Errata Corrige for
 "Non-Linearity as the Metric Completion of Linearity"

Damiano Mazza
CNRS, UMR 7030 LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

October 25, 2013

The Metric d Does Not Yield the Uniformity $\mathcal{F B}$

The paper [Maz13] mentioned in the title contains a false claim: the metric d introduced at the beginning of Sect. 3 does not induce the uniformity of uniform convergence on finitely branching trees (call it $\mathcal{F B}$). The rest of the paper should be read with this latter uniform structure in mind, disregarding the metric d. For instance, when the paper invokes the completion of the metric space $\left(\Lambda_{\mathrm{p}}, d\right)$, one should consider the completion of the uniform space $\left(\Lambda_{\mathrm{p}}, \mathcal{F B}\right)$.

The metric d alone does not yield the desired results because the completion of ($\left.\Lambda_{\mathrm{p}}, d\right)$ introduces terms which, as trees, are not well-founded. As an example, take any finite term u and consider the sequence obtained by setting, for $n \in \mathbb{N}$,

$$
\begin{aligned}
t_{0} & :=u\langle \rangle, \\
t_{n+1} & :=u\langle\overbrace{t_{n}, \ldots, t_{n}}^{n+1}\rangle .
\end{aligned}
$$

A straightforward induction on n shows that, for all $p>0, d\left(t_{n}, t_{n+p}\right)=2^{-n-1}$, so the sequence is Cauchy. But this sequence tends to the non-well-founded infinitary term T verifying the equation

$$
T=u\langle T, T, T, \ldots\rangle
$$

In fact, the metric d is similar to the 001-metric of [KKSdV97]. If one considers the quotient of the completion of $\left(\Lambda_{\mathrm{p}}, d\right)$ with respect to the partial equivalence relation introduced later in [Maz13] (Definition 1), one obtains exactly the infinitary λ-calculus Λ^{001} of [KKSdV97], whose normal forms correspond to Böhm trees.

The metric d is already used in my first paper on the infinitary affine λ-calculus [Maz12], in combination with the "height pseudometric" ρ which is defined by setting $\rho\left(t, t^{\prime}\right)=1$ if t, t^{\prime} have different height and $\rho\left(t, t^{\prime}\right)=0$ otherwise. Indeed, the paper [Maz12] uses the metric $\max (d, \rho)$, which eliminates non-well-foundedness "drastically", because Cauchy sequences w.r.t. that metric necessarily consist of terms which have ultimately the same height, so the completion of $\left(\Lambda_{\mathrm{p}}, \max (d, \rho)\right)$ only contains terms of finite height (but whose width
may be infinite). However, as observed in the errata corrige of that paper (available on my web page), β-reduction in the space $\left(\Lambda_{\mathrm{p}}, \max (d, \rho)\right)$ does not have the property of being Cauchy-continuous. Although this does not compromise the key result motivating my work (the isomorphism theorem, i.e., that the full λ-calculus may be seen as a quotient of the completion of the affine λ-calculus, according to a certain metric), Cauchy-continuity of β-reduction seems to be a natural property to ask. This is what pushed me to find an alternative metric according to which β-reduction is Cauchy-continuous and the isomorphism theorem still holds. The uniformity $\mathcal{F B}$, although not a metric, is a solution to this problem and I mistakenly thought that the metric d alone (without being "maxed" with ρ) induced precisely $\mathcal{F B}$.

The Uniformity $\mathcal{F B}$ is not Metrizable

It is interesting to observe that the mismatch between the metric d and the uniformity $\mathcal{F B}$ is essential, because it turns out that the latter is not metrizable. Embarrassingly enough, this goes against the very title of the paper: according to the given definitions, non-linearity is the Hausdorff completion (in the sense of uniform spaces) of linearity, not the metric completion. Of course, the paper [Maz12] shows that there exists a metric according to which the title of the paper is correct (the metric max (d, ρ) discussed above), but it seems that this is incompatible with β-reduction being topologically well-behaved.

That $\mathcal{F B}$ is not metrizable may be seen by showing that its topology is not first-countable. First-countability actually fails in a strong way: no term admits a countable basis of neighborhoods. We remind that an open basis for the topology induced by $\mathcal{F B}$ is defined by the sets of the form

$$
V_{A}(t):=\left\{t^{\prime} \mid \forall a \in A, t^{\prime}(a)=t(a)\right\},
$$

where t is an arbitrary term and $A \in \mathrm{FBT}$. In particular, the family $\left(V_{A}(t)\right)_{A \in \mathrm{FBT}}$ is a neighborhood basis of t (uncountable, of course).

Let t be a term and let $\left(U_{i}\right)_{i \in \mathbb{N}}$ be a countable family of open neighborhoods of t. We will show that there exists an open neighborhood V of t that is not generated by the family, i.e., such that $U_{i} \nsubseteq V$ for all $i \in \mathbb{N}$.

We start by observing that, by virtue of $\left(V_{A}(t)\right)_{A \in \mathrm{FBT}}$ being a neighborhood basis of t, we have a family $\left(B_{i}\right)_{i \in \mathbb{N}}$ of finitely branching trees such that $V_{B_{i}}(t) \subseteq$ U_{i} for all $i \in \mathbb{N}$. Since each B_{i} is finitely branching, there certainly exists $m_{i} \in \mathbb{N}$ such that, for all $a \in B_{i}$ and $j \in \mathbb{N},|a|=i$ and $j \geq m_{i}$ imply $a \cdot j \notin B_{i}$ (we denote by $|a|$ the length of the sequence a and by $a \cdot j$ the sequence obtained by adjoining j to a). In other words, m_{i} strictly bounds the "maximum branching index" of the immediate descendants of B_{i} at level i (the root being at level 0). We define $B \in$ FBT to be such that each node at level i has exactly $m_{i}+1$ immediate descendants (indexed by $0, \ldots, m_{i}$).

Now, it is not hard to define a sequence of terms $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that, for all $i \in \mathbb{N}$:

- $t_{i}(b)=t(b)$ for all $b \in B_{i}$;
- there exists $a \in \mathbb{N}^{*}$ such that $|a|=i$ and $t_{i}\left(a \cdot m_{i}\right) \neq t\left(a \cdot m_{i}\right)$.

In other words, t_{i} and t coincide on B_{i} but differ on a position which is the immediate successor of a node of level i of branching index m_{i}.

By construction, $V_{B}(t)$ is the open neighborhood V we were seeking: it is an open neighborhood of t and yet, by definition, for all $i \in \mathbb{N}$ we have $U_{i} \nsubseteq V_{B}(t)$, because $t_{i} \in V_{B_{i}}(t) \backslash V_{B}(t)$.

References

[KKSdV97] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda calculus. Theoretical Computer Science., 175(1):93-125, 1997.
[Maz12] Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In N. Dershowitz, editor, Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2012), pages 471-480. IEEE Computer Society, 2012.
[Maz13] Damiano Mazza. Non-linearity as the metric completion of linearity. In Masahito Hasegawa, editor, Proceedings of TLCA, volume 7941 of Lecture Notes in Computer Science, pages 3-14. Springer, 2013.

