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Abstract. Following Girard, proof nets naturally suggest the introduc-
tion of more general proof-like objects, called nets (or proof structures
in Girard’s original terminology), which may not be logically correct but
which may still have non-trivial computational behavior. For instance,
Ehrhard and Laurent’s encoding of the pi-calculus in differential inter-
action nets maps a host of processes to incorrect nets. It is then natural
to ask which processes are mapped to proof nets or, in other words,
what meaning does logical correctness have when seen through Ehrhard
and Laurent’s encoding. We answer this question by showing that logical
correctness ensures a form of deadlock-freedom.

1 Introduction

Nets in proof theory. Proof nets are one of the main novelties introduced by
linear logic in proof theory. They are a graphical syntax for proofs which has,
over sequent calculus, the advantage of greatly reducing the “bureaucracy” of the
cut-elimination procedure. For example, the composition of three lemmas A ` B,
B ` C and C ` D yields two syntactically distinct proofs of A ` D in sequent
calculus, but only one proof net, because proof nets are able to express that the
two compositions (technically, the two cuts) actually happen “in parallel”.

Proof nets also brought a more radical, albeit less known innovation: they un-
veiled the existence of “incorrect nets”, i.e., proof-like objects which are logically
wrong and yet are capable of non-trivial computational interactions, via cut-
elimination. More precisely, when one defines proof nets, one is led to naturally
introduce a wider class of objects, which we simply call nets (proof structures in
Girard’s terminology [10]). Perhaps surprisingly, the cut-elimination procedure
is defined on all nets, so in principle all nets exhibit computational behavior.
However, cut-elimination is guaranteed to hold (i.e., all cuts may be eliminated)
only for those nets which are logically correct, i.e., which come from sequent
calculus proofs. These logically correct nets are the ones we call proof nets.

Differential linear logic and the π-calculus. Through the years, the relationship
between linear logic and concurrency has been explored from several angles. Let
us mention Abramsky’s pioneering work [2, 1], Bellin and Scott’s encoding [3]



and the recent line of work initiated by Caires and Pfenning [4, 5] and extended
by Wadler [23]. Here, we are concerned with the approach brought forth by the
introduction of differential linear logic, due to Ehrhard and Regnier [9]. Unlike
linear logic nets, the nets associated with such a logical system, called differential
interaction nets, are naturally endowed with a non-deterministic cut-elimination
procedure. This non-determinism is interesting because it is controlled by the
exponential modalities (connectives !(−) and ?(−)), rather than being “wild” as
in classical sequent calculus.

There are essentially two results relating differential linear logic and process
calculi: an exact correspondence found by Honda and Laurent [11] between a
fragment of the private, localized asynchronous π-calculus and a fragment of
polarized differential nets; and Ehrhard and Laurent’s encoding of the π-calculus
in differential nets [8] (which may be more easily understood via an encoding
of the solos calculus [7]). Both results make an essential use of the wider notion
of net: in general, a process does not correspond to/is encoded by a proof net;
rather, it may very well be the case that the induced net is not logically correct.

The above observation is the starting point of this work: what processes
correspond/are mapped to proof nets? In other words, what does logical cor-
rectness have to say about concurrent processes? Actually, this question is fully
answered by Honda and Laurent: in their framework, proof nets precisely match
the processes of the control π-calculus [12], a deterministic process calculus ca-
pable of encoding the λµ-calculus in a fully abstract way. This means that, when
restricted to correct nets, Honda and Laurent’s correspondence does not cover
“really concurrent” processes. Fortunately, Ehrhard and Laurent’s encoding is
more general than Honda and Laurent’s and the answer to our question, which
was not known prior to this work, is more interesting when the input of that
encoding is taken into account.

