊓⊔

3.2 Edifices

The following notion, introduced in [13], is analogous to that of a head variable
in the λ-calculus.

Definition 6 (Observable axiom). Let µ be a net. An observable axiom of
µ is an axiom connecting the leaves of two trees τi, τj whose respective roots i, j
are both free ports of µ. We say that such observable axiom is based at i, j.

It is perhaps useful to visualize observable axioms. A net µ contains an observable
axiom ω iff it is of the following shape:

i j

τi τj

.

.

µ0

. . .

ω

If i = j, then τi = τj , and ω connects two leaves of the same tree. Note also that
one or both of τi, τj may be equal to a wire; in particular, a wire whose both
extremities are free is an observable axiom.

The following result is proved in [13]. It is analogous to the λ-calculus result
stating that solvability is equivalent to having a head normal form.

Proposition 2. A net µ is solvable iff there exists a net µ′ containing an ob-
servable axiom such that µ→∗

β µ
′.

The observable axioms appearing during the reduction of a net may be col-
lected, just like the head variables of a λ-term, to form the analogous of a Böhm
tree. We first need to assign a unique identifier to each observable axiom within
a net. In what follows, W denotes the set of finite words over {1, 2}. We use a, b
to range over W and denote the empty word by ǫ. Concatenation of words is
denoted by juxtaposition.

Definition 7 (Address of a leaf). Let τ be a tree of cells, and let l be a leaf
of τ . We define the δ-address and ζ-address of l in τ , denoted by addrτδ (l) and
addrτζ (l), respectively, by induction on τ :

– if τ = •, then addrτδ (l) = addrτζ (l) = ǫ;
– if τ = δ(τ1, τ2), and l belongs to τi (with i ∈ {1, 2}), then addrτδ (l) =
iaddrτiδ (l), and addrτζ (l) = addrτiζ (l);

– if τ = ζ(τ1, τ2), and l belongs to τi (with i ∈ {1, 2}), then addrτδ (l) =
addrτiδ (l), and addrτζ (l) = iaddrτiζ (l).

Definition 8 (Arch). A pillar is an element of W×W×N, denoted by (a, b)@i;
an arch is a set containing exactly two pillars, denoted by (a, b)@i ⌢ (a′, b′)@i′

(which is the same as (a′, b′)@i′ ⌢ (a, b)@i). Arches are ranged over by a.
Let ω be an observable axiom of the net µ. By definition, ω connects two leaves

li, lj of two trees τi, τj whose roots i, j are free ports of µ. Then, we represent ω
by the arch

(addrτiδ (li), addr
τi
ζ (li))@i ⌢ (addr

τj
δ (lj), addr

τj
ζ (lj))@j.

Note that different observable axioms are necessarily represented by different
arches; even more, two different observable axioms have no pillar in common.
This is because each leaf of a tree in a net may only be connected to one extremity
of one observable axiom.

Definition 9 (Edifice). Let µ be a net. We denote by ax(µ) the set of all arches
representing all observable axioms of µ. Then, we define the edifice of µ to be
the following set of arches:

E(µ) =
⋃

µ→∗

β
µ′

ax(µ′).

The η-expanded edifice of µ is defined by

Eη(µ) = {(ac, bd)@i ⌢ (a′c, b′d)@i′ | (a, b)@i ⌢ (a′, b′)@i′ ∈ E(µ), c, d ∈ W}.

In other words, E(µ) is the set of all arches representing all observable axioms
appearing during the reduction of µ, and Eη(µ) is obtained by “η-expanding”
the arches in all possible ways.

As mentioned above, edifices are to nets what Böhm trees are to λ-terms.
Indeed, they too yield a denotational semantics, whose induced congruence con-
tains ≃βηε and is fully abstract with respect to finitary axiom-equivalence:

Proposition 3 (Full abstraction for edifices). For all nets µ, µ′, µ ∼= µ′ iff
Eη(µ) = Eη(µ

′).

Proof. The result in non-trivial; we refer the reader to [13]. ⊓⊔

Finally, the following result justifies the name given to ∼=: µ ⇚ means that µ
generates a finite number of observable axioms.

Proposition 4. For all µ, µ ⇚ iff E(µ) is finite.

