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Abstract

We give a new characterization of elementary and deterministic polynomial time
computation in linear logic through the proofs-as-programs correspondence. Gi-
rard’s seminal results, concerning elementary and light linear logic, achieve this
characterization by enforcing a stratification principle on proofs, using the no-
tion of depth in proof nets. Here, we propose a more general form of stratifica-
tion, based on inducing levels in proof nets by means of indexes, which allows
us to extend Girard’s systems while keeping the same complexity properties.
In particular, it turns out that Girard’s systems may be recovered by forcing
depth and level to coincide. A consequence of the higher flexibility of levels with
respect to depth is the absence of boxes for handling the paragraph modality.
We use this fact to propose a variant of our polytime system in which the para-
graph modality is only allowed on atoms, and which may thus serve as a basis for
developing lambda-calculus type assignment systems with more efficient typing
algorithms than existing ones.

Key words: Implicit computational complexity, light linear logics, type
systems for polynomial time.

Introduction

Linear logic and implicit computational complexity. The intersection between
logic and implicit computational complexity is at least twofold, as there are at
least two alternative views on logic itself: a first possibility is to see it as a de-
scriptive language, i.e., as a language for expressing properties of mathematical
objects; a second possibility is to see it, via the Curry-Howard isomorphism, as
a programming language, i.e., a tool for computing functions. These two views
closely correspond to two fundamental branches of mathematical logic: model
theory, and proof theory, respectively. The first approach has been taken quite
successfully by what is known as descriptive computational complexity. The idea
of exploring the second approach is more recent: the first results of this kind
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can be found in Leivant (1994), Leivant and Marion (1993), and in the work of
Girard et al. (1992), to which the present work is more closely related.

As mentioned above, the use of logic as a programming language capturing
certain complexity classes passes through the Curry-Howard isomorphism: a
proof is a program, whose execution is given by cut-elimination; therefore, the
idea is to define a logical system whose cut-elimination procedure has a bounded
complexity, so that the algorithms programmable in this logical system intrin-
sically have that complexity, i.e., the system is sound w.r.t. a complexity class.

Due to its “resource awareness”, linear logic (Girard, 1987) is the ideal set-
ting to attempt this. In fact, linear logic brings to light the logical primitives
which are responsible for the complexity of cut-elimination, under the form
of modalities, called exponential. These are in control of duplication during
the cut-elimination process; by restraining the rules for these modalities, one
achieves the desired goal. Of course one has to make sure that the resulting
system is also complete, i.e., that all functions of the given complexity can be
programmed in it. This methodology has been successfully followed to charac-
terize complexity classes like deterministic polynomial time (Girard et al., 1992;
Girard, 1998; Asperti and Roversi, 2002; Lafont, 2004), elementary time (Gi-
rard, 1998; Danos and Joinet, 2003), deterministic logarithmic space (Schöpp,
2007), and, very recently, polynomial space (Gaboardi et al., 2008).

Stratification. In this work we focus on Girard’s (1998) elementary linear logic
(ELL) and light linear logic (LLL), corresponding to elementary time and de-
terministic polynomial time, respectively.

The complexity bound on the cut-elimination procedure of these systems
relies on a principle called stratification, which is also at the base of other ap-
proaches to implicit computational complexity, both related to logic and not.

Stratification can be interpreted in at least three informal ways. The first,
which is where Girard (1998) originally drew inspiration from, comes from a
sharp analysis of Russel’s paradox in naive set theory (Curry and Feys, 1958),
and was first considered by Leivant (1994). Unrestricted comprehension can be
obtained as a theorem in first order classical logic plus the following two rules:

⊢ Γ, A[t/x]

⊢ Γ, t ∈ {x | A}

⊢ Γ,¬A[t/x]

⊢ Γ, t 6∈ {x | A}

where {x | A} is the standard set-builder notation for the set containing all
and only the elements satisfying the formula A. Russel’s antinomy is obtained
by considering the term r = {x | x 6∈ x}, from which we build the formula
R = r ∈ r. One can see that R is a fixpoint of negation, i.e., R is provably
equivalent to ¬R. In fact, one can obtain ⊢ Γ, R from ⊢ Γ,¬R by applying
the rule above on the left, and ⊢ Γ,¬R from ⊢ Γ, R by applying the rule above
on the right. The empty sequent, i.e., a contradiction, can then be derived as
follows:
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⊢ ¬R, R

⊢ ¬R,¬R

⊢ ¬R

⊢ ¬R, R

⊢ R, R

⊢ R
⊢

Remark that contraction is necessary: in multiplicative linear logic, where con-
traction is forbidden, the empty sequent cannot be derived even in presence of
the self-contradicting formula R (this was first observed by Grishin (1982)).

Another setting in which stratification can be applied is the λ-calculus, where
Russel’s paradox corresponds to the diverging term Ω. The fundamental con-
struct behind this term is self-application, which, from the logical point of view,
also needs contraction.

A third intuition comes from recursion theory, where more and more com-
plex functions can be obtained by diagonalization. For instance, if Pm(n) is a
sequence of polynomial functions of degree m in n (for example, Pm(n) = nm),
the function Pn(n) is super-exponential, i.e., elementary; if θm(n) is a sequence
of elementary functions in n whose complexity rises with m (for example,
θm(n) = 2n

m, i.e., a tower of exponentials of height m in n), then θn(n) is
hyper-exponential, i.e., non-elementary.

In all of these incarnations, stratification can be seen as a way of forbidding
the identification of two variables, or the contraction of two formulas, because
they belong to two morally different “levels”: the occurrence of R coming from
the axiom and that coming from the application of the ∈-rule in the derivation
of Russel’s paradox; the occurrence of x in function position and that in argu-
ment position in the self application λx.xx; the index of the sequence and the
argument of the members of the sequence in the diagonalization examples.

Note that stratification is reminiscent of the notion of ramification, or its
variants like safe recursion, used for restricting primitive recursion in implicit
computational complexity (Bellantoni and Cook, 1992; Leivant and Marion,
1993). The relation between safe recursion and light linear logic was investigated
in Murawski and Ong (2004), while a study on diagonalization and complexity
was recently carried out by Marion (2007).

Proof nets, boxes, and stratification. The bound on the cut-elimination proce-
dure for ELL and LLL is proved using proof nets, a graphical representation
of proofs (Girard, 1996). These are a crucial tool for applying linear logic to
implicit computational complexity: they allow a fine-grained analysis of cut-
elimination, the definition of adequate measures and invariants, and the intro-
duction of adapted reduction strategies. In particular, the fundamental strat-
ification property of ELL and LLL is defined and enforced through boxes, a
construct in the syntax of proof nets corresponding to the rules for exponen-
tial modalities. Boxes have been around since the introduction of proof nets
(Girard, 1987) and can be understood intuitively in two ways:

(i) logically: they correspond to sequentiality information;

(ii) operationally: they mark subgraphs (i.e., subproofs) that can be duplicated.
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Boxes can be nested; as a consequence, a node in a proof net (corresponding
to a logical rule) may be assigned an exponential depth, which is the number
of nested boxes containing that node. Stratification is achieved precisely on
the base of the exponential depth: in full linear logic, two occurrences of the
same formula introduced at different exponential depths may eventually be con-
tracted; in ELL and LLL, they cannot. From the operational point of view,
boxes therefore assume a twofold role in ELL and LLL: they serve for the
purpose (ii) explained above, and they enforce stratification.

A new stratification. The main contribution of this work is the proposal of
an alternative way to achieve stratification, which is orthogonal to boxes. It
is a direct application of the intuitions concerning stratification given above:
occurrences of formulas in a proof net are “tested” by assigning to them an
index, which must satisfy certain constraints; in particular, if two occurrences
of the same formula are contracted, then they must have the same index. If
the proof net “passes the test”, i.e., if there is a way of assigning indexes to its
formulas in a way which is compatible with the constraints, then the proof net
is accepted.

The assignment of indexes naturally determines the stratification of a proof
net into levels, which need not match exponential depths. We obtain in this
way a logical system, called linear logic by levels (L3), which can be proved to
correspond to elementary time in the same sense as ELL. There is actually
more: ELL turns out to be the subsystem of L3 in which levels and depths
coincide, so Girard’s approach to stratification can be seen as a special case of
our own.

As said above, the main novelty of L3 is that it shows how stratification and
exponential depths must not necessarily be related. This is, in our opinion, an
important contribution to the understanding of the principles underlying light
logics. It may also be a starting point for finding new kinds of denotational
semantics for bounded time computation, extending the ideas of Baillot (2004)
and Laurent and Tortora de Falco (2006).

Removing useless boxes. In LLL, along the exponential modalities of linear
logic, an additional exponential modality, the paragraph §, must be added in
order to reach the desired expressive power, i.e., programming all polytime
functions. Since stratification is linked to exponential depth, the paragraph
modality too is handled in proof nets by means of boxes; however, §-boxes
cannot be duplicated, so they lose their original function (ii), and their existence
is only justified by stratification.

By imposing on our L3 the same kind of constraints that define LLL from
ELL, we obtain light linear logic by levels (L4), which, as expected, characterizes
deterministic polynomial time. This system offers an additional advantage with
respect to LLL: since our stratification is orthogonal to boxes, and since §-boxes
exist only to enforce stratification, these are no longer needed in L4.

Improving type systems. In several cases, the characterization of complexity
classes with subsystems of linear logic has allowed, in a second step, to define
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type systems for the λ-calculus statically ensuring complexity properties (Baillot
and Terui, 2004; Gaboardi and Ronchi Della Rocca, 2007): if a λ-term, expecting
for instance a binary list argument, is well typed, then it admits a complexity
bound w.r.t. the size of the input. Such results naturally call for type inference
procedures (Coppola and Martini, 2006; Atassi et al., 2007), which can be seen
as tests for sufficient conditions for a program to admit a complexity bound.

From this point of view, the presence of §-boxes in LLL is a heavy drawback:
in fact, a large part of the work needed to perform type inference in LLL, or
subsystems like DLAL (Atassi et al., 2007), comes from the problem of placing
correctly §-boxes, in particular in such a way that they are compatible with
other rules, or with λ bindings in the λ-calculus (remember that boxes also
carry sequentialization information, cf. point (i) above). A system like L4 clearly
offers the possibility of overcoming these problems: the absence of §-boxes may
yield major simplifications in the development of type systems for polynomial
time.

A further contribution of this paper is making a first step in that direction:
exploiting the lack of sequentiality constraints on the paragraph modality, we
devise a variant of L4 in which the paragraph modality is hidden in atomic
formulas; as a consequence, the paragraph modality completely disappears from
this system, and there is no need for a rule handling it. This may turn out to
be extremely helpful for designing a type system out of our work.

Plan of the paper. Sect. 1 contains a sort of mini-crash-course on linear logic
and its light subsystems ELL and LLL. Apart from introducing the material
necessary to our work, this (quite lengthy) section should make the paper as
self-contained as possible, and hopefully accessible to the reader previously un-
familiar with these topics. The systems L3 and L4 are introduced in Sect. 2,
and their relationship with ELL and LLL is spelled out. Sect. 3 is the technical
core of the paper: it contains the proof of the complexity bounds for L3 (The-
orem 17) and L4 (Theorem 24), from which the characterization result follows
(Theorem 26). Sect. 4 introduces the variant of L4 without paragraph modality;
the main result of this section is Theorem 37. In Sect. 5 we conclude the paper
with a discussion about open questions and future work.

Acknowledgments. The authors would like to thank Daniel De Carvalho for his
useful comments and suggestions on the subject of this paper.

1. Multiplicative Exponential Linear Logic

1.1. Formulas

The formulas of second order unit-free multiplicative exponential linear logic
(meLL) are generated by the following grammar, where X, X⊥ range over a
denumerable set of propositional variables:

A, B ::= X | X⊥ | A⊗B | A`B | !A | ?A | ∃X.A | ∀X.A | §A.
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Linear negation is defined through De Morgan laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = B⊥ `A⊥ (A`B)⊥ = B⊥ ⊗A⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X.A)⊥ = ∀X.A⊥ (∀X.A)⊥ = ∃X.A⊥

(§A)⊥ = §A⊥

Note that the paragraph modality is not present in the standard definition of
meLL (Girard, 1987); we include it here for convenience. Also observe that
full linear logic has a further pair of dual binary connectives, called additive
(denoted by & and ⊕), which we shall briefly discuss in Sect. 5. They are not
strictly needed for our purposes, hence we restrict to meLL in the paper.

Linear implication is defined as A ⊸ B = A⊥
` B. Multisets of formulas

will be ranged over by Γ, ∆, . . .
For technical reasons, it is also useful to consider discharged formulas, which

will be denoted by ♭A, where A is a formula.

1.2. Proofs
Sequent calculus and cut-elimination. The proof theory of meLL can be formu-
lated using the sequent calculus of Table 1. This calculus, which can be shown
to enjoy cut-elimination, differs from the one originally given by Girard (1987)
because of the addition of the last three rules. All of them are added for conve-
nience. The paragraph rule actually makes this modality trivial, as expressed
by the following:

Proposition 1. For any A, §A is provably isomorphic to A in meLL.

Proof. It is not hard to see that there are two derivations D1, D2 of ⊢ §A⊥, A
and ⊢ A⊥, §A, from which one can obtain two derivations of ⊢ §A ⊸ A and
⊢ A ⊸ §A, respectively. Moreover, the derivations obtained by cutting D1 with
D2 in the two possible ways both reduce to the identity (i.e., an axiom modulo
η-expansion) after cut-elimination. �

Nevertheless, we shall consider subsystems of meLL in which the paragraph
modality is not trivial, and this is why we find it convenient to include it right
from the start. The mix rule, and its nullary version (here called the daimon
rule), are discussed more thoroughly at the end of this section. Basically, their
presence simplifies the presentation of proof nets.

This last point is very important to us. In fact, the backbone of our work is
a detailed analysis, in terms of computational complexity, of the cut-elimination
procedure of meLL. In sequent calculus, this is composed of rules which are
suitable reformulations of those originally given by Gentzen (1934) to prove his
Hauptsatz for classical logic (the calculus LK). As a consequence, most of them
are commutations, i.e., rules permuting a cut with another inference rule; only
a few of them act on derivations in a non-trivial way. This is why we consider
proof nets, an alternative presentation of the proof theory of meLL offering,
among other things, the advantage of formulating cut-elimination without com-
mutations: only the “interesting” rules are left.
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⊢ A⊥, A
Axiom ⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
Cut

⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A⊗B
Tensor

⊢ Γ, A, B

⊢ Γ, A`B
Par

⊢ Γ, A

⊢ Γ, ∀X.A
For all (X not free in Γ)

⊢ Γ, A[B/X ]

⊢ Γ, ∃X.A
Exists

⊢ ?Γ, A

⊢ ?Γ, !A
Promotion

⊢ Γ, A

⊢ Γ, ?A
Dereliction

⊢ Γ
⊢ Γ, ?A

Weakening
⊢ Γ, ?A, ?A

⊢ Γ, ?A
Contraction

⊢ Γ, A

⊢ Γ, §A
Paragraph

⊢
Daimon ⊢ Γ ⊢ ∆

⊢ Γ, ∆
Mix

Table 1: The rules for meLL sequent calculus.

Proof nets. The proof net formalism was introduced by Girard (1987, 1996), and
subsequently reformulated by other authors using slightly different syntactical
definitions. In this paper, we use a combination of the presentations given by
Danos and Regnier (1995) and Tortora de Falco (2003), with a slight change
in the terminology: the term “proof structure”, introduced by Girard (1987)
and traditionally used in the literature, is here dismissed in favor of the term
net. On the contrary, the term proof net, i.e., a net satisfying certain structural
conditions (the correctness criterion), retains its usual meaning.

In the following definition, and throughout the rest of the paper, unless
explicitly stated we shall make no distinction between the concepts of formula
and occurrence of formula. The same will be done for what we call links and
their occurrences.

Definition 1 (Net). A pre-net is a pair (G, B), where G is a finite graph-like
object whose nodes are occurrences of what we call links, and whose edges are
directed and labelled by formulas or discharged formulas of meLL; and B is a
set of subgraphs of G called boxes.
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⊗ ∃ ∀`

pax
? §!♭

ax

tensor exists for all

A B BA

A`B ∃X.A ∀X.AA⊗B

A[B/X ] A[Z/X ]

par

flat why not of course paragraph

♭A

♭A ♭A

?A

A A

§A!A

A

♭A

♭A . . .

