
Under consideration for publication in Math. Struct. in Comp. Science

Measuring the Expressiveness of Rewriting

Systems through Event Structures

Damiano Maz za

Laboratoire d’Informatique de Paris Nord

UMR 7030 CNRS - Université Paris 13, F-93430 Villetaneuse, France

damiano.mazza@lipn.univ-paris13.fr

http://www-lipn.univ-paris13.fr/∼mazza

Received 15 May 2010

We develop a methodology for studying and comparing the expressiveness of

computational models which are based on rewriting. We consider a class of rewriting

systems, which we call normal, admitting a natural interpretation in terms of event

structures; this is done by building up on work of Mazurkiewicz, Nielsen, Plotkin,

Winskel, Melliès, and Mimram. Then, we introduce the notion of bisimilar embedding of

event structures, which allows us to say when a computational system is “at least as

expressive” as another one, as soon as these two are described in terms of event

structures. Finally, we prove a few separation results for normal rewriting systems based

on this notion, and we give an application of these to interaction nets and their

non-deterministic variants, including Ehrhard and Regnier’s differential interaction nets.

Introduction

Interaction nets (Lafont, 1990) are a computational model based on linear logic proof

nets (Girard, 1996). In their original formulation, they express only deterministic com-

putation; however, Alexiev (1999) and other authors (Khalil, 2003; Mazza, 2005; Beffara

and Maurel, 2006; Ehrhard and Regnier, 2006) independently introduced several non-

deterministic extensions, either on purely proof-theoretic grounds, or with the explicit

aim of broadening the computational paradigm captured by interaction nets, in particular

towards interaction-net-based models of mobile and concurrent systems.

The question that motivated this work is: what is the expressive power of interaction

nets? An obvious answer is “they are Turing-complete”; but it is even more obvious

that we do not consider such answer to be meaningful at all, otherwise there would

be no point in studying extensions of Lafont’s original model (which is already Turing-

complete (Lafont, 1997)). If we are interested in such extensions, it is because we look

not only at what we compute, but also at how we compute it.

We are therefore seeking some kind of measure of the intensional expressiveness of

a computational model, instead of simply considering the set of functions it is able

to compute. We point out that there is no generally accepted way of doing this; our

assumption will be that a computational process may be described as a collection of

Damiano Mazza 2

events, which are related by causality and conflict. Causality is an abstraction of time in

computation, and allows one to speak of sequentiality and parallelism. Conflict describes

non-determinism: if two events are in conflict, we are in front of a choice between the

two, as the occurrence of either one of them excludes the occurrence of the other.

This view of computation has long been considered by Winskel in his event struc-

tures (Winskel, 1980), which formalize precisely the concepts of causality and conflict

discussed above. The actual meaning of “event” depends on the computational model

which is being interpreted as an event structure: for instance, in Turing machines or Petri

nets, it is usually convenient to identify events with the executions of transitions. In the

case of Turing machines, causality and conflict are trivial: each transition depends on

the occurrence of the previous transition, and is necessary for the execution of the next

(i.e., we have a linear order), and there is no conflict. By contrast, causality and conflict

between transitions can be much more intricate in the case of Petri nets.

The idea now is that the intensional expressiveness of a computational model is given by

the complexity of the causality and conflict structure of its events. Defining the “complex-

ity” of such structure in an absolute way is difficult, and probably meaningless; instead,

we may take a relative, comparative approach. One of the most widely used techniques

to compare computational systems in presence of non-determinism and concurrency is

that of relating them through bisimulations. In the context of event structures, a notion

of bisimulation, called history-preserving bisimulation, was independently introduced by

Rabinovitch and Traktenbrot (1988) and van Glabeek and Goltz (1989); later, Joyal

et al. (1996) introduced a stronger notion, which has the advantage of fitting into a

broad categorical framework.

In this paper, we consider the weaker notion, because we are mostly interested in

separation results, whose meaningfulness is inversely proportional to the strength of the

equivalences considered. Based on this, we introduce a notion of bisimilar embedding

of event structures (cf. Sect. 3). Intuitively, an event structure E embeds in an event

structure E′ if this latter contains one or more copies of E, up to bisimilarity. This gives

us an arguably natural way of saying that a model is “at least as expressive” as another,

as soon as these are described as event structures.

Our next step is finding out how the computational process represented by an inter-

action net can be given a description in terms of event structures. For this, we abstract

from interaction nets, and develop an analysis of events in the more general context of

rewriting systems. Such analysis broadens considerably the scope of our work; indeed,

virtually any model in which there is some notion of “state” and “transition” may be

described as an abstract rewriting system: the “states” are the objects of the system,

which are rewritten through the “transitions”. In this formulation, causality and conflict

are intuitively given by the notion of residue structure of the rewriting system. Thus,

addressing our original question becomes a simple application of more general results.

Of course, we still need to make some restrictions on rewriting systems to be able

to meaningfully describe them in terms of event structures. This is the reason behind

the introduction of what we call normal rewriting systems (cf. Sect. 2): these admit a

well behaved definition of homotopy of reductions, from which the events may be easily

retrieved (as homotopy classes). Our theory of normal rewriting systems may be seen as

Measuring the Expressiveness of Rewriting Systems through Event Structures 3

an alternative presentation of Mimram’s (2008) work on asynchronous graphs, and has

its roots in the theory of Mazurkiewicz traces (Winskel and Nielsen, 1995), as well as in

work by Nielsen et al. (1981) and Melliès (2004).

A further contribution of this paper is the identification of a subclass of normal rewrit-

ing systems, which we call confusion-free, exactly corresponding to the confusion-free

event structures of Varacca et al. (2006). The prototypical example of confusion-free nor-

mal rewriting system is given by non-deterministic Turing machines; another example,

which is of great importance in the current development of linear logic proof theory, is

given by the differential interaction nets of Ehrhard and Regnier (2006). It is possible

to prove that, according to our notion of bisimilar embedding, confusion-free systems

are strictly less expressive than unrestricted normal rewriting systems (Corollary 3.10).

Similarly, we give a negative result about the embedding of a normal rewriting systems

into another system with a smaller degree of non-determinism (Corollary 3.12).

When applied to interaction nets, these give us the first strong, convincing separation

results concerning classes of non-deterministic interaction nets. Moreover, we are able to

give a nice characterization of the event structures arising from deterministic interaction

nets (those originally introduced by Lafont) and multirule interaction nets (of which

differential interaction nets are a special case).

[Note: for briefness, most proofs are omitted; the important ones are given in the appen-

dices.]

Acknowledgments. The author is grateful to Samuel Mimram, who pointed out that

normal rewriting systems could be defined using the cube property. This work was par-

tially supported by Digiteo project Collodi (2009-28HD) and ANR project Panda.

1. Event Structures and Configuration Posets

1.1. The groupoid of event structures

In what follows, if (X,≤) is a poset and u ⊆ X , we denote by ↓u the downward closure

of u, i.e., ↓u = {y ∈ X | ∃x ∈ u.y ≤ x}, and we write ↓x for the principal ideal ↓{x}.

Definition 1.1 (Event structure (Winskel and Nielsen, 1995)). An event struc-

ture is a triple E = (|E|,≤,ˇ) where:

— |E| is a set, the elements of which are called events and are ranged over by a, b, c;

— ≤ is a partial order on |E|, called causal order, such that, for all a ∈ |E|, ↓a is finite;

— ˇ is an anti-reflexive symmetric relation on |E|, called conflict relation, such that, for

all a, b, c ∈ |E|, a ˇ b ≤ c implies a ˇ c;

The complement of ˇ, called coherence relation, is denoted by ¨.

Let E be an event structure, and let u ⊆ |E|. We say that u is a configuration of E

iff ↓u = u and a, b ∈ u implies a ¨ b. The set of finite configurations of E is denoted by

C(E), and ranged over by u, v, w. If u is a configuration and a an event such that a 6∈ u

and u′ = u ∪ {a} is a configuration, we say that u enables a. The smallest configuration

enabling a generic a ∈ |E| is clearly ↓a \ {a}, which we denote by ⌈a⌉.

Damiano Mazza 4

There is a standard notion of morphism of event structures (Winskel and Nielsen,

1995), given by partial functions between events which preserve configurations and are

injective on coherent events. However, in this work we are only interested in event struc-

tures as “static” objects, and not in their transformations; this amounts to saying that

we only consider the subcategory of event structures and their isomorphisms.

Definition 1.2 (Isomorphism of event stuctures). Let E = (|E|,≤,ˇ) and E′ =

(|E′|,≤′,ˇ′) be event structures. An isomorphism between E and E′ is a bijection β :

|E| → |E′| such that, for all a, b ∈ |E|, a ≤ b iff β(a) ≤′ β(b) and a ˇ b iff β(a) ˇ′ β(b).

Event structures and their isomorphisms obviously form a groupoid, which we denote

by EGrp.

1.2. The groupoid of configuration posets

Given an event structure E, it is possible to recover its causality and conflict relations

from the poset (ordered by inclusion) of its of finite configurations C(E). This is precisely

the contents of Theorem 1.6 below, which is a reformulation of well known results by

Nielsen, Winskel and Plotkin (Nielsen et al., 1981; Winskel, 1982). In order to proceed,

we need to introduce the notion of configuration poset, along with a few preliminary

order-theoretic notions.

Let (X,≤) be a poset. We say that u ⊆ X is bounded if there exists z ∈ X such that,

for all x ∈ u, x ≤ z; in the special case where u = {x, y}, we say that x and y are

compatible, and we write x ↑ y. We denote by x ∨ y and the supremum of two elements

x, y of X , whenever this exists; similarly, if u ⊆ X , we denote by
∨
u the supremum of

all elements of u, if it exists.

A poset (X,≤) is bounded complete if for all x, y ∈ X , x ↑ y implies that x ∨ y exists;

in other words, in a bounded complete poset it is equivalent, for any finite u ⊆ X , to say

that u is bounded or that
∨
u exists.

A subset of a poset is a clique if its elements are pairwise compatible. We say that a

poset is coherent if every finite clique has a supremum. Observe that a coherent poset

is necessarily bounded complete. The converse does not hold; however, we have the

following:

Proposition 1.3. A poset (X,≤) is coherent iff it has a least element, and is locally

coherent, i.e., for every x, y, z ∈ X , x ↑ y, x ↑ z, and y ↑ z implies that
∨
{x, y, z} exists.

Let (X,≤) be a poset, and let x, y ∈ X . We say that y covers x if x < y, and there is

no z such that x < z < y; we say that a ∈ X is prime if it covers exactly one element of

X . We denote by P(X) the set of prime elements of X . The terminology is justified by

the fact that a prime element is “indecomposable” with respect to suprema: it is not hard

to check that, if a ∈ P(X) and u ⊆ X is such that
∨
u = a, then a ∈ u (cf. Lemma A.1).

As an example, we characterize the prime elements of the poset (C(E),⊆), i.e., the set

of finite configurations of an event structure E, ordered by inclusion.

Measuring the Expressiveness of Rewriting Systems through Event Structures 5

Lemma 1.4. For every event structure E = (|E|,≤,ˇ), we have P(C(E),⊆) = {↓a | a ∈

|E|}, i.e., the principal ideals of (|E|,≤).

Let (X,≤) be a poset, and let x ∈ X . We define p(x) = {a ∈ P(X) | a ≤ x}. We say

that X is prime algebraic if for all x ∈ X ,
∨

p(x) exists and is equal to x.

Definition 1.5 (Configuration poset). A configuration poset is a coherent, prime

algebraic poset (X,≤) such that, for all x ∈ X , ↓x is finite.

Once again, we shall not be interested in morphisms of configuration posets, but only in

their isomorphisms, which are usual poset isomorphisms, i.e., bijections preserving the

order in both directions. We denote by ConfGrp the groupoid of configuration posets

and their isomorphisms.

1.3. The representation theorem for event structures

As anticipated above, we have the following result:

Theorem 1.6 (Representation). The groupoids EGrp and ConfGrp are equivalent.