Proof. Suppose µ ⇚ ; by definition µ→∗
βε ν with ν βε-normal. Now, it is easy to

verify that βε-normal nets are all cut-free, hence the result follows immediately
from Lemma 1. For the converse, E(µ) finite means that all observable axioms
are generated in a finite number of steps, i.e., µ →∗

β C[µ0], with µ0 unsolvable
by Proposition 2; but then µ is βε-normalizable to C[Ek]. ⊓⊔

4 Approximations and Full Abstraction

Definition 10 (Approximation). An approximation of a net µ is a cut-free
net ν of the form C[Ek] such that µ→∗

β C[µ0] for some net µ0. In that case, we
write ν ⊑ µ, and we denote by apx(µ) the set of all approximations of µ.

Note that apx(µ) is never empty; in fact, if µ has n free ports, we always
have En ⊑ µ. Moreover, it is not hard to see that apx(µ) is a directed set w.r.t.
⊑. It is then natural to look for interaction sets X in which the interpretation
enjoys the following approximation property, inspired by algebraicity in domain
theory: for every net µ, we ask

JµK =
⋃

ν⊑µ

JνK,

that is, the interpretation of µ in X is the supremum of the interpretations of
its approximations.

The congruence induced on nets by an interaction set X , which we denote
by =X , may be “located” quite precisely in case X satisfies the approximation
property (we mention this result without proof, as we shall not need it in the
sequel). Indeed, if we let ≃ denote the Morris equivalence induced by unsolvable
nets (i.e., µ ≃ µ′ iff, for every C, C[µ], C[µ′] are either both solvable, or both
unsolvable), which is the greatest semi-sensible theory, we have:

Proposition 5. Let X be an interaction set enjoying the approximation prop-
erty. Then, ∼= ⊆ =X ⊆ ≃.

Observe that the approximation property is trivially enjoyed by edifices (it is
an immediate consequence of the definition). The key to full abstraction will be
another approximation property, this time connected to the way the set-based
semantics “sees” observable axioms.

If X is an interaction set, recall the “projections” δ1, δ2, ζ1, ζ2 : X → X

introduced in Definition 4. If w = i1 · · · in ∈ W, with n > 0, and if α ∈ {δ, ζ}
and x ∈ X , in the sequel we shall use the notation αw(x) = αi1(. . . αin(x) . . .).

Definition 11 (Semantic axioms). Let X be an interaction set; we denote
the diagonal of X2 by ∆X . Let z ∈ Xn with n > 0; we denote by zj the j-th
component of z. Given the arch a = (a, b)@i ⌢ (a′, b′)@i′, with 1 ≤ i, i′ ≤ n, we
define the projection of z onto a as

πa(z) = (δa(ζb(zi)), δa′(ζb′(zi′))).

If U ⊆ Xn, we denote by πa(U) the set resulting from the pointwise application
of πa to the elements of U . Then, given a net µ, we define

sax(µ) = {a | πa(JµK) = ∆X}.

We say that an interaction set enjoys the axiom approximation property if,
for every net µ,

sax(µ) =
⋃

ν⊑µ

sax(ν).

Approximation and axiom approximation do not coincide; we know of interaction
sets satisfying the first but not the second, and we believe the converse implica-
tion to be false as well. However, we shall now establish that an interaction set
satisfying both is fully abstract with respect to finitary axiom-equivalence.

Lemma 3. Let ν be a cut-free net with 2 free ports such that JνK = ∆X , where
X is a non-trivial interaction set. Then, ν is η-equivalent to a wire.

Proof. Observe that any cut-free net ν′ ≃η ν decomposes, by Lemma 1, into
two trees τ1, τ2 and a wiring ω. Now, suppose none of these nets (including ν)
is such that τ1 = τ2 = τ with ω connecting exactly the matching occurrences
of the leaves of the two copies of τ (i-th leaf with i-th leaf). Then, since X
is non-trivial, we may easily find an experiment showing that (x, x′) ∈ JνK for
some x 6= x′, a contradiction. Hence, there is an η-equivalent form of ν which
is as above; now, if τ contained any ε cell, it is easy to see that we would have
JνK (∆X , another contradiction. But a net as the one obtained may be shown
to be η-equivalent to a wire by a straightforward induction on τ . ⊓⊔

Lemma 4. In a non-trivial interaction set satisfying the axiom approximation
property, we have sax(µ) = Eη(µ), for every net µ.

