
EDIFICES AND FULL ABSTRACTION FOR THE SYMMETRIC
INTERACTION COMBINATORS

DAMIANO MAZZA

Preuves, Programmes et Systèmes, Université Paris 7
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Abstract. The symmetric interaction combinators are a variant of Lafont’s interaction
combinators. They are a graph-rewriting model of parallel deterministic computation. We
define two notions of observational equivalence for them, analogous to normal-form and
head-normal-form equivalence in the lambda-calculus. Then, we prove a full abstraction
result for each of the two equivalences. This is obtained by interpreting nets as metric
spaces, called (pre-)edifices, which play roughly the same role as Böhm trees in the theory
of the lambda-calculus. However, edifices have a richer structure: they are able to give a
nice topological account of phenomena like infinite eta-expansion, and there is a notion of
trace on them, which is reminiscent of the notion of “play” in games semantics, or of the
execution formula of the geometry of interaction.

Introduction

Lafont’s interaction nets [Laf90] are a powerful and versatile model of parallel deter-
ministic computation, derived from the proof-nets of Girard’s linear logic [Gir96, Laf95].
Interaction nets are characterized by the atomicity and locality of their rewriting rules. They
can be seen as “parallel Turing machines”: computational steps are elementary enough to
be considered as constant-time operations, but several steps can be executed at the same
time.

Several interesting applications of interaction nets exist. The most notable ones are
implementations of optimal evaluators for the λ-calculus [GAL92, Mac04], but efficient
evaluation of other functional programming languages using richer data structures is also
possible with interaction nets [Mac05].

However, so far the practical aspects of this computational model have arguably received
much more attention than the strictly theoretical ones. With the exception of Lafont’s work
on the interaction combinators [Laf97] and Fernández and Mackie’s work on operational
equivalence [FM03], no foundational study of interaction nets can be found in the existing
literature. For example, until very recently [Maz07a], no denotational semantics had been
proposed for interaction nets.
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Supported by a post-doctoral fellowship of the Fondation Sciences Mathématiques de Paris.
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This work aims precisely at studying and expanding the theory of interaction nets, in
particular of the symmetric interaction combinators. These latter are particularly inter-
esting because of their universality : any interaction net system can be translated in the
symmetric interaction combinators [Laf97]. Therefore, a semantic study of the symmetric
combinators applies, modulo a translation, to all interaction net systems.

The main contribution of this paper is the introduction of observable paths, a notion
inspired by the Geometry of Interaction [Gir89, DR95]. The central idea is to see a net
as a collection of observable paths, each being like one thread of a parallel computation.
Using observable paths, we develop the notion of observable net and totally observable
net. Intuitively, the first is a net in which at least one parallel thread of the computation
terminates; the second is a net in which all parallel threads terminate.

It is useful to keep in mind an analogy with the λ-calculus: observable nets are similar
to solvable λ-terms, i.e., terms having a head normal form, and totally observable nets are
akin to normalizable λ-terms. The correspondence is somewhat looser in the second case,
because the symmetric combinators already have a notion of “being normalizable”, and it
does not coincide with being “totally observable”. However, there are several phenomena
supporting this analogy.

In fact, the notions of observable and totally observable net can be used to define
two context-based equivalences on nets: observational equivalence, denoted by ', and total
equivalence, denoted by ∼=. The first one, based on observable nets, is similar to head normal
form equivalence (hnf-equivalence) in the λ-calculus (two λ-terms T,U are hnf-equivalent
iff, for every context C, C[T ] is head-normalizable iff C[U ] is). The second one, based
on totally observable nets, is similar to normal form equivalence (nf-equivalence) in the
λ-calculus (two λ-terms T,U are nf-equivalent iff, for every context C, C[T ] is normalizable
iff C[U ] is). By “similar” we mean that total equivalence is strictly included in observational
equivalence, as nf-equivalence is strictly included in hnf-equivalence in the λ-calculus, and
that the examples proving strict inclusion are all related to a phenomenon similar to infinite
η-expansion, as is the case for the λ-calculus. It should be noted in passing that these two
equivalences are both different from the one introduced by Fernández and Mackie [FM03]:
the latter is in fact based on interface normal forms, which seem to be related to λ-calculus
weak head normal forms.

In the λ-calculus, hnf- and nf-equivalence were semantically characterized in the early
’70s by the independent results of Wadsworth and Hyland [Wad76, Hyl76]: two λ-terms are
hnf-equivalent iff their Böhm tree has the same infinite η-normal form, and two λ-terms
are nf-equivalent iff their Böhm tree has the same η-normal form. Shortly after, Nakajima
introduced a similar characterization of hnf-equivalence in terms of what are now known as
Nakajima trees [Nak75].

The other principal contribution of the present work is the introduction of edifices, which
play the same role as Böhm or Nakajima trees, in that they provide a fully abstract model
with respect to observational equivalence and total equivalence. Edifices are compact (hence
complete) metric spaces, related to Cantor spaces. When nets are interpreted as edifices,
phenomena similar to infinite η-expansion, which, as mentioned above, are also present in
the symmetric combinators, receive a precise topological explanation.

Apart from characterizing the interactive behavior of nets, edifices show other inter-
esting aspects, not developed in this paper. They have many common features with the
strategies of game semantics, and are related to the Geometry of Interaction interpretation
of nets [DR95, Laf97]. In particular, one can define a notion of trace for edifices, which may
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be used to compose them as strategies are composed in games semantics, or as operators are
evaluated according to the execution formula in the Geometry of Interaction. This feature
is a novelties with respect to Böhm trees, and it may be of help in improving the theory of
interaction nets. For example, one may think of defining a category out of edifices, which
may serving as the base for a typed semantics of the symmetric combinators. Also, edifices
may suggest additive (or non-deterministic) extensions of interaction nets. They may also
turn out to be useful in defining alternative models of other systems, like proof-nets, or the
λ-calculus itself, as these can all be encoded in the symmetric combinators.

1. The Symmetric Interaction Combinators

1.1. Nets and reduction. The symmetric interaction combinators, or, more simply, the
symmetric combinators, are an interaction net system [Laf90, Laf97]. An interaction net is
the union of two structures: a labelled, directed hypergraph, and an undirected multigraph.

We start with a formal definition of interaction net, adapted to the special case of the
symmetric combinators. After that, we give a more informal, graphical definition, which
will be the one actually used in the paper (as in most of the existing literature).

In what follows, we fix a denumerably infinite set of ports, which we assume contains the
positive integers. We denote by [a1, . . . , an] the multiset containing the elements a1, . . . , an,
which may not be pairwise distinct.

Definition 1.1 (Wire, cell, net). A wire is a set of exactly two ports. We fix three symbols
δ, ε, ζ; we say that δ and ζ are binary, while ε is nullary. A cell is a tuple (α, p0, p1, . . . , pn)
where α is a symbol, p0, p1, . . . , pn are ports, and n = 2 if α binary, or n = 0 if α is nullary.
In both cases, p0 is the principal port of the cell, while p1, . . . , pn are the auxiliary ports.

An net µ is a couple (Cells(µ),Wires(µ)), where Cells(µ) is a finite set of cells and
Wires(µ) is a finite multiset of wires, satisfying the following:

• if a port appears in Cells(µ) or Wires(µ), then it must appear in at least one wire;
• each port appears at most twice in Cells(µ)+Wires(µ), counting multiplicities (in this

union, Cells(µ) is considered as a multiset in which all elements have multiplicity 1).
The set of ports appearing in µ is denoted by Ports(µ). A port appearing only once in
Cells(µ) + Wires(µ) is called free; the set of all free ports of µ is referred to as its interface.
We shall always assume that if a net has n free ports, then its interface is {1, . . . , n}.
Definition 1.2 (Structural equivalence). A renaming for a net with n free ports is an
injective function from ports to ports which is the identity on {1, . . . , n}. Two nets are
α-equivalent iff they are equal modulo a renaming. Two nets µ, µ′ are ω0-equivalent iff
Wires(µ) = W + [{p, q}, {q, r}] and Wires(µ′) = W + [{p, r}], with p 6= r. ω-equivalence
is the reflexive-transitive closure of ω0-equivalence. Structural equivalence is the transitive
closure of the union of α- and ω-equivalence.

It is natural to always consider nets up to α-equivalence. Sometimes it may be of
interest to consider ω-equivalence as part of reduction;1 however, we do not do so in this
paper, and we shall always work modulo structural equivalence.

1Basically, interaction nets are generalized multiplicative proof nets with implicit axiom and cut
links [Laf95]. The acquainted reader will then see that, once properly oriented into a rewriting step, is
easy to see that ω0-equivalence can be oriented into a rewriting step, which corresponds to the axiom step
of cut-elimination in proof nets.
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Figure 1: A net (left) and its port graph (right, internal edges dotted).
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Figure 2: The interaction rules: annihilation (left) and commutation (right). In the anni-
hilation, the right member is empty in case α = ε.

Most of the time it is convenient to present a net graphically, as in Fig. 1. In these
representations, only cells and wires are drawn, and ports are left implicit. For a binary
cell, the principal port is represented by one of the “tips” of the triangle representing it.
A wire is represented as. . . a wire, and the free ports appear as extremities of “pending”
wires. For example, the net in Fig. 1 has 7 free ports. Note that graphical representations
equate exactly structurally equivalent nets.

An active pair is a net consisting of two cells whose principal ports are connected by
a wire. Active pairs may be reduced according to the interaction rules (Fig. 2): the anni-
hilations, concerning the interaction of two cells of the same type, and the commutations,
concerning the interaction of two cells of different type.

Reducing an active pair inside a net means removing it and replacing it with the net
given by the corresponding rule. If a net µ is transformed into µ′ after such an operation,
we write µ→ µ′. We define µ 'β ν iff there exists o such that µ→∗ o and ν →∗ o.

Proposition 1.3 (Strong confluence). If µ → µ′ and µ → µ′′ with µ′ 6= µ′′, there exists ν
such that µ′ → ν and µ′′ → ν. Hence, the relation→∗ is confluent, and 'β is an equivalence
relation.

1.2. Basic nets. A net containing no cell and no cyclic wire is called a wiring. Wirings
are permutations of free ports; they are ranged over by ω.

A tree is a net defined by induction as follows. A single ε cell is a tree with no leaf,
denoted by ε; a single wire is a tree with one leaf (it is arbitrary which of the two extremities
is the root and which is the leaf), denoted by •; if τ1, τ2 are two trees with resp. n1, n2 leaves,
and if α is a binary symbol, the net
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Figure 3: A vicious circle.
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is a tree with n1 + n2 leaves, denoted by α(τ1, τ2).
Trees annihilate in a way which generalizes the annihilation of binary cells:

Lemma 1.4. Let τ be a tree. Then, we have

→∗

τ

τ
. . .

. . .

. . .

. . .

Proof. By induction on τ .

There is also a generalization of the commutation rule:

Lemma 1.5. Let ∆ be a tree not containing ζ cells, and let Z be a tree not containing δ
cells. Then, we have

→

∆

∆

Z Z

∆
. . .

. . .

. . . . . .

. . . . . .

. . .

. . .

Z

Proof. By induction.
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Figure 4: a. General form of a cut-free net; b. Decomposition of a generic net µ.

A vicious circle is either a cyclic wire, or a configuration consisting of n binary cells
c1, . . . , cn such that, for all i ∈ {1, . . . , n− 1}, the principal port of ci is connected to an
auxiliary port of ci+1, and the principal port of cn is connected to an auxiliary port of c1.
Such configurations are stable under reduction, because cells can interact only through their
principal port: they are sort of deadlocks. The loop at the far right of the net in Fig. 1 is
the simplest example of vicious circle; another example is given in Fig. 3.

A net is cut-free if it contains no active pair and no vicious circle. A total net is a
net admitting a cut-free form. In contrast to the λ-calculus, the notion of normalizable
net (which, thanks to strong confluence, is the same as that of strongly normalizable net)
does not play a central role in the theory of the symmetric combinators. Total nets are
important because the Separation Theorem 1.11 applies to them, and because cut-free nets
are the “true” normal forms: a non-total net represents either a diverging or an error-bound
computation, i.e., one that generates deadlocks. Other useful notions of convergence will
be introduced in Sect. 3, but none of them will coincide with simple normalization.

One can prove by a simple induction that every cut-free net uniquely decomposes in
terms of trees and wirings as in Fig. 4a. Hence, any net µ with n free ports and k active
pairs and/or vicious circles can be written as in Fig. 4b, where ν is a cut-free net with n+2k
free ports. The net ν is unique as soon as µ does not contain vicious circles.

The following is an easy corollary of Lemmas 1.4 and 1.5:

Lemma 1.6 (Duplication). Let α be a binary symbol, let ν be a cut-free net containing no
α cell, and let τ be a tree containing only α cells. Then, we have

τ τ

ν

→∗. . .

. . . . . . . . .

. . .

ν

. . .

. . .