We recall that an equivalence between EGrp and ConfGrp is a quadruple (Φ,Ψ, η, ε)

such that Φ : EGrp → ConfGrp, Ψ : ConfGrp → EGrp are functors, and η : IdEGrp
⇒

Ψ ◦ Φ, ε : Φ ◦Ψ⇒ IdConfGrp
are natural isomorphisms.

The functors Φ and Ψ are given by the following results:

Lemma 1.7. Let E,E′ be event structures, and let β : E → E′ be an isomorphism.

Then:

1 Φ(E) = (C(E),⊆) is a configuration poset (as is Φ(E′) = (C(E′),⊆));

2 the function Φ(β) : C(E) → Pfin(E
′) defined by Φ(β)(x) = {β(a) | a ∈ x}, for all

x ∈ C(E), is an isomorphism between Φ(E) and Φ(E′).

Lemma 1.8. Let (X,≤), (X ′,≤′) be configuration posets, and let φ : X → X ′ be an

isomorphism. Define Ψ(X) = (P(X),≤, 6↑), where 6↑ is the negation of compatibility, i.e.,

a 6↑ b if there is no z ∈ X such that a, b ≤ z. Then:

1 Ψ(X) is an event structure (as is Ψ(X ′), which can be defined similarly);

2 the restriction Ψ(φ) of φ to P(X) is an isomorphism between Ψ(X) and Ψ(X ′).

The natural isomorphisms are given by the following results:

Lemma 1.9. Let E be an event structure. Define ηE : |E| → C(E) by ηE(a) =↓a, for

all a ∈ |E|. Then, ηE is an isomorphism between E and Ψ(Φ(E)).

Lemma 1.10. Let X be a configuration poset, let u be a finite clique of prime elements

of X , and set εX(u) =
∨
u. This defines an isomorphism εX between Φ(Ψ(X)) and X .

Note that the original results of Nielsen et al. (1981) and Winskel (1982) prove an

equivalence between the category E of event structures and their morphisms (not just

isomorphisms) and a certain subcategory of the category of dI-domains (Berry, 1979)

and linear functions. As stated above, the reason why we restrict to EGrp is that we are

Damiano Mazza 6

not interested in general morphisms of event structures. The motivation for introducing

the notion of configuration poset instead of using dI-domains will be clear in the sequel.

At this time, we can justify this by observing that, since every dI-domain D is algebraic,

it is entirely determined by its set compact elements K(D). This is not itself a domain

of any kind (in particular, it is generally not a cpo); however, when D is coherent, as is

the case with dI-domains arising from event structures, K(D) is a configuration poset.

2. Normal Rewriting Systems

2.1. Pre-normal rewriting systems and homotopy

In the following, we use the standard categorical definition of graph, i.e., a graph is a

tuple G = (G0,G1, src, trg) where:

— G0 is a set of nodes, ranged over by µ, ν, o;

— G1 is a set of arrows, ranged over by r, s, t;

— src : G1 → G0 and trg : G1 → G0 are the source and target function, respectively.

We denote by G∗ the free category over G, which we recall has as objects the nodes of G

and as morphisms the directed paths of G, i.e., finite sequences r1 · · · rn of arrows of G

such that, for all 1 ≤ i ≤ n − 1, trg(ri) = src(ri+1), plus, for every node µ, an identity

morphism idµ, with composition defined as path concatenation. The source and target

functions are extended to paths in the obvious way; two paths are said to be coinitial

(resp. cofinal) if they have the same source (resp. target). We shall simply write id for

an identity morphism whose source (and target) is irrelevant. Paths will be ranged over

by f, g, h, . . .; the length of a path f is denoted by ‖f‖, with ‖f‖ = 0 iff f = id. We

shall identify arrows of G1 with paths of length 1, and we shall denote composition by

juxtaposition and in the reverse order with respect to usual categorical composition, i.e.,

rs will denote the path composed first of the arrow r, then the arrow s.

Definition 2.1 (Rewriting system, radical, reduction, residue). Let G be a graph.

A residue structure on G is a relation R ⊆ G3
1 such that, whenever (r, s, t) ∈ R, we have

src r = src s and src t = trg r. If (r, s, t) ∈ R, t is said to be a residue of s through r

(according to R).

A rewriting system is a pair S = (G, R), where G is a graph and R a residue structure

on G.

In the context of rewriting systems, the nodes of G are called objects, the arrows of G

radicals, and the morphisms of G∗ reductions. Given a reduction f and a coinitial radical

s, we define the set of residues of s through f , denoted by [f]s, by induction on ‖f‖, as

follows: [id]s = {s}, and [rg]s =
⋃

s′∈[g]s{t ∈ G1 | (r, s′, t) ∈ R}. Given two reductions

f, g, we say that they are equivalent, and we write f ⇋ g, whenever they are coinitial,

cofinal, and, for all t ∈ G1 coinitial with f and g, we have [f]t = [g]t.

Definition 2.2 (Pre-normal rewriting system). A rewriting system (G, R) is called

pre-normal whenever, for any coinitial radicals r, s, the following conditions hold:

affinity: ♯[r]s ≤ 1; in case this set is a singleton, we denote its only element by sr;

Measuring the Expressiveness of Rewriting Systems through Event Structures 7

symmetry: ♯[r]s = ♯[s]r; in case these sets are singletons, we say that r and s are

independent ;

tiling: rsr ⇋ srs.

Definition 2.3 (Homotopy). Let S be a pre-normal rewriting system. We define a

sequence (∼n)n<ω of binary relations on the reductions of S by induction on n, as follows:

— f ∼0 g iff f = g;

— f ∼n+1 g iff there exist two reductions h, h′ and two independent radicals r, s such

that f ∼n hrs
rh′ and g = hsrsh′.

Homotopy, denoted by ∼, is the union of all ∼n for n < ω. This is an equivalence relation;

we denote by H(S) the set of homotopy classes of S, and we range it over by x, y, z. If

f is a reduction of S, we denote by [f] its homotopy class.

Note that, given x ∈ H(S), any f, g ∈ x are coinitial (and also cofinal, equivalent,

and of equal length); hence, we can obviously extend the source (and target) function to

homotopy classes. Then, if µ is an object of S, we denote by Hµ(S) the largest subset of

H(S) such that x ∈ Hµ(S) implies src(x) = µ.

Observe that f ∼ g implies ‖f‖ = ‖g‖ and f ⇋ g, a fact that we shall use in the

sequel. It is often convenient to depict homotopy relations as “tiles” between reductions:

sr

��?
??

??

∼

r
??�����

s ��?
??

??

rs

??�����

In fact, pre-normal rewriting systems may be equivalently defined in terms of a class of

2-graphs called asynchronous graphs, as done by Melliès (2004); Mimram (2008). The

2-cells of these 2-graphs, which are all invertible, are generated by composing tiles, and

they represent the homotopy relation.

Definition 2.4 (Homotopy order). Let S be a pre-normal rewriting system, and let

f, g be reductions of S. We write f . g iff there exists h such that fh ∼ g. This is easily

seen to be a preorder, whose associated equivalence is exactly homotopy, i.e., f . g and

g . f iff f ∼ g. Hence, H(S) becomes a poset by setting [f] ≤ [g] whenever f . g.

2.2. Normal rewriting systems and event structures

In what follows, when we say that a rewriting system “contains” a certain graphical

structure (presented through “tiles”), we mean that its underlying graph contains the

given arrows and paths and, according to its residue structure, these are in the depicted

homotopy relation.

Definition 2.5 (Normal rewriting system). A pre-normal rewriting system S is

normal if the following conditions hold:

self-conflict: for every radical r, [r]r = ∅;

Damiano Mazza 8

injectivity: for all radicals r, s, t with r, t and s, t independent, rt = st implies r = s;

graphically, a path of length 2 can be the border of at most one tile;

cube property: for all radicals r0, r3, s1, s2, t0, t3, there exist r1, s0, t1 such that S con-

tains the structure below on the left iff there exist r2, s3, t2 such that S contains the

structure on the right:

s1 //

∼
t3

��?
??

??
??

∼

r0

??������� s0 //

t0
��?

??
??

??

r1

??�������

∼
t1

��?
??

??
??

s2

//
r3

??�������

⇐⇒

s1 //

t2
��?

??
??

??

∼

t3

��?
??

??
??

∼
r0

??�������

t0
��?

??
??

??
s3 //

∼

s2

//

r2

??�������
r3

??�������

Note that the cube property is actually the sum of two properties: the implication

from left to right, which we call forward cube property, and the implication from

right to left, which we call backward cube property (the terminology is borrowed from

Mimram (2008)).

cubic pushout: for all radicals r0, r1, r2, s0, s1, s2, t0, t1, t2, if S contains the structure

below on the left, then there exist radicals r3, s3, t3 such that S contains the structure

on the right:

s1 //

t2

??

��?
??

??∼

∼

r0

??������� s0 //

t0
��?

??
??

??

r1�����

??��

∼
t1

??

��?
??

??

s2

//

r2�����

??��
=⇒

s1 //

t2

??

��?
??

??
t3

��?
??

??
??

∼

∼

r1��

??�����

t1

??

��?
??

??

s3 //

∼

s2

//
r2��

??����� r3

??�������

Normal rewriting systems have the following fundamental property:

Theorem 2.6. Let S be a normal rewriting system. Then, for every object µ of S,

(Hµ(S),≤) is a configuration poset, where ≤ is the partial order of Definition 2.4 re-

stricted to Hµ(S).

This result explains the need to consider configuration posets instead of dI-domains:

finite reductions are most natural in the context of rewriting systems; however, the poset

of all finite reductions modulo homotopy is unlikely to be directed complete.

The reminder of this section is devoted to showing the key results needed to prove

Theorem 2.6. The missing proofs are given in Appendix B. In what follows, all objects,

radicals, and reductions considered belong to a generic, fixed normal rewriting system S.

We start by extending the notion of residue to compatible reductions, i.e., coinitial

reductions f, g such that there exists h such that f, g . h. In that case, we shall define

the residue of g after f , which will be a reduction coinitial with the target of f , denoted

by gf . If g is a radical r, we already have a partial definition: rf is defined and is equal

Measuring the Expressiveness of Rewriting Systems through Event Structures 9

to a radical t iff [f]r = {t}. The new definition will extend this one: it will always be

defined, and will coincide with the old one when this latter is defined.†

The first step is proving the following fundamental result, which uses the cube property:

Lemma 2.7. Let r, s be two distinct radicals, and let f, g be reductions. Then:

1 rf ∼ sg implies that r and s are independent, and there exists a reduction h such

that f ∼ srh and g ∼ rsh;

2 frt1 ∼ gst2 implies that t1 = pq and t2 = qp for some independent radicals p, q, and

there exists a reduction h such that fr ∼ hq and gs ∼ hp.

We proceed to define gr, where r is a radical such that src(r) = µ, trg(r) = ν. Observe

that, if g = sh with s 6= r, the fact that r and g are compatible implies, by point (1) of

Lemma 2.7, that r and s are independent, so sr and rs are defined. Then, we give the

definition by induction on ‖g‖:

gr =





idν if g = idµ

h if g = rh

srhrs

if g = sh, s 6= r

In the third case, hrs

is defined because ‖h‖ < ‖g‖.

Finally, we extend the definition to all compatible reductions f, g, by induction on ‖f‖:

gf =

{
g if f = id

(gr)h if f = rh

The next result collects some useful properties of residues:

Lemma 2.8. Let f, g be compatible reductions. Then:

1 if src f = µ and trg f = ν, then idf
µ = idν ;

2 if f = hk, fg = (hk)g = hgkgh

;

3 fgf ∼ gfg.

The residue operation is a sort of left adjoint to path concatenation:

Lemma 2.9 (Adjunction). For all reductions f, g, h, we have

1 f . gh iff fg . h;

2 f ∼ gh implies fg ∼ h.

Note that the converse of point (2) of Lemma 2.9 fails, as it easily seen by taking two

independent radicals r, s and setting f = r, g = s, and h = rs.

We are now ready to prove Theorem 2.6, which will be a consequence of Corollary 2.12

(coherence), Proposition 2.16 (the poset is prime algebraic), and Proposition 2.18 (the

principal ideals are finite).