Proof. The inclusion Eη(µ) ⊆ sax(µ) always holds, with no need of the axiom
approximation property. In fact, if a ∈ Eη(µ) by definition a = (ac, bd)@i ⌢
(a′c, b′d)@i′ for some c, d ∈ W and with (a, b)@i ⌢ (a′, b′)@i′ being the arch

of an observable axiom ω of a reduct µ′ of µ. Then, it is enough to consider
experiments on µ′ which label every port with 0 except those “descending” from
ω to see that a ∈ sax(µ), by invariance under reduction.

For what concerns the converse, we first consider a cut-free net ν, with n

free ports. Let a = (a, b)@i ⌢ (a′, b′)@i′ ∈ sax(ν). It can be shown [13] that, for
every sequence of trees τ1, . . . , τn, there exists a cut-free ν′ ≃βη ν such that, for
all 1 ≤ i ≤ n, we find τi rooted at the free port i of ν′. We may then choose τi, τi′

(the case i = i′ changes nothing to the argument) so that two of their resp. leaves
l, l′ have δ-addresses and ζ-addresses given by a, a′, and b, b′. Now, by invariance
under ≃βη, we still have a ∈ sax(ν′), which means that every experiment on ν′

is forced to assign the same element of X to l, l′, and all elements of X may be
assigned to them. But ν′ must therefore contain a subnet ν0 whose free ports
coincide with l, l′, and which is detached from the rest of the net, for otherwise,
by the non-triviality of X , it would be easy to define an experiment which sets
one of l, l′ to 0 and the other to a non-zero value. Then, we apply Lemma 3
to ν0 and infer a ∈ Eη(ν

′) = Eη(ν). The general statement follows immediately
from the axiom approximation property, and from the approximation property
for edifices. ⊓⊔

Lemma 5. In a non-trivial interaction set satisfying both the approximation
and axiom approximation property, we have JµK = Jµ′K iff sax(µ) = sax(µ′), for
all nets µ, µ′.

Proof. The implication from left to right is obvious and does not depend on
any approximation property. It is then enough to show that sax(µ) ⊆ sax(µ′)
implies JµK ⊆ Jµ′K. By Lemma 4 and the approximation property, this amounts
to show that, under the hypothesis Eη(µ) ⊆ Eη(µ

′), JνK ⊆ Jµ′K for all ν ⊑ µ.
So let ν ⊑ µ and z ∈ JνK. By Lemma 2, we may suppose z 6= (0, . . . ,0). Then,
z is the result of an experiment assigning non-null points to p > 0 axioms of ν.
These axioms induce p edifices A1, . . . ,Ap ⊆ Eη(µ) ⊆ Eη(µ

′), which means that
the “same” axioms (modulo ≃η) appear during the reduction of µ′, from which
we immediately infer z ∈ Jµ′K, as desired. ⊓⊔

As announced, combining Proposition 3, Lemma 4, and Lemma 5, we obtain

Theorem 1 (Full abstraction for interaction sets). If X is a non-trivial
interaction set satisfying the approximation and axiom approximation properties,
then for all nets µ, µ′, µ ∼= µ′ iff JµK = Jµ′K.

4.1 A fully abstract model

We now proceed to give an example of interaction set satisfying both the ap-
proximation and axiom approximation properties.

Let W∞ be the set of infinite words over {1, 2}. We shall consider the pointed
set X = Pfin(W

∞ ×W∞) of finite subsets of pairs of infinite words, with 0 = ∅.
If x ∈ X and (a, b) ∈ W × W, we set (a, b) · x = {(au, bv) ∈ W∞ × W∞ |
(u, v) ∈ x}, and define the pointed bijections 〈x, y〉 = (1, ǫ) · x ∪ (2, ǫ) · y and

[x, y] = (ǫ, 1) · x ∪ (ǫ, 2) · y. It is easy to see that (X, 〈·, ·〉, [·, ·]) is an interaction
set.

In the sequel, all denotational interpretations are assumed to be in X . We
shall keep denoting by δ1, δ2, ζ1, ζ2 the “projections” associated with 〈·, ·〉 and
[·, ·], and we also use the generalized notations δw, ζw, with w ∈ W, introduced
just before Definition 11.