A⊥ A
A⊥ A

axiom cut

cut

pax

Figure 1: Links.

. . .

. . .

♭B1

A

♭Bn

!pax pax

!A

♭Bn♭B1

π

Figure 2: A box.

• Each link (Fig. 1) has an arity and co-arity, which are resp. the number
of its incoming and outgoing edges. The arity and co-arity is fixed for all
links except why not links, which have co-arity 1 and arbitrary arity. A
nullary why not link is also referred to as a weakening link. Par and for all

links are called jumping links.

• The incoming edges of a link (and the formulas that label them) are re-
ferred to as its premises, and are assumed to be ordered, with the exception
of cut and why not links; the outgoing edges of a link (and the formulas
that label them) are referred to as its conclusions.

• Premises and conclusions of links must respect a precise labeling (which
depends on the link itself), given in Fig. 1. In particular:
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– edges labelled by discharged formulas can only be premises of pax

and why not links;

– in a for all link l, the variable Z in its premise A[Z/X ] is called the
eigenvariable of l. Each for all link is assumed to have a different
eigenvariable.

– in an exists link l, the formula B in its premise A[B/X ] is said to be
associated with l.

• Each edge must be the conclusion of exactly one link, and the premise of
at most one link. The edges that are not premises of any link (and the
formulas that label them) are deemed conclusions of the pre-net. (Note
that the presence of these “pending” edges, together with the fact that
some premises are ordered, is why pre-nets are not exactly graphs).

• A box is depicted as in Fig. 2, in which π is a pre-net, said to be contained
in the box. The links that are explicitly represented in Fig. 2 (i.e., the
pax links and the of course link) form the border of the box. The unique
of course link in the border is called the principal port of the box, while
the pax links are called auxiliary ports. We have the following conditions
concerning boxes:

a. each of course link is the principal port of exactly one box;

b. each pax link is in the border of exactly one box;

c. any two distinct boxes are either disjoint or included in one another.

A net is a pre-net such that in its conclusions there is no discharged formula,
nor any formula containing an eigenvariable.

Definition 2 (Depth, size). Let σ be a pre-net.

• A link (or edge) of σ is said to have depth d if it is contained in d (nec-
essarily nested) boxes. The depth of a box of σ is the depth of the links
forming its border. The depth of a link l, edge e, or box B are denoted
resp. by d(l), d(e) and d(B). The depth of σ, denoted by d(σ), is the
maximum depth of its links.

• The size of σ, denoted by |σ|, is the number of links contained in σ,
excluding auxiliary ports.

Definition 3 (Switching). Let σ be a pre-net. For each jumping link l of σ,
we define the set of jumps of l, denoted by J(l), as follows:

par: J(l) is the set containing the links whose conclusions are the premises of l.

for all: if Z is the eigenvariable of l, J(l) is the set containing:

• the link whose conclusion is the premise of l;

• any link whose conclusion is labelled by a formula containing Z;
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• any exists link whose associated formula contains Z.

A switching of σ is an undirected graph built as follows:

• the conclusions of σ are erased, and its edges considered as undirected;

• for each jumping link l, the premises of l (if any) are erased, exactly one
node m ∈ J(l) is chosen and a new edge between m and l is added.

• the boxes at depth zero of σ are collapsed into single nodes, i.e., if B is a
box at depth zero of σ, it is erased together with all the edges connecting
its links to the rest of the graph, and replaced with a new node l; then,
for any link m of depth zero which was connected to a link of B, a new
edge between m and l is added.

Definition 4 (Proof net). A pre-net (G, B) is correct iff:

• all of its switchings are acyclic;

• for all B ∈ B, the pre-net contained in B is correct.

A proof net is a correct net.

Sequent calculus and proof nets. The relationship between sequent calculus and
proof nets is clarified by the notion of sequentializable net, whose definition
mimics the rules of sequent calculus:

Definition 5 (Sequentializable net). We define the set of sequentializable
nets inductively: the empty net and the net consisting of a single axiom link are
sequentializable (daimon and axiom); the juxtaposition of two sequentializable
nets is sequentializable (mix); if σ, σ1, σ2 are sequentializable nets of suitable
conclusions, the nets of Fig. 3 are sequentializable; if

♭B1

. . .

?

♭Bn

. . .

?

♭B1 ♭Bn

σ

?B1 ?Bn A

. . .

is a sequentializable net, then the net

♭B1

?

♭Bn

?

♭B1 ♭Bn

?B1 ?Bn

σ

. . . . . .
pax pax pax pax !

♭B1 A

!A

. . . . . .

. . .

♭B1 ♭Bn ♭Bn
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. . .

∃

σ

Γ

A[B/X ]

∃X.A

exists

. . .

∀

σ

Γ

A[Z/X ]

∀X.A

for all (X not free in Γ)

cut

. . . . . .

σ1

A A⊥
Γ ∆

σ2

cut

`
. . .

Γ

σ

A`B

A B

par

⊗

. . . . . .

σ1

A⊗BΓ ∆

A B

σ2

tensor

σ

Γ

. . .

A

♭A

?A

?

♭

dereliction

. . .

§

σ

Γ

A

§A

paragraph

. . .

Γ

σ
?

?A

weakening

Figure 3: Rules for building sequentializable nets.

is sequentializable (promotion); if

?

. . .

♭A ♭A

?A

?

. . . . . .

Γ

♭A ♭A

?A

σ

is a sequentializable net, then the net

. . . . . .
σ

. . .

?

♭A ♭A♭A ♭A

?AΓ

is sequentializable (contraction).
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Proposition 2 (Girard (1996)). A net is sequentializable iff it is a proof net.

The above result, combined with Definition 5, gives a simple intuition for looking
at proof nets: they can be seen as a sort of “graphical sequent calculus”.

Cut-elimination. As anticipated above, formulating the cut-elimination proce-
dure in proof nets is quite simple: there are only five rules (or steps, as we shall
more often call them), taking the form of the graph-rewriting rules given in
Figures 4 through 8. When a net π is transformed into π′ by the application
of one cut-elimination step, we write π → π′, and we say that π reduces to
π′. Of course, in that case, if π is a proof net, then π′ is also a proof net, i.e.,
cut-elimination preserves correctness.

The following notions, taken from Tortora de Falco (2003), are needed to
analyze the dynamics of proof nets under cut-elimination, and will prove to be
quite useful in the sequel:

Definition 6 (Lift, residue). Whenever π → π′, by simple inspection of the
cut-elimination rules it is clear that any link l′ of π′ different from a cut comes
from a unique (“the same”) link l of π; we say that l is the lift of l′, and that l′

is a residue of l. We define the lift and residues of a box in the same way.

Untyped proof nets. We shall also use an untyped version of proof nets:

Definition 7 (Untyped proof net). An untyped pre-net is a directed graph
with boxes built using the links of Fig. 1 as in Definition 1, but without any
labels on edges, or any constraint induced by such labels. An untyped net is an
untyped pre-net such that:

• the conclusion of a flat link must be the premise of a pax or why not link;

• the premise of a pax link must be the conclusion of a flat or pax link, and
the conclusion of pax link must be the premise of a pax or why not link;

• the premises of a why not link must be conclusions of flat or auxiliary port
links.

The notions of switching can be applied to untyped pre-nets without any change,
and hence the notion of correctness. We then define an untyped proof net as a
correct untyped net.

Observe that the cut-elimination steps of Figures 4 through 8 do not use
formulas, i.e., they make sense also in an untyped framework. Therefore, cut-
elimination can be defined also for untyped nets. Obviously, in the untyped
case there may be “clashes”, i.e., cut links connecting the conclusions of two
non-dual links. In that case, the cut link is said to be irreducible; otherwise, we
call it reducible. Hence, untyped proof nets may admit normal forms which are
not cut-free.
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A

A

A⊥
ax

cut

A→

Figure 4: Axiom step.

cut

cut

B B⊥

A⊥A⊗ `

cut

A B B⊥ A⊥

A⊗B B⊥ `A⊥

→

Figure 5: Multiplicative step.

∃ ∀

cut

∃X.A

A[B/X ]

∀X.A⊥
cut

A[B/Z]⊥A[B/X ]

A[Z/X ]⊥

→

Figure 6: Quantifier step; the substitution is performed on the whole net.

pax ! ?

♭ ♭

♭A⊥ ♭A⊥

A⊥ A⊥

...
...

. . .

. . .

cut...

A

!A

?

♭Γ

?A⊥

→

?Γ

...

. . .

♭Γ ♭Γ

?

...
...

...

π0 π0

1 n

1 n

♭Γ

?Γ

A⊥A

cut

A⊥A

cut

π0

. . .

Figure 7: Exponential step; ♭Γ is a multiset of discharged formulas, so one pax link, why not

link, or wire in the picture may in some case stand for several (including zero) pax links,
why not links, or wires.

13



§

A

§

cut
§A⊥§A

A⊥

→

A A⊥

cut

Figure 8: Paragraph step.

Remarks on mix and daimon. We mentioned above that admitting the mix and
daimon rules makes the definition of proof nets simpler. The latter rule may
actually be excluded quite easily: it is enough to modify Definition 4 by saying
that switchings must be acyclic and non-empty. On the contrary, excluding mix
has a much higher price: at present, all known solutions are quite cumbersome
and bring up issues which are morally unproblematic but technically disturbing
(see Tortora de Falco, 2003).

The status of the mix rule in the proof theory of linear logic is somewhat
controversial (Girard, 2007). Its computational meaning is not clear, and no
complexity-related subsystem of linear logic makes use of it. Its presence is
harmless though: as a matter fact, while we shall explicitly rely on the acyclicity
condition of Definition 4 in one crucial occasion (Lemma 12), the soundness
of our systems (Theorems 17 and 24) holds without requesting any further
condition on switchings which would exclude daimon or mix. Nevertheless, the
completeness results (Sect. 3.4) hold for much smaller subsystems, using none
of the debated rules (see Sect. 1.3 below). For this reason, the reader who is
puzzled by daimon and mix (in particular the former, which makes the empty
sequent provable in meLL, and with it all formulas of the form ?A) may consider
them to be mere technical tricks to obtain simpler proof nets.

1.3. Computational interpretation

The most direct computational interpretation of meLL can be given by
considering its intuitionistic subsystem. The intuitionistic sequent calculus of
meLL is obtained from that of Table 1 in the same way one obtains LJ from
LK (Gentzen, 1934). The interest of the intuitionistic sequent calculus for
meLL is that its derivations can be decorated with λ-terms in such a way that
cut-elimination in proofs is consistent with β-reduction in the λ-calculus.

The calculus is given in Table 2, directly with the decorations. Note that, as
expected, the morphological constraints imposed on intuitionistic sequents force
linear implication to be treated as a primitive connective, and eliminate the par
connective. For the same reason, the daimon and mix rules are excluded.

By translating A ⊸ B as A⊥`B, and by converting an intuitionistic sequent
Γ ⊢ A into ⊢ Γ⊥, A, one can define intuitionistic proof nets as nets which can be
built mimicking the rules of Table 2, in the spirit of Definition 5. Intuitionistic
proof nets are of course proof nets, but the decoration of Table 2 attaches a

14



x : A ⊢ x : A
Axiom

Γ ⊢ t : A ∆, x : A ⊢ u : B

Γ ⊢ u[t/x] : B
Cut

Γ, x : A ⊢ u : B

Γ ⊢ λx.u : A ⊸ B
R⊸

Γ ⊢ t : A ∆, y : B ⊢ v : C

Γ, ∆, z : A ⊸ B ⊢ v[zt/y]
L⊸

Γ, x : A[B/X ] ⊢ u : B

Γ, x : ∃X.A ⊢ u : B
L∀

Γ ⊢ t : A
Γ ⊢ t : ∀X.A

R∀ (X not free in Γ)

Γ, x : A ⊢ u : B

Γ, x : !A ⊢ u : B
D

!Γ ⊢ t : A
!Γ ⊢ t : !A

P

Γ ⊢ u : B
Γ, x : !A ⊢ u : B

W
Γ, x : !A, y : !A ⊢ u : B

Γ, z : !A ⊢ u[z/x, z/y] : B
C (z fresh)

Γ, x : A ⊢ u : B

Γ, x : §A ⊢ u : B
L§

Γ ⊢ t : A
Γ ⊢ t : §A

R§

Table 2: The rules for meLL intuitionistic sequent calculus, and their attached λ-terms.

λ-term to them. As anticipated above, this turns into a concrete computational
semantics, thanks to the following:

Proposition 3. Let π be an intuitionistic proof net, and let π → π′. Then:

1. π′ is intuitionistic;

2. if t, t′ are the λ-terms attached to π, π′, respectively, then t→∗
β t′.

Proposition 3 is a useful guideline for programming with meLL proof nets:
if one sticks to the intuitionistic subsystem, it is possible to use the λ-calculus
as a target language into which proof nets can be “compiled”. All complexity-
related subsystems of meLL exploit this; as a matter of fact, the completeness
with respect to the complexity classes they characterize is always proved within
their intuitionistic subsystem. This will be the case for our systems too.

1.4. Elementary and light linear logic

The logical systems which are the main objects of this paper are extensions
of the multiplicative fragments of elementary linear logic (ELL) and light linear
logic (LLL), both introduced by Girard (1998). These two systems characterize,
in a sense which will be made precise at the end of the section, the complexity
classes FE and FP, respectively: the former is the class of functions computable
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by a Turing machine whose runtime is bounded by a tower of exponentials of
fixed height (also known as elementary functions); the latter is the class of
functions computable in polynomial time by a deterministic Turing machine. In
this section, we briefly recall the definition of these two systems.

The stratification condition. The multiplicative fragment of ELL can be defined
in our proof net syntax by using the notion of exponential branch, as in Danos
and Joinet (2003):

Definition 8 (Exponential branch). Let σ be a (typed or untyped) meLL
net, and let b be a flat link of σ. The exponential branch of b is the directed
path starting from the conclusion of b, crossing a number (maybe null) of aux-
iliary ports and ending in the premise of a why not link (which must exist by
Definition 1, or Definition 7 in the untyped case).

Definition 9 (Multiplicative elementary linear logic). Multiplicative el-
ementary linear logic (mELL) is the subsystem of meLL composed of all proof
nets satisfying the following condition:

Stratification: Each exponential branch of π crosses exactly one auxiliary
port.

Note once again that the paragraph modality is absent in original definition of
mELL, but including it is harmless (Proposition 1 still holds).

Of course the stratification condition is preserved by cut-elimination: if π is
in mELL, and π → π′, then π′ is also in mELL. As suggested by its name,
the fundamental purpose of this condition is to assure a stratification property,
which can be formally stated as follows: whenever π → π′, if l is a link of π
different from a cut and l′ is a residue of l in π′, we have d(l′) = d(l). By
contrast, in a generic meLL proof net a residue of a link l may also have depth
smaller (by one) or greater (by any number) than l itself. In other words, depths
can “communicate” in meLL, but are “separated worlds” in mELL.

Round-by-round cut-elimination. The essential property of a mELL proof net
π is that its cuts can be eliminated so that the size of all proof nets obtained
during cut-elimination is bounded by a tower of exponentials of fixed height, in
the size of π itself. This is a consequence of the following facts:

F1. reducing a cut at depth i does not affect depth j < i;

F2. cut-elimination does not increase the depth of proof nets;

F3. reducing a cut at depth i strictly decreases the size at depth i.

F1 is true for all meLL proof nets; F2 and F3 are consequences of the stratifi-
cation property.

Now, the idea of Girard (1998) is to eliminate cuts by operating at increas-
ingly higher depths: if we have a mELL proof net of depth d, we start with a
first “round” at depth 0, which will eliminate all cuts at that depth in a finite
amount of time because of F3; then, we proceed with a second round at depth 1,
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! ! ! !pax pax pax pax pax pax

? ? ?

cut cut

π

Figure 9: A chain of boxes causing an exponential blow-up in the size during cut-elimination.

which, for the same reason, will eliminate all cuts at that depth, and will not
create new cuts at depth 0 because of F1; and we keep going on like this for
all depths. By F2, this whole “round by round” procedure is guaranteed to
terminate in at most d+1 rounds. After showing that the size of a proof net at
the end of each round is at most ss+1 < 22s

, where s is the size of the proof net
at the beginning of the round, one easily obtains an elementary bound in the
size of the initial proof net, with the height of the tower of exponentials being
at most twice the depth of the proof net itself. It is important to remark that
the above argument makes no use of types: normalization in elementary size is
possible even for untyped mELL proof nets.