† In particular, we shall see that the extended definition will give r
r = idν for every radical r, where

ν = trg(r); the only purpose of the self-conflict axiom is precisely to ensure that such equation does
not contradict the residue structure of S, which may otherwise attribute any radical of source ν as
the residue of r through itself.

Damiano Mazza 10

Proposition 2.10 (Bounded completeness). For all reductions f, g, [f] ↑ [g] implies

[f] ∨ [g] = [fgf] = [gfg].

Proof. Using point (3) of Lemma 2.8, we have [f], [g] ≤ [fgf] = [gfg]. Let now h be

such that [f], [g] ≤ [h]. By definition, there exists f ′ such that h ∼ ff ′; then, we have

g . ff ′, so Lemma 2.9 gives us gf . f ′, so fgf . ff ′ ∼ h, which implies [fgf] ≤ [h].

Proposition 2.11 (Local coherence). For all reductions f, g, h, [f] ↑ [g], [f] ↑ [h], [g] ↑

[h] implies that
∨
{[f], [g], [h]} exists.

Proof. The proof is by induction on ‖f‖+ ‖g‖+ ‖h‖. Instead of giving the (tedious)

details, we shall simply give the basic intuition, which should be enough to convince the

reader of the correctness of the statement. Observe that by hypothesis, and by Propo-

sition 2.10, our rewriting system S contains a structure which is similar to that on the

left of the statement of the cubic pushout property (Definition 2.5), but composed of

reductions instead of radicals: r0, r1, r2 are replaced by f, fg, fh, respectively; s0, s1, s2
are replaced by g, gf , gh, respectively; and t0, t1, t2 are replaced by h, hg, hf , respectively.

Now, the induction does nothing but iterating the cubic pushout property, “closing” this

cube and giving the supremum of [f], [g], [h], which is, for instance, [fgfhfgf

].

Corollary 2.12 (Coherence). For every object µ, the sub-poset (Hµ(S),≤) is coherent.

Proof. We simply apply Proposition 1.3, using Proposition 2.11 and the fact that {idµ}

is obviously the least element of (Hµ(S),≤).

Note that (H(S),≤) fails to be coherent for a rather trivial reason: the only clique not

having a supremum is the empty set, because H(S) lacks a least element!

Definition 2.13 (Essential homotopy class). Let S be a pre-normal rewriting sys-

tem, and let f be a reduction of S. We say that f is essential if f = f ′r for some radical

r and reduction f ′ and, whenever f ′ ∼ f ′′s for some radical s and reduction f ′′, there is

no radical t such that r = ts. We then say that x ∈ H(S) is essential if x = [f] for some

essential reduction f .

The following motivates the introduction of essential homotopy classes:

Lemma 2.14 (Prime elements). x ∈ P(H(S)) iff x is essential.

The next result crucially uses the backward cube property:

Lemma 2.15. Let fr be a reduction, with r a radical. Then, there exists a unique

essential homotopy class [ht], with t a radical, such that f ∼ hg and r = tg for some

reduction g.

Proposition 2.16 (A prime algebraic poset). The poset (Hµ(S),≤) is prime alge-

braic.

Proof. Let x ∈ Hµ(S). We set x = [r1 · · · rn] with n ∈ N and r1, . . . , rn radicals (x =

[idµ] in case n = 0). If we set, for each 0 ≤ k ≤ n, fk = r1 · · · rk (again, f0 = idµ if n = 0),

applying Lemma 2.15 to each fi with 1 ≤ i ≤ n yields a sequence of essential homotopy

Measuring the Expressiveness of Rewriting Systems through Event Structures 11

classes [e1], . . . , [en] such that, for all 1 ≤ i ≤ n, ei = hiti, fi−1 ∼ higi, and ri = tgi

i ,

where hi, gi are reductions and ti radicals; moreover, by uniqueness, these are actually all

the essential homotopy classes below x, so, by Lemma 2.14, p(x) = {[e1], . . . , [en]}. Since

these classes are all pairwise compatible (they are bounded by x), we may compute their

supremum as in Proposition 2.10, i.e.,
∨n

i=1[ei] = [dn], where dn is defined inductively,

as follows: d0 = idµ, and dk+1 = dke
dk

k+1, where 0 ≤ k < n. All that is left to do is

prove that [dn] = x, which is equivalent to dn ∼ fn. We reason by induction: given

0 ≤ k < n, we prove dk+1 ∼ fk+1 supposing that dj ∼ fj for all j ≤ k. We start by

considering edk

k+1; by hypothesis, this is equal to (hk+1tk+1)
dk = hdk

k+1t
d

hk+1

k

k+1 , where we

applied point (2) of Lemma 2.8. Now, the induction hypothesis gives us dk ∼ fk, and

by hypothesis fk ∼ hk+1gk+1, so: on the one hand, hk+1 . dk, which implies hdk

k+1 = id

by point (1) of Lemma 2.9; on the other hand, by point (2) of Lemma 2.9, we have

d
hk+1

k ∼ gk+1, so d
hk+1

k ⇋ gk+1 by the tiling axiom, which implies t
d

hk+1

k

k+1 = t
gk+1

k+1 = rk+1

by hypothesis. Summing up, in the end we obtain edk

k+1 = rk+1; then, by applying once

more the induction hypothesis, we have dk+1 = dke
dk

k+1 ∼ fke
dk

k+1 = fkrk+1 = fk+1, as

claimed.

Again, (H(S),≤) fails to be prime algebraic for the simple reason that identity homotopy

classes, i.e., classes of the form [id], are such that p([id]) = ∅, which in general does not

have a supremum in H(S) (there is no least element).

We now complete the proof by establishing the finiteness of principal ideals, which

instead holds for all of H(S). The following lemma uses the injectivity axiom:

Lemma 2.17. For every reduction f , ♯[f] ≤ ‖f‖!.

Proposition 2.18 (Principal ideals are finite). For all x ∈ H(S), ↓x is finite.

Proof. It is enough to prove that, for every reduction f , there are only finitely many

g such that g . f . This, by definition, implies that there exists h such that gh ∼ f , i.e.,

g is a prefix of a reduction in [f]; but these are finitely many by Lemma 2.17.

Theorem 2.6 allows us, modulo the Representation Theorem 1.6, to associate an event

structure with any object of a normal rewriting system. More precisely, if S is a normal

rewriting system and µ is an object of S, we may associate with µ the event structure

Ev(µ) = Ψ(Hµ(S),≤), where Ψ is the functor of Theorem 1.6. Morally, the events of

Ev(µ) are the radicals which progressively appear when one reduces µ; two events are

in conflict when the corresponding radicals are not independent. Lemma 2.19 below

formalizes this intuition.

Observe that, still thanks to Theorem 1.6, C(Ev(µ)) is isomorphic toHµ(S); this means

in particular that each finite configuration u of Ev(µ) corresponds to a unique homotopy

class ε(u) of source µ.

Lemma 2.19. Let µ be an object of a normal rewriting system, let [ht] ∈ |Ev(µ)|, and

let u ∈ C(Ev(µ)), with ε(u) = [f]. Then, u enables [ht] iff there exists a radical r such

that [ht] is the unique homotopy class given by Lemma 2.15 applied to fr.

Damiano Mazza 12

As a concluding remark, let us point out that, if S is a normal rewriting system, the

failure of (H(S),≤) to be a configuration poset is so trivial that it can be easily fixed:

simply consider all identity homotopy classes to be equivalent, so that the poset now has

a least element. We can thus associate an event structure Ev(S) to the whole system;

this may be seen to be isomorphic to
⊕

µ∈S Ev(µ), where ⊕ denotes the coproduct of

event structures, which is basically a disjoint union (Winskel and Nielsen, 1995).

3. Measuring the Expressiveness of Normal Rewriting Systems

3.1. Bisimilar embeddings of event structures

Let E,E′ be two event structures, and let R ⊆ |E| × |E′|. We denote by π1(R), π2(R)

the first-component and second-component projections of R, respectively. If u ∈ C(E),

a ∈ |E| is enabled by u, and v = u ∪ {a}, we write u
a
−→R v if x ∈ π1(R) (we call

this a computational transition labelled by a), and u −→R v otherwise (we call this an

administrative transition). We denote by =⇒R the reflexive-transitive closure of −→R,

and we write u
a

=⇒R v iff there exist u1, v1 ∈ C(E) such that u =⇒R u1
a
−→R v1 =⇒R v.

We apply the same notations to E′, with π2 replacing π1, i.e., we write u′
x′

−→R v′ if

x′ ∈ π2(R), and u′ −→R v′ otherwise, with u′, v′ ∈ C(E′) and x′ ∈ |E′|. Moreover, given

u ∈ C(E) and u′ ∈ C(E′), we set suppR(u) = u ∩ π1(R) and suppR(u′) = u′ ∩ π2(R).

In what follows, we denote by Pfin(X) the set of finite subsets of a set X .

Definition 3.1 (R-bisimulation). Let E = (|E|,≤,ˇ), E′ = (|E′|,≤′,ˇ′) be event

structures, and let R ⊆ |E| × |E′|. A R-bisimulation between E and E′ is a relation

B ⊆ C(E)×Pfin(R)×C(E′), such that (∅, ∅, ∅) ∈ B and, whenever (u, φ, u′) ∈ B, we have:

i. φ is a poset isomorphism between (suppR(u),≤) and (suppR(u′),≤′);

ii. u
a
−→R v implies u′

a′

=⇒R v′ with (v, φ ∪ {(a, a′)}, v′) ∈ B;

iii. u −→R v implies u′ =⇒R v′ with (v, φ, v′) ∈ B;

iv. u′
a′

−→R v′ implies u
a

=⇒R v with (v, φ ∪ {(a, a′)}, v′) ∈ B;

v. u′ −→R v′ implies u =⇒R v with (v, φ, v′) ∈ B.

We say that E and E′ are R-bisimilar, and we write E ≈R E′, if there exists an R-

bisimulation between them.

R-bisimulations are a variant of history-preserving bisimulations. These were originally

defined on labelled event structures. Our definition is a generalization of this: if ℓE, ℓE′

are labelling functions for E,E′, such that some events are assigned the special label τ ,

we may set Rℓ = {(a, a′) ∈ |E| × |E′| | ℓE(a) = ℓE′(a′) 6= τ}, and we have E ≈Rℓ
E′

exactly when E and E′ are weakly bisimilar in the original definition of Rabinovitch and

Traktenbrot (1988) and van Glabeek and Goltz (1989).

Of course, the meaningfulness of an R-bisimulation depends on R: for example, we

invite the reader to check that, for all even structures E,E′, {(u, ∅, u′) | u ∈ |E|, u′ ∈ |E′|}

is a ∅-bisimulation. The idea is to avoid this kind of degeneracy by considering a special

case of R-bisimulations, in which R is “as big as possible”.

Measuring the Expressiveness of Rewriting Systems through Event Structures 13

Definition 3.2 (Bisimilar embedding). Let E,E′ be two event structures. A bisimilar

embedding of E into E′ is a relation ι ⊆ |E| × |E′| such that:

totality: π1(ι) = |E|;

injectivity: for all a, b ∈ |E|, ι(a) ∩ ι(b) 6= ∅ implies a = b;

bisimilarity: E ≈ι E
′; a ι-bisimulation proving this is said to be associated with ι.

We write E
ι
→֒ E′ to denote the fact that ι is an embedding of E into E′, or simply

E →֒ E′ to state the existence of an embedding.

Proposition 3.3 (Embeddings compose). If, E
ι′

→֒ E′ andE′ ι′′

→֒ E′′, then E
ι′′◦ι′

→֒ E′′,

where ◦ denotes standard composition of relations.

Note that E can be embedded into E′ precisely when, once we consider the events of

E to be labelled by themselves, there is a way of labelling the events of E′ over |E| ∪ {τ}

so that E and E′ are weakly history-preserving bisimilar in the sense of Rabinovitch and

Traktenbrot (1988); van Glabeek and Goltz (1989).