. . . ν

Any cut-free net can be freely erased, as shown again by an easy induction:

Lemma 1.7 (Erasing). For any cut-free net ν, we have

ν

. . .

ε ε

→∗
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1.3. Expressiveness. The interest of the symmetric combinators is given by the following
result:

Theorem 1.8 (Lafont [Laf97]). Any interaction net system can be translated in the sym-
metric combinators.

The definitions of interaction net system and of the notion of translation are out of the
scope of this paper. We shall only say that, modulo an encoding, Turing machines, cellular
automata, and the SK combinators are all examples of interaction net systems [Laf97,
Maz07a]. An example of encoding of linear logic and the λ-calculus in the symmetric
combinators2 is given by Mackie and Pinto [MP02]. We refer the reader to Lafont’s paper
[Laf97] for a proper formulation and proof of Theorem 1.8.

However, to give an idea of the expressive power of the symmetric combinators, we
shall show how general recursion can be implemented in the system, i.e., we shall see how
all equations of the form

µ
. . .

µ
. . .

µ
. . .

→∗
ν
. . .

. . .

may be solved. In the λ-calculus, the above equation would correspond to

M →∗ N [M/x]

where x appears free in N . It is well known that a general solution can be given by resorting
to a fixpoint combinator, i.e., a term Θ such that, for all T , ΘT →∗ T (ΘT ). Then, a solution
to the above equation would be M = Θ(λx.N).

A necessary condition for having a fixpoint combinator is the ability of duplicating
any term. In the symmetric combinators, we are only able to duplicate cut-free nets as in
Lemma 1.6, so we do not have a fixpoint combinator at our disposal. To compensate for
this, we use a fundamental construction due to Lafont [Laf97].

Given a net µ with one free port and containing n cells of type δ, we build a net !µ,
called the Lafont code of µ, as in Fig. 5. The Zk are trees of ζ cells, having k leaves. We
take Z0 to be equal to one ε cell; the actual shape of Zk for k > 0 is not important, as long
as one tree is fixed for each k. Observe then that, by construction, a Lafont code never
contains δ cells. The net µ can be recovered from its Lafont code by means of a “universal
decoder”, i.e., independent of µ, as in Fig. 6.

A similar construction removes active pairs and vicious circles, and is given in Fig. 7.
The net §µ is called the cut-free code of µ. Recovering µ from its cut-free code can be done
as in Fig. 8. Rigorously speaking, §µ is not well defined because, given a net µ, the cut-free
net ν is not unique in general. However, the reader can check that the recovery process
works regardless of the particular ν we chose for the cut-free code, so the abuse of notation
is not problematic.

We shall take the net !§µ as the code of µ. Decoding is done by composing the nets D
and R of Fig. 6 and 8, respectively; we denote by U the net resulting from their composition.
Observe that the code of a net is cut-free and does not contain δ cells. Hence, Lemma 1.6

2Actually these encodings use the interaction combinators, but they can be adapted with very minor
changes to the symmetric combinators.
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Figure 5: The Lafont code of a net.

D

!µ

→∗ µ

Z4

δ

D =

Figure 6: The universal decoder for the Lafont code.

ν

Ck

Z2 Z2

Z2

. . .

. . .§µ =

ν cut-free

νµ =
. . .

Figure 7: The cut-free code of a net.

applies to it, and it can be freely duplicated by means of trees of δ cells, i.e., the nets we
called Cn in Fig. 7.

We leave it as an instructive exercise for the reader to check that, using Lemmas 1.4,
1.5, and 1.6, the net µ of Fig. 9 is a solution to the recursive equation introduced above (we
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Figure 8: The universal decoder for the cut-free code.
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Figure 9: Solving recursive equations.

. . .

. . . . . .

ω

τ1 τn

. . .

1 n

Figure 10: A principal context. The wiring ω does not connect lower ports.

have supposed that µ has n free ports and that there are k copies of µ on the right hand
side of the equation).

1.4. η-equivalence and internal separation. In this section we recall an internal sepa-
ration result similar to Böhm’s theorem for the λ-calculus [Maz07b]. It will be fundamental
in guiding us towards a definition of observational equivalence (Sect. 3).
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α αβ β

β

'η1

. . . . . .
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'η0

Figure 11: The equations defining η-equivalence. In the left equation, α ranges over binary
symbols; in the right equation, α 6= β.

Definition 1.9 (Context, principal context, test). Let µ be a net with n free ports. A
context for µ is a net C with at least n free ports. We denote by C[µ] the application of
C to µ, which is the net obtained by plugging the free port i of µ to the free port i of C,
with i ∈ {1, . . . , n}. A principal context is a context of the form given in Fig. 10. A test
is a principal context in which ω is the identity, i.e., it is a forest of n trees τ1, . . . , τn such
that the root of each τi is the free port i.

Definition 1.10 (η- and βη-equivalence). We define the relations 'η0 and 'η1 as the reflex-
ive, transitive, and contextual closure of respectively the left and right equation of Fig. 11,
which we call η0 and η1 equation, respectively. Then, we define η- and βη-equivalence
respectively as 'η= ('η0 ∪ 'η1)

+ and 'βη= ('β ∪ 'η)+.

Theorem 1.11 (Separation [Maz07b]). Let µ, ν be two total nets with the same interface,
such that µ 6'βη ν. Then, there exists a test θ such that

ε ε
θ[ν]→∗θ[µ] →∗

or vice versa.

The two discriminating nets used in the theorem are not arbitrary: it is possible to
prove that if a congruence containing β-equivalence equates them, then it equates all total
nets. Hence, the Separation Theorem implies that any congruence on total nets containing
β-equivalence is either contained in 'βη, or is trivial.

The following result is the analogue of Lemma 1.4 for η-equivalence, and will be used
in Sect. 4.2:

Lemma 1.12. Let τ be a tree without ε cells. Then, we have

τ
. . .

τ

. . . 'η
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Proof. By induction on τ .

Corollary 1.13. For any net ν and for any trees without ε cells τ1, . . . , τn, there exists a
net ν ′ such that

. . . . . .

. . .

τ1 τn

ν′

'ην

Proof. Simply “η-expand” the wires connected to the free ports of ν as in Lemma 1.12.

2. Paths

2.1. Straight paths. The Separation Theorem distinguishes two nets by sending one to a
net presenting a direct connection between its free ports, and the other to a net in which
no such direct connection will ever form. This points out that the an appropriate notion of
“connection” may be the key to a nice definition of observational equivalence.

Definition 2.1 (Port graph). The port graph of a net µ, denoted PG(µ), is the undirected
multigraph whose vertices are the elements of Ports(µ) and such that there is an edge
between two ports p, q iff one of the following (non mutually exclusive) conditions hold:

External edges: {p, q} ∈ Wires(µ) (multiplicities are counted here, i.e., if {p, q} ap-
pears twice in Wires(µ), there will be two edges relating p and q in PG(µ));

Internal edges: p and q are principal and auxiliary ports of a cell of µ.

Definition 2.2 (Straight path, Danos and Regnier [DR95]). A straight path of a net µ is
a path (not necessarily simple) of PG(µ) which does not contain two consecutive external
edges. We say that a straight path crosses an active pair iff it contains a wire connecting
two principal ports. A maximal path is a non-empty straight path connecting two free ports
of µ.

Definition 2.3 (Residue and lift of a maximal path). Let µ→ µ′, and let φ be a maximal
path of µ. The residue φ′ of φ in µ′ is, if it exists, the maximal path defined as follows.
If φ does not cross the active pair reduced, then by the locality of interaction rules, “the
same” path as φ is found in µ′, and this is taken to be φ′. Otherwise, we call 1, 2 and 3, 4
the auxiliary ports of the cells (which must be binary, because φ is maximal) composing
the active pair reduced, and we distinguish two cases:

• the two cells have the same symbol:
– if φ connects 1 to 3 or 2 to 4, then this connection becomes a wire in µ′, so φ′

is equal to what is left of φ with the active pair replaced by a wire;
– if φ connects 1 to 4 or 2 to 3, then φ has no residue;

• the two cells have different symbols; then, whatever ports are connected by φ, the
connection is still present in µ′, so φ′ is equal to what is left of φ with the active
pair replaced by this new connection.

Conversely, if φ′ is a maximal path of µ′, then it is the residue of exactly one maximal path
of µ, which is called the lift of φ′ in µ.
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Proposition 2.4. Let µ → µ1 → · · · → µn−1 → µn and µ → µ′1 → · · · → µ′n−1 → µn, let
φn be a maximal path of µn, and let φn−1, . . . , φ1, φ (resp. φ′n−1, . . . , φ

′
1, φ

′) be the successive
lifts of φn in µn−1, . . . , µ1, µ (resp. µ′n−1, . . . , µ

′
1, µ). Then, φ = φ′, so it makes sense to

speak of “the lift” of φn in µ, independently of the reduction used to go from µ to µn. This
will be denoted by φµ

n.

Proof. This is a consequence of strong confluence: all reductions from µ to µn are just
permutations of one another.

The presence of maximal paths is preserved under anti-reduction: if µ→ µ′ and µ′ has
a straight path φ between its free ports i an j, then µ has at least one straight path between
the same free ports: the lift of φ.

The following material will be needed in Sect. 3.4 and Sect. 4.3; the reader may safely
safely skip to the next section and come back to this point when these notions are used.

Definition 2.5. Let φ and c be resp. a straight path and a cell of a net µ.
(1) We say that φ crosses c iff φ contains an internal edge of c.
(2) We say that φ starts from c iff one of the edges at the extremities of φ connects the

principal port of c to a port other than an auxiliary port of c itself.

Definition 2.6 (Weight of a finite straight path). Let φ be a finite straight path crossing
a cell c, and let φ′ be a subpath of φ starting from c and ending where φ ends. We define
the quantity wφ′

φ (c) to be equal to zero if φ′ crosses no active pair; otherwise, it is equal
to the number of cells crossed by φ′, counting multiplicities, i.e., if the same cell is crossed
twice by φ′, then it is counted twice in wφ′

φ (c). Moreover, c itself is counted as any other

cell in computing wφ′
φ (c). The weight of c in φ is wφ(c) =

∑
wφ′

φ (c), where φ′ ranges over
all subpaths of φ starting from c. The weight of φ is w(φ) =

∑
wφ(c), where c ranges over

all cells crossed by φ. Note that this time we do not count multiplicities, i.e., even if c is
crossed multiple times by φ, its weight is still taken once in the sum.

Lemma 2.7. Let µ→ µ′, and let φ′ be a maximal path of µ′ such that its lift φ in µ crosses
the active pair reduced. Then, w(φ′) < w(φ).

Proof. We only check this in the case of a commutation rule, the annihilation being simpler.
Observe that ε cells need not be taken into account since φ and φ′ are maximal, so we are
dealing with the commutation of two binary cells. Suppose we have the following situation:
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→
c1

d

e
e′

d′

c′1

α

β α α

β β

φ φ′

c2

c′2

We have assumed that φ uses the “left” port of the α cell and the “right” port of the β
cell of the active pair; this of course is just a graphical convenience, and will not affect the
generality of our argument. Also, we have assumed that φ is not cyclic, i.e., it does not
come back several times to the active pair. This need not be the case; however, what is
important to compute w(φ) is not φ itself, but its subpaths starting from the cells it crosses.
Any such subpath can always be “linearized” by duplicating the cells it crosses more than
once, so the above drawing is not unsound. The same holds for φ′ of course.

Let us start by computing the weight of φ. We clearly have wφ(c1) = C1 + 1 and
wφ(c2) = C2 + 1, where C1, C2 are suitable non-negative integers. For what concerns the
cells crossed by φ other than c1, c2, we distinguish three kinds: those “above” c1, those
“above” c2, and the “neutral” cells. A cell is “neutral” if the subpath of φ starting from
it never crosses the active pair shown (like e in the picture), and is “above” ci if it crosses
the active pair by crossing ci first (for example, d in the picture is “above” c1). We then
have wφ(e) = Ee for any “neutral” cell e and wφ(d) = Dd + 2 for any cell “above” c1 or c2,
where Dd, Ee are suitable non-negative integers depending on d and e. Therefore, we have
w(φ) = C1 +C2 + 2 + 2n+

∑
Dd +

∑
Ee, where d ranges over the cells “above” c1 or c2, e

ranges over “neutral” cells, and n is the number of cells “above” c1 or c2.
Let us now turn to the weight of φ′. Clearly, if e′ is a cell of µ′ corresponding to a

“neutral” cell e of µ, then nothing changed for it, so wφ′(e′) = Ee. The situation of a
cell d′ corresponding to a cell d “above” c1 is also unchanged: the presence of such cells
in µ implies that the commutation has created new active pairs in µ′, and these active
pairs are crossed by φ′, so wφ′(d′) = Dd + 2, the minimal two cells crossed being c′1 and
c′2. On the other hand, for these latter two cells the situation has changed with respect
to c1 and c2. For instance, it may happen that the subpath of φ′ starting from c′1 does
not cross any active pair, as suggested in the picture, so wφ′(c′1) = 0. Or, if there are
cells “above” c1 in µ, as in the picture, the subpath of φ′ starting from c′2 certainly crosses
active pairs, but the weight of the cell now is wφ′(c′2) = C2. In both cases, we have
w(φ′) ≤ C1 + C2 + 2n+

∑
Dd +

∑
Ee < w(φ), as desired.
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i j

τ1 τ2

. . . . . . . . .