Box chains and light linear logic. The reason for the superexponential blow-up
in the size of mELL proof nets after each round can be understood intuitively
by considering the “chain” of boxes of Fig. 9. If the number of boxes with two
auxiliary ports in the chain is n, a simple calculation shows that there will be
2n copies of π when all cuts shown are reduced. In general, the why not links
involved in a chain need to be binary; but their arity can be (very roughly)
bounded by the size of the proof net containing the chain, and since the length
of a chain can also be subjected to a similar bound, we end up obtaining the
superexponential blow-up mentioned above.

If we want to moderate the increment of the size of proof nets under cut-
elimination, by näıvely looking at Fig. 9 we are led to think of a simple method:
impose that boxes have at most one auxiliary port. This actually turns out
to work, and is the idea underlying Girard’s (1998) definition of light linear
logic. Unfortunately though, this restriction is quite heavy in terms of expressive
power: in fact, while normalizable in polynomial time, mELL proof nets using
boxes with at most one auxiliary port are not able to compute all polytime
functions. This is the original reason behind the introduction of the paragraph
modality.

However, using the paragraph modality as we introduced it in meLL is not
compatible with the stratification property: the paragraph too must be linked
to the depth, and in order to do so we must introduce a further kind of boxes,
called §-boxes (Fig. 10). In presence of these boxes, the usual ones are called
!-boxes, and the word “box” refers to any of the two kinds.
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. . .

♭C1 . . . ♭Cn

♭C1

A1

♭Cn

Am

§ §pax pax

π

§A1 §Am

Figure 10: A §-box.

Definition 10 (meLL§box). The pre-nets and nets of meLL§box are defined as
in Definition 1, with the following modifications on the requirements concerning
boxes:

a′. each of course link is the principal port of exactly one !-box;

b. each pax link is in the border of exactly one box;

c. any two distinct boxes are either disjoint or included in one another;

d. each paragraph link is in the border of exactly one §-box.

The size of a meLL§box pre-net is defined just as in Definition 2, while the
depth also takes into account §-boxes, i.e., the depth of a link is the number of
nested !- and §-boxes containing it.

The proof nets of meLL§box are defined as in Definition 4, with §-boxes
being treated exactly as !-boxes.

In terms of sequent calculus, a §-box corresponds to the following rule:

⊢ ?Γ, ∆

⊢ ?Γ, §∆

After adapting Definition 5 to this rule, Proposition 2 extends to meLL§box.
To define cut-elimination inside meLL§, one need only establish what the

reduction of two §-boxes looks like: informally, the two §-boxes are “merged”
into one, and the cut link “enters” into this new §-box. No detailed description
is needed for our purposes; we refer the reader to Mazza (2006).

Multiplicative LLL can be defined as a subsystem of meLL§:

Definition 11 (Multiplicative light linear logic). Multiplicative light lin-
ear logic (mLLL) is composed of all meLL§box proof nets π satisfying the
following conditions:

Stratification: Each exponential branch of π crosses exactly one auxiliary
port.
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Lightness: Each !-box of π has at most one auxiliary port.

Observe that, in the stratification condition, the auxiliary ports of §-boxes count
just as the auxiliary ports of !-boxes.

In the case of mLLL, a round starting with a proof net of size s can be
shown to lead to a proof net of size at most s2, so that the round-by-round
procedure applied to a proof net of size s and depth d terminates with a proof

net of size at most s2d

.

From size to time. For the moment, we have only spoken of size bounds to
cut-elimination, whereas we started by claiming that mELL and mLLL char-
acterize time complexity classes. The first step is transforming these size bounds
into time bounds, which is done as follows. We consider the case of mLLL, the
case of mELL being analogous. Let π be a mLLL proof net of size s and depth
d. We know that we can eliminate all of its cuts in at most d + 1 rounds, each

operating on a proof net of size at most s2d

. By F3, each round takes a linear
number of steps in the size of the proof net from which the round itself starts;

then, the round-by-round procedure for π terminates in at most (d+1)s2d

steps.
Observe now that a single cut-elimination step can at most square the size

of a proof net; then, with a reasonable representation of proof nets, we are
able to simulate a cut-elimination step on a Turing machine with a quadratic
cost, in the size of the proof net under reduction. Assuming that all proof nets

during the reduction of π have the maximum size possible, we have (d + 1)s2d

cut-elimination steps taking each s2d+1

Turing machine steps, which means that
we can compute the result of the round-by-round procedure on π in at most

(d + 1)s2d+1+2d

Turing machine steps, which is polynomial in the size, and
doubly-exponential in the depth. Similarly, computing the result of the round-
by-round procedure for a mELL proof net takes a number of Turing machine
steps which is elementary in the size, and hyperexponential in the depth.

Representing functions. To state precisely what it means for a logical system like
mELL or mLLL to characterize a complexity class, we first need to formulate a
notion of representability of functions from binary strings to binary strings. This
is done by resorting to a formula (i.e., a type), which we may denote by S, such
that there is an infinite number of proof nets of conclusion S, each representing
a different binary string. It is very convenient at this point to operate within
the intuitionistic subsystems of mELL and mLLL, and to choose S so that the
proof nets of type S correspond, via the computational interpretation discussed
in Sect. 1.3, to the usual λ-terms representing binary strings.

Then, we say that a function f from binary strings to binary strings is
representable in mELL or mLLL just if there exists an intuitionistic proof
net ϕ of conclusions S⊥,S computing f via cut-elimination, that is, f(x) = y
iff, whenever ξ is the proof net representing x, the proof net ϕ(ξ) obtained by
cutting the conclusion (of type S) of ξ to the dual conclusion (of type S⊥) of ϕ
reduces to υ, where υ is the proof net representing y. (Actually, it is necessary
to allow representations of functions to be more generally of conclusions S⊥,S′,

19



where S′ is the formula S with a number of suitable modalities prepended to it;
but this is not essential at this level of detail).

Characterizing complexity classes. Characterizing a complexity class C now sim-
ply means that f ∈ C iff f is representable in our logical system. The forward
implication is usually called the completeness of the system, while the backward
implication is its soundness.

Proving the completeness of mELL and mLLL with respect to FE and FP,
respectively, is a sort of (quite difficult) programming exercise, which is carried
on with varying degrees of detail in Girard (1998), Roversi (1999), Danos and
Joinet (2003), and Mairson and Terui (2003); we shall not discuss this here.

On the other hand, the soundness of these two systems is a consequence of
the results mentioned above, plus the following crucial remark: all proof nets
of type S have constant depth 1, and size linear in the length of the string they
represent. Thanks to this, we see that if ϕ is a proof net of mLLL of size s
and depth d representing the function f , and if ξ represents the string x, then
computing the representation of f(x) can be done by applying the round-by-
round cut-elimination procedure to the proof net ϕ(ξ), whose size is c1|x|+c2+s
(where c1 and c2 are suitable constants), and whose depth is max(d, 1), which
does not depend on x, but solely on ϕ, and thus, ultimately, on f . Hence,
f(x) can be computed on a Turing machine in time O(P (|x|)), where P is a
polynomial whose degree depends on f . We therefore have f ∈ FP. Similarly,
one can prove that if f is representable in mELL, then f ∈ EF.

2. Linear Logic by Levels

2.1. Indexings

In meLL proof nets there is an asymmetry between the behavior of the two
kinds of exponential links (of course and why not) with respect to the depth.
More precisely, let us say that a link l is “above” an of course link o if one of the
conclusions of l is the premise of o, and, similarly, let us say that l is “above”
a why not link w if one of its conclusions is the premise of a flat link whose
exponential branch (Definition 8) ends in w. Then, we see that if a link l is
above an of course link o, we have d(l) = d(o) + 1; on the contrary, if l is above
a why not link w, all we can say is that d(l) ≥ d(w).

The situation changes in mELL. In fact, the stratification condition guar-
antees that the behavior is perfectly symmetric: if a link l is above a why not

link w, we have d(l) = d(w) + 1. This is true also in mLLL, and for paragraph

links as well, because of §-boxes (remember that, in mLLL, the depth takes
into account these boxes too).

The idea is then to take a meLL proof net and to try assigning to its links an
index which behaves as the depth would behave in elementary and light linear
logic:

Definition 12 (Indexing). Let π be a meLL net. An indexing for π is a
function I from the edges of π to Z satisfying the constraints given in Fig. 11 and
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Figure 11: Constraints for indexing meLL proof nets. Next to each edge we represent the
integer assigned by the indexing; formulas are omitted, because irrelevant to the indexing.

such that, for all conclusions e, e′ of π, I(e) = I(e′). An assignment satisfying
the constraints of Fig. 11 but not meeting the requirement on conclusions is said
to be a weak indexing.

Note that indexings do not use formulas in any way, so the notion can be applied
to untyped nets without any change.

Not all meLL nets admit an indexing. An example is the proof net in Fig. 12,
which is the cut-free proof of the dereliction principle !A ⊸ A (a key principle
excluded in ELL and LLL). An analogous example is given by the two proof
nets corresponding to the derivations mentioned in the proof of Proposition 1,
i.e., the ones asserting the isomorphism between A and §A, although these do
admit a weak indexing, contrarily to the proof net of Fig. 12.

Observe that (weak) indexings are transparent to connection: if π1, π2 are
two nets admitting (weak) indexings I1, I2, respectively, then the net obtained
by juxtaposing π1 and π2 admits as (weak) indexing the “disjoint union” of
I1 and I2, which we denote by I1 ⊎ I2. Likewise, if π is net whose connected
components are π1, . . . , πn, every (weak) indexing of π can be written as

⊎
Ik,

where Ik is a (weak) indexing for πk, for all 1 ≤ k ≤ n. We use this fact to state
the following:

Proposition 4 (Rigidity). Let π be a meLL net whose connected components
are π1, . . . , πn, and let I =

⊎
Ik be a (weak) indexing for π. Then, for all

p1, . . . , pn ∈ Z,
⊎

Ik + pk is also a (weak) indexing for π. Conversely, given
another (weak) indexing I ′ for π, there exist p1, . . . , pn ∈ Z such that I ′ =⊎

Ik + pk.

Proof. The first implication is trivial, so let us concentrate on the second. Let
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Figure 12: A meLL proof net admitting no (weak) indexing.

I, I ′ be two indexings for π, and set, for each edge e of π, ∆(e) = I(e) − I ′(e).
Now, observing Fig. 11, we see that differences in indexing propagate across any
path in π; more precisely, whenever e1, e2 are both conclusions, both premises,
or one conclusion and one premise of a link of π, then ∆(e1) = ∆(e2). Hence, for
any two edges e, e′ in the same connected component of π, we have ∆(e) = ∆(e′),
which is enough to prove the result. �

The following is a simple corollary of the first part of Proposition 4:

Proposition 5 (Composition). Let π, π′ be two proof nets of resp. conclu-
sions Γ, A and ∆, A⊥, and let π′′ be the proof net obtained by adding a cut link
whose premises are the conclusions of π and π′ labelled resp. by A and A⊥.
Then, if π and π′ both admit an indexing, so does π′′.

As a simple case-by-case inspection shows, indexings also have the funda-
mental property of being preserved under cut-elimination:

Proposition 6 (Stability). Let π be a meLL proof net such that π → π′.
Then, if there exists an indexing for π, there exists an indexing for π′ as well.
More precisely, if I is an indexing for π, there exists an indexing I ′ of π′ such
that, if e, e′ are conclusions of two links l, l′ of resp. π, π′ such that l′ is a residue
of l, then I ′(e′) = I(e). In other words, I ′ is “the same” indexing as I, modulo
the erasures/duplications possibly induced by the cut-elimination step.

We can therefore make the following definition:

Definition 13 (Multiplicative linear logic by levels). Multiplicative lin-
ear logic by levels (mL3) is the logical system defined by taking all meLL
proof nets admitting an indexing.

The fact that an mL3 proof net has several (in fact, an infinity of) indexings
may seem inconvenient; however, Proposition 4 settles this problem, by giving
us a way to choose a canonical indexing:

22



Definition 14 (Canonical indexing). Let π be an mL3 proof net, and let I
be an indexing for π. We say that I is canonical if each connected component
of π has an edge e0 such that I(e0) = 0, and I(e) ≥ 0 for all edges e of π.

Proposition 7. Every mL3 proof net admits a unique canonical indexing.

Proof. Let π be an mL3 proof net, let π1, . . . , πn be the connected components
of π, and let k range over {1, . . . , n}. By definition, there exists an indexing⊎

Ik for π, where Ik is an indexing for πk. Let mk = mine Ik(e), where e ranges
over the edges of πk. Then, by Proposition 4,

⊎
Ik −mk is still an indexing for

π, which is clearly canonical. Suppose now there exist two canonical indexes
I =

⊎
Ik and I ′ =

⊎
I ′k for π. By the fact that I and I ′ are canonical, we

know that for all k there exist ek, e′k in πk such that I(ek) = I ′(e′k) = 0. By
Proposition 4, we also know that there exists pk ∈ Z such that I ′k = Ik + pk.
Suppose pk > 0; then, we would have I(e′k) < 0. On the other hand, if pk < 0,
we would have I ′(ek) < 0. In both cases, we would be in contradiction with the
fact that I and I ′ are canonical, hence we must have pk = 0, and I = I ′. �

Definition 15 (Level). Let π be an mL3 proof net, and let I0 be its canonical
indexing. The level of π, denoted by ℓ(π), is the maximum integer assigned by I0

to the edges of π. If l is a link of π of conclusion e (or of conclusions e1, e2 in the
case of an axiom link), and if B is a box of π whose principal port has conclusion
e′, we say that the level of l, denoted by ℓ(l), is I0(e) (or I0(e1) = I0(e2) in the
case of an axiom), and that the level of B, denoted by ℓ(B), is I0(e

′).

From now on, when we speak of an mL3 proof net π, we shall always refer
to its canonical indexing. The reader may wonder why we did not use N instead
of Z as the range of our indexes in the first place; we simply believe Z to be a
more natural choice, as the set of indexes need not be well-founded. Moreover,
using N would be awkward in the sequent calculus formulation of mL3 (cf.
Table 3 below): it would force to impose a restriction on exponential rules, an
unnecessary complication.

Recall that levels are conceived to behave like depths in mELL; then, it is
not surprising that mELL is exactly the (proper) subsystem of mL3 in which
levels and depths coincide:

Proposition 8. Let π be a meLL proof net. Then, π is in mELL iff π is in
mL3 and, for every link l of π whose conclusion is not a discharged formula,
we have ℓ(l) = d(l).

Now to help relating proof nets to the intuitions coming from the λ-calculus,
we give an example of a λ-term and a corresponding proof net of mL3. The fol-
lowing term is the Church representation of the binary list 101, and its syntactic
tree is given in Fig. 13:

t101 = λs0.λs1.λz.(s1 (s0 (s1 z))).

An mL3 proof net corresponding to this term, according to Proposition 3, is
given in Fig. 14. Note that nodes λ (resp. @) of the syntactic tree correspond
to nodes ` (resp. ⊗) of the proof net.
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Figure 13: Syntactic tree for the λ-term t101.

2.2. Light linear logic by levels

Chains of boxes like that of Fig. 9 may be built in mL3, so there is no
hope of finding sub-exponential bounds for the size of mL3 proof nets under
cut-elimination. We then follow the same idea as light linear logic:

Definition 16 (Multiplicative light linear logic by levels).
Multiplicative light linear logic by levels (mL4) is the logical system
composed of all mL3 proof nets π satisfying the following conditions:

(Weak) Stratification: Each exponential branch (Definition 8) of π crosses
at most one auxiliary port.

Lightness: Each box of π has at most one auxiliary port.

It is not hard to see that mL4 is stable under cut-elimination, i.e., that a
suitable version of Proposition 6 holds. Indeed, the stratification condition is
needed precisely for that purpose: in its absence, one can find an mL3 proof
net satisfying the lightness condition which reduces to a proof net no longer
satisfying it.