The notion of bisimilar embedding must be seen as a sort of “faithful simulation”: if we

regard E,E′ as descriptions of computational processes, E →֒ E′ means that the process

described by E′ may “simulate” the process described by E covering every computational

dynamics of E and not adding new dynamics. It is important to observe that embeddings

are not symmetric, i.e., E may be embedded into E′ without E′ being embeddable into

E. This is simply because ι is required to be injective, and obviously |E| may be injected

into |E′| without the converse being possible.

In our opinion, this asymmetry is a desirable feature: for instance, it is reasonable to

say that a Lafont interaction net (see Sect. 4.4) faithfully simulates a Turing machine,

but the contrary seems unreasonable, if we want to take parallelism into account—the

event structure of a Turing machine is a linear order, while that of a Lafont interaction

net may be much richer (see Proposition 4.14).

3.2. Confusion-free rewriting systems

It is possible to define a class of normal rewriting systems whose objects generate

event structures of an interesting form, introduced by Varacca et al. (2006) and called

confusion-free. We recall the definition below.

Definition 3.4 (Immediate conflict). Let E be an event structure. We say that

a, a′ ∈ |E| are in immediate conflict, and we write a# a′, iff a ˇ a′ and there exists a

configuration enabling both a and a′.

Immediate conflict actually generates all other conflicts by “propagating upwards”:

Lemma 3.5 (Varacca et al. (2006)). Let E be an event structure, and let a, b ∈ |E|.

Then, a ˇ b iff there exist a0, b0 ∈ |E| such that a0 # b0 and a0 ≤ a, b0 ≤ b.

Below, we denote by
#
∼ the reflexive closure of immediate conflict.

Damiano Mazza 14

Definition 3.6 (Confusion). Let E be an event structure. A confusion of type I in E

is a triple (a, b, c) ∈ |E|3 such that a 6= c, a# b, b# c and a and c are not in immediate

conflict. A confusion of type II in E is a pair (a, b) ∈ |E|2 such that a# b and ⌈a⌉ 6= ⌈b⌉.

An event structure E is confusion-free if it contains no confusion or, equivalently,

—
#
∼ is transitive, i.e., it is an equivalence relation;

— for every a, b ∈ |E|, a# b implies ⌈a⌉ = ⌈b⌉.

The equivalence classes of
#
∼ are called switches.‡

Definition 3.7 (Confusion-free rewriting system). Let r, s be two coinitial radicals

of a normal rewriting system. We say that r and s are separated if every radical t coinitial

with r, s is independent with at least one of r, s. We say that r and s are contemporary

if, for all radical r0 and reduction h such that r = rh
0 , there exists a radical s0 such that

s = sh
0 . We say that r and s are in simple conflict if they are contemporary and not

independent. A normal rewriting system S is confusion-free if all coinitial radicals are

either separated or in simple conflict.

Observe that two separated radicals must be independent; in fact, if r and s are coinitial

and not independent, then by the self-conflict axiom r is not independent with any of

r, s (and similarly for s). The following justifies the terminology:

Proposition 3.8. A normal rewriting system S is confusion-free iff, for every object µ

of S, Ev(µ) is confusion-free.

3.3. Some separation results using embeddings

A fundamental property of embedding is that they preserve confusion:

Proposition 3.9. Let E,E′ be event structures with E containing a confusion. Then,

E →֒ E′ implies that also E′ contains a confusion.

We therefore have an immediate separation result: a non-confusion-free normal rewrit-

ing system S is strictly more expressive than a confusion-free normal rewriting system

S′, in the sense that some objects of S have computational dynamics which cannot be

simulated by any object of S′. Formally:

Corollary 3.10. Let S,S′ be normal rewriting systems, with S non-confusion-free and

S confusion-free. Then, there is no embedding of Ev(S) into Ev(S′), where the event

structures associated to the two systems are those defined at the end of Sect. 2.2.

Another easy separation result may be obtained by restricting a bit the notion of

embedding. A bisimilar embedding E
ι
→֒ E′ is said to introduce divergence if, whenever

B is a bisimulation associated with ι, there exists (u, φ, u′) ∈ B such that there is an

infinite sequence of administrative transitions u′ −→ι u
′
1 −→ι u

′
2 −→ι · · · in E′.

‡ They are called cells in the original definition (Varacca et al., 2006), but this would be in conflict
with the standard terminology for interaction nets (cf. Sect. 4).

Measuring the Expressiveness of Rewriting Systems through Event Structures 15

Embeddings not introducing divergence preserve groups of events in pairwise immedi-

ate conflicts. In the following, an anticlique of an event structure E is a finite set A ⊆ |E|

such that a, b ∈ A implies a ˇ b, and there exists u ∈ C(E) enabling all events of A.

Proposition 3.11. Let E
ι
→֒ E′ without introducing divergence, and let A be an anti-

clique of E. Then, there exists an anticlique of E′ of the same cardinality as A.

Proof. Let B be a bisimulation associated with ι, and let u ∈ C(E) be the configuration

enabling A = {a1, . . . , an}. We must have (u, φ, u′) ∈ B and, since ι does not introduce

divergence, we may take a sequence of administrative transitions of maximal length

u′ =⇒ι u
′′, i.e., such that there is no administrative transition starting from u′′. Then,

since B is a bisimulation, and since for all 1 ≤ i ≤ n, we have u
ai−→ι u ∪ {ai}, we must

have, for all 1 ≤ i ≤ n, some a′i ∈ ι(ai) such that u′′
a′

i−→ι u
′′ ∪ {a′i}; moreover, when

i 6= j, ai ˇ aj implies a′i ˇ a′j , so {a′1 . . . , a
′
n} is an anticlique of E′.

We may define the degree of non-determinism of a normal rewriting system S as the

smallest M ∈ N ∪ {∞} such that the cardinality of all anticliques of Ev(S) is bounded

by M (equivalently, for every net µ of S, no anticlique of Ev(µ) has cardinality above

M). Then, we immediately have the following:

Corollary 3.12. Let S,S′ be normal rewriting systems, with respective degrees of non-

determinism M > M ′. Then, every embedding of Ev(S) into Ev(S′) introduces diver-

gence.

4. An Application to Interaction Nets

4.1. Nets

There are several possibilities for formally defining interaction nets. Originally, Lafont

(1990) proposed a term calculus, later developed by Fernández and Mackie (1999); he

also gave a formalization closer in spirit to the graphical representations which are often

used in the literature (Lafont, 1997). More recently, de Falco (2009) proposed another

formalization in terms of permutations.

However, none of these definitions covers all of the non-deterministic variants that

have been introduced for interaction nets, especially the multiport (Alexiev, 1999; Mazza,

2005), and multiwire (Alexiev, 1999; Beffara and Maurel, 2006) extensions. Hence, we

propose here a general formalization, borrowing ideas from Lafont’s original definition

and de Falco’s work. Of course, we shall also present the usual graphical representation

of nets, which is the one we use in practice.

Let us start by introducing some notations. In what follows, we fix a denumerably

infinite set P of ports, ranged over by p, q, which we assume to contain the set of non-

negative integers N. A function f : P → P is said to be finite if it is the identity almost

everywhere, in which case we write f : P
fin
→ P.

We denote by Pfin(X) and M(X) the set of finite subsets and finite multisets of a

set X , respectively. Given a finite set or multiset X , we denote by ♯X its cardinality. A

multiset containing the (non necessarily distinct) elements x1, . . . , xn will be denoted by

Damiano Mazza 16

[x1, . . . , xn]. Given M,M ′ ∈M(X), we denote by M +M ′ their multiset union. If X,Y

are sets, we use the notation X⊎Y to denote the union of X and Y and to simultaneously

state that they are disjoint.

We denote by L(X) the set of repetition-free finite lists of elements of a set X . Given

L ∈ L(X), we denote by ♯L its length and, if 1 ≤ i ≤ ♯L, we denote by Li its i-th

element. We also “overload” set-theoretic symbols so that they operate on lists: if x ∈ X

and L,L′ ∈ L(X), x ∈ L means that there exists i such that Li = x, whereas L ∪ L′

and L∩L′ are the sets resulting from, respectively, the union and the intersection of the

sets underlying L and L′, with L⊎L′ meaning also that L,L′ have no common element.

Finally, given L,L′ ∈ L(X) such that L∩L′ = ∅, we denote by L ·L′ their concatenation.

If X,Y are sets and f : X → Y , we denote by M(f) and L(f) the functions from

M(X) to M(Y) and from L(X) to L(Y), respectively, which result from the pointwise

application of f .

Definition 4.1 (Alphabet). An alphabet is a triple Σ = (|Σ|, ar, coar), where |Σ| is a set

of symbols, ranged over by α, β, ar : |Σ| → N is the arity function, and coar : |Σ| → N\{0}

is the coarity function. An alphabet Σ is said to be finite if |Σ| is finite.

Definition 4.2 (Cell base). A cell base on an alphabet Σ is quadruple C =

(|C|, ℓ, pal, pax), where |C| is a finite set, ℓ : |C| → |Σ|, and pal, pax : |C| → L(P),

such that:

— for all c ∈ |C|, ♯pal(c) = coar(ℓ(c)), ♯pax(c) = ar(ℓ(c)), and pal(c) ∩ pax(c) = ∅;

— for all c, c′ ∈ |C|, with c 6= c′, (pal(c) ∪ pax(c)) ∩ (pal(c′) ∪ pax(c′)) = ∅.

The elements of |C| are called hypercells; given c ∈ |C|, ℓ(c) is its symbol, and

pal(c), pax(c) are its lists of principal and auxiliary ports, respectively. A hypercell is

simply called cell if the coarity of its symbol is equal to 1; otherwise, it is called a mul-

ticell. Given a cell base C, we define its support to be suppC =
⋃

c∈|C|(pal(c) ∪ pax(c)).

Given two cell bases C,C′ on the same alphabet Σ and a pair of functions ϕ : |C| →

|C′|, ξ : P
fin
→ P, we say that (ϕ, ξ) is a morphism from C to C′ whenever ℓ′ ◦ ϕ = ℓ,

pal′ ◦ϕ = L(ξ) ◦ pal, and pax′ ◦ϕ = L(ξ) ◦ pax.

Definition 4.3 (Wire structure). A wire structure is a pair W = (|W |, ∂), where |W |

is a finite set and ∂ : |W | → M(P), such that each p ∈ P occurs at most twice in the

multiset ∇ =
∑

w∈|W | ∂(w). The elements of |W | are called hyperwires ; if w ∈ |W |, the

non-negative integer ♯∂(w) is referred to as its order. A hyperwire of order 2 is simply

called wire; otherwise, we say it is a multiwire. Given a wire structure W , we define its

set of ports (resp. its support), denoted by ptsW (resp. suppW), to be the set of all

ports occurring (resp. occurring exactly once) in ∇.

If W,W ′ are two wire structures, and if ψ : |W | → |W ′| and ξ : P
fin
→ P are two

functions, we say that (ψ, ξ) is a morphism from W to W ′ whenever ∂′ ◦ ψ =M(ξ) ◦ ∂.

Definition 4.4 (Net). A net on an alphabet Σ is a triple µ = (F,C,W), where F ∈

L(P), C is a cell base on Σ, and W is a wire structure such that suppW = F ⊎ suppC. F

is called the interface of µ. The set of ports of µ is defined as ptsµ = ptsW . We denote

by N (Σ) the set of all nets on the alphabet Σ.

Measuring the Expressiveness of Rewriting Systems through Event Structures 17

. . .

α

. . .

p0 pm−1

q1 qn

. . .

· · ·

...

pk

p1

pi

Fig. 1. Graphical representations of a hypercell (left) and a hyperwire (right).

ε

β

γ

α

α

ε

δ

βε

γ

Fig. 2. Graphical representation of a net.

A morphism from a net µ to a net µ′ is a triple (ϕ, ψ, ξ) such that (ϕ, ξ) : C → C′

is a morphism of cell bases, (ψ, ξ) : W → W ′ is a morphism of wire structures, and,

additionally, F ′ = L(ξ)(F).

By definition, if p ∈ ptsµ, exactly one of the following holds: p ∈ F , in which case we

say it is free; p ∈ suppC, in which case there exists c ∈ |C| such that p ∈ pal(c)⊎pax(c),

and we say that p is principal (resp. auxiliary) if p ∈ pal(c) (resp. p ∈ pax(c)); none of

the above holds, in which case we say that p is hidden.