. . .. . .. . .

µ0

. . .

Figure 12: An observable path.

2.2. Observable paths. A maximal path is preserved under reduction precisely when it
does not cross any active pair. In that case, we say that it is observable:

Definition 2.8 (Observable path). Let µ be a net. An observable path of µ is a maximal
path crossing no active pair.

It is perhaps useful to visualize observable paths. A net µ contains an observable path
between its free ports i and j iff it is of the shape given in Fig. 12. If i = j, then τ1 = τ2,
and the wire shown connects two leaves of the same tree. The actual observable path, if
seen from i to j, takes the branch of τ1 leading to the leaf connected by the wire shown,
follows this wire, and descends to the root of τ2 through the only possible branch.

Observable paths may be succinctly described by assigning addresses to the leaves of
trees. In the following, we let a, b range over the set {p,q}∗ of finite binary words, and we
denote by 1 the empty word. Pairs of finite words are denoted by a ⊗ b, and ranged over
by s, t. The concatenation of two finite words a, b is denoted by simple juxtaposition, i.e.,
as ab. The concatenation of two pairs of finite words a ⊗ b, a′ ⊗ b′ is defined as aa′ ⊗ bb′,
and is also denoted by juxtaposition.

Definition 2.9 (Address of a leaf). Let τ be a tree, and l a leaf of τ . The address of l in
τ , denoted by addrτ (l), is a pair of finite binary words defined by induction on τ :3

• τ = •: addrτ (l) = 1⊗ 1;
• τ = δ(τ1, τ2): addrτ (l) = (p⊗1)addrτ1(l) if l is a leaf of τ1, addrτ (l) = (q⊗1)addrτ2(l)

if l is a leaf of τ2;
• τ = ζ(τ1, τ2): addrτ (l) = (1⊗p)addrτ1(l) if l is a leaf of τ1, addrτ (l) = (1⊗q)addrτ2(l)

if l is a leaf of τ2.

An observable path φ may now be denoted by the unordered pair {(s, i), (t, j)}, where
i, j are the free ports connected by the path, and s, t are the addresses of the leaves of the
trees rooted at i, j connected by φ. In fact, from here on we shall take this as the definition
of observable path, i.e., any object of the form {(s, i), (t, j)} where s, t are pairs of words
and i, j ports will be referred to as an observable path, regardless of any particular net to
which it may belong to.

In the following, we denote by op(µ) the set of observable paths of a net µ, and we
define

op∗(µ) =
⋃

µ→∗µ′
op(µ′).

3For the acquainted reader, addrτ (l) is nothing but the GoI weight of the path going down from l to the
root of τ [Laf97]. This justifies our notations for binary words.
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Proposition 2.10. Let µ→∗ µ′. Then, op(µ) ⊆ op(µ′), and op∗(µ) = op∗(µ′).

Proof. An immediate consequence of the locality of interaction rules.

Note that a net can only have a finite number of observable paths; then, by Propo-
sition 2.10, op∗(µ) is finite whenever µ has a normal form. However, normalizability is
not necessary: non-normalizable nets producing a finite number of observable paths exist,
as shown by the following example (the only observable path ever to be found is the one
already present in the net starting the reduction sequence, i.e. {(1⊗ pp, 1), (1⊗ pq, 1)}):

ζ

ζ

δ

ζ

ε

ζ

ζ ζ

ε δ

ζ

ε

→∗ →∗ · · ·

3. Observational Equivalences

3.1. Path-based observational equivalences. The stability of observable paths under
reduction is the main reason for considering them as the base of observational equivalence.

Definition 3.1 (Observability predicates). We say that µ is immediately observable, and
we write µ↓, iff op(µ) 6= ∅. We say that µ is observable, and we write µ⇓, iff op∗(µ) 6= ∅, or,
equivalently, µ →∗ µ′↓. We say that µ is totally observable, and we write µ W , iff op∗(µ) is
non-empty and finite. We write µ⇑ and µ V for the negations of µ⇓ and µ W , respectively.
In particular, if µ⇑ we say that µ is blind.

Definition 3.2 (Observational equivalences). Two nets µ, ν with the same interface are
observationally equivalent (resp. totally equivalent), and we write µ ' ν (resp. µ ∼= ν), iff
for all contexts C, C[µ]⇓ iff C[ν]⇓ (resp. C[µ] W iff C[ν] W ).

It is immediate to see that any two totally equivalent nets are also observationally
equivalent. The converse is false, although we shall be able to prove this only at the end of
the paper. It is also easy to verify the following, which is a consequence of 2.10:

Proposition 3.3. µ 'β ν implies µ ∼= ν (and hence µ ' ν).
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It helps thinking of an immediately observable net as a head normal form in the
λ-calculus. This analogy can be made more precise: our definition of observable path can
in fact be extended to any interaction net system, in particular to sharing graphs [GAL92];
then, one can adapt the definition of observable net so as to obtain that a λ-term is in head
normal form iff its corresponding net is immediately observable. This adaptation, which we
do not detail here, takes into account only the observable paths starting from the free port
representing the “root” of the term, and iteratively using the “root” of each subterm.

The existence of a “root” (i.e., a distinguished free port in sharing graphs) is what allows
one to define the notion of principal head normal form, of which no meaningful equivalent
exists for nets. This is because nets, like proof nets, are “classical”, as opposed to λ-terms,
which are “intuitionistic”. This is also the reason why the symmetric combinators equivalent
of Böhm trees will not be trees (cf. Sect. 4.1).

Lemma 3.4. µ ' ν iff, for every principal context C, C[µ]⇓ iff C[ν]⇓.
Proof. The important part of the proof is to show that one can restrict to contexts in normal
form and without vicious circles. Suppose that C[µ]⇓ but C[ν]⇑. We have that C[µ]→∗ µ′
such that µ′ contains an observable path. Let k be the length of the reduction leading from
C[µ] to µ′, and let C1, . . . , Cm be all the k-step reducts of C, or the normal form of C if
C does not admit a reduction of length k. Then, by strong confluence, there exits a Ci

such that Ci[µ] →∗ µ′′↓ without reducing any active pair that may appear in Ci before its
application to µ. Now, it can be shown (by induction on the number of cells) that every
net can be decomposed in terms of trees and wirings as follows:

ω

ω′

τ1 τn τ ′1 τ ′2k

. . .

. . . . . . . . . . . .

. . .

The wiring ω′ accounts for the active pairs and the vicious circles; if we remove it, we obtain
a normal net with no vicious circle. If we replace ω′ with 2k ε cells in the decomposition of
Ci, we obtain a net which can be shown to also have a normal form without vicious circles.
Let C ′i be such a normal form. Since no active pair of Ci is reduced to obtain an observable
path from Ci[µ], we also have C ′i[µ]⇓. On the other hand, since C →∗ Ci, we still have
Ci[ν]⇑, and also C ′i[ν]⇑, because observable paths cannot use ε cells. Therefore, we have
found a normal and vicious-circle-free context discriminating between µ and ν:

1 2

τ1 τn

ω

τ ′1 τ ′m

. . .

. . .

. . . . . .

. . .

. . .
=C ′i
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Now, any wire in ω connecting a τ ′i with a τ ′j yields an observable path which is present
regardless of the application of C ′i to any net, and therefore adds no discriminative power
to the context. Similarly, all the τ ′i can be completely removed, because they do not alter
the observability of the net.

3.2. Bisimilarity. It is possible to find an equivalent reformulation of Definition 3.2 which
is useful for proving that two nets are observationally equivalent.

Definition 3.5 (Bisimulation and bisimilarity). Let B be a binary relation relating nets
with the same interface. We say that B is a bisimulation iff, whenever (µ, ν) ∈ B, we have:

(1) µ↓ implies ν⇓;
(2) µ→ µ′ implies ν →∗ ν ′ with (µ′, ν ′) ∈ B;
(3) ν↓ implies µ⇓;
(4) ν → ν ′ implies µ→∗ µ′ with (µ′, ν ′) ∈ B.

Bisimilarity, denoted ≈, is the union of all bisimulations.

Lemma 3.6. µ ≈ ν iff µ and ν are either both observable, or both blind.

Proof. The forward implication is a straightforward consequence of the definition; for the
converse, we invite the reader to check that {(µ, ν) ; µ⇓ iff ν⇓} is a bisimulation.

Corollary 3.7. µ ' ν iff for every context C, C[µ] ≈ C[ν].

This makes possible the use of coinductive techniques for proving that two nets are
observationally equivalent. In fact, thanks to Corollary 3.7, to prove µ ' ν it is enough
to show that there exists a bisimulation containing (C[µ], C[ν]) for all C. This may be of
help because, instead of having to prove C[µ]⇓⇔ C[ν]⇓, one can first prove the weaker
implications C[µ]↓⇒ C[ν]⇓ and C[ν]↓⇒ C[µ]⇓, and then show that C[µ] and C[ν] are able
to simulate the one-step reductions of each other. Of course there is still the quantification
over all contexts which may render the task difficult, but in many interesting cases this is
just what will be needed.

An example is given by the following. For all n ∈ N, we define En to be the net with
n free ports consisting of n ε cells, ε0 being the empty net. These nets are the prototypical
blind nets: they contain no observable path, and they do not develop any, since they are
normal. In fact, we shall see that any blind net with n free ports is observationally equivalent
to En.

Let C be a net, and let I be a subset of its interface. We say that C is relatively blind
on I no reduct of C has an observable path connecting two ports of I. A context C for
nets with n free ports will be said to be relatively blind if its interface is {1, . . . , n} ] I and
C is relatively blind on I. Principal contexts are the typical examples of relatively blind
contexts. Consider now the relation

B = {(C[µ],En) | ∀µ⇑ with n free ports, ∀ relatively blind context C}.
Lemma 3.8. B is a bisimulation.

Proof. Parts 1, 3, and 4 of Definition 3.5 vacuously hold, so let us concentrate on part
2. We have three cases, depending on the nature of the active pair reduced in C[µ]. If
C[µ] → C ′[µ], i.e., the active pair is within C, then (C ′[µ],En) ∈ B, because by definition
C ′ is still relatively blind. If C[µ] → C[µ′], i.e., the active pair is in µ, then we still have



18 DAMIANO MAZZA

µ′⇑, and so (C[µ′],En) ∈ B. We are left with the case in which C[µ] reduces because of
an active pair created by plugging µ into C. There are several different subcases; we only
check the most difficult one, leaving the others to the reader. Suppose we have

α
µ

µ1

β
C

C ′
. . .

. . .

. . .

→

α

β β

α

µ1

C ′
. . .

. . .

C1

︸ ︷︷ ︸
I

︸ ︷︷ ︸
I

We start by observing that µ⇑ implies µ1⇑, and that C relatively blind on I implies C ′
relatively blind on I too. We claim that C1 is also relatively blind on I. In fact, if any of
its reducts contained an observable path between two of the free ports of I, then such a
path would have a lift φ in C1. Now, if φ were entirely contained in C ′, then C ′ would not
be relatively blind; hence φ must go through the subnet of C1 which does not belong to
C ′, i.e., the reduct of the active pair. But such subnet contains no straight path allowing
to “go up” from I and then “go down” again towards I. Therefore, φ cannot exist, and
(C1[µ1],En) ∈ B.

The above result shows that blind nets are “resistant” to contexts:

Corollary 3.9. Let µ be a net. Then, µ⇑ implies C[µ]⇑ for any principal context C.

Since, for C principal, C[En] →∗ Em (this is a variant of Lemma 1.7), by Lemma 3.4
we obtain µ ' En for all µ⇑ with n free ports, as anticipated. In the next section we shall
see that we actually also have µ ∼= En.

A useful variant of the notion of bisimulation is bisimulation up to reduction:

Definition 3.10 (Bisimulation up to reduction). Let B be a binary relation relating nets
with the same interface. We say that B is a bisimulation up to reduction iff, whenever
(µ, ν) ∈ B, we have:

(1) µ↓ implies ν⇓;
(2) µ→ µ′ implies ν →∗ ν ′ and µ′ →∗ µ′′ such that (µ′′, ν ′) ∈ B;
(3) ν↓ implies µ⇓;
(4) ν → ν ′ implies µ→∗ µ′ and ν ′ →∗ ν ′′ such that (µ′, ν′′) ∈ B.

Lemma 3.11. If B is a bisimulation up to reduction, then →∗ B ∗← is a bisimulation.