As expected, mL4 is related to mLLL. To see how, we consider the forget-
ful embedding of mLLL into meLL which simply removes paragraph boxes,
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Figure 14: An mL3 proof-net corresponding to t101.

retaining only the corresponding paragraph links (recall that our definition of
meLL includes the paragraph modality). Observe that this embedding is com-
patible with cut-elimination: if π1 → π2, then π+

1 → π+
2 (see Mazza (2006)

for the details on cut-elimination with §-boxes). We can then see mLLL as a
subsystem of mL4, in the following sense:

Proposition 9. Let π be a mLLL proof net, and let π+ be its forgetful image
in meLL. Then, π+ is in mL4 and, for every link l+ of π+ whose conclusion
is not a discharged formula and which corresponds to a link l of π, we have
ℓ(l+) = d(l) (we remind that in mLLL proof nets the depth also takes into
account paragraph boxes, see Definition 10).

As already observed above, §A is not isomorphic to A in mL3 (or mL4).
However, it is not hard to check that in both systems the paragraph modality
commutes with all connectives: for all A, B, §(A ⊗ B), §!A, and §∀X.A are all
provably isomorphic (in the same sense as that of Proposition 1) to §A ⊗ §B,
!§A, and ∀X.§A, respectively (and, by duality, similar isomorphisms hold for
the connectives `, ?, and ∃).

None of the above isomorphisms holds in LLL, and this is why it does not
make much sense to establish a converse of Proposition 9. We therefore obtained
a system in which the paragraph modality, like LLL, is not trivial, but, unlike
LLL, enjoys more flexible principles. In Sect. 3 we shall see that mL3 and
mL4 have also interesting properties with respect to the complexity of their
cut-elimination procedure.

2.3. Linear logic by levels as a sequent calculus

It is possible to formulate mL3 and mL4 as sequent calculi, which may be
useful for having a clearer correspondence with λ-terms, as in Sect. 1.3. In
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⊢ A⊥i, Ai
Axiom ⊢ Γ, Ai ⊢ ∆, A⊥i

⊢ Γ, ∆
Cut

⊢ Γ, Ai ⊢ ∆, Bi

⊢ Γ, ∆, A⊗Bi
Tensor

⊢ Γ, Ai, Bi

⊢ Γ, A`Bi
Par

⊢ Γ, Ai

⊢ Γ, ∀X.Ai
For all (X not free in Γ)

⊢ Γ, A[B/X ]
i

⊢ Γ, ∃X.Ai
Exists

⊢ ?Γ, Ai+1

⊢ ?Γ, !Ai
Promotion

⊢ Γ, Ai+1

⊢ Γ, ?Ai
Dereliction

⊢ Γ

⊢ Γ, ?Ai
Weakening

⊢ Γ, ?Ai, ?Ai

⊢ Γ, ?Ai
Contraction

⊢ Γ, Ai+1

⊢ Γ, §Ai
Paragraph

Table 3: The rules for mL3 2-sequent calculus. Daimon and mix are omitted.

doing this, one immediately realizes that 2-sequents, rather than sequents, are
the natural syntax for this purpose. Calculi for 2-sequents have been extensively
studied by Masini (1992) and have been found to be quite useful for the proof-
theory of modal logics. In particular, linear logic and its elementary and light
variants can all be formulated as 2-sequent calculi (Guerrini et al., 1998).

A meLL 2-sequent M is a function from Z to meLL sequents such that
M(i) is the empty sequent for all but finitely many i. 2-sequents can be suc-
cinctly represented as standard sequents by decorating formulas with an integer
index: ⊢ Ai1

1 , . . . , Ain
n represents the 2-sequent M such that M(i) = ⊢ Γ, where

Γ contains all and only the occurrences of formulas A
ij

j such that ij = i.

The 2-sequent calculus for mL3 is given in Table 3, where Γ, ∆ stand for
multisets of meLL formulas decorated with an integer. The daimon and mix
rules are omitted, because identical to those in Table 1.

We say that a derivation of ⊢ Γ in the calculus of Table 3 is proper if all
the formulas in Γ have the same index, i.e., the derived 2-sequent is indeed
a sequent; moreover, we say that a weak mL3 net is a net admitting a weak
indexing. By Proposition 2, it is more or less evident that a sequentializable
weak mL3 net is a weak mL3 proof net. Hence, we see that mL3 proof nets
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exactly correspond to the proper derivations of the calculus of Table 3.
We remark that the calculus of Table 3 is very similar to Guerrini, Mar-

tini, and Masini’s 2ELL (Guerrini et al., 1998), without additive connectives.
In their work, the authors prove that 2ELL is an equivalent formulation of
ELL with respect to provability, and claim that such formulation satisfies cut-
elimination (Girard’s original definition of ELL did not (Kanovich et al., 2003)).
Our calculus eliminates all of the constraints of the multiplicative fragment of
2ELL, and in fact mL3 is a proper extension of mELL—preserving, however,
its complexity properties, as we shall see below.

The system mL4 is obtained in terms of sequent calculus by replacing the
promotion rule with the following one:

⊢ Bj+1, Ai+1

⊢ ?Bj , !Ai
Light promotion

where the formula B may not be present.

3. Complexity Bounds

To establish the complexity bounds for mL3 and mL4, we shall try to adapt
the arguments originally given by Girard (1998) for ELL and LLL. Let us then
go back to Sect. 1.4 and consider again the three facts about cut-elimination in
mELL which are at the base of its elementary size bound:

F1. reducing a cut at depth i does not affect depth j < i;
F2. cut-elimination does not increase the depth of proof nets;
F3. reducing a cut at depth i strictly decreases the size at depth i.

We know that F1 is true in general in meLL, and hence in mL3 too; it is not
hard to see that F2 and F3 instead fail altogether in mL3 and mL4. Never-
theless, in the light of Propositions 8 and 9, we may expect those facts to hold
in our systems provided we replace the word “depth” with “level”. Indeed, this
works for F1 and F2:

Lemma 10. Let π be an mL3 proof net such that π → π′ by reducing a cut link
at level i. Then, for all j < i, every link of π of level j has exactly one residue
of level j in π′; moreover, if c′ is a cut link of π′ at level j, then c′ is a residue
of a cut link c of π.

Lemma 11. Let π be an mL3 proof net such that π → π′. Then, ℓ(π′) ≤ ℓ(π).

In other words, reducing a cut at level i does not affect lower levels (in particular,
no cut link at level j < i is created), and the overall level does not increase.

On the contrary, even the “corrected” version of F3 fails for mL3 and mL4,
because a box of level i may contain links of any level, in particular i itself.
Fig. 15 gives an example of this: reducing a cut at level i (i = 0 in this case)
may duplicate cuts at the same level. Therefore, a straightforward adaptation
of Girard’s “round-by-round” procedure, which trades depths for levels, will
not work. There is a workaround though: in fact, there are cuts for which the
corrected version of F3 holds; our solution will consist in showing that these can
be reduced first.
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Figure 15: An example of nested boxes of identical level (much smaller examples exist; we
gave this one because we shall re-use it later on for different purposes).

3.1. Termination

First of all, we prove that reduction of mL3 proof nets always terminates,
even in the untyped version of the system. From this moment on, by “meLL
proof net” we shall mean “untyped meLL proof net”, and by “mL3 (resp.
mL4) proof net” we shall mean “untyped meLL proof net admitting an in-
dexing (resp. admitting an indexing and satisfying the structural conditions of
Definition 16)”.

Definition 17 (Isolevel tree). Let π be a meLL proof net, and let e be an
edge of π which is the conclusion of a link l different from flat or pax. The
isolevel tree of e is defined by induction as follows:

• if l is an axiom, why not, of course, or paragraph link, then the isolevel tree
of e consists of the link l alone;

• otherwise, let e1, . . . , ek (with k ∈ {1, 2}) be the premises of l; then, the
isolevel tree of e is the tree whose root is l and whose immediate subtrees
are the isolevel trees of e1, . . . , ek.

Definition 18 (Complexity of reducible cuts). Let π be a meLL proof
net, and let c be a reducible cut link of π, whose premises are e1, e2. The
complexity of c, denoted by ♯c, is the sum of the number of nodes contained in
the isolevel trees of e1 and e2. (Note that the isolevel trees of e1, e2 are always
defined because the premises of a cut can never be conclusions of flat or pax

links).
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Definition 19 (Weight of an mL3 proof net). Let π be an mL3 proof net
of level l. If k ∈ Z, we denote by cutsk(π) the set of reducible cut links of π at
level k. The weight of π, denoted by απ , is the function from N to N defined as
follows:

απ(i) =
∑

c∈cutsl−i(π)

♯c.

Note that, if π has level l, then for all i > l, we have απ(i) = 0. Weights are
therefore almost everywhere null, and the set of all weights can be well-ordered
so as to be isomorphic to ωω.

We recall that, concretely, this order is a variant of the lexicographical order,
and is defined as follows. Let α, β be two almost-everywhere-null functions from
N to N. We put Cα,β = {i ∈ N ; α(i) 6= β(i)}. Observe that Cα,β is finite,
because α and β are almost everywhere null. Moreover, Cα,β is non-empty iff
α 6= β; in this case, let m = maxCα,β , and we set α < β iff α(m) < β(m).

So for all π, απ can be seen as an ordinal strictly smaller than ωω. Our
cut-elimination proof will simply show that, whenever an mL3 proof net π is
not normal, there always exists π′ such that π → π′ and απ′ < απ.

Below, we say that a flat link b is above a why not link w iff the exponential
branch of b ends in w.

Definition 20 (Contractive order). Let π be an mL3 proof net, and let B, C
be two boxes of π. We write B ≺1 C iff B and C are at the same level, B is cut
with a why not link w, and C contains a flat link above w. We denote by � the
reflexive-transitive closure of ≺1.

Lemma 12. The relation � is a partial order.

Proof. Suppose there is a cycle in ≺1, i.e., there exist n ≥ 1 different boxes
B1, . . . ,Bn such that B1 ≺1 · · · ≺1 Bn ≺1 B1. We say that such a cycle has a
lump iff there exist i 6= j such that Bi ≺1 Bj and Bi is contained in Bj. Let k be
the number of lumps in the cycle; we shall prove a contradiction by induction
on k. If k = 0, then all boxes are disjoint. In this case, it is easy to build,
by induction on n, a cyclic switching of π (or of the contents of the minimal
box containing the whole chain), which is impossible, since π is supposed to
be a proof net. If k > 0, let Bi,Bj be a pair of boxes inducing a lump. Since
we have a cycle, there certainly exists p such that Bp ≺1 Bi. If p = j, then
there is obviously a cyclic switching around Bj, yielding again a contradiction.
Otherwise, by definition, Bp ≺1 Bi means that there is a flat link inside Bi which
is above the why not link to which Bp is cut. But Bi is contained in Bj , so this
flat link is also in Bj, which means that Bp ≺1 Bj as well. Independently of
whether Bp is included in Bj or not, the cycle obtained by removing Bi from the
original one necessarily has k − 1 lumps, and the induction hypothesis applies.
Therefore, ≺1 is acyclic, and its reflexive-transitive closure is a partial order.�

In the following, we deem a cut link contractive iff its premises are the
conclusions of an of course link and a why not link of arity strictly greater than
zero. All other reducible cut links are called non-contractive.
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Definition 21 (Cut order). Let π be an mL3 proof net, and let cuts(π) be
the set of reducible cut links of π. We turn cuts(π) into a partially ordered set
by posing, for c, c′ ∈ cuts(π), c ≤ c′ iff one of the following holds:

• ℓ(c) < ℓ(c′);

• c is non-contractive and c′ is contractive;

• c and c′ are both contractive, involving resp. the boxes B and B′, and
B � B′.

That the above relation is indeed a partial order follows easily from the definition
and Lemma 12.

The weak normalization of untyped mL3 is a trivial corollary of the following
result, as anticipated above:

Lemma 13. Let π be an mL3 proof net which is not normal. Then, there exists
π′ such that π → π′ and απ′ < απ.

Proof. By hypothesis, cuts(π) 6= ∅; of course cuts(π) is also finite, so there is
at least one minimal element w.r.t. the cut order. Take any one of them (call it
c), and reduce it, obtaining π′. Let M (resp. M ′) be the maximum k such that
απ(k) > 0 (resp. απ′(k) > 0). First of all, by Lemmas 11 and 10 we have resp.
that ℓ(π′) ≤ ℓ(π) and that M ′ ≤ M . If any of the two inequalities is strict,
we immediately have απ′ < απ. Therefore, we may assume ℓ(π′) = ℓ(π) = l
and M ′ = M . By the minimality hypothesis, we see that the level of c must be
i = l −M , and that π contains no reducible cut at level j < i. At this point,
whatever happens in reducing c, by Lemma 10 we know that απ′(n) = απ(n) = 0
for all n > M , so it is enough to check that something decreases at level i, i.e.,
that απ′(M) < απ(M). The proof now splits into five cases, depending on the
nature of c. If c is not an exponential cut, or if it is a weakening cut, we leave
it to the reader to verify that the condition holds.

So let c be contractive, and let B be the box involved. We claim that
the content of B contains no reducible cut links at level i. As a matter of
fact, suppose for the sake of contradiction that B contains a reducible cut c′

of level i (which is necessarily different from c). Because of the second clause
of Definition 21, c′ must be contractive, otherwise we would contradict the
minimality of c. But in this case, let B′ and w be resp. the box and the why not

link involved in c′. Since c′ is contractive, there is at least one flat link above w,
which entails B′ � B; by the third clause of Definition 21, we would thus obtain
a second, definitive contradiction.

Now that we know that B is normal at level i, it is not hard to verify that the
thesis holds: π′ contains at least one copy of the content of B, but none of these
copies contributes to the value of απ′(M). Moreover, the new cuts contained
in π′ are all at level i + 1, whereas one reducible cut at level i (c itself) has
disappeared. Therefore, απ′(M) < απ(M), as desired. �

Proposition 14 (Untyped weak normalization). Untyped mL3 proof nets
are weakly normalizable.
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Proof. By transfinite induction up to ωω. Let β < ωω, and suppose that
for all α < β, απ = α implies that π is weakly normalizable. Take a proof
net π such that απ = β; π is either normal, hence weakly normalizable, or,
by Lemma 13 and by the above induction hypothesis, it reduces to a weakly
normalizable proof net. But any proof net reducing to a weakly normalizable
proof net is also weakly normalizable. �

3.2. Elementary bound for mL3

From now on, we shall only consider the cut-elimination procedure given by
the proof of Lemma 13, i.e., the one reducing only minimal cuts in the cut order.
More concretely, given an mL3 proof net π, this procedure chooses a cut to be
reduced in the following way:

1. find the lowest level at which reducible cuts are present in π, say i;

2. if non-contractive cuts are present at level i, choose any of them and reduce
it;

3. if only contractive cuts are left, chose one involving a minimal box in the
contractive order.

This is nothing but Girard’s “round by round” procedure, modulo two modifi-
cations: we use levels instead of depths, and we are more restrictive on which
contractive cuts can be reduced (in Girard’s procedure for mLLL, any contrac-
tive cut may be reduced once all non-contractive cuts at the same depth are
reduced). This last point is strictly technical: it is required because of config-
urations such as the one shown in Fig. 15, as discussed above. What is really
fundamental is the shift from depth to level, which is indeed the key novelty of
our work.

Let us start with a few useful definitions:

Definition 22. Let π be an mL3 proof net.

1. The size of level i of π, denoted by |π|i, is the number of links at level i of
π different from auxiliary ports.

2. π is i-normal iff it contains no reducible cut link at all levels j ≤ i.

3. π is i-contractive iff it is (i − 1)-normal and contains only contractive cut

links at level i.

Lemma 15. Let π be an (i − 1)-normal proof net. Then, the round-by-round
procedure reaches an i-normal proof net in at most |π|i steps.

Proof. Let π = π0 → π1 → · · · → πn be reduction sequence generated by our
procedure, with πn i-normal. By what we have seen in the proof of Lemma 13,
if we put M = ℓ(π)− i, we have that απj+1

(M) < απj
(M) for all 0 ≤ j ≤ n− 1.

Therefore, n ≤ απ(M). But by definition απ(M) ≤ |π|i, hence the thesis. �

Below, we use the notation 2n
k with the following meaning: for all n, 2n

0 = n,
and 2n

k+1 = 22n
k .
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Lemma 16. Let π be an i-contractive proof net, such that π →∗ π′ under the

round-by-round procedure, with π′ i-normal. Then, |π′| ≤ 2
|π|
2 .