For nearly all of our purposes, two isomorphic nets are perfectly equivalent. Indeed,

this notion of isomorphism is nothing but a reformulation of what is usually called

α-equivalence in calculi with variable binders. For this reason, we shall use “α-equivalent”

and “isomorphic” synonymously. Most of the literature on interaction nets is based on

graphical representations equating isomorphic nets. In principle, this bears some analogy

with the string diagram representation of morphisms in monoidal categories (or categories

with structures enriching it).

Let c be a hypercell such that ℓ(c) = α, with coar(α) = m, ar(α) = n, and let pal(c) =

(p0, . . . , pm−1), pax(c) = (q1, . . . , qn); the graphical representation of c is given in Fig. 1,

left. Let now w be a hyperwire such that ∂(w) = [p1, . . . , pk]; the graphical representation

of w is given in Fig. 1, right. Then, an example of graphical representation of a net

will look like Fig. 2. Since graphical representations are meant to implicitly deal with

isomorphism, the names of ports are omitted, and a port appears simply as a linear

stroke. The information concerning the ordering of the free ports is given by making the

convention that, in graphical representations, free ports are always ordered “from left to

right”. Also observe that, to economize space, hypercells with only one principal port

and no auxiliary ports are represented by circles.

From now on, nets will always be treated modulo α-equivalence.

Damiano Mazza 18

...→ω

...
... →ω

...

Fig. 3. ω-reduction; the hyperwire in the left member of the right rule is of order zero,

and the two hyperwires in the left member of the left rule are distinct.

4.2. Interaction

The most elementary notion of dynamics in interaction nets concerns wire structures

alone. It can be seen as an attempt to eliminate hidden ports; de Falco (2009) refers to

it as “port fusion”. It is also related to the elimination of cuts involving axioms in linear

logic proof nets.

Definition 4.5 (ω-reduction). Let W,W ′ be wire structures; we write W →ω W ′ iff

one of the following holds:

— |W | = |W ′| ⊎ {w}, ∂(w) = [], and ∂ = ∂′ everywhere else;

— |W | = X⊎{w1, w2} for some set X , with w1 6= w2, ∂(w1) = M1+[h], ∂(w2) = M2+[h]

for some multisets M1,M2 and port h, and |W ′| = X ⊎ {w′}, ∂′ = ∂ on X and

∂′(w′) = M1 +M2.

Let now µ = (F,C,W) be a net, and let W →ω W ′. It is not hard to verify that

µ′ = (F,C,W ′) is a net; then, we write µ→ω µ
′.

Graphically, ω-reduction is depicted in Fig. 3, with the left and right rules corresponding

to the first and second point of Definition 4.5, respectively.

Proposition 4.6. ω-reduction is strongly confluent and strongly normalizing.

Proof. The only kind of critical pair is easily seen to be strongly confluent (modulo

α-equivalence), and whenever W →ω W
′, we have ♯|W | > ♯|W ′|.

Proposition 4.6 guarantees that every net has a unique ω-normal form. As a matter

of fact, the theory of interaction nets is usually concerned with ω-normal nets only. For

instance, the net in Fig. 2 is ω-normal. An ω-normal net may still have hidden ports:

this happens precisely when it contains some hyperwire w such that ∂(w) = M + [h, h]

for some multiset M and some port h, which is obviously hidden. Such configurations

are called loops.

Even though we ultimately wish to deal only with ω-normal nets, non-ω-normal nets

still play a crucial technical role in the definition of the actual computational dynamics

of interaction nets. Such dynamics comes from the rewriting of active pairs, which, in-

formally, are pairs of distinct hypercells such that a principal port of each is connected

to the same hyperwire. Intuitively, if hypercells are agents, the fundamental principle of

interaction nets is that such agents can only communicate in pairs, through one of their

principal ports.

In the following, if C,C′ are two cell bases on the same alphabet such that |C|∩|C′| = ∅,

we define C⊎C′ = (|C|∪|C′|, ℓ⊎ℓ′, pal⊎pal′, pax⊎pax′), where f⊎g denotes the function

obtained by the union of functions of disjoint domain. Similarly, given two wire structures

W,W ′ such that |W | ∩ |W ′| = ∅, we define W ⊎W ′ = (|W | ∪ |W ′|, ∂ ⊎ ∂′).

Measuring the Expressiveness of Rewriting Systems through Event Structures 19

µ′

.

µ

. . .

Fig. 4. Glueing of two nets.

j.

m− 1 m+ n+ h+ k − 11 m+ n m+ n+ h− 2

.

m m+ n− 1 m+ n+ h− 1 m+ n+ h+ k − 2

α β

i

Fig. 5. An active pair. In the picture, m = coar(α), n = ar(α), h = coar(β), and

k = ar(β)

Definition 4.7 (Glueing, context). Let µ = (F,C,W), µ′ = (F ′, C′,W ′) be two nets,

let 0 ≤ n ≤ min{♯F, ♯F ′}, and let F = F0 · (p1, . . . , pn), F ′ = (p′1, . . . , p
′
n) · F ′

0. By

α-equivalence, we can always suppose the intersections ptsµ ∩ ptsµ′, |C| ∩ |C′|, and

|W | ∩ |W ′| to be all empty. So let W1 = W ⊎W ′; we define a new wire structure W0 as

follows: |W0| = |W1|⊎{w1, . . . , wn}, ∂0 = ∂1 on |W1|, and ∂0(wi) = [pi, p
′
i], for 1 ≤ i ≤ n.

We then define the n-glueing of µ and µ′, denoted by µ
n
! µ′, as (F0 · F

′
0, C ⊎ C

′,W0),

which is easily seen to be a net.

Whenever µ has n free ports and Γ is a net with at least n free ports, we say that Γ

is a context for µ, and we use the notation Γ[µ] for the net Γ
n
! µ.

Graphically, the glueing of two nets µ, µ′ is depicted in Fig. 4. Note that µ
0
! µ′ is

nothing but the “juxtaposition” of µ and µ′. Observe also that, whenever n ≥ 1, µ
n
! µ′

need not be ω-normal, even in case µ, µ′ are.

Definition 4.8 (Active pair). An active pair on the alphabet Σ is a net of the form

given in Fig. 5, where, if c, d are the hypercells whose respective symbols are α, β, we

have c 6= d and the only hyperwire of order 3 is connected to the ith principal port of

c and to the jth principal port of d. For graphical convenience, instead of adopting the

usual convention that free ports are ordered “from left to right”, we explicitly labelled

the free ports with their indices. An active pair is completely determined by a pair of

symbols α, β ∈ Σ, and by two integers 1 ≤ i ≤ coar(α), 1 ≤ j ≤ coar(β). Thus, we shall

denote such an active pair by αi ⊲⊳ βj , and we denote by Act(Σ) the set of active pairs

on the alphabet Σ.

In the following, if µ = (F,C,W) is a net such that ♯F = n, and if σ is a permutation

on {1, . . . , n}, we denote by σµ the net (F ′, C,W) such that F ′
i = Fσ(i), 1 ≤ i ≤ n.

If X = {µ1, . . . , µn} is a set of nets with interfaces of the same cardinality, we write

σX = {σµ1, . . . , σµn}.

Damiano Mazza 20

ν ∈ R(αi ⊲⊳ βj)

.

. . .

→R
.i j

α β

.

.

. . .

Fig. 6. Reducing an active pair; the two cells on the left must be distinct, and the

hyperwire connected to their principal ports i and j is of order k + 2, whereas the

hyperwire on the right is of order k.

Definition 4.9 (Interaction scheme). An interaction scheme on the alphabet Σ is a

function R : Act(Σ) → Pfin(N (Σ)) such that, for all αi ⊲⊳ βj ∈ Act(Σ) with coar(α) +

ar(α) = m and coar(β) + ar(β) = n, we have:

— µ ∈ R(αi ⊲⊳ βj) implies that the interface of µ has cardinality m + n − 1 (i.e., the

same as the interface of αi ⊲⊳ βj);

— R(βj ⊲⊳ αi) = σR(αi ⊲⊳ βj), where σ is the permutation on {1, . . . ,m+n−1} defined

by (m, . . . ,m+ n− 2, 1, . . . ,m− 1,m+ n− 1);

— if F is the interface of a net µ ∈ R(αi ⊲⊳ βj), then the free port Fm+n−1 is connected

to a hyperwire of order 1.

An interaction scheme on an alphabet Σ induces a rewriting relation on the nets of

N (Σ), as follows.

Definition 4.10 (Reduction). Let Σ be an alphabet, let R be an interaction scheme

on Σ, and let µ, µ′ ∈ N (Σ). We write µ R µ′ if there exist µ0 ∈ Act(Σ) and a net Γ

such that µ = Γ[µ0] and µ′ = Γ[ν], with ν ∈ R(µ0).

Let now µ, µ′ be two ω-normal nets on Σ. We write µ →R µ′ whenever there exist

µ1, µ
′
1 such that µ ∗

ω← µ1 R µ′
1 →

∗
ω µ

′.

We shall denote reduction simply by → when the interaction scheme R is clear from the

context or is not important.

Graphically, reduction can be depicted as in Fig. 6, where the context around the

active pair is left implicit. Observe that loops may appear through reduction; this is why

they have been allowed in the definition of net. One of the insights given by the original

definition of interaction nets is that, in a sense, logical correctness is all about avoiding

the apparition of loops. We shall not be concerned with this issue here; we refer the

reader to Lafont (1990), in which a Danos-Regnier-like correctness criterion (Danos and

Regnier, 1989) is used to ensure loop-freeness.

We may end this section by giving the definition of interaction net system:

Definition 4.11 (Interaction net system). An interaction net system is a triple

(Σ,R,N) where Σ is an alphabet, R is an interaction scheme on Σ, and N ⊆ N (Σ) is

such that µ ∈ N implies that µ is ω-normal, and µ→R µ′ implies µ′ ∈ N . The set N is

called the set of admissible nets of the system.

Measuring the Expressiveness of Rewriting Systems through Event Structures 21

w

x

y z

v

p

t

u
µ =

{idµ}

v = {p} w = {q}

x = {qt} {pr, qs}

y = {qtu} z = {pru, qsu}

q

p

stq

s = qp

r = pq

Ev(µ)=

Fig. 7. The event structure associated with a net. The interaction rules are not specified,

as they can be easily inferred from the reductions. When more than one radical is

present in a net, we annotate it beside its corresponding active pair. On the top right, we

enumerate all homotopy classes, underlining and naming those that are essential, which

appear as the events of Ev(µ). In the graphical representation of Ev(µ), an arrow from x

to y means x ≤ y, while the dotted line represents immediate conflict.

4.3. Interaction nets and event structures

Given an interaction net system S = (Σ,R,N), its rewriting relation generates a graph

GS : the nodes are the nets of S, and there is an arrow r such that src(r) = µ, trg(r) = ν

iff there is an active pair a in µ and a reduction rule in R(a) applying which we obtain

µ →R ν. Note that “multiplicities” count: if an active pair in µ can be reduced in two

ways, both yielding ν, or if µ rewrites into the same net ν by reducing two distinct active

pairs, then in GS there will be two arrows of source µ and target ν. In other words, an

arrow of GS is given by an active pair and a way to reduce it.

This graph can be turned into a rewriting system, as follows. Consider a net µ and

two arrows r, s of GS coinitial in µ, such that the active pairs associated with r and s are

disjoint, i.e., they do not share any cell. Then, if µ→R ν by r, the locality of interaction

rules allows us to unambiguously identify in ν an active pair corresponding to the one

associated with s: it is “the same” active pair as that of s, and there is therefore “the

same” way to reduce it as that associated with s. This yields an arrow t of source ν in

GS , which we shall identify with the residue of s through r. The residue structure RS is

then defined by (r, s, t) ∈ RS iff the active pairs associated with r, s belong to the same

net and are disjoint, and t is induced by s after reducing r as described above.

The following is proved by a simple verification, which we leave to the reader:

Proposition 4.12. For every interaction net system S, the rewriting system (GS , RS)

is normal.