Proof. Let B be a bisimulation up to reduction. We shall only check that properties 1 and
2 of Definition 3.5 hold, the other two being perfectly symmetrical. So set B′ = →∗ B ∗←,
and let (µ, ν) ∈ B′, which means that µ →∗ µ1 and ν →∗ ν1 such that (µ1, ν1) ∈ B. For
what concerns property 1, by Proposition 2.10, we have that µ↓ implies µ1↓, so ν1⇓ because
B is a bisimulation up to reduction, and therefore ν ⇓ again by Proposition 2.10. Now
let µ → µ′. If µ1 is a reduct of µ′, then we immediately obtain (µ′, ν) ∈ B′. Otherwise,
by strong confluence (Proposition 1.3), we have that there exists µ2 such that µ′ →∗ µ2,
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and µ1 → µ2 (all reduction sequences from µ to µ2 have the same length). In this case,
(µ1, ν1) ∈ B implies that ν1 →∗ ν ′ such that (µ2, ν

′) ∈ B′; but µ2 is a reduct of µ′, and ν1

is a reduct of ν, hence ν →∗ ν ′ with (µ′, ν ′) ∈ B′.
Corollary 3.12. To prove µ ' ν, it is enough to find a bisimulation up to reduction B such
that (C[µ], C[ν]) ∈ B for all C.

We shall use bisimulations up to reduction to prove that βη-equivalent nets are obser-
vationally equivalent, which we do next. In the following, we write C[µ1, . . . , µn] for a net
containing µ1, . . . , µn as subnets, i.e., C is a “multi-hole context”.

Lemma 3.13. We define the relation  as follows:

α

τ

α α

τ

. . . . . . . . . . . .

. . .. . .

τ

α α

. . . . . .



. . . . . .

τ

. . . . . .

τ 

τ

α α

. . .. . .

. . .. . .

In both equations, α ranges over binary symbols and τ ranges over trees not containing α
cells. Then, the relation

B = {(C[µ1, . . . , µk], C[ν1, . . . , νk]) ; µi  νi, for all multi-hole contexts C}
is a bisimulation up to reduction.

Proof. The proof is extremely long, and not particularly interesting. We only check a few
cases, leaving the others to the reader. Let (µ, ν) ∈ B, so that µ = C[µ1, . . . , µk] and
ν = C[ν1, . . . , νk] for some k-hole context C, with µi  νi for all 1 ≤ i ≤ k. Observe that,
if k = 0, then µ = ν, and there is nothing to check. So we can write for short µ = C[µ0,

−→µ ]
and ν = C[ν0,

−→ν ]. Suppose that µ↓. First of all, note that the second equation defining 
concerns blind nets, so it does not affect observable paths. Additionally, the first equation
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obviously preserves observable paths when applied from left to right, so the only case we
need to check is that in which ν is obtained from µ by using the first equation from right
to left. We can then suppose that the observable path in µ passes through µ0, and that µ0

and ν0 are resp. the right and left member of the first equation. The interesting situation is

τ

α

τ1τ2

τ ′

C ′

=µ

and

τ ′

α α

τ τ

α

τ1τ2

C ′

=ν

The observable path in µ is the one shown going from the root of τ1 to the root of τ2. To
economize on notations, we have limited as much as possible the arities of all trees in the
picture; this will not affect the generality of our argument. This case is the interesting one
because ν contains an active pair which “breaks” the observable path that is present in µ, so
that ν may no longer be immediately observable. However, we still have ν⇓. This is proved
by induction on τ ′. Observe that we must have τ ′ 6= ε, so the base case is τ ′ = •, in which
obviously ν↓. In case τ ′ = α(τ ′1, τ

′
2), it is easy to see that ν → ν ′↓; in case τ ′ = β(τ ′1, τ

′
2)

with β 6= α, we have
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C ′

τ ′1 τ ′2

α

τ̂ τ̂

α

α

τ1τ2

→∗ν

α

where τ̂ is a tree formed by τ plus a β cell, and therefore does not contain α cells. We have
assumed that the observable path uses a leaf of τ ′1, but nothing changes if a leaf of τ ′2 is
used instead: in any case, we conclude ν⇓ by applying the induction hypothesis. This is
all as far as property 1 of Definition 3.10 is concerned; property 3 is completely symmetric,
and is established in the same way.

We thus turn to verify property 2. Suppose that µ → µ′. If the reduction takes place
inside C, ν has no problem in simulating it, so we may assume that one of the µi has
interacted. Again, we put µ = C[µ0,

−→µ ] and ν = C[ν0,
−→ν ], with µ0 and ν0 resp. left and

right side of the first equation above; the second equation does not need to be checked,
because the configurations related by it cannot be involved in any active pair.

We start by supposing that a cell of C has interacted with the “root” of µ0, i.e., the
principal port of the α cell drawn at the bottom of the left hand side of the first equation.
We have three cases, one for each possible cell. We briefly go over them, leaving the details
to the reader:

• ε cell: we have µ′ →∗ C ′[µ′0,
−→µ ] and ν →∗ C ′[ν ′0,

−→ν ], with µ′0  ν ′0.
• α cell: if we put µ′ = C ′[−→µ ], using Lemma 1.5 we get that ν →∗ C ′[−→ν ].
• β cell, with β 6= α: we reason by analyzing the structure of τ .

– τ = ε: this is one case in which multi-hole contexts are necessary. We have
µ′ →∗ C ′[µ0, µ0,

−→µ ] and ν → C ′[ν0, ν0,
−→ν ].

– τ = •: here we have µ′ = C ′[µ′0,
−→µ ], and ν = C ′[ν ′0,

−→ν ], with µ′0  ν ′0.
– τ = β(τ1, τ2): here multi-hole contexts are needed again. We have µ′ →∗
C ′[µ′0, µ

′′
0,
−→µ ] and ν → C ′[ν ′0, ν

′′
0 ,
−→ν ], with µ′0  ν ′0 and µ′′0  ν ′′0 .

The case τ = α(τ1, τ2) is not possible, since in the first equation τ is a tree not
containing α cells.

In all cases, one sees that µ′ →∗ µ′′ and ν →∗ ν ′′ such that (µ′′, ν ′′) ∈ B, as required by
point 2 of Definition 3.10.
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The next cases to be checked are those in which µ→ µ′ because of an interaction with
one of the principal ports of the α cells at the “top” of µ0. In all cases, one can see that
µ′ = C ′[µ′0,

−→µ ], and that ν is actually equal to C ′[ν ′0,
−→ν ], with µ′0  ν ′0.

It is also possible that µ → µ′ because µ0 has interacted with itself; in that case, we
have µ′ = C ′[µ′0,

−→µ ] and ν = C ′[ν ′0,
−→ν ], with µ′0  ν ′0 because of the second equation (this

is in fact the only time this equation is ever used).
The last cases to be checked are those in which µ → µ′ because a µi interacts with a

µj , with i 6= j. There is quite a big number of subcases to be considered; none of them
poses any particular problem, so we leave them to the reader.

It remains to prove that B satisfies also property 4 of Definition 3.10; this is done by
following the same arguments used above, and is in fact easier, because many of the above
cases do not exist when we consider the reduction ν → ν ′.

Proposition 3.14. Let µ, ν be two nets. Then, µ 'βη ν implies µ ' ν.
Proof. Let ¿ be the contextual closure of the relation  defined in Lemma 3.13. Observe
that the equations of Fig. 11 are special cases of the first equation defining : the η0

equation is obtained by taking τ = •; the η1 equation of Fig. 11 is obtained by taking τ to
be equal to either ε or β(•, •) with β 6= α, and taking no α cells at the “top” of the left
hand side. Therefore, for all µ, ν, if µ and ν are obtained one from the other by applying
one equation of Fig. 11, we have µ ¿ ν, which by Lemma 3.13 implies µ ≈ ν (in fact,
¿⊆ B, where B is the bisimulation up to reduction of Lemma 3.13). But ≈ is transitive,
so actually for all µ, ν, µ 'η ν implies µ ≈ ν, which in turn implies µ ' ν, because 'η is a
congruence. Now, we have already seen that 'β ⊆' (Proposition 3.3), so the proposition
is a consequence of the definition of βη-equivalence and the transitivity of '.

In the next section we shall see that βη-equivalent nets are actually totally equivalent.
Hence, thanks to the Separation Theorem 1.11, ∼=, ' and 'βη all coincide on total nets.

3.3. ε-reduction. The fact that all blind nets with n free ports are observationally equiv-
alent to En suggests the following rewriting rule:

ε ε

. . .. . .

µ⇑ →ε

We write→ε for the relation obtained from→ plus the above rule applied under any context,
i.e., whenever µ is a blind subnet of a larger net. As usual, we write →∗

ε for the reflexive
transitive closure of →ε. Of course the ε-step is not recursive, because it is undecidable
whether a net is blind. In this sense, ε-reduction is very similar to βΩ-reduction in the
λ-calculus [Bar84]. The interest of ε-reduction is its relationship with total equivalence.

We say that a binary relation on nets Ã has the quasi-diamond property iff µ Ã µ1

and µ Ã µ2 implies that there exists ν such that µ1 Ã ν or µ1 = ν, and µ2 Ã ν or µ2 = ν.

Lemma 3.15. Let Ã be a binary relation on nets satisfying the quasi-diamond property.
Then, its reflexive transitive closure Ã∗ satisfies the diamond property, i.e., it is confluent.

Proof. We actually prove something stronger: if µ Ã∗ µ1 in n1 steps, and µ Ã∗ µ2 in n2

steps, then there exists ν such that µ1 Ã∗ ν in at most n2 steps, and µ2 Ã∗ ν in at most
n1 steps. We do this by induction on n1 + n2, which we refer to as the degree of the triple
(µ, µ1, µ2). If the degree is zero, then everything is trivial. If the degree is non-zero but
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one of n1, n2 is zero, then again the proof is trivial. So let us suppose n1, n2 > 0. We then
have µ Ã µ′1 Ã∗ µ1 and µ Ã µ′2 Ã∗ µ2. By the quasi-diamond property, there exists ν ′
such that µ′1 Ã∗ ν ′ and µ′2 Ã∗ ν ′ in at most one step, i.e., ν ′ may be equal to µ′1 or µ′2.
Consider now the triple (µ′1, ν

′, µ1). Its degree is n1 − 1 + c, where c ≤ 1, so the degree is
at most n1 < n1 + n2, because we have supposed n2 6= 0. So we can apply the induction
hypothesis, and obtain a net ν1 such that ν ′ Ã∗ ν1 in at most n1 − 1 steps and µ1 Ã∗ ν1

in at most one step. The same holds for the triple (µ′2, ν
′, µ2), for which we obtain a net ν2

such that ν ′ Ã∗ ν2 in at most n2 − 1 steps and µ2 Ã∗ ν2 in at most one step. Then, if we
consider the triple (ν ′, ν1, ν2), its degree is at most n1 + n2 − 2 < n1 + n2, so the induction
hypothesis applies again, giving us a net ν such that ν1 Ã∗ ν and ν2 Ã∗ ν. Composing the
reductions yields the diamond for the original triple (µ, µ1, µ2).

Lemma 3.16. The relation →ε satisfies the quasi-diamond property.

Proof. Let µ →ε µ1 and µ →ε µ2. We may suppose µ1 6= µ2, otherwise there is nothing
to prove. If the two reductions come from two active pairs, we conclude by applying
Proposition 1.3. Otherwise, suppose without loss of generality that µ → µ1 and µ →ε µ2

by means of an ε-step, i.e., we have µ = C[ν] and µ2 = C[En], where ν is a blind net with
n free ports. We have three cases:

• ν → ν ′ and µ1 = C[ν ′], i.e., the active pair reduced to obtain µ1 is contained in ν.
In that case, we still have ν ′⇑, so µ1 →ε µ2.
• The active pair reduced to obtain µ1 is “between” ν and C, i.e., one of its cells is

in ν and the other, call it c, is in C. We suppose c to be binary; the nullary case
is easier, and left to the reader. Then, the cell c together with a suitable identity
wiring (which may be empty in case n = 1) forms a principal context C0, and we
can write µ = C ′[C0[ν]] for a suitable context C ′. Now C0[ν]→ ν ′ and µ1 = C ′[ν ′],
while µ2 = C ′[C0[En]]. By Corollary 3.9, we have both C0[ν]⇑ and C0[En]⇑, so both
µ1 and µ2 ε-reduce in one step to C ′[En+1].
• The active pair reduced is completely disjoint from ν. This case is trivial.

We are left with the situation in which both µ1 and µ2 are obtained by means of ε-steps.
Let ν1, ν2 be the blind subnets of µ reduced to obtain µ1 and µ2, respectively. If ν1 and
ν2 are disjoint, then the diamond property holds trivially. Otherwise, we have µ = C[ν],
where ν is the net

. . . . . . . . .

. . .

. . .
ν′1 ν′2

ν0

and ν1 is equal to ν ′1 plus ν0, while ν2 is equal to ν ′2 plus ν0. Now, if we put

. . . . . .
ν′2

. . . . . .
ν′1

εε

. . .. . .