Definition 12 (Mean and nice elements). We say that x ∈ X is δ-mean
(resp. ζ-mean), if the set π1(x) (resp. π2(x)), i.e., the set of first (resp. second)
projections of the elements of x, is empty or a singleton. If α ∈ {δ, ζ}, and if α is
“the other” binary symbol, we introduce the following notations and terminology:

– Mα is the set of α-mean elements;
– M =Mδ ∩Mζ is the set of mean elements (which are singletons or empty);
– N = X \ (Mδ ∪Mζ) is the set of nice elements
– M∗

α =Mα \Mα is the set of strictly α-mean elements.

In the sequel, if x ∈ X , we shall denote by ‖x‖ its cardinality. Moreover, we
will always have α ∈ {δ, ζ}, with α denoting “the other” binary symbol.

Lemma 6. For all x ∈ X, the following properties hold:

Positivity: ‖0‖ = 0, and ‖x‖ 6= 0 for all x 6= 0.
Additivity: ‖δ1(x)‖ + ‖δ2(x)‖ = ‖x‖ = ‖ζ1(x)‖ + ‖ζ2(x)‖.
Heredity: For all β ∈ {δ1, δ2, ζ1, ζ2}, x ∈Mα implies β(x) ∈Mα.

Proof. A simple verification. ⊓⊔

In the following, we write e : µ to mean “e is an experiment on µ”.

Lemma 7. Let τ be a tree entirely composed of α cells (resp. an arbitrary tree).
If e : τ assigns x ∈ Mα (resp. x ∈ M) to the root of τ , then e assigns x′ ∈ Mα

(resp. x′ ∈ M) with ‖x′‖ = ‖x‖ to exactly one leaf of τ , and 0 to all remaining
leaves.

Proof. By heredity, additivity, and the fact that, if x ∈Mα and i ∈ {1, 2}, then
αi(x) is either empty, or has the same cardinality as x. ⊓⊔

We say that an experiment assigns an element x to an active pair when it
assigns x to both extremities of the cut associated with the active pair.

Lemma 8. Let µ be a net with n > 0 free ports. If e : µ is such that the labels
assigned by e to the active pairs of µ all belong to M then there exists ν ⊑ µ and
e0 : ν such that |e0| = |e|.

Proof. The idea of the proof is to take each active pair labelled by some x ∈M ,
and replace the active pair with a net admitting an experiment of identical result.
The case x = 0 is easy; otherwise, Lemma 7 is used to extract only two leaves
of subtrees of µ on which e assigns non-zero points; then, the net formed by the
two trees rooted at the cut is wholly reduced, and the zero-labelled subnets in
the result are carefully removed. We omit the technical details. ⊓⊔

Proposition 6. X enjoys the approximation property.

Proof. The right-to-left inclusion holds for all interaction sets, as a corollary of
the fact that ν ⊑ µ implies JνK ⊆ JµK. Indeed, by definition, ν = C[En] and
µ→∗

β C[µ0]. Then, by Lemma 2 and the congruence property, JνK ⊆ JC[µ0]K, so
we conclude by invariance.

For the converse, we give the idea of the proof, which is fairly straightforward.
We start by defining two functions #δ,#ζ : X → N. Let x ∈ X , and let nδ

(resp. nζ) be the length of the longest common prefix between two different
words in π1(x) (resp. π2(x)); then, we define #α(x) to be 0 if x = 0, 1 if
x ∈ Mα \ {0}, or nα + 2 otherwise. We define the measure of x as the integer
m(x) = ‖x‖ ·#δ(x) ·#ζ(x). Now, by a simple case inspection, one checks that:

(i) if x ∈ N , then for all β ∈ {δ1, δ2, ζ1, ζ2}, m(β(x)) < m(x);
(ii) if x ∈M∗

α, then for all i ∈ {1, 2}, m(αi(x)) < m(x).

We now show in three steps that by obstinately reducing the active pairs of µ
labelled by elements belonging to N first, M∗

δ then, and M∗
ζ finally, we obtain

a net µ′ and e′ : µ′ such that µ →∗
β µ

′, |e′| = |e|, and all the labels assigned to
the active pairs of µ′ by e′ belong to M . The result then follows by Lemma 8.

1. The first step is shown by induction on the multiset H(µ) (under the usual
well-ordering of multisets of integers) containing the measures of all nice
elements labelling the active pairs of µ in e, using property (i). At the end
of this step we obtain a reduct µ1 of µ and an experiment e1 : µ1 such that
|e1| = |e|, and no active pair is labelled by a nice element.