In the sequel, we shall abusively denote by S the rewriting system associated with an

interaction net system S.

Proposition 4.12 allows us to associate an event structure Ev(µ) with every interaction

net µ, as explained in Sect. 2.2. An example is given in Fig. 7. The notions and results

of Sect. 3 then offer us an approach to studying the expressiveness of interaction nets.

Also observe that the notion of bisimilar embedding of Sect. 3 may be seen as a

very general notion of translation between interaction net systems. In fact, let S,S′ be

Damiano Mazza 22

Mn

Mn

. . .

. . .

→ . . .

Fig. 8. Interaction scheme R for the system M: R(Mm ⊲⊳ Mn) is empty if m 6= n, and is

a singleton containing the net above on the right if m = n.

interaction net systems such that Ev(S)
ι
→֒ Ev(S′); then, every net µ of S admitting a

reduction induces a radical r of source µ; but [r] is essential, so we have a set ι([r]) of

essential reductions of S′; the sources of these reductions may be seen as translations

of µ; the existence of a ι-bisimulation then guarantees that these translations have “the

same” computational dynamics as µ, at least as far as its description in terms of event

structures is concerned.

It is worth noticing that the concrete notion of translation defined by Lafont (1997) in

the restricted case of what we call Lafont interaction net systems (see Sect. 4.4 below)

yields a translation in our sense, i.e., it is not hard to construct from each Lafont trans-

lation of S into S′ a bisimilar embedding Ev(S)
ι
→֒ Ev(S′) (and, in this particular case,

ι will be a function).

4.4. Lafont interaction nets

A Lafont interaction net system (Lafont, 1990) is a system (Σ,R,N) such that coar(α) =

1 for all α ∈ Σ, R is deterministic, and no net of N uses multiwires. In such interaction

nets, active pairs are always disjoint, so we immediately obtain the following:

Proposition 4.13. Let µ be a net of a Lafont interaction net system. Then, Ev(µ) is

conflict-free, i.e., it is a poset.

We shall see that Lafont interaction nets are expressive enough to generate all finite

posets.

Let M be the alphabet ({Mn | n ∈ N}, ar, coar) such that ar(Mn) = n, coar(Mn) = 1.

We define an interaction net systemM = (M,R,N (M)) by using the interaction scheme

R described in Fig. 8. A cell of type Mn interacting as in Fig. 8 is called a multiplexor ;

systemM is basically multiplicative linear logic proof nets, with self-dual connectives of

arbitrary arities. In fact, multiplicative linear logic proof nets were the founding example

out of which Lafont built his more general idea of interaction net.

Consider now a finite poset (X,≤). We write x <1 y when y covers x, i.e., x < y

and there is no z such that x < z < y. Then, we set pred(x) = {x′ ∈ X | x′ <1 x},

succ(x) = {x′ ∈ X | x <1 x
′}. From this, we define a net µX ∈ N (M), as follows. We

set |CX | = {x+, x− | x ∈ X}, |WX | = {wx
1 , . . . , w

x
m+1 | x ∈ X, ♯pred(x) = m}, and we

define the cell base CX = (|C|, ℓ, pal, pax) and the wire structure WX = (|W |, ∂) such

Measuring the Expressiveness of Rewriting Systems through Event Structures 23

y z

x

v w

z+

w+

w−

x−

y− z−

y+

x+

v+

v−
X = µX =

Fig. 9. A poset (left), and its associated net in system M (right). An arrow from x to y

means x ≤ y.

that, if succ(x) = {y1, . . . , yn} and pred(x) = {z1, . . . , zm}, we have

ℓ(x+) = ℓ(x−) = Mn

pal(x+) = (p+
x) pax(x+) = (q+x,y1

, . . . , q+x,yn
)

pal(x−) = (p−x) pax(x−) = (q−x,yn
, . . . , q−x,y1

)

∂(wx
1) = [p+

x , q
+
z1,x] ∂(wx

2) = [q−z1,x, q
+
z2,x] . . .

. . . ∂(wx
m) = [q−zm−1,x, q

+
zm,x] ∂(wx

m+1) = [q−zm,x, p
−
x]

where it is intended that, if pred(x) = ∅, ∂(wx
1) = [p+

x , p
−
x]. We set µX = (∅, CX ,WX).

An example is given in Fig. 9 (symbols of cells are omitted; they are uniquely determined

by the arity of cells).

Note that z is a minimal element ofX iff z+, z− form an active pair in µX . Furthermore,

if pred(x) = {z1, . . . , zn} such that all zk are minimal, then there will be an active pair

formed by x+, x− iff all the active pairs z+
k , z

−
k in µX are reduced. More generally, if we

start from the principal port of x+, we may find a path in µX leading to the principal

port of x− and crossing exactly all cells y+, y− for all y ∈↓x. Thanks to the interaction

rule of multiplexors (Fig. 8), all y+ cells successively annihilate with y− cells, starting

from the minimal y’s, and such path gradually transforms into a wire, creating an active

pair between x+ and x− (the acquainted reader will recognize here an execution path of

the geometry of interaction).

The above description should convince the reader that Ev(µX) is isomorphic to (X,≤).

Conversely, it is easy to see that no infinite reduction is possible in M (the number of

cells of nets strictly decreases under reduction), so Ev(µ) is finite for all nets ofM. With

the help of Proposition 4.13, we therefore have the following characterization:

Proposition 4.14. An event structure E is finite and conflict-free iff it is isomorphic to

Ev(µ) for some net µ ofM.

Of course capturing all posets is impossible, because there are too many of them; to

characterize the posets generated by Lafont interaction nets one must certainly make

some recursiveness assumption. At present, we do not have such a characterization.

Nevertheless, Proposition 4.14 gives us an idea of how expressive Lafont interaction

nets are within the realm of strictly deterministic computation, i.e., when all conflicts

are absent. Quoting Lafont (1997):

“[...] we can say that [Lafont] interaction nets are a deterministic and asynchronous model of

Damiano Mazza 24

→

ε ε

.

n1︷ ︸︸ ︷

ML

ni︷ ︸︸ ︷ nk︷ ︸︸ ︷

.

ML ε ε

. . .

ε ε

. . .

ε ε

.

.︸ ︷︷ ︸
nk

︸ ︷︷ ︸
ni

︸ ︷︷ ︸
n1

Fig. 10. Interaction scheme R for system MN : R(ML1
⊲⊳ ML2

) is non-empty exactly

when L1 = L2 = L = (n1, . . . , nk) with k > 0, and in that case it contains k nets defined

as above, with 1 ≤ i ≤ k.

computation. In fact, we think that any computation of that kind can be modeled by means of

[Lafont] interaction nets, but of course, an assertion of this kind cannot be proved”.

We may call the above statement “Lafont’s thesis”; if we accept the fact that a “deter-

ministic and asynchronous” computational process corresponds to a conflict-free event

structure, then Proposition 4.14 provides evidence (albeit limited, because only termi-

nating computations are taken into account) in favor of Lafont’s thesis.

4.5. Multirule interaction nets

A multirule interaction net system (Alexiev, 1999) is a Lafont system (Σ,R,N) in which

R no longer needs to be deterministic. Multirule interaction nets have recently acquired

a central position in the proof theory of linear logic, thanks to the introduction of dif-

ferential interaction nets by Ehrhard and Regnier (2006), which are a particular system

of multirule interaction nets capable of encoding full linear logic proof nets through the

so-called Taylor expansion (de Carvalho, 2007; Tasson, 2009). They were also shown to

have promising connections with concurrent computation (Ehrhard and Laurent, 2007).

Let µ be a net of a multirule system (Σ,R,N). If µ contains an active pair α0 ⊲⊳ β0,

and if R(α0 ⊲⊳ β0) has k > 1 elements, we have k radicals r1, . . . , rk of source µ; these

are not independent, because they all concern the same active pair. Hence, the conflict

relation of Ev(µ) may be non-empty. However, it always has the structure we introduced

in Sect. 3.2, i.e., it is confusion-free:

Proposition 4.15. Let S be a multirule interaction net system; then, as a normal

rewriting system, S is confusion-free.

Proof. Let r, s be coinitial radicals of S. If µ is their source, there are two cases: either

r and s correspond to two distinct active pairs, or they correspond to two different ways

of reducing the same active pair. It is easy to see that in the first case, they are separated,

and in the second case, they are in simple conflict.

As in the case of Lafont interaction nets, it is possible to see that multiport in-

teraction nets are complete with respect to finite confusion-free event structures. Let

L = (n1, . . . , nk) be a finite list of non-negative integers. We set ‖L‖ =
∑k

i=1 ni, and we

denote by L the set of all finite list of non-negative integers. Let now N be the alphabet

such that |N | = {ML | L ∈ L}, and let ar(ML) = ‖L‖, while the coarity of all symbols

is 1. We define a multirule interaction net system MN = (N,R,N (MN)), where R is

Measuring the Expressiveness of Rewriting Systems through Event Structures 25

{t}−

(0, 1)

(0, 1)

(1)

(1)

(1)

(1)

(1)

(1)

E =
y z

x

v w

t

{y, z}+

{x}+

{v}+

{v}−

{x}−

{y, z}−

µE =

{w}+

{w}−

(0){t}+

(0)

Fig. 11. A finite confusion-free event structure (left), and its associated net in system

MN (right). In the event structure, causal order is represented as usual by arrows, while

the dotted line represents immediate conflict. In the net on the right, the symbols ML

are shortened into L.

as in Fig. 10, in which, for brevity, we put ε = M(). The cells of MN may be seen as

non-deterministic multiplexors; deterministic multiplexors are the special cases ML in

which L is a singleton.

Now let E be a finite confusion-free event structure. We use the notations pred(·)

and succ(·) as in Sect. 4.4, and we denote by sw(E) the set of switches of E (i.e.,

the equivalence classes of events under the reflexive closure of immediate conflict). If

S = {x1, . . . , xk} ∈ sw(E), we know that, for all 1 ≤ i, j ≤ k, pred(xi) = pred(xj);

we denote this set by pred(S). Additionally, for z ∈ |E|, we denote by S(z) the switch

of z, i.e., its equivalence class. We then set |CE | = {S+, S− | S ∈ sw(E)}, |WE | =

{wS
1 , . . . , w

S
m+1 | S ∈ sw(E), ♯pred(S) = m}, and we define the cell base CE =

(|CE |, ℓ, pal, pax) and the wire structure WE = (|WE |, ∂) such that, if S = {x1, . . . , xk} ∈

sw(E), pred(S) = {z1, . . . , zm}, and succ(xi) = {yi
1, . . . , y

i
ni
}, with 1 ≤ i ≤ k, we have

ℓ(S+) = ℓ(S−) = M(n1,...,nk)

pal(S+) = (p+
S) pax(S+) = (q+

S,S(y1
1
)
, . . . , q+

S,S(y1
n1

), . . . , q
+
S,S(yk

1
)
, . . . , q+

S,S(yk
nk

)
)

pal(S−) = (p−S) pax(S−) = (q−
S,S(y1

n1
) . . . , q

−
S,S(y1

1
)
, . . . , q−

S,S(yk
nk

)
, . . . , q−

S,S(yk
1
)
)

∂(wS
1) = [p+

S , q
+
S(z1),S

] ∂(wS
2) = [q−

S(z1),S
, q+

S(z2),S
] . . .

. . . ∂(wS
m) = [q−

S(zm−1),S, q
+
S(zm),S] ∂(wS

m+1) = [q−
S(zm),S , p

−
S]

and it is intended that, if pred(S) = ∅, ∂(wS
1) = [p+

S , p
−
S]. Then, we define µE =

(∅, CE ,WE). Note that the definition is similar to the one given in Sect. 4.4 for La-

font interaction nets; we just replace events with their switches. An example is given in

Fig. 11.

Everything we said in the deterministic case carries over to the non-deterministic case,

so that, considering Proposition 4.15, we obtain

Damiano Mazza 26

α

M1 M1β

β

Fig. 12. A multiwire net generating an event structure isomorphic to that of Fig. 7. The

cells of type M1 interact just like described in Fig. 8; the interaction between two β cells

is undefined; whereas the interaction between α and β simply erases those two cells.