ε ε ε ε

. . .. . .

ε ε ε ε εε

o1 = o2 =

︸ ︷︷ ︸
I2

︸ ︷︷ ︸
I1

we have µ1 = C[o1] and µ2 = C[o2]. But ν ′1 and ν ′2 must be relatively blind on I1 and I2,
respectively, because ν1 and ν2 are blind. Hence, by Lemma 3.8, the subnets marked by
the dashed rectangles in the above picture are both blind, so µ1 and µ2 both reduce in at
most one ε-step to C[En], where n is the number of free ports of ν.
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Proposition 3.17 (Confluence of ε-reduction). The relation →∗
ε is confluent.

Proof. Apply Lemmas 3.15 and 3.16.

The confluence of ε-reduction allows us to define βε-equivalence (which is actually a
congruence) as µ 'βε ν iff there exists o such that µ →∗

ε o and ν →∗
ε o. Similarly, one

defines βεη-equivalence as 'βεη = ('βε ∪ 'η)+. Clearly ε-steps do not alter observability,
so the following statement is an obvious consequence of Proposition 3.14:

Lemma 3.18. Let µ 'βεη ν. Then, µ⇓ iff ν⇓.
βε-normal forms are always cut-free. In particular, we have the following characteriza-

tion, whose proof is left to the reader. In the following, an ε-tree as a tree with no leaves;
the ε-tree ε is called trivial.

Proposition 3.19 (βε-normal forms). A net µ is βε-normal iff it is cut-free, and each
ε-tree contained in µ is trivial.

One the main structural difference between reduction and ε-reduction is that the second
one, although confluent, is not strongly confluent. However, we can define a sub-reduction
which has this useful property.

Definition 3.20 (Big step ε-reduction). We write µ ³ε ν iff µ→ε ν and:
• if an active pair is reduced, then it is not contained in a blind subnet of µ;
• if µ = C[µ0] and ν = C[En] with µ0⇑ with n free ports, then µ0 is not a proper

subnet of a blind subnet of µ.
We write ³∗

ε for the reflexive-transitive closure of ³ε.

Proposition 3.21 (Strong confluence of big step ε-reduction). The relation ³∗
ε is strongly

confluent.

Proof. Simply observe, by looking at the proof of Lemma 3.16, that the only cases in which
→ε does not satisfy the full diamond property are precisely those explicitly forbidden by
the definition of big step ε-reduction.

Clearly, a net is βε-normalizable iff it is normalizable under the big step reduction.
Thanks to strong confluence, weak normalization and strong normalization coincide in
the big step reduction, which is not the case for usual ε-reduction. Hence, given a βε-
normalizable net µ, we can define the quantity ‖µ‖ as the number of steps needed to get
from µ to its βε-normal form under the big step reduction.

We shall now prove a result similar to Lemma 3.18, but with βε-normalizability instead
of observability.

Lemma 3.22. Let µ 'η1 ν. Then, µ is βε-normalizable iff ν is.

Proof. It is enough to verify that, given a βε-normalizable net µ, if ν is obtained from µ by
applying exactly one η1 equation, then ν is also βε-normalizable. First of all, observe that
taking α or β to be equal to ε in the η1 equation yields µ 'βε ν, so the result is trivial.
Then, we have µ = C[τ ] and ν = C[τ ′], where τ, τ ′ are two trees of binary cells related by
the η1 equation. We reason by induction on ‖µ‖. If µ is already βε-normal, then obviously
also ν is, so the base case holds. Suppose now ‖µ‖ > 0. If C is not βε-normal, then we
have µ→ε C

′[τ ] and ν →ε C
′[τ ′], so the lemma holds by induction hypothesis. Otherwise,

the only steps reducing µ concern τ . If τ is involved in an active pair, then we invite the
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reader to check that µ 'β ν; if, on the other hand, τ is contained in a blind subnet of µ
which is the subject of an ε-step, then by Proposition 3.14 this step can also be applied to
ν, and we obtain µ 'βε ν. In both cases, ν is clearly βε-normalizable.

Let να be the left hand side of the η0 equation, with α a fixed binary symbol. In what
follows, we write ν Ãα

η0
ν ′ iff ν ′ is obtained from ν by replacing some wires with να.

Lemma 3.23. Let ν be a βε-normal net, and let ν Ãα
η0
ν ′. Then, ν ′ is βε-normalizable.

Proof. We prove the statement by induction on the number of active pairs of ν ′. If ν ′ is
normal, the lemma holds trivially. Otherwise, ν ′ contains a subnet µ0 such that

τ

. . .

αµ0 =

α

where τ is “maximal”, i.e., its leaves of τ are either free or connected to an auxiliary port.
This is not possible only if one of the leaves of τ is connected to the principal port of the
α cell shown at the bottom of the picture; but in this case ν would contain a vicious circle,
which is forbidden by Proposition 3.19. The tree τ can always be decomposed as follows:

. . . . . . . . . . . .

. . . . . .

τ ′1 τ ′′1 τ ′k τ ′′k

α α
τ =

. . .

B

where B is a tree not containing α cells, and τ ′1, . . . , τ
′
k, τ

′′
1 , . . . , τ

′′
k are trees (k may be equal

to zero). Now, by Lemma 1.5, we have
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α α

α

B B

. . . . . . . . . . . .

τ ′1 τ ′′1 τ ′k τ ′′k
. . .

. . . . . . . . . . . .

. . .

µ0 →∗ = µ′0

By induction on B we can now prove that

α

α

α

α

. . .

τ

. . .'η1µ′0 = µ′′0

To sum up, we have ν ′ = C[µ0] →∗ C[µ′0] 'η1 C[µ′′0] = ν ′′. Observe now that ν Ãα
η0
ν ′′,

and ν ′′ has one active pair less than ν ′ (this is because of the “maximality” of τ). Hence,
we obtain the result by applying the induction hypothesis and Lemma 3.22.

Lemma 3.24. Let µ Ãα
η0
ν. Then, µ is βε-normalizable iff ν is.

Proof. We start by supposing µ βε-normalizable, and proceed by induction on ‖µ‖. If
‖µ‖ = 0, we apply Lemma 3.23. So let us suppose ‖µ‖ > 0. Observe that, if we write ω for
a single wire, we have µ = C[ω, . . . , ω] and ν = C[να, . . . , να] for some multi-hole context C.
If C is not βε-normal, then we have µ→ε C

′[ω, . . . , ω] = µ′, ν →ε C
′[να, . . . , να] = ν ′, with

µ′ Ãα
η0
ν ′ and ‖µ′‖ < ‖µ‖, so we conclude by applying the induction hypothesis. We must

then suppose that all reduction steps that can be applied to µ concern at least one of the
wires replaced by να in ν. Let us start with the case in which one of such wires connects
two principal ports of µ, and let β, γ be the symbols of the two cells involved in the active
pair. Assume first that one of the two, say β, is equal to ε or to α:

• β = ε: we can easily check that µ 'βε ν, so ν is βε-normalizable;
• β = α: in this case we even have µ 'β ν, so we can also conclude.

We may then assume that β = γ is a binary symbol different from α. Let µ0 be the
active pair composed of two β cells, and let ν0 be µ0 in which the wire connecting the
principal ports of the active pair is replaced by να. Now, it is just a matter of going
through a few reductions to check that µ = C ′[ω, . . . , ω, µ0]→ C ′[ω, . . . , ω, ω, ω] = µ′, while
ν = C ′[να, . . . , να, ν0] →∗ C ′[να, . . . , να, να, να] = ν ′. Now ‖µ′‖ < ‖µ‖, and µ′ Ãα

η0
ν ′,
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so we conclude again by applying the induction hypothesis. The other possibility is that
some wires of µ which are replaced with να in ν belong to a blind subnet, i.e., we have
µ = C ′[ω, . . . , ω, C0[ω, . . . , ω]] with µ0 = C0[ω, . . . , ω] a blind net. Then, we have ν =
C ′[να, . . . , να, C0[να, . . . , να]]. If we put ν0 = C0[να, . . . , να], we clearly have ν0 'η µ0, so
ν0⇑ by Proposition 3.14. Then, µ →ε µ

′ and ν →ε ν
′ with µ′ Ãα

η0
ν ′. But ‖µ′‖ < ‖µ‖,

so we can apply once more the induction hypothesis, and conclude. This is all for what
concerns the “only if” part of the statement. We must now suppose ν βε-normalizable,
and prove that µ is also βε-normalizable. This is done using similar arguments to the ones
given above, and is actually easier (for example, the base of the induction is trivial).

Proposition 3.25. Let µ 'βεη ν. Then, µ is βε-normalizable iff ν is.

Proof. It is enough to check that the proposition holds when µ and ν are obtained from
each other by applying a single equation of Fig. 11. If it is the η1 equation, we conclude
by Lemma 3.22. If it is the η0 equation, then we have either µ Ãα

η0
ν or ν Ãα

η0
µ, for some

binary symbol α. In both cases, we conclude by Lemma 3.24.

The following result shows that ε-reduction and total equivalence are related. We first
need to extend Proposition 2.10 to ε-reduction, which is unproblematic:

Lemma 3.26. µ→∗
ε µ

′ implies op(µ) ⊆ op(µ′).

Lemma 3.27. µ is βε-normalizable iff op∗(µ) is finite.

Proof. The forward implication is an immediate consequence of Lemma 3.26. For the con-
verse, op∗(µ) finite and Lemma 3.26 imply that any reduction starting from µ stumbles
upon a net µ′ such that op(µ′) = op∗(µ). This means that all subnets of µ′ containing ac-
tive pairs are blind, i.e., they do not produce further observable paths. There is of course at
most a finite number of such subnets, so µ′ reduces in finitely many ε-steps to a βε-normal
net.

We may now extend Proposition 3.14 to total equivalence, as anticipated at the end of
the previous section.

Proposition 3.28. µ 'βεη ν implies µ ∼= ν.

Proof. Suppose µ 6∼= ν. By definition, there exists a context C such that, for example,
C[µ] W and C[ν] V . This last statement means that op∗(C[ν]) is either empty, or infinite.
Suppose that the latter is true. By Lemma 3.27, C[ν] is not βε-normalizable; on the other
hand, still by Lemma 3.27, C[µ] is βε-normalizable, because op∗(C[µ]) is finite. Then, by
Proposition 3.25, C[µ] 6'βεη C[ν], and so µ 6'βεη ν, because 'βεη is a congruence. Suppose
now that C[ν]⇑. Observe that C[µ] W implies C[µ]⇓, so we conclude by Lemma 3.18.

3.4. The Context Lemma. This section is devoted to a proof of the following result,
saying that, according to observational equivalence, tests suffice to discriminate nets:

Lemma 3.29 (Context). µ ' ν iff, for every test θ, θ[µ]⇓ iff θ[ν]⇓.



28 DAMIANO MAZZA

This lemma is crucial in proving the adequacy of our denotational semantics with
respect to observational equivalence (cf. Sect. 4.2). Its proof is a bit technical though;
the reader may initially assume this result and skip to the next section, where the more
interesting content of the paper starts.

It is evident from its definition that observational equivalence can be split into two
halves:

Definition 3.30 (Observational preorder). We define µ ¹ ν iff, for every context C, C[µ]⇓
implies C[ν]⇓. Therefore, ' = ¹ ∩ º.

The same definition can be formulated restricting on tests:

Definition 3.31 (Test preorder). We define µ - ν iff, for every test θ, θ[µ]⇓ implies θ[ν]⇓.
Lemma 3.32. µ - ν implies that, for every test θ, θ[µ] - θ[ν].

Proof. Simply observe that tests compose: if θ1 is a test for µ and θ2 is a test for θ1[µ] then
θ2[θ1[µ]] = θ[µ] for a test θ.

Proving the Context Lemma amounts to showing that - and ¹ coincide. One inclusion
is obvious; the non-trivial one is of course - ⊆ ¹. In what follows, we use the notions of
lift and weight of a path, introduced in Sect. 2.1.

Definition 3.33 (Measure of a net). We define the function ] from nets to the ordinal ω+1
as follows:

]µ = inf{w(φµ) ; φ ∈ op∗(µ)}.
]µ is said to be the measure of µ.

Lemma 3.34. ]µ < ω iff µ⇓, and ]µ = 0 iff µ↓.
Proof. The first part is obvious. For the second part, simply observe that w(φ) = 0 iff φ is
observable.

Lemma 3.35. If 0 < ]µ < ω, then there exists µ′ such that µ→ µ′ and ]µ′ < ]µ.