Correctness and deadlock-freedom. Answering our question directly for Ehrhard
and Laurent’s encoding is a bit disappointing: the encoding is quite complex and
too many processes end up being mapped to incorrect nets because of trivial rea-
sons. Our first step was therefore to take Honda and Laurent’s correspondence,
which is extremely well behaved, and amend it in order to integrate the idea be-
hind Ehrhard and Laurent’s encoding, which gives it its higher expressiveness.
The result is pleasantly simple: on the process side, we have a fragment of the lo-
cal asynchronous π-calculus (i.e., we no longer restrict to internal mobility) very
similar to Honda and Laurent’s; on the logical side, we have a fragment of po-
larized differential linear logic which extends Honda and Laurent’s essentially by
adding the mix rule; between them, an encoding J−K mapping processes to nets
which is much simpler than Ehrhard and Laurent’s. The presence of mix allows
more flexibility for dealing with parallel inputs: for instance, !x.P | !y.Q is cor-
rect in our framework but not in Honda and Laurent’s (for linear logic experts:
with mix, sequents are allowed to have more than one positive conclusion).

A high-level answer to our question would be that the main property ensured
by logical correctness is a certain form of deadlock-freedom, namely the absence
of cyclic input/output dependencies, such as ν(x, y)(x.y | y.x) (Theorem 2). The
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Fig. 1. Sequentializable nets. The case (mix0) of the empty net is not depicted.

reader acquainted with correctness criteria for proof nets will not be surprised:
correctness is all about absence of cycles! What logical correctness does not en-
sure is the absence of configurations such as νxx, in which a buffer is waiting
forever to be emptied. Usually, such configurations are also considered as dead-
locked [13]; in our framework, one needs to introduce some kind of type system
(on top of correctness) to exclude them.

2 Nets and Proof Nets

Definition 1 (net, sequentializable net). A net is a graph-like object whose
edges are directed and called wires and whose nodes are called cells. Wires are
not necessarily attached to cells, i.e., a wire is allowed to be cyclic, or to have
one or both of its ends unattached. These “dangling” ends are called free ports
of the net. Free ports have a polarity which depends on the orientation of the
wire to which they belong: they are positive if it is incoming, negative if it is
outgoing. Each cell carries either a negative symbol, ?⊗ or ?, or a positive
symbol, !` or !. Negative (resp. positive) cells have a distinguished outgoing
(resp. incoming) wire attached, called principal port; the number and orientation
of the other attached wires must be as follows: any n ∈ N for ?⊗ (outgoing) and
!` (incoming), 2 or 0 for ? (incoming) and ! (outgoing). Cells of kind ? (resp.
!) are called contractions (resp. cocontractions) when binary, weakenings (resp.
coweakenings) when nullary. Furthermore, each !` cell comes with a box, which
contains a subnet whose free ports are all negative.

Nets are always considered up to associativity of (co)contractions and neu-
trality of (co)weakenings with respect to (co)contractions.

A net is sequentializable if it may be obtained inductively by the rules of Fig. 1
(including the rule, not depicted, stating that the empty net is sequentializable).
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That figure showcases the graphical representation we adopt for nets, with the
following conventions: when the orientation of a free port is not drawn, it means
that it may be either negative or positive; the principal port of a cell is at the “tip”
of the triangle representing it, or the only port in the case of (co)weakenings,
which are represented as circles; finally, the (!`) case shows how we depict boxes.

The inductive cases of Fig. 1 exactly correspond to the sequent calculus rules
of (a polarized fragment of) differential linear logic with mix. In this respect,
sequentializable nets are to be seen as nothing more than a graphical syntax for
sequent calculus proofs, with formulas/types erased.

Definition 2 (reduction). Reduction (or cut-elimination) for nets is defined
by means of the graph-rewriting rules of Figures 2 through 5. In each case, the
rule may be applied anywhere within a net, as long as it is not inside a box.
One removes the left hand side of the rule (the redex) and replaces it with the
right hand side, an operation which is sound because the free ports and their
orientation are preserved by the rules.

Note that, because of Fig. 3, reduction of nets is not confluent. It is also non-
terminating: the pure λ-calculus may be easily encoded in nets, essentially via
Girard’s translation of intuitionistic logic in linear logic [10]. Later we will also see
an encoding in nets of a fragment of the π-calculus, which is expressive enough
to embed the λ-calculus (and more). Also observe that reduction is defined for
all nets, not just the sequentializable ones.