Proposition 4.16. An event structure E is finite and confusion-free iff it is isomorphic

to Ev(µ) for some net µ ofMN .

4.6. Comparing non-deterministic classes of interaction nets

There are at least two other classes of interaction nets which have been considered in the

literature: multiport interaction nets (Alexiev, 1999; Mazza, 2005) and multiwire inter-

action nets (Alexiev, 1999; Beffara and Maurel, 2006); both of them have deterministic

interaction schemes, but achieve non-determinism thanks to the morphology of nets.

Let (Σ,R,N) be an interaction net system, with R deterministic. We say that S is

multiport if no net of N contains multiwires; we say that it is multiwire if Σ has only

symbols of coarity 1. In other words, we take Lafont interaction nets, and in one case,

we allow multicells, in the other, we allow multiwires—whence the respective names.

The example of Fig. 7 shows that multiport nets may exhibit confusion; Fig. 12 shows

that this is also the case with multiwire nets. Therefore, modulo Proposition 4.15, we

have a first concrete application of Corollary 3.10: multirule interaction nets are strictly

less expressive than multiport or multiwire interaction nets. This separation result was

claimed by Alexiev (1999), but his proof relies on an extremely strict notion of encoding.

For example, because he lacked a notion of bisimulation for interaction nets, to ensure

soundness Alexiev forced his encodings to preserve the principal or auxiliary nature of

ports in nets. Our result is based on more general grounds and, in our opinion, explains

more deeply why such separation holds.

An interesting question about “non-Lafont” interaction nets, i.e., interaction nets hav-

ing some form of non-determinism, concerns the existence of a system of universal com-

binators, like the interaction combinators (Lafont, 1997) for Lafont interaction nets. A

system is universal for a class of interaction nets iff all interaction net systems of that

class can be translated into it (in the sense of Sect. 4.3). What is interesting about La-

font’s interaction combinators is that they are a finite system: the alphabet contains only

three symbols, and the interaction scheme defines all six possible interactions between

them. Is this possible in the multirule and multiport case?§ The results of Sect. 3.3 give

a partially negative answer, at least according to our notion of embedding.

First of all, observe that, if an alphabet Σ is finite, then any multirule system on

Σ yields a normal rewriting system with finite degree of non-determinism (as defined

§ The question does not make sense for multiwire nets, because their non-determinism does not come
from hypercells.

Measuring the Expressiveness of Rewriting Systems through Event Structures 27

Fig. 13. A maximal anticlique in a multiport system of maximum coarity 4.

in Sect. 3.3), which is given by the active pair having the highest number of possible

ways to reduce it. In fact, every non-deterministic active pair gives rise to an anticlique,

whose cardinality is equal to the number of its possible reductions. Then, Corollary 3.12

immediately gives us that any universal system of multirule interaction nets must in

general introduce divergence, because any such system has a bounded degree of non-

determinism, and there will always be a multirule system with a greater degree.

Multiport systems suffer from a similar problem:

Lemma 4.17. Let Σ be a finite alphabet, and let m = max{coar(α) | α ∈ |Σ|}. Then,

the normal rewriting system induced by any multiport interaction net system on Σ has

degree of non-determinism bounded by ⌊ 3m
2 ⌋ (where ⌊x⌋ is the greatest integer not greater

than x).

The upper bound of Lemma 4.17 can be reached; Fig. 13 gives an example with m = 4.

5. Discussion and Further Work

The significance and scope of the present work depends on the following questions:

(i) how many computational models can be rephrased in terms of normal rewriting sys-

tems?

(ii) how sensible is our notion of bisimilar embedding?

We start by observing that, apart from the classical examples of Turing machines

(deterministic or not) and Petri nets, several process calculi (CCS, π-calculus, solos

(Laneve and Victor, 2003)), when considered under their standard reduction relation,

naturally yield normal rewriting systems. However, no system allowing duplication of

radicals is normal, as this clashes with the affinity axiom. For instance, the standard

residue structure associated with the λ-calculus is not pre-normal: in ∆(II)→β II(II),

in the second term there are two residues of the radical induced by the redex II in the

first term. Proof nets present an identical issue, because of exponential boxes. Note that,

on the contrary, process calculi do not violate affinity, even in presence of replication,

because this is formulated precisely so as to avoid duplication of reductions.

We point out that this limitation is somehow intrinsic in event structures: if two events

a and b are both enabled, there is no way of saying that the occurrence of a “duplicates” b.

Instead, this is modeled by saying that a and b are in conflict, and that, after “destroying”

b, the occurrence of a enables two “new” events b1, b2, which must be seen as the “copies”

of b. Observe that the symmetry axiom is also imposed by event structures, and reflects

the symmetry of the conflict relation.

Damiano Mazza 28

→

!

.

!

.

.

?

→

.

.

! !

? ?
?

. . .

!

→

!

.

?

.

!

Fig. 14. Rules for multidereliction (?) and multicodereliction (!). The coarity of each

symbol is implicitly given by the graphical representation. In the leftmost two rules, the

nullary and binary cells are a weakening and a contraction, respectively; these rules have

a dual version, which we omit.

There are two possible reactions to this situation. The first, is asserting that event

structures describe computation in an accurate way, and that the λ-calculus reduction is

somehow “artificial”. In fact, these problems disappear as soon as one fixes an evaluation

strategy, e.g. call-by-name or call-by-value for the λ-calculus. Moreover, the λ-calculus

can be endowed with a normal residue structure: it is enough to say that the redex

(λx.M)N has no residue through reduction of any of the redexes in N , and vice versa.

The second, is to abandon event structures, and work directly with a broader class

of rewriting systems, possibly in which a well-behaved notion of homotopy can still be

defined. For instance, the above duplication in the λ-calculus may be treated by asserting

the existence of an “asymmetric tile” between the two reductions ∆(II)→β II(II)→∗
β

II, of length 3, and the reduction ∆(II)→β ∆I →β II; such a tile cannot be decomposed

in terms of the “square tiles” of pre-normal rewriting systems. However, what would

replace event structures in such an approach is yet to be seen.

As far as point (ii) is concerned, one would expect the following: if M,M′ are two

computational models for which it is well know that M can be encoded in M′, and

if both admit an interpretation in terms of event structures Ev(M),Ev(M′), then we

should have Ev(M) →֒ Ev(M′). We already remarked that this is true in the case of

translations between Lafont interaction nets. It is also possible to see that this holds in

a number of other cases: for instance, Girard’s standard encoding of the λ-calculus into

proof nets yields a bisimilar embedding (when one gives to the λ-calculus and to proof

nets the non-standard, normal residue structure mentioned above).

However, there are also surprises. For example, our encoding of the π-calculus in multi-

port interaction nets (Mazza, 2005) does not induce a bisimilar embedding. An encoding

yielding a bisimilar embedding may be given by building on work by Ehrhard and Lau-

rent (2007). One has to turn differential interaction nets into a multiport system (instead

of multirule), by introducing two dual families of multidereliction and multicodereliction

symbols; all symbols in these families have arity 1, and there is one symbol for each

possible coarity. These symbols interact as in Fig. 14. Then, if one takes Ehrhard and

Laurent’s encoding, but reduces nets with the rules of Fig. 14 instead of the usual rules

for differential interaction nets, one obtains a bisimilar embedding; the details of this are

of course out of the scope of this paper.

Actually, the above mentioned encoding by Ehrhard and Laurent (2007) suffers itself

from a similar problem: indeed, the π-calculus admits confusion, as shown by the CCS

process ν(a, b, c)(a | a.b | b.(c | c) | b), whose τ -transitions generate an event structure iso-

Measuring the Expressiveness of Rewriting Systems through Event Structures 29

morphic to that of Fig. 7; then, by Corollary 3.10, no encoding in differential interaction

nets can induce a bisimilar embedding. As a matter of fact, to prove the soundness of

their encoding, Ehrhard and Laurent take into account only certain reductions of differ-

ential interaction nets. If one considers only these reductions and the homotopy classes

they generate, then their encoding does yield a bisimilar embedding. The meaningfulness

of this “pruning”, and its relevance to concurrency, is still a matter of research.

A further unexpected situation is that the folklore encoding of Turing machines with ar-

bitrary degree of non-determinism into Turing machines with degree of non-determinism

2 (simulate a branching of degree n > 2 with n − 1 successive branchings of degree 2)

becomes problematic. In fact, the degree of non-determinism of a Turing machine cor-

responds exactly with our homonymous notion (cf. Sect. 3.3) when these are seen as

(confusion-free) normal rewriting systems. Then, since the folklore simulation does not

introduce divergence in any reasonable sense (it simply slows down computation by a

constant factor), by Corollary 3.12 it cannot induce a bisimilar embedding.

We face here another intrinsic limitation, this time not of event structures, but of how

bisimulations deal with non-determinism. In fact, in the folklore encoding, at some point

the Turing machine of degree 2 must choose not to simulate a transition of the other

machine, without having chosen which of the other transitions it will simulate. This

behavior is “forbidden” by bisimulations, and not just for event structures—the same

holds for bisimulations on labelled transition systems. In a sense, the current treatment

of communication in concurrency theory implies that the only way to say “no” to someone

is to say “yes” to someone else.

One may object that bisimulations were conceived to treat “open” systems, while Tur-

ing machines are “closed”. But that brings to light another issue: if Turing machines are

indeed closed systems, and all transitions are internal (i.e., τ -transitions), then bisimu-

lations are completely useless (all closed systems are weakly bisimilar!), which leaves us

with a fundamental hole: how do we relate expressiveness of “closed” non-deterministic

systems? We believe that this question should draw the attention of further research.

References

Alexiev, V. (1999). Non-deterministic Interaction Nets. Ph.D. Thesis, University of

Alberta.

Beffara, E. and Maurel, F. (2006). Concurrent nets: A study of prefixing in process

calculi. Theoretical Computer Science, 356(3):356–373.

Berry, G. (1979). Modèles complètement adéquats et stables des λ-calculs typés. Thèse

de doctorat d’état, Université Paris VII.

Danos, V. and Regnier, L. (1989). The structure of multiplicatives. Archive for Mathe-

matical Logic, 28:181–203.

de Carvalho, D. (2007). Sémantiques de la logique linéaire et temps de calcul. Ph.d. thesis,

Université de la Méditerranée.

de Falco, M. (2009). An explicit framework for interaction nets. In Proceedings of RTA

2009, LNCS.

Damiano Mazza 30

Ehrhard, T. and Laurent, O. (2007). Interpreting a finitary pi-calculus in differential

interaction nets. In Proceedings of CONCUR 2007, LNCS, pages 333–348.

Ehrhard, T. and Regnier, L. (2006). Differential interaction nets. Theoretical Computer

Science, 364(2):166–195.

Fernández, M. and Mackie, I. (1999). A calculus for interaction nets. In Nadathur, G.,

editor, Proceedings of PPDP ’99, volume 1702 of Lecture Notes in Computer Science,

pages 170–187. Springer.

Girard, J.-Y. (1996). Proof-nets: The parallel syntax for proof-theory. In Ursini and

Agliano, editors, Logic and Algebra. Marcel Dekker, Inc.

Joyal, A., Nielsen, M., and Winskel, G. (1996). Bisimulation from open maps. Information

and Computation, 127(2).

Khalil, L. (2003). Généralisation des Réseaux d’Interaction avec amb, l’agent de Mc-

Carthy: propriétés et applications. Ph.D. Thesis, École Normale Supérieure de Paris.

Lafont, Y. (1990). Interaction nets. In Conference Record of POPL’90, pages 95–108.

ACM Press.

Lafont, Y. (1997). Interaction combinators. Information and Computation, 137(1):69–

101.

Laneve, C. and Victor, B. (2003). Solos in concert. Mathematical Structures in Computer

Science, 13(5):657–683.

Mazza, D. (2005). Multiport interaction nets and concurrency. In Abadi, M. and de Al-

faro, L., editors, Proceedings of CONCUR 2005, LNCS, pages 21–35. Springer.

Melliès, P.-A. (2004). Asynchronous games 2: The true concurrency of innocence. Theo-

retical Computer Science, 358(2–3):200–228.