Proof. In the proof, we shall say that the arity of a contractive cut link c is
the arity of the why not link whose conclusion is premise of c. Let π0 be an i-
contractive proof net, such that π0 → π1 by reducing a minimal cut c at level i.
We have that, for all k 6= i, |π0|k = Bk +Ck, while |π0|i = Bi +Ci +3, where Bk

is the size of level k of the content of the box B whose principal port’s conclusion
is premise of c, and Ck is a suitable non-negative integer. It is enough to inspect
Fig. 7 to see that, if the arity of c is A, we have |π1|k = ABk + Ck, for all k.
Now, since the step is contractive, A ≥ 1, so that |π1|k ≤ A(B + C) = A|π0|k.

We now make the following claims:

1. π1 is i-contractive;

2. if c1 is cut link of π1 at level i, and c0 is its lift in π0, then the arities of c0

and c1 coincide.

The first fact can be checked by simply looking at Fig. 7. For what concerns
the second, let w0,B0 and w1,B1 be resp. the why not link and box cut by resp.
c0 and c1. Note that, by hypothesis, w0 and B0 are the lifts of resp. w1 and
B1. Now suppose, for the sake of contradiction, that the arity of w1 is different
than that of w0. Another simple inspection of Fig. 7 shows that this may be
the case only if an exponential branch of π0 ending in w0 crosses the border of
B (the box involved in the reduction leading from π0 to π1). But if it is so, then
there is a flat link above w0 which is inside B, which implies that B0 � B. By
Definition 21, we have c0 < c, contradicting the minimality of c. Therefore, the
maximum arity of all cuts of π1 at level i cannot exceed the maximum arity of
all cuts of π0 at level i.

Let now π = π0 → · · · → πn = π′ be the reduction sequence generated
by the round-by-round procedure. If A1, . . . , An are the arities of the cut links
reduced at each step, we have, for all k,

|π′|k ≤ |π|k

n∏

j=1

Aj .

But, by the above claim, each Aj cannot be greater than the greatest arity of
why not links present in π. This is of course bounded by |π|i+1 (a contraction
of arity A at level i needs the presence of A flat links at level i + 1), so we can
conclude that

|π′|k ≤ |π|k|π|
n
i+1 ≤ |π|k|π|

|π|i
i+1,

where we have used Lemma 15, which tells us that n ≤ |π|i. Now, if put
l = ℓ(π′) = ℓ(π), we have

|π′| =
l∑

k=0

|π′|k ≤
l∑

k=0

|π|k|π|
|π|i
i+1 = |π||π|

|π|i
i+1 ≤ |π|

|π|+1 ≤ 22|π|

,

as stated in our thesis. �
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Theorem 17 (Elementary bound for mL3). Let π be an mL3 proof net of
size s and level l. Then, the round-by-round procedure reaches a normal form
in at most (l + 1)2s

2l steps.

Proof. We can decompose the reduction from π to its normal form πl as fol-
lows: π = π−1 →∗ π0 · · · →∗ πl, where each πi is i-normal. By Lemma 15, if we
call the length of the whole reduction sequence L, we have

L ≤
l∑

i=0

|πi−1|i ≤
l∑

i=0

|πi−1|.

The reductions leading from πi to πi+1 can be further decomposed as πi →∗

π′
i →

∗ πi+1, where π′
i is the first i-contractive proof net obtained in the reduc-

tion sequence. Observe now that the size of proof nets does not grow under
non-contractive steps; therefore, for all i, |π′

i| ≤ |πi|. From this, if we apply

Lemma 16, we have that, for all i, |πi+1| ≤ 2
|πi|
2 .

It can now be proved by a straightforward induction that, for all i ≥ 0, we
have |πi−1| ≤ 2s

2i. Hence, we obtain

L ≤
l∑

i=0

|πi−1| ≤
l∑

i=0

2s
2i ≤ (l + 1)2s

2l,

as desired. �

Note that, in case we have a mELL proof net π of size s and depth d, by
Proposition 8 depth and level coincide, so the above results tells us that π can
be reduced in at most (d + 1)2s

2d steps, which is the bound found by Danos
and Joinet (2003). However, in mL3 it is in general the level that controls the
complexity, not the depth. Fig. 16 gives a clear example of this. It uses the
fact that, following again Danos and Joinet (2003), in mELL the exponential
function exp(n) = 2n can be programmed as a proof net of conclusions N⊥, !N,
where N is a suitable type of natural numbers, the cut-free proof nets of con-
clusion N corresponding to Church integers, in analogy with the example given
in Fig. 14. Then, the cut-free form of the proof net θn of Fig. 16 is the proof
net representing the number 2n, i.e., a tower of powers of 2 of height n. Hence,
the size of θn is linear in n, but the size of its cut-free form is hyperexponential
in n. This is in accordance with Theorem 17, because the level of θn turns out
to be n. And yet, the depth of each θn is constant, indeed merely equal to 1.

3.3. Polynomial bound for mL4

In the case of mL4, a finer analysis leads to a substantial improvement of
Theorem 17. In the following, if a box C contains a box B, we shall write B ⊆ C.
The relation ⊆ is obviously a finite, downward-arborescent partial order.

Definition 23 (Light contractive order). Let π be an mL3 proof net, and
let B, C be boxes of π. We put B ≺L

1 C iff B ≺1 C and B 6⊆ C. We denote by �L

the reflexive transitive closure of ≺L

1 , or, equivalently, we put B �L C iff B = C,
or B � C and B 6⊆ C.
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Figure 16: The proof net θn, an iteration of n proof nets computing the exponential function.

Lemma 18. In mL4, the relation �L is an upward-arborescent partial order.

Proof. The fact that it is a partial order follows trivially from its definition and
from Lemma 12, and indeed this is true for mL3 as well. For what concerns its
arborescence, simply observe that, by the lightness condition of Definition 16,
for each box C of an mL4 proof net there may be at most one B such that
B ≺L

1 C. �

Observe that, if B, C are two boxes of an mL4 proof net, thanks to the
stratification condition B ≺L

1 C implies d(B) = d(C). In fact, in mL4 the light
contractive order is simply a “depth-wise slicing” of the contractive order.

For example, if we take the proof net of Fig. 17, we see that the contractive
order at level 0 is linear, i.e., B � C � B0, while in the light contractive order
we only have B �L C, and B0 is incomparable with both B and C, because it is
not at the same depth.

Definition 24 (Arity of a box). Let π be an mL3 proof net, and let B be a
box of π. The arity of B, denoted by ∇(B), is defined as follows:

• if the principal port of B is premise of a cut link whose other premise is
the conclusion of a why not link w, then ∇(B) is equal to the arity of w
minus the number of flat links above w which are inside a box C such that
B ≺L

1 C;

• otherwise, ∇(B) = 1.

Concretely, the arity of a box at level i and depth d is the number of copies
that will be made of its content and that will not be subjected to further dupli-
cations by reducing cuts at level i and depth d.

In the example of Fig. 17, the why not link w to which B is cut has arity 3,
but one of the flat links above it is inside a box C such that B ≺L

1 C, hence
∇(B) = 2 (note that we do not have B ≺L

1 D because D is not at the same level
as B). On the other hand, the arities of the other two boxes at level 0 are equal
to the arities of their corresponding why not links: ∇(C) = 2 and ∇(B0) = 2.
Instead, since D is not involved in a cut, ∇(D) = 1.
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Figure 17: The proof net of Fig. 15 (auxiliary ports are not drawn because irrelevant to the
discussion of this section). Levels are omitted, since they are the same as those of Fig. 15.
Instead, each link has its potential size relative to level 0 (see Definition 27) annotated beside
it.

Definition 25 (Contractive factor). Let π be an mL3 proof net, and let B
be a box of π. The contractive factor of B, denoted by µ(B), is then defined as
follows:

µ(B) =
∑

B�LC

∇(C).

Lemma 19. Let π be an mL4 proof net, and let B be a box of π. Then,

µ(B) = ∇(B) +
∑

B≺L

1
C

µ(C).

Proof. Simply observe that, by Lemma 18, the set {C ; B �L C} can be
partitioned into {B} ∪

⋃
B≺L

1
C{D ; C �L D}. �

Definition 26 (Duplication factor). Let π be an mL3 proof net, and let B
be a box of π. The duplication factor of B, denoted by δ(B), is the following
non-negative integer:

δ(B) =
∏

B⊆C

µ(C),

where only boxes at the same level as B are considered in the product.

Still referring to Fig. 17, we have µ(B) = ∇(B) + ∇(C) = 4, while the
contractive factors of C and B0 are equal to their arities, because these boxes
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are maximal in the light contractive order. This gives δ(B) = µ(B)µ(B0) = 8,
δ(C) = µ(C)µ(B0) = 4, while B0 is maximal w.r.t. ⊆ and so δ(B0) = µ(B0) = 2.

Intuitively, the duplication factor of a box B at level i says how many copies
of the content of B will be present at the end of the round at level i of our
cut-elimination procedure. In fact, the contractive factor takes into account the
duplications originating from “chains” of boxes at the same depth; to obtain
the duplication factor of a box B, one must multiply the contractive factors of
all boxes containing B.

This is well shown in Fig. 17: when one reduces the cut link c, 3 copies of
the content of B are made, but one of them will be duplicated again when the
cut concerning C is reduced, so 4 = µ(B) copies are actually produced. We are
not quite done though: the reduction of the cut concerning B0 yields a further
duplication of (the residues of) the content of B. Indeed, we invite the reader
to check that exactly 8 = δ(B) residues of the content of B are present in the
normal form of the proof net of Fig. 17.

This motivates the following definition:

Definition 27 (Potential size). Let π be an mL3 proof net, and k ∈ Z. The
potential size relative to k of a link a of π, denoted by [a]k, is defined as follows:
let B be the minimal box w.r.t. ⊆ of level k containing a; if B exists, we set
[a]k = δ(B), otherwise [a]k = 1. The potential size relative to k of π is simply
the sum of the potential sizes of its links:

[π]k =
∑

a

[a]k,

where a ranges over all links of π which are not auxiliary ports.

As suggested above, [π]i is intended to give an estimate of the size of the
proof net obtained by executing the round-by-round procedure at level i. This
intuition is formalized by the following result:

Lemma 20. Let π be an i-contractive mL4 proof net. Then:

1. if π is i-normal, then [π]i = |π|;

2. if π → π′ by reducing a minimal cut link (in the cut order) at level i, then
[π′]i < [π]i.

Proof. Part 1 is easy: simply observe that, if there is no reducible cut link at
level i, then for all B at level i, by definition we have ∇(B) = 1. From this, since
every box is maximal in the contractive order, we deduce µ(B) = ∇(B) = 1 for
all B at level i, and similarly δ(B) = 1. This implies [a]i = 1 for any link a of
π, which proves the result.

The proof of part 2 is based on a careful inspection of Fig. 7. We call the
why not link and the box reduced by the step resp. w and B. We also follow
the convention that all links/boxes of π will be denoted by “simple” letters
(a, C, . . .), while the links/boxes of π′ will be denoted by letters with a “prime”
(a′, C′, . . .); it shall be assumed that if the names of two links/boxes of resp.
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π, π′ differ only because of the absence/presence of a “prime”, then one is the
lift/residue of the other. For example, a is the lift of a′, C is the lift of C′,
etc. The links of π are partitioned into three classes (we ignore auxiliary ports
because they are not taken into account by the potential size):

C1: links represented in Fig. 7 having a residue in π′; these are exactly the
content of B (i.e., the links contained in the pre-net called π0 in the pic-
ture), and, if present, the why not link of conclusion ?Γ (recall that, by the
lightness condition, Γ is at most one formula; if Γ is empty, this link is not
present);

C2: links represented in Fig. 7 having no residue in π′; these are exactly w, the
principal port of B, the cut link reduced by the step, and all of the flat links
shown;

C3: all other links of π, i.e., those “outside of the picture” in Fig. 7. These links
have exactly one residue in π′.

Similarly, the links of π′ can be partitioned into the following three classes:

C′
1: links having a lift of class 1 in π; these are exactly the links contained in

one of the copies of π0, and (if present) the why not link of conclusion ?Γ;

C′
2: links having no lift in π; these are exactly all of the cut links represented

in the right member of Fig. 7;

C′
3: links having a lift of class 3 in π.

The class of a box of π or π′ will be the one of its principal port.
Intuitively, in π (resp. π′), a link of class 1 is a link which will be (resp. has

been) duplicated or altered by the execution of the step; a link of class 2 is a
link that disappears during (resp. is created by) the execution of the step; and
a link of class 3 is a link to which “nothing will happen” (resp. “nothing has
happened”) during the execution of the step.

Before continuing with the proof, we invite the reader to pause a moment
and look again at Fig. 17. The proof net in the picture, which we denote by
π, is readily seen to be 0-contractive. As already noted above, the contractive
order at level 0 is B � C � B0, so the minimal cut in the cut order is the one
denoted by c. After reducing it, we obtain the proof net π′ given in Fig. 18. In
both figures, links filled with a dark shade are of class 1, those filled with a light
shade are of class 2, and unfilled links are of class 3.

We shall now verify part 2 of the lemma on this concrete example, by count-
ing the links in each class and their potential sizes. We start with class 1
(dark-filled links). There are only 2 such links in π: the par and axiom link
inside B. The deepest box of level 0 containing them is precisely B, so their
potential size is δ(B) = 8. Therefore, the potential size of class 1 links of π is
16. For what concerns π′, we find 3 copies of these two links: one inside C′, one
inside D′, and one strictly inside B′

0. The first ones have potential size δ(C′) = 4,
and the last ones δ(B′

0) = 2. For concerns the remaining copy, although it is
contained in D′, this box has level 1, so the potential size is again δ(B′

0) = 2.
Hence, the total potential size is 8 + 4 + 4 = 16, i.e., identical to that of the
links of class 1 of π.
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Figure 18: The result of reducing the cut link c in the proof net of Fig. 17.

We may now turn to the links of class 2 (light-filled links). In π, there are 6
of these, all of potential size 2 except the flat link inside C, which has potential
size δ(C) = 4. The overall contribution to the potential size of π from the links
of class 2 is therefore 14. In π′, all of these links have disappeared, and have
been replaced by 3 cuts at level 1. Just as the flat links of class 2 in π, two
of these cut links have potential weight 2, and one 4, giving a total of 8 < 14.
Hence, in going from π to π′ we have lost the potential size of the three links of
class 2 of π directly involved in the cut, i.e., the principal port of B, the why not

link w, and the cut link c itself.
Finally, we consider the links of class 3 (unfilled links). We invite the reader

to check that, for each link a of class 3 in π, there is exactly one residue a′ in
π′, and [a]0 = [a′]0. Therefore, the contribution to the potential size of the links
in this class is preserved under reduction, and in the end we get [π′]0 < [π]0, as
stated in the lemma.

We may now resume the proof. First of all, we recall the following funda-
mental fact, which holds by the minimality of the cut under reduction:

Fact If B1 is a box of level i such that B1 ⊆ B, then B1 is not involved in a
reducible cut.

The above fact can be used to infer the following series of preliminary results
(before even reading the proofs, we strongly invite the reader to verify each one
of them on the examples of Fig. 17 and 18):

Claim 1. Let B′
1,B

′
2 be two boxes of level i. Then, B′

1 �
L B′

2 iff B1 �L B2.
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Proof. Start by supposing that B′
1 ≺

L

1 B
′
2. By definition, B′

1 is cut, by means
of a cut link c′, with a why not link above which there is exactly one (by the
lightness condition) flat link inside B′

2. Observe that there are no cut links of
class 1 in π′, so c′ must be either of class 2 or 3. In the second case, obviously B′

1

and B′
2 are also of class 33, so B1 �

L B2. The first case is actually impossible,
because the premises of c′ would be of level i + 1, hence none of them could be
conclusion of the principal port of B′

1.
Suppose now that B1 ≺L

1 B2. Note firstly that we are supposing B1,B2 to be
the lifts of resp. B′

1 and B′
2, so neither of B1,B2 can be equal to B. If they are

both of class 3, we immediately have B′
1 ≺

L
1 B

′
2. Suppose now that B ≺L

1 B1. We
cannot have B ≺L

1 B2, because this would contradict Lemma 18. Therefore, B2

is of class 3, and again obviously B′
1 ≺

L

1 B
′
2. We are left with the case in which

B1 is of class 1 and B 6≺L

1 B1. The only possibility would be that B1 ⊆ B, but
this is excluded by the above Fact, since we have supposed that B1 is involved
in a reducible cut. We have thus shown that B′

1 ≺
L
1 B

′
2 iff B1 ≺L

1 B2, which
obviously implies our claim. �

Claim 2. Let C′ be a box of level i. Then, ∇(C′) = ∇(C).