Definition 3 (proof net). Let µ be a net. A shallow path of µ is a directed
path no portion of which is contained in a box of µ. A correctness path of µ is
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a sequence ϕ1, . . . , ϕn of shallow paths of µ such that, for all 1 ≤ i < n, ϕi ends
in the principal port of a !` cell c and ϕi+1 starts with one of the outgoing ports
of the box associated with c. A proof net is a net µ such that:

– µ contains no cyclic correctness path;
– inductively, the net contained in each box of µ is a proof net.

It is immediate from the definition that a subnet of a proof net is a proof net.
This fact will be useful in the sequel.

The following is one of the central results in the theory of polarized proof
nets, originally due to Laurent [15].

Lemma 1. A net is sequentializable iff it is a proof net.

Proof. The forward direction is a straightforward induction. For the converse,
Laurent’s proof works without changes by treating cocontraction cells as his
tensor cells (these are like binary ?⊗ cells but with the same orientation as
cocontraction cells), which have the same behavior with respect to polarity and
sequentialization, as is obvious by comparing (?⊗) and (cocntr) of Fig. 1. ut

As observed by Vaux [22], the above result is false in full polarized differential
linear logic because of codereliction cells, which we carefully avoided here. In that
framework, one needs to resort to the usual (and more complex) Danos-Regnier
criterion.



The following is another key property of proof nets: correctness is preserved
by reduction. In light of Lemma 1, point 1 is trivial (reduction is cut-elimination
in sequent calculus), but it is easily proved independently of it. Point 2 states
that correctness is also preserved by expansion if we restrict to duplication and
structural steps; this is less often remarked but will be useful for us.

Lemma 2. Let µ be a proof net. Then:

1. if µ→ µ′, then µ′ is a proof net;
2. if µ′ →sd µ, then µ′ is a proof net.

Proof. For point 1, observe that reduction preserves directed paths from right to
left, i.e., a directed path crossing the right hand side of a rule induces a directed
path in the left hand side, between the same free ports. Then, if there is a cycle
in µ′, there is a cycle in µ. For point 2, observe that the converse is true: the
reductions in Figures 4 and 5 preserve directed paths from left to right. ut

Note that the proof of point 2 actually works for every reduction rule. This is a
very unusual situation in nets, which is due to the polarized framework. In full
linear logic, an incorrect net may reduce to a proof net (normally some paths
are lost from left to right in the multiplicative step). Since we do not need such
a strong “reversibility” property, we state point 2 in its present, restricted form,
which holds in full generality.

3 Processes as Nets

We fix a countably infinite set of names x, y, z . . . and denote by x̃ finite se-
quences of names. We consider a fragment of the asynchronous localized polyadic
π-calculus ALπ [20]:

P,Q ::= 0
∣∣∣ x〈ỹ〉 ∣∣∣ !x(ỹ).P

∣∣∣ P | Q ∣∣∣ νxP,
where, in !x(ỹ).P , we ask that no z ∈ fn(P ) is the subject of an input (usu-
ally this is required only for the names in ỹ). Structural equivalence is defined
as expected: the parallel operator is associative, commutative and has unit 0;
νxνyP ≡ νyνxP and both processes are written more concisely as ν(x, y)P ; and
we have the scope extrusion rule νxP | Q ≡ νx(P | Q) as long as x 6∈ fn(Q).
Reduction is also defined as customary: it is the closure of the rule

x〈ỹ〉 | !x(z̃).P −→ P{ỹ/z̃} | !x(z̃).P

(where it is required that |ỹ| = |z̃|) under the evaluation contexts C ::= {·}
∣∣∣ C |

P
∣∣∣ νxC and under structural congruence: P ≡ P ′ −→ Q′ ≡ Q implies P −→ Q.

We observe that the above fragment of ALπ is essentially the one consid-
ered by Honda and Laurent [11], the only difference being the liberalization to
arbitrary asynchronous outputs (Honda and Laurent only consider bound asyn-
chronous outputs νỹ(x〈ỹ〉 | P ), i.e., they further restrict to internal interaction).

We say that an occurrence of a name x ∈ fn(P ) is



– positive if it is the subject of an input;
– negative if it is the subject or object of an output.

Furthermore, we say that x ∈ fn(P ) appears neutrally if it occurs both positively
and negatively.