Proof. From ]µ < ω, using Lemma 3.34 we deduce that µ⇓, which means that µ has a
reduct containing an observable path, call it φ, and of course we can choose φ of minimum
weight, i.e., such that w(φµ) = ]µ (remember that φµ is the lift of φ in µ, cf. Definition 2.3).
Now, if φµ were observable, again by Lemma 3.34 we would have ]µ = 0, contrarily to our
hypothesis. Hence, φµ is not observable, and it therefore crosses an active pair. If we reduce
it, by Lemma 2.7 we obtain a net µ′ containing a maximal path φ′ of weight strictly smaller
than φµ. But, by Proposition 2.4, φ′ = φµ′ , and since, by Proposition 2.10, φ ∈ op(µ′), we
have ]µ′ ≤ w(φ′) < w(φµ) = ]µ.

We arrive at last to the two crucial lemmas to prove that - ⊆ ¹:

Lemma 3.36. Let µ - ν. Then, for every wiring ω, ω[µ]⇓ implies ω[ν]⇓.
Proof. (Sketch) Let n be the number of free ports of µ and ν. First of all, observe that if
ω has only n free ports, then ω[µ] and ω[ν] are nets without interface, and the statement
holds vacuously. Then, we shall always consider ω to have at least n+ 1 free ports.

By Lemma 3.34, it is enough to show that, for all k ∈ N, for all nets µ, ν with n free
ports, and for all wirings ω with n + 1 free ports, µ - ν and ]ω[µ] = k imply ω[ν]⇓. We
do this by induction on k. If k = 0, then by Lemma 3.34 we have ω[µ]↓. We can assume
without loss of generality that
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µ

ω′
. . .

. . .

=ω[µ]

that is, ω connects some of the free ports of µ between them, and acts as the identity on
all other ports. We shall actually make an even bigger simplification, which, as the reader
may check, will not harm the generality of our arguments: we shall suppose that µ and ν
have only 3 free ports, and that ω′ is therefore just a wire. Now, if the observable path in
ω[µ] does not use ω′, then µ↓, which implies ν⇓ by µ - ν. Additionally, one can show the
following:
Claim 1. In case µ - ν, the presence of a path between the free ports i and j in op∗(µ)
implies the presence of a path between the same ports in op∗(ν).

So we also have ω[ν]⇓, as desired. Now consider the case in which the observable path
in ω[µ] passes through ω′. Then, we must have the following situation:

. . . . . . . . .

µ′

τ ′2 τ ′3
=ω[µ]

(We have assumed that the tree rooted at the free port 1 of µ is a wire. Of course this need
not be the case; however, if it is not a wire, then τ ′2 must be. Therefore, our assumption
causes no loss of generality). By Claim 1, we have

τ1 τ2 τ3

. . .. . .. . .. . .

ν′

→∗ω[ν]

It can be shown that, whatever is the shape of τ1 and τ2, they always reduce to a normal
net ν0:

τ3

. . .. . .. . .. . .

ν′

→∗ω[ν]

ν0

ji
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Now suppose ω[ν]⇑. Then, there can be no observable path between the free ports of ν0

marked by i and j in the above picture. Consider then the test

τ2

ε

ε
. . .

1 2 3

=θ

where the leaves of τ2 are all connected to ε cells except the one which, when τ2 interacts
with τ1, becomes the free port j in ν0. It is easy to see that, by what observed above, we
would obtain θ[µ]↓ while θ[ν]⇑, contradicting the hypothesis that µ - ν. Therefore, ω[ν]
must be observable.

We now turn to the case k > 0. By Lemma 3.35, we can always find a net µ0 such
that ω[µ]→ µ0 and ]µ0 < k. If the reduction is performed inside µ, then we actually have
µ0 = ω[µ′] with µ→ µ′. It is not hard to show the following:
Claim 2. µ→∗ o implies o - µ.

Therefore, we have µ′ - µ, which by the hypothesis that µ - ν yields µ′ - ν. But
]ω[µ′] < k, so the induction hypothesis applies, and we have ω[ν]⇓, as desired. Otherwise, a
wire of ω connects two principal ports, and the active pair induced by this connection is the
one reduced to obtain µ0 from ω[µ]. We have two cases, depending on the active pair: two
binary cells with the same or with different symbols. We only check the first case, leaving
the other to the reader. We have

µ′

α α

µ′
ω[µ] = → = ω′[µ′]

We know that ]ω′[µ′] < k, so if we ever find ν ′ such that µ′ - ν ′, by induction hypothesis
we can conclude ω′[ν ′]⇓. Define the test

α α

1 2 3

=θ

By Lemma 3.32, µ - ν implies θ[µ] - θ[ν]. But θ[µ] →∗ µ′, so by Claim 2, we have
µ′ - θ[µ] - θ[ν], and thus by induction hypothesis ω′[θ[ν]]⇓. But ω′[θ[ν]] 'η ω[ν], and by
Proposition 3.14 'η⊆', so ω′[θ[ν]]⇓ iff ω[ν]⇓, and we are done.
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Proposition 3.37. µ - ν implies µ ¹ ν.
Proof. By Lemma 3.4, it is enough to show that, for every principal context C, C[µ]⇓
implies C[ν]⇓. So let C be a principal context, and suppose that C[µ]⇓. By definition (cf.
Fig. 10), we have C[µ] = ω[θ[µ]] for a suitable wiring ω and test θ. Thanks to Lemma 3.32,
we know that µ - ν implies θ[µ] - θ[ν], so by Lemma 3.36 ω[θ[µ]]⇓ implies ω[θ[ν]]⇓. But
ω[θ[ν]] = C[ν], so µ ¹ ν.

4. Full Abstraction

4.1. Edifices. We shall now introduce the main mathematical objects of our paper, namely
edifices. These will be used to develop a denotational semantics for nets, borrowing ideas
from the path semantics of linear logic, i.e., Girard’s Geometry of Interaction as formulated
by Danos and Regnier [DR95]. Although edifices and Böhm trees are technically quite
different, there are strong analogies between the two. Also, the topology used to define
edifices is the same used by Kennaway et al. to define the infinitary λ-calculus [KKSdV97].

In what follows, C = {p,q}N is the set of infinite binary words, ranged over by x, y,
equipped with the Cantor topology. We remind that C is metrizable, with the distance
defined for example by dC(x, y) = 2−k, where k is the length of the longest common prefix
of x, y. We denote by B◦(x, r) the open ball of center x and radius r. The elements of C×C,
which is also a Cantor space, will be denoted by x⊗ y, and ranged over by u, v, w. Below,
the set N of non-negative integers, ranged over by i, j, will be considered equipped with the
discrete topology.

Definition 4.1 (Pillar). Given I ⊆ N, set PI = C × C × I, equipped with the product
topology. A pillar is an element of P = PN. Pillars are denoted by u@ i, and are ranged
over by ξ, υ. The pillar u@ i is said to be based at i.

Observe that P is also metrizable; if ξ = x⊗y@ i and υ = x′⊗y′@ i′, we shall consider
the distance d(ξ, υ) = max{dC(x, y), dC(x′, y′), ddisc(i, i′)}, where ddisc is the discrete metric,
defined as ddisc(i, j) = 0 if i = j, and ddisc(i, j) = 2 if i 6= j. Therefore, to be “close”, two
pillars must be based at the same integer.

Definition 4.2 (Arch). Given I ⊆ N, pose
−→AI = PI × PI , equipped with the product

topology, and set (ξ, υ) ∼ (ξ′, υ′) iff ξ′ = υ and υ′ = ξ, or ξ′ = ξ and υ′ = υ. We then
define AI =

−→AI/ ∼, equipped with the quotient topology. An arch is an element of A = AN.
Arches are denoted by ξ _ υ (which is the same as υ _ ξ), and ranged over by a; sets of
arches are ranged over by E. An arch is said to be based at the unordered pair where its
two pillars are based.

The following helps understanding the topology given to A:

Proposition 4.3. The space A is metrizable; if a = ξ _ υ and a′ = ξ′ _ υ′, the func-
tion D(a, a′) = min{max{d(ξ, ξ′), d(υ, υ′)},max{d(ξ, υ′), d(υ, ξ′)}} is a distance inducing its
topology.
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In other words, to compare two arches, we overlap them in both possible ways, and we
take the way that “fits best”. The distance D is in fact the standard quotient metric; in
this case, it collapses to this simple form.

The space A is not compact. In fact, we can give a characterization of its compact
subsets:

Proposition 4.4. E is compact iff it is a closed subset of AI for some finite I.

Proof. If E is compact, then it must be closed; suppose however that E 6⊆ AI for all finite I.
Then, let ai,j be a sequence of arches spanning all of the i, j where the arches of E are based,
and set Ui,j = E∩B◦(ai,j , 2). These are all open sets in the relative topology, and since, for
all i, j, D(ai,j , a) < 2 iff a is based at i, j, they form an open cover of E. Now observe that,
by the same remark on the distance, if we remove any Um,n we loose all arches of E based
at m,n. But we have supposed the sequence ai,j to be infinite, so Ui,j is an infinite open
cover of E admitting no finite subcover, in contradiction with the compactness of E.

For the converse, I being finite, it is not hard to show that PI is homeomorphic to
C. Therefore, PI is a Cantor space, hence compact. So AI is compact, because it is the
quotient of a product of compact spaces. But a closed subset of a compact space is compact,
hence the result.

It can be shown that each AI is also perfect and totally disconnected, which means that
actually these are all Cantor spaces whenever I is finite. What really matters to us though is
compactness, which implies completeness (with respect to the metric D of Proposition 4.3):
when I is finite, there is identity between closed, compact, and complete subsets of AI .

Definition 4.5 (Edifice). An edifice is a compact set of arches.

4.2. Nets as edifices. The basic idea to assign an edifice to a net is that arches model
observable paths.4 In fact, we have already seen that an observable path is an unordered
pair of couples (s, i), where s is an address and i a free port. A pillar contains roughly the
same information; the need for infinite words arises from η-expansion (the η0 equation of
Fig. 11), which can be applied indefinitely, as in the pure λ-calculus.

Definition 4.6 (Edifice of an observable path). Let φ = {(s, i), (t, j)} be an observable
path. We define

E(φ) = {sw@ i _ tw@ j ; ∀w ∈ C × C}.
It is not hard to check that the set defined above is indeed an edifice:

Proposition 4.7. Let φ be an observable path. Then, E(φ) is an edifice.

Proof. If φ = {(s, i), (t, j)}, clearly E(φ) ⊆ A{i,j}. Now take an arch a = u@ i′ _ v@ j′

not belonging to E(φ). If i′ 6= i or j′ 6= j, then obviously B◦(a, 1) is all outside of E(φ).
Otherwise, either s is not a prefix of u, or t is not a prefix of v; suppose we are in the first
situation, and let k be the length of the longest common prefix between u and s. Then, it
is easy to see that B◦(a, 2−(k+1)) is all outside of E(φ). So E(φ) is a closed subset of A{i,j},
and we conclude by Proposition 4.4.

4Graphically (Fig. 12), observable paths look like arches, hence the terminology.
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Observe that E(φ) is not open: given an arch a ∈ E(φ), any open ball centered at a
contains arches which are not of the form sw@ i _ tw@ j, i.e., the word w completing s
and t may not be the same in both pillars.

Definition 4.8 (Edifice of a net). Let µ be a net. The pre-edifice of µ is the set

E0(µ) =
⋃

φ∈op∗(µ)

E(φ).

The edifice of µ is the closure of its pre-edifice: E(µ) = E0(µ).

The soundness of the above definition can be checked as follows: by Proposition 4.7,
all of the E(φ) are subsets of AI for some finite I; arches based outside of I are “too far” to
be adherent to E0(µ), therefore its closure is still in AI . By Proposition 4.4, this is enough
to ensure the compactness of E(µ).

In some cases, the pre-edifice of a net is already an edifice. This is exactly when the net
is βε-normalizable, as we shall now prove. If a is a finite binary word, we denote by |a| its
length. If k ≥ |a|, we denote by Ck(a) the set of words b of length k such that b = ab′ for some
word b′, i.e., all possible “extensions” of a to length k. Let now φ = {(a0⊗b0, i), (c0⊗d0, j)}
be an observable path, and let kφ = max{|a|, |b|, |c|, |d|}. We define the set of centers of φ
as

Ctr(φ) = {ax0 ⊗ bx0 @ i _ cx0 ⊗ dx0 @ j |
a ∈ Ckφ

(a0), b ∈ Ckφ
(b0), c ∈ Ckφ

(c0), d ∈ Ckφ
(d0)},

where x0 is some fixed infinite word. Then we set

O(φ) =
⋃

a∈Ctr(φ)

B◦(a, 2−kφ+1).

The set O(φ) is clearly open; additionally, we have the following easy result:

Lemma 4.9. For every observable path φ, E(φ) ⊆ O(φ).