Proof. If C′ is not involved in a cut, then neither is C, so in this case the
statement is obvious. In case C′ is involved in a cut c′, this cannot be one of
the links of class 2 of π′, because they are all at level i + 1. Therefore, C is also
involved in a cut, with a why not link that we may call u. Now notice that, if u
is of class 3, then the arities of u and u′ coincide, and everything “above” u is
also of class 3, so the statement holds. But this is actually the only possibility:
in fact, if u were of class 1, it is easy to see that u would have to be the unique
(by the lightness condition) why not link such that, among its premises, there is
(by the stratification condition) the conclusion of the auxiliary port of B. In this
case, we would obtain C ≺1 B, contradicting the minimality of the cut under
reduction. �

Claim 3. If B1 is a box of level i such that B1 ⊆ B, then µ(B1) = 1.

Proof. In fact, µ(B1) > 1 would imply, by definition, that B1 is involved in a
contractive cut, which is impossible by the above Fact. �

Claims 1 and 2 have the following fundamental corollary:

Claim 4. If C is a box of class 3 of π at level i, then δ(C′) = δ(C).

Proof. Claims 1 and 2 immediately imply that, whenever D is of class 3,
µ(D′) = µ(D). Now, any box containing a box of class 3 in π is also of class 3,
so if D1, . . . ,Dn are the nested boxes of level i surrounding C in π, then in π′

we have boxes D′
1, . . . ,D

′
n of level i containing C′, with µ(D′

j) = µ(Dj) for all
1 ≤ j ≤ n, which proves the claim. �

Let now a3 ∈ C3, and let a′
3 be its unique residue. It is not hard to see

that, if a3 is not contained in any box at level i, then neither is a′
3, in which
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case [a3]i = [a′
3]i = 1. Otherwise, let B0 be the minimal box (w.r.t. ⊆) of level

i containing a3. Observe that B0 6⊆ B, because otherwise a3 would not be of
class 3. Therefore, B0 has a unique residue B′

0, and both are of class 3. By
Claim 4, δ(B0) = δ(B′

0), so again [a3] = [a′
3]. Recalling that every link of class 3

of π has exactly one residue in π′, this shows that
∑

a3∈C3

[a3]i =
∑

a′
3
∈C′

3

[a′
3]i.

Let instead a1 ∈ C1. If a1 is the why not link of conclusion ?Γ, then it has
a unique residue a′

1; in this case, by the same reasoning given above for links of
class 3, we can easily infer that [a1]i = [a′

1]i. Otherwise, a1 is a link belonging to
the pre-net called π0 in Fig. 7. In this case, a1 is contained in a box B1 ⊆ B at
level i; more precisely, there are n boxes B1, . . . ,Bn, all at level i, such that a1

is in B1 and B1 ⊆ · · · ⊆ Bn ⊆ B, where each inclusion is immediate, i.e., there is
no box at level i between Bj ,Bj+1 and Bn,B. Now, let ∆ = δ(B0), where B0 is
the minimal (w.r.t. ⊆) box of level i containing B, or let ∆ = 1 if no such box
exists. By Claim 3, we have [a1]i = δ(B1) = ∆µ(B).

Consider now a residue a′
2 of a2. Each of the Bj above has a corresponding

residue B′
j at level i containing a′

2, such that B′
1 ⊆ · · · ⊆ B

′
n. Since the structure

of π0 is not changed in the duplication, each B′
j is maximal in the light contrac-

tive order and is not involved in a reducible cut, so µ(B′
j) = 1 for all j. There

are now two cases:

1. B′
n is not contained in any box of level i, or the minimal (w.r.t. ⊆) box

containing it is B′
0. Then, [a′

1]i = ∆. In fact, in case it exists, B0 is of
class 3, so by Claim 4, δ(B′

0) = δ(B0) = ∆;

2. There is a box C′ of level i strictly contained in B′
0 and containing B′

n. In this
case, by inspecting Fig. 7 under the stratification condition, it is not hard
to see that C′ is the unique residue of a box C such that B ≺L

1 C. Observe
that C is of class 3, so by Claim 4 we have [a′

1]i = δ(C′) = δ(C) = ∆µ(C).

If the arity of w is k ≥ 1, there are k residues of a1. Observe that case 1 applies
to exactly ∇(B) of them, while case 2 applies to all other residues, and, because
of the lightness condition, there is exactly one residue of this latter kind for each
C such that B ≺L

1 C. So, if we denote by A′
1 the set of all residues of a1, we

have, using Lemma 19,
∑

a′
1
∈A′

1

[a′
1]i = ∆∇(B) +

∑

B≺L

1
C

∆µ(C) = ∆µ(B) = [a1]i.

If we put together what we have said up to now, we obtain an identical result
for the links of class 1 as the one obtained above for the links of class 3:

∑

a1∈C1

[a1]i =
∑

a′
1
∈C′

1

[a′
1]i.

We now get to the links of class 2, starting with those of π. The principal
port of B, w, and c, have all potential size ∆, where ∆ is the same quantity
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introduced above. For what concerns the flat links shown in the picture, ∇(B) of
them have again potential weight ∆, while the others are each immediately (by
the stratification condition) contained in a different (by the lightness condition)
box C such that B ≺L

1 C, in which case the potential size is ∆µ(C). Therefore,
we have

∑

a2∈C2

[a2]i = 3∆ + ∆∇(B) +
∑

B≺L

1
C

∆µ(C) = ∆(3 + µ(B)).

On the other hand, the only links of class 2 of π′ are the cut links shown in
the picture. Exactly ∇(B) of these have potential size ∆, while the rest have
each potential size δ(C′), where C is a box such that B ≺L

1 C (of course we are
implicitly using the above Claims to infer these facts). But, using Claim 4, we
have that δ(C′) = δ(C) = ∆µ(C), for all C as above. Therefore, remembering
that ∆ ≥ 1, we obtain

∑

a′
2
∈C′

2

[a′
2]i = ∆∇(B) +

∑

B≺L

1
C

∆µ(C) = ∆µ(B) <
∑

a2∈C2

[a2]i,

which concludes the proof of part 2. �

We remark that the strict inequality of part 2 of Lemma 20 is a sort of an
“accident”, and is of no real technical value: what matters in the statement is
that [π]i linearly bounds [π′]i. Lemma 23 below, which crucially uses Lemma 20,
would hold even if we only had [π′]i = [π]i, and indeed this is true at all
levels except level i itself, where the three links directly involved in the cut
“disappear”, and with them their potential size. More precisely, if we define the
quantity [π]ji as the potential size relative to i of all links of π of level j, then

point 2 of Lemma 20 can be replaced by [π′]ji = [π]ji for all i 6= j and [π′]ii < [π]ii.
As already noted above, the duplication factor of a box B is influenced not

only by the boxes C at the same depth as B such that B �L C, but also by the
boxes at the same level as B which contain it. To quantify this phenomenon, we
define the notion of relative depth, which will be useful in bounding the potential
size of a proof net (Lemma 21) and will be proved to have the same behavior
as the level with respect to reduction, i.e., it is non-increasing (Lemma 22).

Definition 28 (Relative depth). Let π be an mL3 proof net, and let B be a

box of π. We denote by B̂ the maximal (w.r.t. ⊆) box of π at the same level as

B such that B ⊆ B̂. The relative depth of B, denoted by ρ(B), is the following
non-negative integer:

ρ(B) = d(B)− d(B̂).

The relative depth of π, also denoted by ρ(π), is the maximum relative depth
of its boxes.

Observe that, because ⊆ is downward-arborescent, the relative depth of a box
B can be equivalently defined as the number of boxes C at the same level as B
such that B ⊆ C, minus one.
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Lemma 21. Let π be an mL3 proof net. Then, [π]i ≤ |π|
ρ(π)+2 for all i ∈ Z.

Proof. Recall from the definition that [π]i =
∑

a[a]i, where the sum ranges
over all links of π other than auxiliary ports. Now let M = max{[a]i ; a ∈ π}.
Clearly we have that [π]i ≤ M |π|. Now M must be the duplication factor of a
box B of level i of π. For any such box, we have µ(B) =

∑
B�LC ∇(C). Observe

that a flat link contributing to the arity of a box cannot contribute to the arity
of another box; therefore, even if the sum defining µ(B) ranged over every box
of π, we would still have µ(B) ≤ |π|. From this, recalling that the relative depth
of a box B of level i is the number of boxes C of level i such that B ⊆ C, minus
one, we have

δ(B) =
∏

B⊆C

ℓ(C)=i

µ(C) ≤
∏

B⊆C

ℓ(C)=i

|π| ≤ |π|ρ(π)+1
,

which concludes the proof. �

Lemma 22. Let π be an mL4 proof net such that π → π′. Then, ρ(π′) ≤ ρ(π).

Proof. The depth of a box C can only be affected during an exponential step,
and only if it is contained in the pre-net called π0 in Fig. 7. Then, if C′ is a
residue of C in π′, by the stratification condition we either have d(C′) = d(C) or

d(C′) = d(C)− 1, so in general d(C′) ≤ d(C).

Now, call the box under reduction B; observe that C ⊆ B, so B and Ĉ cannot
be disjoint. If we write B1 ⊂ B2 for B1 ⊆ B2 and B1 6= B2, then we can
distinguish three cases: either Ĉ ⊂ B, or B ⊂ Ĉ, or Ĉ = B. In all cases, we put
D′ = Ĉ′.

• In the first case, the depth of D′ varies w.r.t. the depth of Ĉ just as the
depth of C′ varies w.r.t. the depth of C, so ρ(C′) = ρ(C).

• In the second case, D′ is the unique residue of Ĉ, and d(D′) = d(Ĉ), so

ρ(C′) = d(C′)− d(D′) ≤ d(C)− d(Ĉ) = ρ(C).

• In the third case, we start by supposing that the lift D of D′ is disjoint
from B. Then, the stratification condition gives us that B ≺L

1 D and

d(D′) = d(D) = d(B), so that ρ(C′) = ρ(C). Suppose now that D and
B are not disjoint. Since B has no residue in π′, we have either B ⊂ D
or D ⊂ B. But the first case is actually impossible, because it would
contradict the fact that B = Ĉ, since D is at the same level as C. Therefore,
we must have D ⊂ B, so that d(B) < d(D). Now, as in the first case,

ρ(C′) = d(C′)− d(D′) = d(C)− d(D) < d(C)− d(B) = ρ(C).

�
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The technical machinery we have been building up through the section will
now be used to finally infer our polynomial bound on the reduction of mL4

proof nets.

Lemma 23. Let π be an (i − 1)-normal mL4 proof net, and let π′ be the i-
normal proof net obtained from π by applying the round-by-round procedure at

level i. Then, |π′| ≤ |π|ρ(π)+2.

Proof. We can decompose the reduction from π to π′ into π →∗ π0 →
∗ π′,

where π0 is the first i-contractive proof net obtained during the reduction. Now,
applying, in the order, points 1 and 2 of Lemma 20, Lemma 21, Lemma 22, and
the well known fact that |π0| ≤ |π|, we obtain

|π′| = [π′]i ≤ [π0]i ≤ |π0|
ρ(π0)+2 ≤ |π0|

ρ(π)+2 ≤ |π|ρ(π)+2,

as desired. �

Theorem 24 (Polynomial bound for mL4). Let π be an mL4 proof net of
size s, level l, and relative depth r. Then, the round-by-round procedure reaches

a normal form in at most (l + 1)s(r+2)l

steps.

Proof. We start by applying the same arguments used in the beginning of the
proof of Theorem 17: we decompose the reduction from π to its normal form πl

into π = π−1 →∗ π0 · · · →∗ πl, where each πi is i-normal; then, using Lemma 15
(which is valid because mL4 is a subsystem of mL3), if we call the length of
the whole reduction sequence L, we can write

L ≤
l∑

i=0

|πi−1|.

Now, using Lemma 23, we have, for all 0 ≤ i ≤ l, |πi| ≤ |πi−1|
ρ(πi−1)+2

. But,
by Lemma 22, for all 0 ≤ i ≤ l, we have ρ(πi) ≤ ρ(π), so we can actually write

|πi| ≤ |πi−1|
r+2

.

From this, it can be proved by a straightforward induction that, for all i ≥ 0,
we have |πi−1| ≤ s(r+2)i

. Hence, we obtain

L ≤
l∑

i=0

|πi−1| ≤
l∑

i=0

s(r+2)i

≤ (l + 1)s(r+2)l

,

which is the bound stated in the thesis. �

Observe that, by Proposition 9, if π+ is the mL4 embedding of an mLLL
proof net π of size s and depth d, then |π+| = s, ℓ(π+) = d, and ρ(π+) = 0, so

that normalizing π+ takes at most (d + 1)s2d

steps, which is the same bound
given by Girard (1998).
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3.4. Characterization of FE and FP

Propositions 8 and 9 tell us that mL3 and mL4 are conservative extensions
of mELL and mLLL, so programming in the former systems can be done using
the same types and proofs as in the latter. In particular, the type of finite binary
strings in mL3 and mL4 are respectively

SE = ∀X.(?(X⊥ ⊗X)` ?(X⊥ ⊗X)` !(X⊥
`X)),

SP = ∀X.(?(X⊥ ⊗X)` ?(X⊥ ⊗X)` §(X⊥
`X)).

Then, one can represent binary strings as in Girard (1998) and Danos and Joinet
(2003). In the following, we write !kA (resp. §kA) for the formula A preceded
by k of course (resp. paragraph) modalities, and if ϕ and ξ are two proof nets
of respective conclusions A⊥, B and A, we denote by ϕ(ξ) the proof net of
conclusion B obtained from ϕ and ξ by adding a cut link whose premises are
the conclusions of type A⊥, A of resp. ϕ and ξ.

Definition 29 (Representation). A function f : {0, 1}∗ → {0, 1}∗ is rep-
resentable in mL3 (resp. mL4) iff there exists k ∈ N and a proof net ϕ of
conclusions S⊥

E
, !kSE (resp. S⊥

P
, §kSP) such that f(x) = y iff ϕ(ξ) →∗ υ, where

ξ is the proof net of conclusion SE (resp. SP) representing x, and υ is the proof
net of conclusion !kSE (resp. §kSP) which is the representation of y enclosed
in k boxes (resp. followed by k paragraph links). We denote by FmL3 (resp.
FmL4) the class of functions representable in mL3 (resp. mL4).

A fundamental remark now is that the level and relative depth of the rep-
resentation of a datum do not depend on the datum itself: all cut-free proof
nets of type SE representing binary strings in mL3 have level 1, and all cut-free
proof nets of type SP representing binary strings in mL4 have level 1 and rela-
tive depth 0. In both cases, the size of the proof net is equal to 3n + 6, where
n is the length of the string represented.

Thanks to the above, the soundness of mL3 and mL4 with respect to FE
and FP, respectively, is a consequence of Theorems 17 and 24, modulo the
arguments given at the end of Sect. 1.4. For the completeness side we have:

Proposition 25. Any function f : {0, 1}∗ → {0, 1}∗ computable on a Turing
machine in time O(2n

d ) can be represented in mL3 by a proof net of level d and
of conclusions S⊥

E
, !dSE.

Any function f : {0, 1}∗ → {0, 1}∗ computable on a Turing machine in time

O(n2d

) can be represented in mL4 by a proof net of level d and of conclusions
S⊥

P
, §dSP.