Let us see now how processes may be encoded as nets. First, we define a
pre-encoding, denoted by L·M, having the following property: given a process P ,
LP M has exactly one negative (resp. positive) free port for each free name of P
occurring negatively (resp. positively). Such names are annotated next to the
corresponding free port. Therefore, if x occurs neutrally in P , LP M will have two
free ports labelled by x, one negative and one positive.

The pre-encoding is defined inductively:

– L0M is the empty net.
– Lx〈y1, . . . , yn〉M is the net

x

?⊗
· · ·

δ

· · ·

· · ·

z̃

where we write z̃ for the sequence without repetitions containing the names
appearing in y1, . . . , yn except x. The net δ consists, if necessary, of contrac-
tions joining the wires corresponding to those names among x, y1, . . . , yn
which are equal.

– L!x(ỹ).P M is the net

!`

LP M

· · ·

· · ·

ỹ

x

– LP | QM is the net

LQM

γ
· · · · · ·

· · ·

LP M

where γ consists, if necessary, of contractions and cocontractions joining the
wires corresponding to the free names shared by P and Q.

– LνxP M is the net

. . . x x

LP M



If there is no negative (resp. positive) free port labelled by x in LP M (because
x does not occur negatively (resp. positively) in P ) then such a free port is
introduced by adjoining a weakening (resp. coweakening) cell.

We then define the encoding J·K as

JP K
comm comm

x1 x1
· · ·

· · ·
LP M

xn xn:=

where x1, . . . , xn are exactly the names occurring neutrally in P and

comm ! ?:=

For example, if

E := ν(x, y)(!y | y | x〈y〉 | !x(w).w | !x(w).(w | z)),

then

z

!` ?⊗

?

?⊗ !`

?⊗

!

!`

?⊗ ?⊗

JEK = LEM =

The above encoding is a blend of the correspondence between processes and
nets shown by Honda and Laurent [11] and the encoding of Ehrhard and Lau-
rent [8]. This is its main property:

Proposition 1. If P −→ P ′, then JP K→∗ µ ∗sd← JP ′K.

Proof. Let P −→ P ′ because of an interaction between an output x〈ỹ〉 and an
input !x(z̃).Q. It is not hard to verify that, under this hypothesis, JP K contains
a subnet of the form

or

· · ·

· · ·

!`?⊗
· · ·

! ?

· · · · · · · · · · · ·
τ? τ!

LQM
· · ·

· · ·

!`?⊗
· · ·

· · · · · · · · · · · ·
τ? τ!

LQM



according to whether x is free (left) or not (right), where τ? (resp. τ!) is a tree
of ? (resp. !) cells. In both cases, the net reduces, by means of→s steps, to a net
of the form

γ

· · ·

· · ·

!`?⊗
· · ·

· · · · · · · · · · · ·

LQM

where γ is essentially what Ehrhard and Laurent call a communication zone [8].
As in their work, the ?⊗ and !` cell are able to “meet” through the communi-
cation zone, by means of →d steps for !` and →c for ?⊗ (making the suitable
non-deterministic choices), so that the actual interaction may take place by
means of a →m step. In case τ? and τ! are both equal to a wire, the net thus
obtained is equal to JP ′K. Otherwise, we must “undo” the extra copies of the !`
cell (and its box) that may have been produced by the interaction with τ? (via

d← steps) and “undo” the communication zone (via s← steps). ut

We observe that the converse property fails: JP K may perform reductions
having no counterpart in P . This is an unavoidable problem [16], but it does not
prevent the encoding to be meaningful: it merely tells us that correctness will
only be a sufficient and not necessary criterion for ensuring deadlock-freedom
(or any dynamic property at all). Typically, JP K may deadlock, whereas P does
not.

4 Processes and Correctness

We consider correctness judgments of the form Γ `d̃ P : p̃, where:

– P is a process;
– p̃ and d̃ are repetition-free sequences of names;
– Γ is a sequence of pairs of the form (x; ỹ) such that:
• ỹ is a (possibly empty) repetition-free subsequence of p̃;
• for any other pair (x′; ỹ′) occurring in Γ , x 6= x′;

– if Γ = (x1; ỹ1), . . . , (xn; ỹn) and x̃ := x1, . . . , xn, then x̃, d̃ and p̃ are pairwise
disjoint.