2. The second step is shown by induction on the multiset J(µ1) containing
the measures of all strictly δ-mean elements labelling the active pairs of µ1.
Here, we use Lemma 6, Lemma 7 and property (ii). At the end of this step
we obtain a reduct µ2 of µ1 and an experiment e2 : µ2 such that |e2| = |e1|,
and no active pair is labelled by a strictly δ-mean element.

3. The third step is similar to the second.
⊓⊔

The fact that X enjoys the axiom approximation property is a consequence
of the following

Lemma 9. Any net µ such that JµK = ∆X is βη-equivalent to a wire.

Proof. It is enough to show that apx(µ) contains a net η-equivalent to a wire.
Suppose, for the sake of contradiction, that this is not the case. If µ is βε-
normalizable (necessarily to a cut-free form), we may immediately conclude by
Lemma 3; therefore, we suppose that that µ is not βε-normalizable. By Proposi-
tion 4, apx(µ) is infinite; since it is directed w.r.t. ⊑, we may take an ascending
chain ν0 ⊑ ν1 ⊑ . . . of approximations of µ. By the same arguments given in
the proof of Lemma 3, every νk decomposes into two copies of a tree τk, whose
matching occurrences of leaves are joined by axioms forming a wiring ωk. Now,
by hypothesis, every νk is not η-equivalent to a wire, which implies that every νk

contains at least one ε cell. Then, we may build a sequence of finite pairs of words
(ak, bk) describing a leaf of τk where we find an ε cell, such that (ak, bk) is a pre-
fix (not necessarily strict) of (ak+1, bk+1). This increasing sequence defines some
(u, v) ∈ W∞×W∞ such that, by construction, z = ({(u, v)}, {(u, v)}) 6∈ JνkK for
all k ∈ N. Then, by the approximation property, z 6∈ JµK, in contradiction with
∆X ⊆ JµK. ⊓⊔

Proposition 7. X enjoys the axiom approximation property.

Proof. Let µ be a net, and suppose a ∈ sax(µ). By the approximation property,
using the same argument given in the second part of the proof of Lemma 4, we
have that the arch a defines two leaves l, l′ of two trees rooted at two conclusions
of a β-reduct µ′ of µ, such that l, l′ are the free ports of a subnet µ′

0 of µ′ whose
interpretation is exactly ∆X . Then, if we apply Lemma 9, reduce µ′

0, and replace
everything else in µ′ by ε cells, we obtain an approximation ν of µ such that
a ∈ sax(ν). ⊓⊔

References

1. Barendregt, H.P.: The Lambda Calculus. North Holland, revised edn. (1984)
2. Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type theories, normal forms, and

D∞-lambda-models. Information and Computation 72(2), 85–116 (1987)
3. Dezani-Ciancaglini, M., Giovannetti, E.: From Bohm’s theorem to observational

equivalences: an informal account. Electronic Notes in Theorical Computer Science
50(2), 85–118 (2001)

4. Fernández, M., Mackie, I.: Operational equivalence for interaction nets. Theoretical
Computer Science 297(1–3), 157–181 (2003)

5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
6. Hyland, M.: A syntactic characterization of the equality in some models of the

lambda calculus. Journal of the London Mathematical Society 2(12), 361–370
(1976)

7. Lafont, Y.: Interaction nets. In: Conference Record of POPL ’90. pp. 95–108. ACM
Press (1990)

8. Lafont, Y.: Interaction combinators. Information and Computation 137(1), 69–101
(1997)

9. Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Conference
Record of POPL ’90. pp. 16–30. ACM Press (1990)

10. Mackie, I.: Efficient lambda evaluation with interaction nets. In: Proceedings of
RTA ’04. pp. 155–169. LNCS, Springer (2004)

11. Mackie, I., Pinto, J.S.: Encoding linear logic with interaction combinators. Infor-
mation and Computation 176(2), 153–186 (2002)

12. Mazza, D.: A denotational semantics for the symmetric interaction combinators.
Mathematical Structures in Computer Science 17(3), 527–562 (2007)

13. Mazza, D.: Observational equivalence and full abstraction in the symmetric inter-
action combinators. Logical Methods in Computer Science 5(4:6) (2009)

14. Morris, J.H.: Lambda calculus models of programming languages. Ph.D. Thesis,
Massachussets Institute of Technology (1968)