Proof. Let us start with the second statement. First, Mairson and Terui
(2003) show that a O(2n

d ) function can be represented in mLLL by a proof net
of depth d and of conclusions S⊥

P
, §dSP. Now we can obtain our statement by

using the fact that any mLLL proof net of depth d gives an mL4 proof net of
level d (Proposition 9).
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As to the first statement, we have already recalled in the discussion after
Theorem 17 that Danos and Joinet (2003) give an encoding of the function
n 7→ 2n

d in mELL as a proof net of depth d of conclusions N⊥, !dN, where N is
a type for tally integers. Using this fact and the encoding of Turing machines
in mELL following the one from Mairson and Terui (2003), we obtain that a
function of O(2n

d ) can be represented in mELL by a proof net of depth d and
of conclusions S⊥

E
, !dSE. We then conclude as above, recalling that any mELL

proof net of depth d gives an mL3 proof net of level d (Proposition 8). �

Hence, we finally have:

Theorem 26 (Characterization of FE and FP). FmL3 and FmL4 coin-
cide respectively with FE and FP.

Observe that, due to the isomorphism §(A ` B) ∼= §A ` §B, in mL4 one may
use the type S′

P
= ∀X.(?(X⊥ ⊗X)` ?(X⊥⊗X)` (§X⊥` §X)) with virtually

no difference, i.e., Theorem 26 still holds if we represent binary strings with this
modified type.

4. Restricting the Language of Formulas

We have already observed that in mL4 there are the following isomorphisms:

§(A⊗B) ∼= §A⊗ §B §!A ∼= !§A §∀X.A ∼= ∀X.§A.

(Of course these isomorphisms hold in mL3 too, but we shall only deal with
the polytime system in this section, since the paragraph modality is not really
needed in mL3). More generally, given a formula A containing §, we may find
several isomorphic formulas by commuting § connectives with other connectives.
This implies that given a proof π of conclusion A, there are several computa-
tionally equivalent proofs that are obtained by composing π with isomorphisms.

Hence, if we want to use mL4, or a fragment of it, as a type system for
λ-terms, we will have for each term the choice between several types which
carry essentially the same information.

A natural idea at this point is to choose a representative of each equivalence
class of formulas, so as to obtain a “canonical” syntax. Given an mL4 formula
A, the obvious candidates to represent the equivalence class of A are the formula
in which all paragraphs have been pulled as close as possible to the root, and
the formula in which all paragraphs have been pushed to the atoms. Clearly,
only this latter choice is stable under composition of formulas (or prefixing
with quantifiers and modalities); therefore, we shall draw our attention to the
sublanguage of mL4 in which § connectives are only applied to atoms, and we
shall define a logical system, called mL4

0
, which uses such sublanguage.

To simplify the notations we shall replace §pX by the notation pX and let p
range over N. Thus, the language of formulas of mL4

0
, denoted by Form0, will

be generated by the following grammar:

A, B ::= pX | pX⊥ | A⊗B | A`B | !A | ?A | ∃X.A | ∀X.A,
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where p ∈ N. Linear negation is defined as expected: (pX)⊥ = pX⊥, (pX⊥)⊥ =
pX , and (·)⊥ commutes with all connectives, replacing the given connective with
its dual.

Given p ∈ N and a formula A ∈ Form0, we define p ·A by induction on A as
follows:

p · (qX) = (p + q)X

p · (qX⊥) = (p + q)X⊥

p · (A •B) = (p · A) • (p · B), where • ∈ {⊗,`}

p · †A = †(p · A), where † ∈ {!, ?}

p · ∇X.A = ∇X.(p · A), where ∇ ∈ {∀, ∃}.

Lemma 27. For any p, q ∈ N and A ∈ Form0, we have

p · (q · A) = (p + q) · A,

0 ·A = A.

Therefore, · is a monoid action on Form0.

It is a straightforward consequence of the definition that whenever a formula
A ∈ Form0 is equal to p · B for some B, then all subformulas of A are also
of the form p · B′ for some subformula B′ of B. Also, it is easy to check that
(p · A)⊥ = p · A⊥.

In the language of formulas we could actually let p range over Z instead of
N, and define a group action. We would then keep the same properties, but here
we stick to N in order to have a clearer correspondence with mL4 (that will be
described below).

We now introduce a notion of substitution adapted to the formulas of Form0:

Definition 30. For A, B ∈ Form0 we define A{B/X} by induction on A:

• if A = pX : pX{B/X} = p · B,

• if A = pX⊥: pX⊥{B/X} = p · B⊥,

• and {B/X} commutes with all connectives; for instance,

(A1 ⊗A2){B/X} = A1{B/X} ⊗A2{B/X}.

We may now proceed to introducing the system mL4

0
. For this, we first need

to define a suitable class of proof nets using the formulas of Form0.

Definition 31 (meLL0 proof nets). The nets of meLL0 are defined as in
Definition 1, but for the following modifications (w.r.t. Fig. 1):

• edges are labelled by formulas in Form0;
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• there is no paragraph link;

• axiom links may have conclusions p ·A⊥, A, for any p ∈ N;

• exists links have premise and conclusion with resp. types A{B/X} and
∃X.A.

The proof nets of meLL0 are defined from these nets as in Definition 4.

The intuition behind the unusual typing of the axiom link is that it corre-
sponds in L4 to a proof of §kA⊥, A, so an axiom followed by a series of paragraph

links. However in mL4

0
paragraphs are only on atoms, and this is why we have

a conclusion p ·A⊥ instead of §kA⊥.
Cut-elimination for meLL0 proof nets is defined as in meLL (Figures 4

through 8), except for the quantifier step (Fig. 6), which uses the substitution
A{B/X} instead of A[B/X ], and for the axiom step (Fig. 4), which is treated
as follows.

Let π be a meLL0 proof net, and let e be an edge of π. We say that a link
l of π is above e if there exists a directed path from the conclusion of l to e. We
define the tree of e, denoted by T (e), as the tree (ignoring boxes) whose root
is e and whose leaves are the conclusions of all the axiom and weakening links
above e. The axiom links above e are partitioned into three classes:

• a neutral axiom is an axiom link such that both of its conclusions are leaves
of T (e);

• a negative axiom is an axiom link whose conclusions are labelled by p ·A⊥,
A and such that only the conclusion labelled by p ·A⊥ is a leaf of T (e);

• a positive axiom is an axiom link whose conclusions are labelled by p ·A⊥,
A and such that only the conclusion labelled by A is a leaf of T (e).

If, in the negative or positive case, p = 0, then the axiom may be considered as
either positive or negative.

Now, suppose that π contains a cut link such that one premise is e and the
other premise is the conclusion e′ of an axiom link a. The reduction of such a
cut depends on whether a is positive or negative with respect to e′ (it cannot
be neutral, because T (e′) has only one leaf, e′ itself):

negative: we may assume that e′ is labelled by p ·A⊥, so that e is labelled by
p · A and the other conclusion e′′ of a is labelled by A. In this case, π
reduces to the proof net π′ obtained as follows:

• remove a, and make e coincide with e′′;

• since e is labelled by p · A, all formulas labelling the edges of T (e)
must be of the form p · B (cf. the remark after Lemma 27); then, in
π′ replace each p · B with B. It is easy to see that such a tree will
have conclusion A;
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• after this relabeling, if an axiom is neutral w.r.t. e, its conclusions
will change from p ·B, q · p ·B⊥ to B, q ·B⊥, so its residue is a valid
axiom of meLL0; if an axiom is positive or negative w.r.t. e, there is
nothing to check because only one of its conclusions has been affected.

positive: we may assume that e′ is labelled by A⊥, so that e is labelled by A
and the other conclusion e′′ of a is labelled by p ·A. In this case, π reduces
to the proof net π′ obtained as follows:

• remove a, and make e coincide with e′′;

• for each formula B labelling an edge of T (e), in π′ label the corre-
sponding edge with p · B; it is easy to see that such a tree will have
conclusion p ·A;

• it is also easy to check that all axioms in π′ are still correctly labelled,
just as in the negative case.

Definition 32 (Indexing). An indexing I for a meLL0 proof net is defined
as in Definition 12 but for the following modification: if e, e′ are the conclusions
of an axiom link with respective types p · A⊥ and A, then I should satisfy
I(e′) = I(e) + p.

Definition 33 (mL4

0
). The system mL4

0
is composed of all the proof nets of

meLL0 admitting an indexing as in Definition 32 and satisfying the Stratifica-
tion and Lightness conditions of Definition 16.

It only takes a (tedious) case-by-case inspection to check that the above defini-
tion is sound, i.e., that mL4

0 is stable under cut-elimination.
Note that, because of the constraint on axiom links (Definition 32), the

possibility of assigning an indexing to a meLL0 proof net depends on the typing,
in sharp contrast with the case of meLL proof nets. Because of this, defining an
untyped version of mL4

0
cannot be done as easily as for mL4 (i.e., just forgetting

the formulas).
A possible solution is the following. Consider a family of “p-links”, with

p ∈ N
∗, to be added to the usual links of untyped meLL proof nets. The effect

of a p-link is to “change the level by p”, i.e., a p-link has one premise and one
conclusion, whose levels must be resp. i + p and i (if typed, a p-link would have
premise A and conclusion p · A). We add the restriction that the premise of
a p-link must be the conclusion of an axiom link, and that each axiom has at
most one p-link “below”. Cut-elimination handles p-links by suitably adapting
the axiom steps to an untyped framework. We shall not give any detail of this;
the informal sketch we just gave is enough for our purposes.

Surprisingly, normalization fails in this system: there are untyped mL4 proof
nets whose reduction goes on forever. Perhaps this is not so strange after all:
these p-links basically add the possibility of “changing the level at will”, hence
they completely break the fundamental invariant of mL3 and mL4 proof nets
(in fact, the level of an untyped mL4

0
proof net may increase under reduction).
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The above discussion implies that it is impossible to adapt the arguments
of Theorem 24 to prove a complexity bound for mL4

0. Nonetheless, in the rest
of the section we shall argue that this system still characterizes deterministic
polytime computation.

In what follows, we denote by Form the set of meLL formulas as defined in
Sect. 1.1, i.e., including the paragraph modality. We shall now introduce two
translations between our two systems:

mL4
(·)0
−−→ mL4

0

mL4
(·)1
←−− mL4

0

We first define them on formulas; this is done by induction on the argument
formula:

X0 = 0X

(X⊥)0 = 0X⊥

(§A)0 = 1 · A0

and (·)0 commutes with the other connectives, e.g.

(A⊗B)0 = A0 ⊗B0

Similarly,

(pX)1 = §pX

(pX⊥)1 = §pX⊥

and (·)1 commutes with all connectives, e.g.

(A⊗B)1 = A1 ⊗B1

Observe that (·)0 ◦(·)1 is the identity on Form0, while (·)1 ◦(·)0 sends A ∈ Form
to the “canonical” representative of its equivalence class, i.e., the formula with
all § pushed to the atoms.

We shall now define how (·)0 and (·)1 behave on proofs. Let π be an mL4

proof net. We say that a link l is below an edge e or, equivalently, that e is above
l if in π there is a directed path from e to the premise of l. We then define π0

as follows:

• replace each axiom of conclusions A⊥, A by an axiom of conclusions q · A⊥,
p · A where q (resp. p) is the number of paragraph links below A⊥ (resp.
A) in π;

• remove paragraph links, and label each edge according to the relabeling
of the axioms.

Informally speaking, π0 is obtained from π by pushing paragraph connectives
upwards in the proof net, and “absorbing” them into the axioms. We have:
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Proposition 28. Let π be an mL4 proof net of conclusions Γ; then π0 is an
mL4

0 proof net of conclusions Γ0.

Proof. Since π is an mL4 proof net it can be given an indexing I. To define
an indexing I0 on π0 it is sufficient to define it on the conclusions of axioms.
Each axiom link a′ in π0 has conclusions e′1, e

′
2 with respective types of the form

q ·A⊥, p ·A and comes from an axiom a of π of conclusions e1, e2 with respective
types A⊥, A. W.l.o.g. we can assume q ≥ p. Let i = I(e1) = I(e2). Then set
I0(e

′
1) = i − q, I0(e

′
2) = i − p. Note that we have q · A⊥ = (q − p) · (p · A)⊥

and I0(e
′
2) = I0(e

′
1) + (q − p), so I0 satisfies the condition on axioms, and is

indeed an indexing. One can verify that π0 is well-typed; a fundamental remark
for this is that (·)0 preserves duality, i.e., (A⊥)0 = A⊥

0 . To conclude, observe
that the structure of π and π0 are basically identical: the only difference is
the absence of paragraph links in π0. But these are completely transparent to
both the connected-acyclic condition (Definition 4) and the Stratification and
Lightness conditions (Definition 16). Hence, since π satisfies these conditions,
so does π0, which means that this latter is an mL4

0 proof net. �

The translation (·)1 requires a few preliminary definitions:

Definition 34. Let A ∈ Form and p ∈ N; the net Rp
A is defined as follows:

• let SA be the mL4 proof net of conclusions A⊥, A, representing the η-
expansion of the axiom of conclusions A⊥, A;

• Rp
A is obtained from SA by replacing each axiom link of conclusion X⊥, X ,

where X⊥ is the type of the edge above the conclusion A⊥, by the same
link followed by p paragraph links below X⊥.

In the following, a weak mL4 proof net is a meLL proof net satisfying the
Stratification and Lightness conditions (Definition 16) and admitting a weak
indexing.

Lemma 29. For all A ∈ Form and p ∈ N, Rp
A is a weak mL4 proof net.

Proof. A straightforward induction on A. �

Let now π be an mL4

0
proof net of conclusions Γ. Then, π1 is obtained by

replacing each axiom of conclusions p · A⊥, A in π by Rp
A, and typing the rest

of the edges accordingly.

Proposition 30. Let π be an mL4

0 proof net of conclusions Γ; then π1 is an
mL4 proof net of conclusions Γ1.

Proof. A more or less obvious corollary of Lemma 29. �

Observe that (·)0 ◦ (·)1 does not act exactly as identity on mL4

0
proof nets,

but performs an η-expansion. On the other hand, (·)1 ◦ (·)0 behaves just like
its counterpart on Form: given π, it gives the isomorphic proof net in which all
paragraph links have been pushed to the axioms.
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Both mL4

0
and mL4 can be embedded in meLL. For the first system, there

is clearly a forgetful embedding U which simply erases the integers from atoms,
both in formulas and proofs: U(pX) = X , U(pX⊥) = X⊥, and U commutes
with all connectives. The second system is by definition a subsystem of meLL,
so the embedding would be trivial (the identity!); however, we are interested
here in the following translation (.)−:

• given a formula A ∈ Form, A− is A in which all § have been removed;

• given an mL4 proof net π, π− is π in which all paragraph links have been
removed, and types have been changed accordingly.

Clearly, both U and (.)− embed resp. mL4

0
and mL4 in “standard” meLL, i.e.,

multiplicative exponential linear logic without the paragraph modality (actually,
the embedding takes place in mELL). These two embeddings preserve cut-
elimination:

Lemma 31. Let π be an mL4
0 proof net. Then, π → π′ iff U(π)→ U(π′).

Proof. Simply observe that the untyped structure of π and U(π) is identical,
and cuts are reduced regardless of types (except quantifier cuts, but these are
easily seen to be reciprocally simulated in one step). �

Lemma 32. Let π be an mL4 proof net. Then, π → π′ iff π− →∗ (π′)− in at
most one step.

Proof. If π → π′, and the step applied is not a paragraph step, then clearly
π− → (π′)−. If it is a paragraph step, then it easy to see that (π′)− = π−.
For the converse, one reduction step in π− is always simulated by exactly one
reduction step in π. �

An important corollary of Lemma 31 is the confluence and strong normalization
of mL4

0, which follows from the similar properties of meLL (Girard, 1987).
We also have a useful result relating the two embeddings:

Lemma 33. Let π be an mL4 proof net. Then, U(π0) = π−.

Proof. As noted above, the translation (·)0 pushes paragraph links to the ax-
ioms, and then “absorbs” them into the formulas; then U forgets the annotations
concerning paragraphs. But this amounts to simply removing the § modality
from both π and its formulas. �

In the sequel, we denote by →η the application of one η-expansion step
to an mL4

0
proof net. One η-expansion step replaces a non-atomic axiom of

conclusions p ·C, C⊥ with axioms introducing the immediate subformulas of C.
Figures 19 and 20 give the definition for the cases C = A⊗B and C = ?A; the
other cases are treated similarly, as the reader may expect.
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→η
ax

ax

ax

⊗ `

p · (A⊗B) B⊥
`A⊥

A⊥

B

p · (A⊗ B) B⊥ `A⊥

p · B

p ·A

Figure 19: Multiplicative η-expansion step.