Furthermore, all sequences are treated modulo arbitrary reordering, so they are
treated like finite sets.

Definition 4 (correctness). A process P is correct if a judgment of the form
Γ ` P : p̃ may be derived from the rules of Fig. 6.

The rules of Fig. 6 are implicitly assumed to ensure that the derived judg-
ments are valid, i.e., that all linearity constraints are met. So, for instance, in
the out rule, x, ỹ is supposed to be repetition-free. This means that, if we want



` x〈ỹ〉 : x, ỹ
out

` P : p̃, ỹ

(x; p̃) ` !x(ỹ).P : p̃
!in

` 0 :
mix0

Γ `d̃ P : p̃ ∆ `ẽ Q : q̃

Γ,∆ `d̃,ẽ P | Q : p̃, q̃
par

Γ `d̃,x P : p̃

Γ `d̃ νxP : p̃
res

Γ `d̃ P : p̃

Γ `d̃ P : p̃, x
weak

Γ `d̃ P : p̃, x, y

Γ `d̃ P{z/x, y} : p̃, z
cntr

Γ `d̃ P : p̃

Γ, (x; ) `d̃ P : p̃
coweak

Γ, (x; p̃), (y : q̃) `d̃ P : õ

Γ, (z; p̃, q̃) `d̃ P{z/x, y} : õ
cocntr

Γ, (x+; p̃), (y1; q̃1, x
−), . . . , (yn; q̃n, x

−) `d̃ P : õ, x− x− 6∈ p̃, Γ
Γ, (y1; q̃1, p̃), . . . , (yn; q̃n, p̃) `d̃,x P{x/x

+, x−} : õ
com

Fig. 6. Correctness rules for processes.

to prove P := x〈x, x〉 correct, we need to first introduce x〈x1, x2〉 and then de-
rive the correctness of P by means of two cntr rules. Similarly, in the par rule,
and in light of the observation below concerning free names, P and Q are as-
sumed to share no free name. If we want to prove the correctness of x | x, we
must first consider x′ | x and then apply a com rule. With this in mind, it is a
straightforward exercise to show that the example process E of p.8 is correct.

The following invariants are immediate; they are not so useful but help un-
derstanding the system. Let (x1; ỹ1), . . . , (xn; ỹn) `d̃ P : p̃ be derivable. Then:

– fn(P ) ⊆ {x1, . . . , xn, d̃, p̃};
– every xi ∈ fn(P ) appears only positively;
– every y ∈ fn(P ) ∩ p̃ appears only negatively;

– every z ∈ fn(P ) ∩ d̃ appears neutrally.

So, to insist on the above remark on linearity, the rules cocntr, cntr and com are
used to contract names that occur positively, negatively and neutrally, respec-
tively.

Intuitively, (x1; ỹ1), . . . , (xn; ỹn) `d̃ P : p̃ means that P uses the names x̃, d̃, p̃
with the polarity indicated above and, moreover, the names ỹi (which are in p̃,
hence used as subject or object of output prefixes in P ) are “guarded” by xi,
in the sense that they are under a top-level input prefix of subject xi. A more
precise description is given in the following proof, which shows that the rules of
Fig. 6 exactly capture logical correctness, through the encoding of Sect. 3:

Theorem 1. A process P is correct iff JP K is a proof net.

Proof. For the forward implication, we start by observing that, if d̃ are the names
occurring neutrally in P , then JP K is a proof net iff Lν(d̃)P M is a proof net. This
is because the comm nets introduced to obtain JP K from LP M provide exactly



the same connections/paths as the wires introduced to obtain Lν(d̃)P M from LP M.
Suppose now that, if (x1; ỹ1), . . . , (xn; ỹn) `d̃ P : p̃, with p̃ = p1, . . . , pm and

d̃ = d1, . . . , dk, then LP M has the following shape:

δ

µ1 µn ν1 νk

pmp1

x1 xn

· · · · · ·
· · · · · · · · ·· · ·

· · · · · ·

· · ·κ1 κl

· · · · · ·

d1
d1

dk
dk

...