Lemma 4.10. Let µ be a net, and let φ, φ′ ∈ op(µ), with φ 6= φ′. Then, O(φ) ∩O(φ′) = ∅.
Proof. Let φ = {(s, i), (t, j)}, φ′ = {(s′, i′), (t′, j′)}, and let φ, φ′ ∈ op(µ) for some µ. If
i 6= i′ or j 6= j′, then the result is obvious. Otherwise, observe that we must have s 6= s′ and
t 6= t′, because each leaf of a tree can be involved in at most one observable path. Moreover,
s and t cannot be prefixes of s′ or t′, and vice versa. In fact, if, for example, s were a
prefix of s′, then s would not be the address of a leaf of µ. Now, the sets O(φ),O(φ′) are
built precisely so that, whenever u@ i _ v@ j ∈ E(φ) and u′@ i _ v′@ j ∈ E(φ′), s, t are
prefixes of resp. u, v, and s′, t′ are prefixes of resp. u′, v′; hence, the two sets cannot have
any arch in common.

In particular, the above result shows that the edifices of two distinct observable paths
belonging to the same net are always disjoint.

Proposition 4.11. For all µ, E0(µ) is an edifice iff µ is βε-normalizable.

Proof. The backward implication is a straightforward consequence of Lemma 3.27 (a finite
union of compact sets is compact). Suppose now that µ is not βε-normalizable. Again
thanks to Lemma 3.27, we know that op∗(µ) is infinite. Consider now the family of sets
O(φ) ∩ E0(µ) as φ varies over op∗(µ); by Lemma 4.9, this forms an infinite open cover of
E0(µ). By Lemma 4.10, removing any of these sets causes the family not to cover E0(µ)
anymore; hence, E0(µ) is not compact.
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4.3. The trace. We shall now endow pre-edifices with a trace operation, which closely
corresponds to the execution formula of the Geometry of Interaction [Gir89]. It is also
reminiscent of the notion of play in games semantics.

In the following, we shall use directed arches, i.e., the elements of
−→A , denoted by ξ y υ,

where ξ, υ are pillars. Given a set of arches E, we associate with it a set of directed arches
as follows: −→

E = {ξ y υ, υ y ξ | ξ _ υ ∈ E}.
Definition 4.12 (Feedback, trace sequence). A feedback function σ is a partial involution
on N of finite domain. In other words, σ(i) is defined for finitely many i ∈ N, and in that
case σ2(i) = i. Let σ be a feedback function and E ⊆ −→A . A trace sequence of E along σ is
a sequence (sn)n∈N of directed arches of E such that s0 = u@ i y υ with σ(i) undefined,
and for all n ∈ N, sn = ξ y υ and sn+1 = υ′ y ζ implies υ = u@ i and υ′ = u@σ(i),
or sn+1 = sn if σ(i) is undefined. The length of a trace sequence s, denoted by |s|, is the
smallest ordinal k such that sk = ξ y u@ i with σ(i) undefined. We denote by σ[E] the set
of trace sequences of E along σ of finite length. If s ∈ σ[E] such that |s| = k, we define the
arch generated by s as a(s) = ξ _ ζ, where s0 = ξ y υ and sk = υ′ y ζ.

Observe that, if E is a set of arches, σ a feedback function, and s ∈ σ[
−→
E ] such that

|s| = k, then we also have s′ ∈ σ[
−→
E ], where s′ is the “reverse” sequence of s, i.e., such that,

for n ≤ k, s′n = υ y ξ iff sk−n = ξ y υ, and, for k > n, s′n = s0. Note also that a(s′) = a(s).

Definition 4.13 (Trace). Let E be a set of arches, and σ a feedback function. We define
the trace of E along σ as

Trσ(E) = {a(s) | s ∈ σ[
−→
E ]}.

Let µ be a net. A feedback context for µ is a wiring connecting some of the free ports of
µ between them. Note that if µ has n free ports and σ is a feedback function whose domain
is included in {1, . . . , n}, then σ defines a feedback context for µ: it is the one connecting
the free port i to the free port σ(i), or leaving it free if σ(i) is undefined. Conversely, each
feedback context for a net with n free ports defines a feedback function of domain included
in {1, . . . , n}. Hence, we shall use σ to range over both feedback functions and feedback
contexts, and make confusion between the two, speaking more generally of a “feedback” σ
for a net µ.

The aim of the rest of the section is to prove the following:

Proposition 4.14. Let µ be a net, and σ a feedback for µ. Then, E0(σ[µ]) = Trσ(E0(µ)).

We shall prove each inclusion separately, starting from the backward one.

Lemma 4.15. Trσ(E0(µ)) ⊆ E0(σ[µ]).

Proof. Let s ∈ σ[
−−−→
E0(µ)]. The directed arches appearing in s come from arches of E0(µ),

which in turn come from observable paths of op∗(µ). We say that an observable path
φ ∈ op∗(µ) is used by s iff, for some n, sn ∈

−−→
E(φ). Since s is finite, only finitely many

observable paths are used by it. Hence, by Proposition 2.10, we can take a net µ′ such that
µ →∗ µ′ and, whenever φ is used by s, φ ∈ op(µ′). Now s induces a sequence φ0, . . . , φk−1

of observable paths of µ′, where k = |s|; note that the sequence may contain the same path
multiple times. The concatenation of φ0, . . . , φk−1 is a maximal path of σ[µ′]: in fact, by
definition of trace sequence, φ0 and φk−1 both have one extremity which is a free port of
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σ[µ′], while, for all 0 ≤ n ≤ k−2, one extremity of φn is connected by the feedback σ to one
extremity of φn+1. We call this maximal path φ, and we shall prove that a(s) ∈ E0(σ[µ])
by induction on w(φ) (i.e., the weight of φ, cf. Definition 2.6, Sect. 2.1).

Suppose first that w(φ) = 0. In that case, φ crosses no active pair, so it is an observable
path of µ′, and hence of op∗(µ). The situation can be schematically depicted as follows:

φ0 φ1 φk−1

︸ ︷︷ ︸
σ

i jk−1

Let φ0 = {(s, i), (t0, j0)} and, for all n ≥ 1, φn = {(1, in), (tn, jn)}, with σ(jn) = in+1 for all
n ≥ 0. Then, since s is a trace sequence, s0 must be of the form sw@ iy t0w@ j0, s1 must
be of the form t0w@ i1 y t1t0w@ j1, s2 must be of the form t1t0w@ i2 y t2t1t0w@ j2, and
so on until sk−1, which must be of the form

tk−2 · · · t0w@ ik−1 y tk−1 · · · t0w@ jk−1.

Therefore, we have a(s) = sw@ i _ tk−1 · · · t0w@ jk−1. Now φ is precisely the observable
path {(s, i), (tk−1 · · · t0, jk−1)}, so a(s) ∈ E0(µ).

We go on to the inductive case, and suppose w(φ) > 0. By definition, we have the
following subnet in µ′:

φn+1

α β

φn

in jn+1

where φn, φn+1 are two consecutive paths in the sequence induced by s. We made a con-
venient graphical assumption about the structure of φn and φn+1, i.e., they both use the
“left” auxiliary port of the cells involved in the active pair; we invite the reader to check
that our arguments apply for any other choice of the structure of φn, φn+1. Also, although
the picture may suggest so, in and jn+1, which are free ports of µ′, need not be free in
σ[µ′]. We shall assume that α 6= β, the case α = β being perfectly analogous and left to the
reader. So, by taking the paths φn, φn+1 as they are in the above picture, we must have

sn = u@ in y px⊗ py@ jn

sn+1 = px⊗ py@ in+1 y v@ jn+1,

with σ(jn) = in+1 and for some u, v ∈ C × C, x, y ∈ C. After reducing the active pair, we
obtain a net µ1 containing the subnet
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in

ββαα

φ′n+1

jn+1

φ′

φ′n

Observe that µ1 is of the form σ1[µ′′] for a suitable net µ′′ and feedback σ1. The residue φ′
of φ in µ1 is formed by composing the same paths as φ, except for φn and φn+1, which are
now replaced by φ′n, φ′′, φ′n+1, where φ′′ is a new observable path of µ′′ shown in the picture

as the only solid line. Therefore, we have s′ ∈ σ1[
−−−−→
E0(µ′′)], where s′m = sm for m < n and

m > n+ 2, and

s′n = u@ in y x⊗ py@ jn

s′n+1 = x⊗ py@ i′ y px⊗ y@ j′

s′n+2 = px⊗ y@ in+1 y v@ jn+1

where i′, j′ are two new free ports of µ′′ such that σ1(jn) = i′ and σ1(j′) = in+1, and we
have supposed α = ζ and β = δ. Now, clearly a(s′) = a(s), and since, by Lemma 2.7,
w(φ′) < w(φ), by induction hypothesis we have a(s) ∈ E0(σ1[µ′′]) = E0(µ1) = E0(µ), and
we are done.

Lemma 4.16. E0(σ[µ]) ⊆ Trσ(E0(µ)).

Proof. Let ν = σ[µ], and let a ∈ E0(ν). This means that ν →∗ ν ′ such that φ ∈ op(ν ′) and
a ∈ E(φ). We shall do the proof by induction on the length of the reduction sequence going
from ν to ν ′. If this is zero, then φ ∈ op(ν), which actually implies φ ∈ op(µ). Then we
clearly have a ∈ Trσ(E0(µ)), because φ connects two ports of µ which are outside of the
domain of σ, and, if −→a is any directed version of a, the constant sequence sn = −→a for all n
is a trace sequence of σ[

−−−→
E0(µ)]. Suppose now that ν → ν1 →∗ ν ′. If ν1 = σ[µ1] with µ→ µ1,

then by induction hypothesis a ∈ Trσ(E0(µ1)); but E0(µ1) = E0(µ), so we are done. We
may then assume than the active pair reduced in going from ν to ν1 is not present in µ,
and is created by σ. This time we analyze the case of an annihilation step, leaving to the
reader the case of a commutation step, which is perfectly similar. We have

µ1

. . .

. . . σ0

σ1

α α

µ1

. . . σ0

=ν

σ

. . .
=→ ν1

Of course we have E0(ν1) = E0(ν), so a ∈ E0(ν1). Then, by applying the induction hypoth-
esis we get a ∈ Trσ1(µ1), which means that there exists s ∈ σ1[

−−−−→
E0(µ1)] such that a(s) = a.

The reduction step leading from ν to ν1 is necessary to the appearance of the observable
path generating a, otherwise we would not have included it in the reduction sequence; hence,
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s uses at least one of the two connections created by the reduction step. In other words, we
have, for some n ∈ N,

sn = ξ y x⊗ y@ j

sn+1 = x⊗ y@ j′ y ζ,

with σ1(j) = j′, and j, j′ are two free ports of µ1 which are both “left” or “right” auxiliary
ports of the α cells forming the active pair in ν. Then, supposing we have α = δ, and
supposing j, j′ are “left” auxiliary ports, we can build a trace sequence s′ as follows: s′m = sm

for all m in which s does not use the connection created by reducing the active pair; and

s′n = ξ y px⊗ y@ j0

s′n+1 = px⊗ y@ j′0 y ζ

where s uses such connection; j0, j′0 are the free ports of µ which are the principal ports of
the two α cells involved in the active pair. It is not hard to see that s′ ∈ σ[

−−−→
E0(µ)], and that

a(s′) = a(s) = a. Hence, a ∈ Trσ(E0(µ)), as desired.

4.4. Characterizing total equivalence. The following result, combined with Proposi-
tion 3.28, states that the pre-edifice (and, consequently, the edifice) of a net models 'βεη.

Proposition 4.17. For all nets µ, ν, µ ∼= ν implies E0(µ) = E0(ν).

Proof. Suppose that E0(µ) 6= E0(ν), and let a ∈ E0(µ) \ E0(ν) (we are supposing w.l.o.g.
that E0(µ) is not contained in E0(ν)). We then have

µ′

τ1 τ2

. . . . . .

. . .
→∗µ

ji

where the observable path shown generates a, whereas, by Corollary 1.13,

ν′

τ1 τ2

. . . . . .

. . .
'ην

i j

and no reduct of ν ′ develops a connection between the ports i, j generating a. Now consider
the test

ε ε

ε ε ε ε

τ1 τ2

i j

. . . . . .

. . .

=θ
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Now θ[µ] ε-reduces to a wire, so θ[µ] W . On the contrary, θ[ν] reduces to a net with 2 free
ports which cannot be βη-equivalent to a wire, otherwise we would have a ∈ E0(ν). We
have two possibilities: either θ[ν] is βε-normalizable, or it is not. In the latter case, by
Lemma 3.27, we have θ[ν] V , so we are done. In the former case, we take the βε-normal
forms of θ[µ] and θ[ν], which are cut-free by Proposition 3.19, and conclude by applying
the Separation Theorem 1.11.

Corollary 4.18. For all nets µ, ν, µ 'βεη ν implies µ ∼= ν, and hence µ ' ν.
The interpretation of nets as pre-edifices is a denotational semantics in the sense that

it models βεη-equivalence, and it induces a congruence, as shown by the following:

Lemma 4.19. Let µ, ν be two nets such that E0(µ) = E0(ν). Then, for every context C,
E0(C[µ]) = E0(C[ν]).