→η
ax

p · ?A !A⊥

ax

p · ?A !A⊥

♭

pax

?

!

p ·A A⊥

Figure 20: Exponential η-expansion step.

Lemma 34. Let π be an mL4

0
proof net such that π →η π1 → π2. Then, there

exist π′
1, π

′
2 such that π → π′

1 →
∗
η π′′

2 and π′
2 is β-equivalent to π2, i.e., they

have a common reduct through cut-elimination.

Proof. If the cut-elimination step applied in π1 → π2 is “far” from the axioms,
then the result is obvious. We can thus concentrate on the critical pairs, i.e.,
the situations in which the axiom which is expanded in going from π to π1 is
involved in a cut, and (the residue of) this cut is exactly the one reduced in
going from π1 to π2. We check the only interesting case, leaving the others to
the reader. Suppose that π contains an axiom a of conclusions p · ?A, !A⊥, and
the conclusion of type !A⊥ is the premise of a cut c, whose other premise is
the conclusion of a why not link w. We shall assume p = 0; the general case is
entirely similar. The η-expansion replaces a with a box containing a pre-net ι
consisting of an axiom of conclusions A, A⊥ and a flat link just below A. The
cut-elimination step makes n copies of ι, and cuts them to the appropriate links.
If we reduce these n cuts, we obtain a proof net that we call π′

2. Now, if we take
π and reduce c right away, it is immediate to see that we obtain exactly π′

2, and
η-expansion is not even needed. �

If π is a meLL or mL4

0
proof net, we denote by NF(π) its normal form, and

by
NF
−−→ reduction to the normal form. Then, we have:
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Lemma 35. The following diagrams commute:

mL4

0

NF // mL4

0

U

��
meLL

mL4

(·)0

OO

NF // mL4

(·)−

OO

mL4

0

NF //

(·)1

��

mL4

0

η

��
mL4

0

U

��
meLL

mL4
NF // mL4

(·)−

OO

where the dotted arrow means that one may need to η-expand some axioms to
close the second diagram.

Proof. For the first diagram, it is enough to prove that the three subdiagrams
of the following diagram commute:

mL4

0

NF //

U

$$II
II

II
II

I
mL4

0

U

��
meLL

NF // meLL

mL4

(·)0

OO

NF //

(·)−
::uuuuuuuuu

mL4

(·)−

OO

These are consequences of Lemmas 31, 32, and 33. For what concerns the second
diagram, it is enough to prove that the three subdiagrams of the following
diagram commute:

mL4

0

NF //

(·)1

��

NFη

""FF
FF

FF
FF

mL4

0

η

��
mL4

0

NF // mL4

0

U

��
meLL

mL4

(·)0

DD
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

NF // mL4

(·)−

OO

where NFη is the function associating with a proof net π its η-expanded form,
i.e., the proof net obtained by η-expanding all axioms of π until only atomic
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axioms are left. Now, the commutation of the triangle on the left is simply the
remark we made after Proposition 30, while the bottom subdiagram is nothing
but the first diagram of this lemma. Hence, all that is left to prove is the
commutation of the top subdiagram. This is a consequence of Lemma 34. In
fact, let π be an mL4

0 proof net, and let π′ = NFη(π) and π′′ = NF(π′). By
definition, we have π →∗

η π′ →∗ π′′. We shall prove by induction on the length of
the reduction π →∗

η π′ that NF(π)→∗
η π′′. If π′ = π, then clearly NF(π) = π′′.

If π →∗
η π1 →η π′, then, using Lemma 34, by a further induction on the length

of the reduction π′ →∗ π′′ we can prove that π1 →∗ π2 →∗
η π3, and π3 is

β-equivalent to π′′. But π′′ is a normal form, so π2 →∗
η π′′. Composing the

reductions, we have π →∗
η π1 →∗ π2 →∗

η π′′. Now the induction hypothesis
applies, because the reduction π →∗

η π1 is strictly shorter than π →∗
η π′. This

gives us NF(π)→∗
η π2 →

∗
η π′′, as desired. �

Note that from the first diagram and Lemma 33 we can infer that, for every
mL4 proof net π, U(NF(π0)) = U((NF(π))0). However, U is not injective,
so we cannot conclude that the translation (·)0 commutes with reduction. The
situation for the translation (·)1 is even worse: (NF(π1))− = ((NF(π))1)− holds
only up to η-equivalence.

We now proceed to argument how mL4

0
characterizes FP (Theorem 37).

First of all, we define the mL4
0 type of finite binary strings as follows:

S0 = ∀X.(?(0X⊥ ⊗ 0X)` ?(0X⊥ ⊗ 0X)` (1X⊥
` 1X)).

The reader can check that S0 = (SP)0 = (S′
P

)0, where SP and S′
P

are the two
isomorphic types that can be used for representing binary strings in mL4 (cf.
Sect. 3.4). Hence, by Proposition 28, if x is the mL4 proof net of conclusion SP

(or S′
P

) representing the string x, the same string can be represented in mL4

0

by the proof net (x)0.

Lemma 36. Let ξ, ξ′ be two cut-free proof nets of resp. mL4 and mL4

0
, of resp.

conclusion §pSP (or ((§pS′
P
)0)1) and p ·S0, such that U(ξ′) = ξ−. Then, ξ and

ξ′ represent the same binary string.

Proof. The fact that U(ξ′) = ξ− implies that ξ and ξ′ have the same untyped
structure modulo the presence of paragraph links in ξ; then the lemma is a
consequence of the types of the two proof nets, and of the fact that they are
cut-free. �

Given a non-negative integer p and an mL4

0
proof net π not containing

existential links, we denote by p · π the proof net obtained by replacing all
atoms A appearing in the types of π with p · A. It is easy to check that if π is
of conclusions Γ, then p · π is a well-typed mL4

0
proof net of conclusions p · Γ.

Moreover, if π contains only atomic axioms, then so does p · π.
In the following, if ϕ is a proof net of conclusions A⊥, B and ξ a proof net

of conclusion A, we use the notation ϕ(ξ) as introduced in Sect. 3.4. Observe
that both (·)0 and (·)1 are modular with respect to this notation, i.e., (ϕ(ξ))0 =
ϕ0(ξ0) and (ϕ(ξ))1 = ϕ1(ξ1).
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Definition 35 (Representation). Let f : {0, 1}∗ → {0, 1}∗. We say that f is
representable in mL4

0 if there exists p ∈ N and an mL4
0 proof net ϕ of conclusions

S0
⊥, p · S0 such that, whenever ξ is a proof net of conclusion S0 representing

the string x, we have f(x) = y iff NF(ϕ(x)) = p · υ, where υ represents y.

Theorem 37. Let f : {0, 1}∗ → {0, 1}∗. Then, f ∈ FP iff f is representable
in mL4

0
.

Proof. Let us start with the completeness of mL4

0
w.r.t. FP. Let f ∈ FP.

By Theorem 26 there exist p ∈ N and an mL4 proof net ϕ such that, for all
x ∈ {0, 1}∗, f(x) = y iff NF(ϕ(ξ)) = υ, where υ is the representation of y with
p paragraph links added to its conclusion. Let υ′ = NF((ϕ(ξ))0) = NF(ϕ0(ξ0)).
By the first diagram of Lemma 35, υ− = U(υ′), so by Lemma 36 ϕ0 represents f .

For what concerns soundness, let ϕ be an mL4

0
proof net of conclusions

S0
⊥, p · S0 representing the function f . For all x ∈ {0, 1}, if ξ is the mL4

0

representation of x, we have f(x) = y iff NF(ϕ(ξ)) = υ′, where υ′ = p · υ and
υ represents y. Now, observe that the representations of binary strings are all
η-expanded, which means that υ′ →∗

η υ′′ implies υ′′ = υ′. Hence, in the second
diagram of Lemma 35 we can replace the dotted arrow with the identity, and
obtain U(υ′) = (NF((ϕ(ξ))1))− = (NF(ϕ1(ξ1)))−. The proof net NF(ϕ1(ξ1))
is a normal form of type (p · S0)1 = ((§pS′

P
)0)1, so Lemma 36 applies, and ϕ1

represents f in mL4 according to the alternative definition which uses the type
S′

P
for binary strings. But, as we pointed out in Sect. 3.4, Theorem 26 is still

valid in this case, so f ∈ FP. �

4.1. Sequent calculus for mL4
0

It may be interesting to consider a sequent calculus formulation of mL4

0
, es-

pecially if one seeks to derive from it a type assignment system for the λ-calculus,
to be used to infer complexity properties about λ-terms (in the style, for exam-
ple, of DLAL (Baillot and Terui, 2004)). Starting from the 2-sequent calculus
for mL4 (Sect. 2.3), we end up with the rules given in Table 4 (daimon and mix
are again omitted, because identical to Table 1). As expected, weak mL4

0
proof

nets correspond to derivations in this calculus, and mL4
0 proof nets to proper

derivations. Observe the complete absence of a paragraph rule.

5. Concluding Remarks and Further Work

We may perhaps summarize the fundamental contribution of the present
work in one sentence: in linear-logical characterizations of complexity classes,
exponential boxes and stratification levels are two different things. From this
fact, we have seen how one can define an elementary system extending ELL,
and a polynomial system extending LLL. The main novelty of this latter,
which is in direct connection with the above fact, is the absence of §-boxes.
This implies that the paragraph modality commutes with all connectives; these
commutations can be exploited to devise a polynomial system with a simpler
class of formulas and fewer typing rules, which may be of interest for type
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⊢ p · A⊥i, Ai+p
Axiom ⊢ Γ, Ai ⊢ ∆, A⊥i

⊢ Γ, ∆
Cut

⊢ Γ, Ai ⊢ ∆, Bi

⊢ Γ, ∆, A⊗Bi
Tensor

⊢ Γ, Ai, Bi

⊢ Γ, A`Bi
Par

⊢ Γ, Ai

⊢ Γ, ∀X.Ai
For all (X not free in Γ)

⊢ Γ, A{B/X}i

⊢ Γ, ∃X.Ai
Exists

⊢ Bj+1, Ai+1

⊢ ?Bj , !Ai
Light promotion

⊢ Γ, Ai+1

⊢ Γ, ?Ai
Dereliction

⊢ Γ

⊢ Γ, ?Ai
Weakening

⊢ Γ, ?Ai, ?Ai

⊢ Γ, ?Ai
Contraction

Table 4: Rules for mL
4

0
2-sequent calculus. Daimon and mix are omitted.

assignment purposes. This is probably the most obvious direction of further
research given by this work; in the sequel, we discuss other remarks and open
questions.

Indexes and tiers. We already mentioned in the introduction how our form of
stratification reminds of ramification, a technique devised by Leivant and Marion
(1993) to characterize complexity classes within the λ-calculus. Ramification is
enforced by so-called tiers, which are integers assigned to subterms of a λ-term,
in close analogy with our indexes. However, we have not been able so far to
understand the formal relationship between the two, and we suspect this may
be an interesting subject for further work.

Intensionality. Concretely, the fact that mL3 and mL4 extend resp. mELL
and mLLL means that the first two systems have “more proofs” that the latter
two. Through the Curry-Howard looking glass, this means that mL3 and mL4

are intensionally more expressive than Girard’s corresponding systems, i.e., they
admit “more programs”. How many and which is still not clear though: we do
have examples of λ-terms which are not typable in multiplicative ELL and
yet are typable in mL3 (or even in mL4!), but none of these corresponds to
any “interesting” algorithm. So the question of whether our systems actually
improve on the intensionality of ELL and LLL remains open.

Naive set theory. Proposition 14 states that, if we take an untyped mL3 proof
net and start reducing its cuts, after a finite number of steps we either reach
a cut-free form or a deadlock, i.e., a proof net whose all cuts are ill-formed.
Now, the preservation of typing under reduction guarantees that, if the starting
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proof net is typed, then the latter case never happens; hence, mL3 satisfies
cut-elimination.

This sharply contrasts with the situation one has in meLL: weak normal-
ization blatantly fails in untyped meLL proof nets (the pure λ-calculus can be
translated in the system), and the proof of cut-elimination in the typed case is
highly complex, because of the presence of second order quantification. Indeed,
cut-elimination of second-order meLL proof nets is known to be equivalent to
the consistency of PA2 (Girard, 1987), for which no inductive proof has ever
been given (in other words, no-one knows what ordinal should replace ωω in a
proof like that of Proposition 14).

Following Girard (1998) and Terui (2004), one can build two naive set the-
ories out of mL3 and mL4, which can still be proved to be consistent, i.e.,
to satisfy cut-elimination. In spite of their low logical complexity (as in the
proof of Proposition 14, the consistency of these theories can be proved by an
induction up to ωω), these set theories are particularly interesting because they
are conservative extensions of the set theories based on elementary and light
linear logic: they still use unrestricted comprehension, and thus allow arbitrary
fixpoints of formulas, but they have more flexible logical principles, i.e., they
admit more proofs. Asking how many more is of course another way of posing
the above question about intensionality.

Additives. The additive connectives of linear logic (& and ⊕) have been ex-
cluded from this work; this is only a convenient choice, justified by the fact that
some proofs (in particular those of Proposition 14 and Theorems 17 and 24)
become simpler. There is no technical problem in adding them to our systems,
thus defining what we would call L3 and L4, which we still believe to exactly
characterize resp. elementary and deterministic polytime computation.

There is however one point worth mentioning. The most natural definition of
L4 extends the commutation of the paragraph modality to additive connectives
as well; in particular, the isomorphism §(A⊕B) ∼= §A⊕§B holds. Girard (2007)
has a nice argument against this being possible in LLL, which goes as follows.
For the sake of contradiction, suppose we can prove §(A⊕B) ⊸ §A⊕§B in LLL,
and hence §p(A⊕B) ⊸ §pA⊕§pB for any p ∈ N. Booleans can be easily encoded
using the type V1 ⊕ V2, where V1 and V2 are two formulas admitting exactly
one proof (for example V1 = V2 = ∀X.(X⊥ ` X)). By similar definitions and
arguments to those of Definition 29 and Theorem 26, any language in P can be
represented by an LLL proof net ϕ of conclusions S⊥

P
, §p(V1⊕V2) for a suitable

value of p depending on the language itself. Now, using the commutation of the
paragraph modality, we can transform ϕ into a proof net ϕ′ of S⊥

P
, §pV1 ⊕ §pV2.

If we want to know whether the string x belongs to our language or not, we may
simply take the proof net ξ representing x and normalize ϕ′(ξ) (we are using
the notation of Sect. 3.4), which has conclusion §pV1 ⊕ §pV2. Observe that the
main connective of this formula is ⊕, hence the plus link introducing it must
be at depth zero, i.e., it is not contained in any exponential box. Observe also
that the result of the computation is known as soon as the nature of this link
is known, i.e., whether §pV1 ⊕ §

pV2 is introduced from §pV1 or §pV2. But then,

57



to have our answer, it is enough to stop the “round-by-round” cut-elimination
procedure right after depth zero. In LLL, normalizing just one depth is linear
in the size of the proof net, so we can solve any deterministic polytime problem
in linear time, which is obviously false.

This argument however does not apply to L4 because of the crucial difference
between depth and level. A language in P may as well be represented in L4 by
a proof net ϕ′ of conclusions S⊥

P
, §pV1 ⊕ §pV2, and it remains true that it is

enough to normalize depth zero of ϕ′(ξ) to know whether the string represented
by ξ is in the language or not; however, the “round-by-round” cut-elimination
procedure for L4 goes level by level, and depth zero may contain arbitrary many
levels (in this case, p levels is a good guess). Hence, normalizing just one depth
may take a number of steps far from being linear in the size of the proof net, as
we already showed in the example of Fig. 16.

Denotational semantics. Recently, Laurent and Tortora de Falco (2006) have
proposed a denotational semantics for Girard’s ELL and Lafont’s SLL. To-
gether with stratified coherence spaces (Baillot, 2004), these are very interesting
attempts at giving a completely semantic definition of complexity classes.

The present paper offers a new and arguably novel starting point in this
perspective: ongoing work with Tortora de Falco seems to be yielding promising
results in the direction of finding a denotational semantics for mL3, which, like
that for ELL, is still based on the relational semantics for linear logic, but is of
a rather different nature.
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