Under this hypothesis, call virtual correctness path of LP M a sequence ϕ1, . . . , ϕh

of correctness paths of LP M such that, for all 1 ≤ i < h, ϕi ends in an outgoing
free port labelled by di and ϕi+1 starts in the incoming free port labelled by
di itself. In other words, the virtual correctness paths of LP M are exactly the

correctness paths of Lν(d̃)P M. Now, we claim that, if there is a derivation of
(x1; ỹ1), . . . , (xn; ỹn) `d̃ P : p̃, then LP M has the above shape and:

1. it is a proof net;
2. δ consists of wires and contraction cells only;
3. for all 1 ≤ i ≤ k, there is no virtual correctness path from the incoming free

port labelled by di to the outgoing free port labelled by di itself.

This is obviously enough to infer that Lν(d̃)P M is a proof net, hence we conclude
by the above observation. The proof of the above claim is by induction on the
last rule of the derivation, which is straightforward as long as one does a little
bit of “induction loading”, i.e., we need to add the following point:

4. for all 1 ≤ i ≤ n, q ∈ ỹi iff there exists 1 ≤ j ≤ m such that q = pj and
there is a virtual correctness path from an outgoing free port of µi to the
outgoing free port labelled by pj .

(As anticipated above, this explains more thoroughly the meaning of typing
judgments).

For the converse, we start by making the following claim: if JP K is a proof
net, then LP M is a proof net. This is a straightforward induction on P . Then,
we suppose JP K to be a proof net and reason again by induction on P . The
cases P = 0 and P = x〈ỹ〉 are trivial (these processes are always correct). The
case P = !x(ỹ).Q is immediate, thanks to the above claim. Let P = Q | R.
By inspecting the definition of JQ | RK, we see that, if we consider suitable
renamings Q′, R′ of Q,R (“unsharing” the common free names), we have that
JP ′K and JQK′ are proof nets. We then apply the induction hypothesis and easily
derive a correctness judgment for P . Let P = νxQ. By the above claim, LP M
is a proof net. Now, the only difference between LP M and JQK is that in, the
latter, one finds a comm net where there is a wire in the former. Since this does
not affect cycles, JQK is a proof net, and we conclude by applying the induction
hypothesis. ut



Definition 5 (circular deadlock). A dependency cycle in a process P is a
non-empty sequence x1, . . . , xn ∈ fn(P ) such that P ≡ νz̃(!x1(ỹ1).Q1 | · · · |
!xn(ỹn).Qn | R) and, for all 1 ≤ i < n, xi ∈ fn(Qi+1) and xn ∈ fn(Q1). A
circular deadlock is a closed process P ≡ νx̃Q such that x̃ is a dependency cycle
in Q.

Let us conclude this section by stating the main property ensured by cor-
rectness.

Theorem 2. Let P be correct. Then:

1. no subprocess of P has a dependency cycle;
2. if P −→ P ′, then P ′ is correct.

Proof. For point 1, it is immediate to see that, if P has a dependency cycle, then
JP K has a cycle, therefore it is not a proof net, and therefore P cannot be correct
by Theorem 1. Since subnets of proof nets are proof nets, this also applies to
arbitrary subprocesses of P .

For point 2, Proposition 1 tells us that JP K →∗ µ ∗sd← JP ′K; now, by Theo-
rem 1, JP K is a proof net, so JP ′K is a proof net by Lemma 2, hence P ′ is correct
again by Theorem 1. ut

Corollary 1 (deadlock freedom). Let P be a closed correct process. Then, if
P −→∗ Q, Q is not a circular deadlock.

Proof. By induction on the number n of reduction steps from P to Q. If n = 0,
we conclude by point 1 of Theorem 2. If n > 0, we have P −→ P ′, and we
may conclude by applying the induction hypothesis to P ′, thanks to point 2 of
Theorem 2. ut

5 Examples

The aim of this section is to acquire an idea of how much we can capture with
correct processes. Let us start by observing that correct processes need not be
deterministic: for instance, we invite the reader to check that νx(x | !x.a | !x.b)
is correct.