Proof. Observe that applying a context C to net µ with n free ports can be done in two
steps: first, we juxtapose C and µ, forming the net which we denote by C •µ. We stipulate
that, in C • µ, the free ports of µ are labelled by 1, . . . , n, whereas the free ports of C are
“shifted” by n, i.e., they are labelled starting from n+ 1. Then, we consider the feedback
σ such that σ(i) = i + n for i ∈ {1, . . . , n}, σ(i) = i − n for i ∈ {n + 1, . . . , 2n}, and σ
is undefined everywhere else. We clearly obtain σ[C • µ] = C[µ]. Note furthermore that
E0(C • µ) = E0(C) ∪ E0(µ), since the two nets are disjoint and do not share free ports by
our assumption. The result is then an easy corollary of Proposition 4.14:

E0(C[µ]) = E0(σ[C • µ]) = Trσ(E0(C • µ)) =
= Trσ(E0(C) ∪ E0(µ)) = Trσ(E0(C) ∪ E0(ν)) =
= Trσ(E0(C • ν)) = E0(σ[C • µ]) = E0(C[ν]).

We now have our first full abstraction result:

Theorem 4.20 (Full abstraction for ∼=). For all nets µ, ν, µ ∼= ν iff E0(µ) = E0(ν).

Proof. The forward implication is Proposition 4.17. For what concerns the converse, suppose
µ 6∼= ν. Then, there exists a context C such that, for example, C[µ] W and C[ν] V . By
Proposition 4.11, E0(C[µ]) is a non-empty edifice; on the contrary, E0(C[ν]) is either empty
or, still by Proposition 4.11, it is not an edifice. In both cases, E0(C[µ]) 6= E0(C[ν]), which
by Lemma 4.19 implies E0(µ) 6= E0(ν).

4.5. Characterizing observational equivalence. In the case of observational equiva-
lence, compactness (and hence completeness) becomes essential for yielding a fully-abstract
denotational semantics. It is crucial in the proof of the following result:

Lemma 4.21. Let µ, ν be two nets with n free ports. Then, E(µ) 6= E(ν) implies that there
exist i, j ∈ {1, . . . , n}, two pairs of finite words s, t, and two observable paths φ ∈ op∗(µ)
and ψ ∈ op∗(ν) such that, if we put aw = sw@ i _ tw@ j, either for all w, we have
aw ∈ E(φ) \ E(ν), or for all w, we have aw ∈ E(ψ) \ E(µ).

Proof. Suppose, without loss of generality, that there exists a ∈ E(µ) \ E(ν), based at
i, j ∈ {1, . . . , n}. Remember that E(µ) and E(ν) are defined as the closures of resp. E0(µ)
and E0(ν), and that by Proposition 4.4 they are both compact, hence complete. Then, if
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a ∈ E(µ) \ E0(µ), a must be a “missing limit” of a Cauchy sequence an ∈ E0(µ). Since a
subsequence of a Cauchy sequence is still a Cauchy sequence, there must exists an integer m
such that, for all n ≥ m, an ∈ E0(µ) \ E(ν), otherwise a would belong to E(ν) because of its
completeness. Therefore, modulo replacing it by one of these an, we can always assume that
a ∈ E0(µ) \ E(ν). If it is so, then by definition there exists an observable path φ ∈ op∗(µ)
such that a ∈ E(φ), which means that a = sw0 @ i _ tw0 @ j and, for every w ∈ C × C,
sw@ i _ tw@ j ∈ E(φ), where s and t are the addresses of two leaves in the reduct(s) of µ
in which φ appears. Now let s′1, . . . , s

′
n, . . . be a sequence of prefixes of increasing length of

w0, and set, for all n, sn = ss′n and tn = ts′n. Suppose that, for all n, there exist two pairs
of infinite words un, vn such that an = snun @ i _ tnvn @ j ∈ E(ν); it is not hard to verify
that the arches an would form a Cauchy sequence of limit a, and thus, by the completeness
of E(ν), we would obtain a ∈ E(ν), a contradiction. Therefore, there must exist an integer
n such that, for all w, snw@ i _ tnw@ j ∈ E(φ) \ E(ν).

We now prove that E(·) induces a congruence with respect to tests:

Lemma 4.22.
(1) Let τ be a tree, and let

µ0

τ

. . .

. . .

ν0

τ

. . .

. . .

=µ =ν

Then, E(µ) = E(ν) iff E(µ0) = E(ν0).
(2) Let µ, ν be two nets with the same interface such that E(µ) = E(ν), and let τ be a

tree without ε cells. Then, if we pose

τ
. . . . . .

µ

=µ′

τ
. . . . . .

ν

=ν′

we have E(µ′) = E(ν ′).
(3) Let µ, ν be two nets with the same interface such that E(µ) = E(ν), and let

. . .

µ

=µ′

. . .

ν

=ν′

ε ε

Then, E(µ′) = E(ν ′).

Proof.
(1) Easy.
(2) Simply consider the nets µ′′, ν ′′ obtained from µ′, ν ′ by adding a copy of τ to the one

already existing in the two nets, so that each leaf l in one copy is connected to the
same leaf l in the other copy. By Lemma 1.12, we have that µ′′ 'η µ and ν ′′ 'η ν;
by point 1, we have E(µ′) = E(ν ′) iff E(µ′′) = E(ν ′′); but by Corollary 4.18, and by
hypothesis, E(µ′′) = E(µ) = E(ν) = E(ν ′′).
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(3) Call k the free port of µ to which the ε cell is connected in µ′. Observe that such ε cell
can either disappear, or be duplicated, and that, in any case, ε cells cannot be used
by observable paths. Hence, φ ∈ op∗(µ′) iff φ ∈ op∗(µ) and φ connects two free ports
of µ both different than k. Therefore, E(µ′) = {u@ i _ u@ j ∈ E(µ) ; j, k 6= i}.
The same holds for ν, so from E(µ) = E(ν) it easily follows that E(µ′) = E(ν ′).

Corollary 4.23. Let µ, ν be two nets with the same interface, and let θ be a test. Then,
E(µ) = E(ν) implies E(θ[µ]) = E(θ[ν]).

To prove full abstraction for ', we first need the following separation result:

Lemma 4.24. Let W be a net with two free ports connected by a wire, and let µ be a net
with two free ports, such that φ ∈ op∗(µ) implies that φ does not connect the port 1 to the
port 2. Then, there exists a test θ such that θ[W ]⇓ and θ[µ]⇑.
Proof. If µ⇑, the identity test suffices, so suppose µ⇓. By hypothesis, all observable paths
appearing in the reducts of µ connect one of the free ports to itself. Therefore, there exists
µ′ such that µ→∗ µ′, and

=µ′
. . .

µ′′

τ

In the above picture, we have supposed that the observable path connects the free port 1 to
itself, and that the leaves connected in the path are the two “leftmost” leaves of τ . These
are just graphically convenient assumptions, causing no loss of generality: the observable
path may as well connect port 2 to itself, and the leaves connected may be any two leaves
of τ . Now, if we define

=θ

ε ε

. . .

ε ε

. . .

ε

τ τ

ε

we have that, thanks to Lemma 1.4, θ[W ] →∗ W , while θ[µ] reduces to a net whose free
port 1 is connected to an ε cell. If this net is blind, we are done; otherwise, there is a reduct
of θ[µ] containing an observable path between the free port 2 and itself. This observable
path can be “eliminated” with the same technique, while the ε cell on port 1 will “eat” any
tree fed to it, so in the end we obtain a test θ′ such that θ′[W ] →∗ W ↓, while θ′[µ]⇑, as
desired.

We are now ready to prove our second full abstraction theorem:

Theorem 4.25 (Full abstraction for '). For all nets µ, ν, µ ' ν iff E(µ) = E(ν).

Proof. Consider first the backward implication (also known as the adequacy property). We
start by observing that, for any net o, o⇓ iff op∗(o) 6= ∅ iff E(o) 6= ∅. Now, suppose
E(µ) = E(ν), and let θ be a test. By Corollary 4.23, we have E(θ[µ]) = E(θ[ν]), so following



EDIFICES AND FULL ABSTRACTION FOR THE SYMMETRIC INTERACTION COMBINATORS 41

the above remark θ[µ]⇓ iff E(θ[µ]) 6= ∅ iff E(θ[ν]) 6= ∅ iff θ[ν]⇓. Then µ ' ν follows from the
Context Lemma 3.29.

Now we turn to the actual full abstraction property. For this, we consider the con-
trapositive statement, and assume E(µ) 6= E(ν). Let I be the interface of µ and ν. By
Lemma 4.21, we know that there exist i, j ∈ I, φ ∈ op∗(µ), and two leaves in a reduct of
µ of addresses s, t such that, for all w, sw@ i _ tw@ j ∈ E(φ) \ E(ν) (it could actually be
that these arches belong to E(ψ) \ E(µ), where ψ ∈ op∗(ν), but obviously our assumption
causes no loss of generality). We shall suppose i 6= j; the reader is invited to check that
the argument can be adapted to the case i = j. By Definition 4.6, and by the fact that
φ ∈ op∗(µ), we have

. . . . . . . . . . . .
s t

τi τj

i j

→∗µ

. . .

µ′

where we have explicitly drawn the connection between the two leaves of resp. addresses s
and t. On the other hand, by Corollary 1.13, we have

. . . . . . . . . . . .
k l

τi τj

i j

'ην

. . .

ν′

where we have called k and l the two free ports of ν ′ corresponding resp. to the addresses
t and s in τi and τj . Observe that, by Corollary 4.18, the edifice of the net on the right is
still E(ν). Now if, in any reduct of ν ′, there appeared an observable path between k and l,
then we would contradict the fact that, for all w, sw@ i _ tw@ j 6∈ E(ν). Therefore, no
observable path ever appears between k and l in any reduct of ν ′.

Consider then the test
i j

. . .

. . . . . . . . . . . .

ε ε ε ε ε ε

s t

=θ τi τj

where we have left free only the leaves corresponding to the addresses s and t of τi and τj .
Now, by Lemma 1.4, θ[µ] →∗ W , where W is a wire plus a net with no interface; on the
other hand, we have
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ι

δ δ

ι →∗

Figure 13: A non-βε-normalizable net observationally equivalent to a wire.

ε ε ε ε ε ε

lk

ν′

'βη
. . . . . . . . . . . . . . .θ[ν]

But ν ′ never develops observable paths between k and l, so Lemma 4.24 applies, and we
obtain µ 6' ν.

4.6. Examples. As an immediate application of Theorem 4.25, we give an example of a
net which is not βε-normalizable, and yet is observationally equivalent to a wire. This is
analogous to Wadsworth’s “infinitely η-expanding” term J = RR, where R = λxzy.z(xxy),
which is well known to be hnf-equivalent to λz.z. It is an example proving that the inclusion
∼= ⊆ ' is strict, as anticipated right after Definition 3.2.

Consider a net ι containing no observable paths, and reducing as in Fig. 13. Such a net
exists by what we have shown in Sect. 1.3. We see that φ ∈ op∗(ι) iff

E(φ) = {qnpx⊗ y@1 _ qnpx⊗ y@2 ; ∀x, y ∈ C}
for some non-negative integer n. On the other hand, if W denotes a wire,

E(W ) = E0(W ) = {u@1 _ u@2 ; ∀u ∈ C × C}.
Now, if q∞ denotes an infinite sequence of q’s, all arches of the form

ay = q∞ ⊗ y@1 _ q∞ ⊗ y@2

are missing from E0(ι), hence E0(ι)  E0(W ). But these arches are all adherent to E0(ι): in
fact, it is very easy to construct a Cauchy sequence in E0(ι) of limit ay, for any y. Therefore,
E(ι) = E(W ), and ι ' W . On the other hand, ι 6∼= W , and we do not need Theorem 4.20
to prove that: in fact, the identity is a context discriminating between the two nets.

Note that the reducts of ι are “almost” η-equivalent to a wire: there is just one missing
connection. We can say that this connection forms “in the limit”, when the reduction is
carried on forever. When one interprets nets as edifices, this informal remark becomes a
precise topological fact, i.e., we have a true limit.

One my wonder whether the converse of Proposition 3.28 holds, i.e., whether total
equivalence reduces to βεη-equivalence. This would be close in spirit to what happens in the
λ-calculus: nf-equivalence, which we said is akin to total equivalence, exactly corresponds to
βηΩ-equivalence, which is morally analogous to our βεη-equivalence. However, such analogy
fails: the two nets given in Fig. 14 give an interesting example of this. They can be built by
slightly twisting the constructions given in Sect. 1.3. It is not hard to show that µ1 6'βεη µ2;
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→∗µ2

δ

δ

→∗µ1

µ2

δ

µ1

δ

Figure 14: Nets showing that µ ∼= ν does not imply µ 'βεη ν.

in some sense, the two nets endlessly “chase” each other in their reduction, never managing
to meet. And yet, it is evident that they generate exactly the same observable paths, i.e.,
op∗(µ1) = op∗(µ2). Therefore, E0(µ1) = E0(µ2), and µ1

∼= µ2 by Theorem 4.20.
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