5.1 Functional programming

We consider a λµ-calculus with a parallel operator and a “multi-application”:

M,N ::= x
∣∣∣ λx.M ∣∣∣M [N1, . . . , Nk]

∣∣∣ µa.[b]M ∣∣∣ 0
∣∣∣M | N

As usual, the parallel operator is assumed to be associative, commutative and
with neutral element 0. Reduction is defined from the rules (we write N for
[N1, . . . , Nk])

(λx.M)N −→M{Ni/x}, 0N −→ 0, (M | N)P −→MP | NP ,



(µa.[b]C{[a]M1, . . . , [a]Mn})N −→ µa.[b]C{[a]M1Ni1 , . . . , [a]MnNin},

closed under weak call-by-name evaluation contexts E ::= {·}
∣∣∣ EM ∣∣∣ µa.[b]E ∣∣∣

E | M . In the first and last rule, i, i1, . . . , in ∈ {1, . . . , k} are arbitrary and
not necessarily distinct: the first rule non-deterministically picks one Ni and
substitutes it to x; the last rule picks n terms among N1, . . . , Nk, possibly using
the same term more than once and discarding some terms. Because of these
rules, the calculus is not confluent. This extension of the λµ-calculus may be
encoded in our fragment of ALπ as follows:

JxKu := x〈u〉
Jλx.MKu := νa(u〈a〉 | !a(x, v).JMKv)

JM [N1, . . . , Nk]Ku := νv(JMKv | !v(a).νz(a〈z, u〉 | !z(w).JN1Kw)

| · · · | !v(a).νz(a〈z, u〉 | !z(w).JNkKw))

Jµa.[b]MKu := JMKb{u/a}
J0Ku := 0

JM | NKu := JMKu | JNKu

The replicated prefixes !a(x, v) in the encoding of abstraction and !v(a) in the
encoding of application are not necessary, i.e., one would normally use a(x, v)
and v(a), but these are not available in our fragment of ALπ. Of course this
is observationally equivalent because those replicated prefixes are actually used
linearly.

Proposition 2. For all M , JMKu is correct.

Proof. By induction on M . ut

Modulo the superfluous replications, the above encoding is just an exten-
sion of (the asynchronous variant of) Sangiorgi’s encoding of the call-by-name
λ-calculus given in [20]. Indeed, although the above extension of the λµ-calculus
was obtained by looking at proof nets, another way of looking at it is to see it as
a “reverse engineering” of a parallel liberalization of Sangiorgi’s encoding: one
takes the image of that encoding, closes it under parallel composition and adds
the possibility of having an arbitrary number of concurrent arguments in the
encoding of an application (which is quite natural from the π-calculus point of
view). From this, one may “read back” a λ-calculus mapping to such processes,
treating parallel composition homomorphically. Adding µ is straightforward.

So (classical) functional programs are always correct, and non-determinism
is compatibe with correctness. Apart from this, the above extension of the λµ-
calculus does not have much interest per se, except for the possibility, which we
have not investigated but that we do not find unlikely, that it actually charac-
terizes the expressiveness of the “correct ALπ”, in the same sense as in Honda,
Yoshida and Berger’s work for λµ [12], i.e., we would not be suprised if the above
embedding is fully abstract in the correct fragment of ALπ.



5.2 Locks

A particularly economic way of implementing a lock in the π-calculus is to see it
as a buffer containing at most one value: in νl(P1 | · · · | Pn | l), each Pi competes
to read from l, and puts back a value once it has done. Unfortunately, this simple
solution is not correct from our point of view: Pi will typically be of the form
l.Qi{l}, i.e., Qi contains l, inducing a dependency cycle. Consider instead

Lock := !a(z).νv(p〈v〉 | v.z〈z〉).

A process using the above lock will be of the form Pi := !p(v).Qi{v}, i.e., it waits
for the signal from the lock, then performs some operations, upon completion of
which sends a release signal via the channel received from the lock process (the
replicated input prefix in Pi is forced by our syntax, it would of course be more
natural to use a non-replicated input). It is easy to check that the process

ν(p, a)(P1 | · · · | Pn | a〈a〉 | Lock)

is correct (assuming the Qi are). It reduces to

ν(p, a, v)(P1 | · · · | Pn | Qi{v} | v.a〈a〉 | Lock)

in which a non-deterministically chosen process is ready to execute, while the
others are waiting for it to release the lock.

6 Discussion

Related work. Deadlock-freedom is extensively studied in the framework of the
π-calculus, let us mention at least [13, 14, 18]. These are sophisticated type sys-
tems for deadlock-detection and our simple framework cannot hope to compete
with them. In this respect, it is important to stress that the motivation of this
work is to investigate the concurrent meaning of logical correctness, without
any a priori idea of what this may be. We did not aim at deadlock-detection;
it is naturally given by logical correctness and it is not surprising that systems
designed ad hoc for that purpose perform better.

We have amply mentioned Honda and Laurent’s [11] and Ehrhard and Lau-
rent’s [8] work, on which ours is based; we hope the relationship is clear. Con-
cerning Caires and Pfenning’s line of work [4, 5], as well as Wadler’s classical
version [23], the approach here is entirely different: we explicitly avoid using
types, because our goal is to study “pure” logical correctness, in the structural
sense given by proof nets, and this does not need formulas/types to be expressed.
In particular, there is no claim here that linear logic has anything to do with
session types (although, of course, we know it does!). However, it is worthwhile
mentioning that our correctness is more expressive than Caires and Pfenning’s
or Wadler’s. In particular, conflict (as in two processes competing to receive one
message) is fully allowed.



Perspectives. The results of this paper may (and should) be extended, along
several different directions. First of all, it must be mentioned that restricting
to replicated prefixes is not anodyne: it has the effect of making our fragment
of ALπ confusion-free, in the sense of [19, 21]. While this works well with dif-
ferential linear logic [16], it is arguably unreasonable from the perspective of
concurrency. This restriction is actually a design choice: non-replicated inputs
need codereliction, and we already observed how this breaks the usual principles
of polarization, making correctness more complex to formulate, so we preferred
to stick to the simpler, easier-to-present formulation adopted here.

Of course, by the second author’s results [16], introducing confusion in the
source π-calculus is not anodyne either: differential interaction nets cannot ex-
press confusion. However, this is not necessarily a dead-end: on the one hand,
as already pointed out after Proposition 1, the limited expressiveness does not
prevent us from formulating sufficient criteria for deadlock freedom; on the other
hand, should one wish to try and achieve also necessity, then multiport differen-
tial interaction nets (in the style of [6]), which are able to soundly encode the
π-calculus, may be an interesting route to pursue, although one must first tackle
the (interesting!) question of correctness in presence of multiports.

Another direction of further research concerns the addition of types: one
may of course immediately endow our framework with a simply-typed discipline.
This provides clash-avoidance (processes of the form x〈ỹ〉 | x(z̃).P which cannot
reduce because |ỹ| 6= |z̃|), but not much else. A more interesting perspective
is to consider the general approach to intersection types recently given in [17].
Such an approach yields, via our encoding, an intersection type system for (a
fragment of) the π-calculus, which is likely to be able to detect also deadlocks
of the form νxx.

We want to stress that such type systems may be formulated as type dec-
orations of the “sequent-style” rules of Fig. 6. This shows the importance of
Theorem 1: it allows us to formulate correctness directly on the π-calculus syn-
tax, without referring to proof nets. Indeed, this paper could have been written
without ever mentioning proof nets, basing everything on Fig. 6. The usefulness
of proof nets crops up in Theorem 2: a direct proof of this result from Fig. 6
would be quite laborious.

Let us end with a note on the nature of deadlocks captured by logical correct-
ness. It is important to understand that this is a “may” notion of deadlock, not
“must”. For instance, a process like ν(x, y)(!x.y | !y.x | x) is a circular deadlock
as per Definition 5 but would perhaps not be considered deadlocked since the
circular dependency may be broken by the rightmost x. This is an inevitable
consequence of sticking to logical correctness: an incorrect net cannot become a
proof net by embedding it in a bigger net (a logical mistake cannot be corrected
by continuing the proof). So, if one wants to capture “must” deadlock-freedom,
something other than pure logic must be sought.
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