Mimram, S. (2008). Sémantique des jeux asynchrone et réécriture 2-dimensionelle. Ph.D.

Thesis, Université Paris-Diderot (Paris 7). http://www.pps.jussieu.fr/~smimram.

Nielsen, M., Plotkin, G. D., and Winskel, G. (1981). Petri nets, event structures and

domains, part I. Theoretical Computer Science, 13(1):85–108.

Rabinovitch, A. and Traktenbrot, B. (1988). Behaviour structures and nets. Fundamenta

Informatica, 11(4):357–404.

Tasson, C. (2009). Sémantiques et syntaxes vectorielles de la logique linéaire. Ph.D. the-

sis, Université Paris Diderot – Paris 7.

van Glabeek, R. J. and Goltz, U. (1989). Equivalence notions for concurrent systems and

refinement of actions. In Proceedings of MFCS 1989, volume 379 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag.

Varacca, D., Völzer, H., and Winskel, G. (2006). Probabilistic event structures and

domains. Theoretical Computer Science, 358(2-3):173–199.

Winskel, G. (1980). Events in Computation. Ph.D. thesis, Dept. of Computer Science,

University of Edinburgh, Edinburgh, Scotland.

Winskel, G. (1982). Event structure semantics of CCS and related languages. In Nielsen,

M. and Schmidt, E. M., editors, Proceedings of ICALP 1982, volume 140 of LNCS,

pages 561–576. Springer.

Winskel, G. and Nielsen, M. (1995). Models for concurrency. In Handbook of Logic in

Computer Science, volume 4. Oxford University Press.

Measuring the Expressiveness of Rewriting Systems through Event Structures 31

Appendix A. Proofs of Sect. 1

A.1. Proofs of Sect. 1.2

Proposition 1.3. A poset (X,≤) is coherent iff it has a least element, and is locally

coherent, i.e., for every x, y, z ∈ X , x ↑ y, x ↑ z, and y ↑ z implies that
∨
{x, y, z} exists.

Proof. The forward implication is obvious: the supremum of the empty set, which is

a clique, is the least element, and local coherence is just coherence restricted to sets of

cardinality 3. For the backward implication, let u ⊆ X be a clique of cardinality n; we

must prove that its supremum exists. We do this by induction on n, observing first that

we may suppose n ≥ 2, because if n = 0, we have
∨
u = ⊥, and if n = 1, the only

element of u is its supremum. So let u = u0 ∪ {x, y}. Observe that all subsets of a clique

are cliques; therefore, the induction hypothesis gives us the existence of z =
∨
u0, as

well as the existence of x′ =
∨

(u0 ∪ {x}) and y′ =
∨

(u0 ∪ {y}). Now, since x′ and y′

are both upper bounds of u0, by definition of supremum we have z ≤ x′, y′, which shows

that z ↑ x and z ↑ y. Since x ↑ y holds by hypothesis, we are in position to apply local

coherence, and obtain that w =
∨
{x, y, z} exists. But this is the supremum of u: in fact,

it clearly bounds u and, if w′ is another upper bound of u, it is also an upper bound of

u0, u0 ∪ {x} and u0 ∪ {y}, so w′ is an upper bound of {x, y, z}, hence w ≤ w′.

Lemma A.1. Let (X,≤) be a poset, let a ∈ P(X), and let u ⊆ X be such that
∨
u = a.

Then, a ∈ u.

Proof. We prove the contrapositive statement: let u ⊆ X with a 6∈ u, and suppose that∨
u exists. Now either there exists x ∈ u such that a < x, or for all x ∈ u, x < a. In the

first case, a is obviously not the supremum of u. In the second case, if a0 is the unique

element covered by a, we still have, for all x ∈ u, x ≤ a0, which shows once again that a

cannot be the supremum of u.

Lemma A.2. If E is an event structure, x ∈ C(E) iff there exists a finite sequence of

pairwise coherent events a1, . . . , an such that x =
⋃n

i=1 ↓ai.

Proof. Obvious.

Lemma 1.4. For every event structure E = (|E|,≤,ˇ), we have P(C(E),⊆) = {↓a | a ∈

|E|}, i.e., the principal ideals of (|E|,≤).

Proof. Let x ∈ C(E); by Lemma A.2, we have x =
⋃n

i=1 ↓ai, where a1, . . . , an are the

maximal elements of x. From this, it can be inferred that x covers exactly n configura-

tions, namely ⌈a1⌉, . . . , ⌈an⌉, so it is prime iff n = 1.

We now give a few auxiliary definitions. Let (X,≤) be a poset. A compact element of

(X,≤) is an element d ∈ X such that, whenever d ≤
∨
u for some finite¶ u ⊆ X , we

have that d ≤ x for some x ∈ u.

¶ Compact elements are ususally defined using suprema of directed sets, not finite sets. The definition
we give here is adjusted to our purposes.

Damiano Mazza 32

We say that a poset (X,≤) is a meet semilattice if every two elements x, y of X have

an infimum, denoted by x ∧ y, and there is a least element, denoted by ⊥; we say that

it is distributive if it is bounded complete and if, for any three elements x, y, z, {x, y, z}

bounded implies x∧(y∨z) = (x∧y)∨(x∧z). The following is an immediate consequence

of Lemma A.1:

Lemma A.3. Let (X,≤) be a distributive meet semilattice, and let a ∈ P(X). Then, a

is compact.

Proof. Let u be a finite subset of X , and suppose a ≤
∨
u. Consider the set v =

{a ∧ x | x ∈ u}. This set is finite and bounded, so
∨
v exists by bounded completeness.

Moreover, by distributivity we have
∨
v = a∧

∨
u = a. By Lemma A.1, we conclude that

a ∈ v, so there exists x ∈ u such that a ∧ x = a, which implies a ≤ x.

The following shows that Lemma A.3 applies to configuration posets:

Proposition A.4. A configuration poset is a distributive meet semilattice.

Proof. Let (X,≤) be a configuration poset. The least element is clearly
∨
∅, which

exists because ∅ is a clique. Let now x, y ∈ X ; since ↓x and ↓y are finite, p(x) and p(y)

are finite too, and so is p(x) ∩ p(y). This set is bounded (by x and y), so by bounded

completeness (which is implied by coherence) z =
∨

p(x) ∩ p(y) exists. We contend that

z = x ∧ y. First of all, observe that, whenever a ∈ p(x) ∩ p(y), we have a ≤ x, y,

hence z ≤ x, y by definition of supremum. Let now w ≤ x, y; then, we obviously have

p(w) ⊆ p(x) ∩ p(y), so
∨

p(w) ≤ z; but X is prime algebraic, so
∨

p(w) = w. For what

concerns distributivity, observe that, again by the fact that X is prime algebraic, for

all bounded x, y ∈ X , p(x ∨ y) = p(x) ∪ p(y); therefore, given any x, y, z ∈ X , we have

p(x∧ (y ∨ z)) = p(x)∩ (p(y)∪ p(z)) = (p(x)∩ p(y))∪ (p(x)∩ p(z)) = p((x∧ y)∨ (x∧ z)),

so we conclude by applying once more the fact that X is prime algebraic.

A.2. Proofs of Sect. 1.3

Lemma 1.7. Let E,E′ be event structures, and let β : E → E′ be an isomorphism.

Then:

1 Φ(E) = (C(E),⊆) is a configuration poset (as is Φ(E′) = (C(E′),⊆));

2 the function Φ(β) : C(E) → Pfin(E
′) defined by Φ(β)(x) = {β(a) | a ∈ x}, for all

x ∈ C(E), is an isomorphism between Φ(E) and Φ(E′).

Proof. Point 1 is an easy verification: infima and, when they exist, suprema are inter-

sections and unions, respectively, and we use Lemmas A.2 and 1.4 to obtain that C(E)

is prime algebraic and coherent. Point 2 is a trivial consequence of the fact that β is

bijective and preserves causality and coherence in both directions.

Lemma 1.8. Let (X,≤), (X ′,≤′) be configuration posets, and let φ : X → X ′ be an

isomorphism. Define Ψ(X) = (P(X),≤, 6↑), where 6↑ is the negation of compatibility, i.e.,

a 6↑ b if there is no z ∈ X such that a, b ≤ z. Then:

1 Ψ(X) is an event structure (as is Ψ(X ′), which can be defined similarly);

Measuring the Expressiveness of Rewriting Systems through Event Structures 33

2 the restriction Ψ(φ) of φ to P(X) is an isomorphism between Ψ(X) and Ψ(X ′).

Proof. Again, point 1 is an easy verification: given a ∈ P(X), ↓a is always finite because

X is a configuration poset, and compatibility propagates downwards, i.e., a ↑ b ≤ c

implies a ↑ c. For point 2, observe that, since φ is an isomorphism, given a ∈ X , φ(a) is

prime iff a is. Then, through Ψ(φ), (P(X),≤) and (P(X ′),≤′) are isomorphic subposets

of X and X ′, respectively; the fact that Ψ(φ) is an isomorphism of event structures is a

consequence of the fact that conflict is defined in terms of compatibility.

Lemma 1.9. Let E be an event structure. Define ηE : |E| → C(E) by ηE(a) =↓a, for all

a ∈ |E|. Then, ηE is an isomorphism between E and Ψ(Φ(E)).

Proof. Let E = (|E|,≤,ˇ). First of all, Lemma 1.4 shows that ηE is a bijection between

|E| and |Ψ(Φ(E))|, as desired. Let now a, b ∈ |E|. Observe that a ≤ b iff a ∈↓b iff ↓a ⊆↓b.

Moreover, a ˇ b implies that there is no configuration containing both a and b, so

(↓a) 6↑ (↓b); conversely, a ¨ b implies that (↓a) ∪ (↓b) is a configuration, so (↓a) ↑ (↓b).

This proves that ηE is indeed an isomorphism of event structures.

Lemma 1.10. Let X be a configuration poset, let u be a finite clique of prime elements

of X , and set εX(u) =
∨
u. This defines an isomorphism εX between Φ(Ψ(X)) and X .

Proof. First of all, note that εX is well defined, and its image is in X , because X is

coherent. Then, we proceed by observing that u ∈ Φ(Ψ(X)) iff u is a finite configuration

of Ψ(X), which is equivalent to saying that it is a downward-closed, finite clique of

prime elements of X (by “clique” we mean that a, b ∈ u implies there exists x ∈ X

such that a, b ≤ x). We start by proving the injectivity of εX on Φ(Ψ(X)). Suppose

that u, v ∈ Φ(Ψ(X)) are such that εX(u) = εX(v), i.e.,
∨
u =

∨
v, and take a ∈ u.

Since a ≤
∨
u =

∨
v, by Lemma A.3 we infer that a ∈ v, because v is downward-closed.

By symmetry, we obtain u = v. Turning to surjectivity, let x ∈ X , and consider p(x).

The primes in p(x) are all pairwise compatible (they are all bounded by x), and p(x) is

downward-closed by definition, so p(x) ∈ Φ(Ψ(X)). But then εX(p(x)) =
∨

p(x) = x,

because X is a configuration poset. To see that εX is an isomorphism simply observe

that, for all u, v ∈ Φ(Ψ(X)), u ⊆ v iff
∨
u ≤

∨
v, for which we use again Lemma A.3.

To finish the proof of Theorem 1.6, the naturality of η and ε remains to be checked;

this is left to reader.

Appendix B. Proofs of Sect. 2

As in Sect. 2.2, in what follows we fix a normal rewriting system S; all objects, radicals,

and reductions must be assumed to be in S.

Lemma 2.7. Let r, s be two distinct radicals, and let f, g be reductions. Then:

1 rf ∼ sg implies that r and s are independent, and there exists a reduction h such

that f ∼ srh and g ∼ rsh;

2 frt1 ∼ gst2 implies that t1 = pq and t2 = qp for some independent radicals p, q, and

there exists a reduction h such that fr ∼ hq and gs ∼ hp.

Damiano Mazza 34

Proof. We actually prove the following statements, by induction on n > 0:

1’ rf ∼n sg and r 6= s implies that r and s are independent, and there exists a reduction

h and m, k ∈ N such that f ∼m srh and g ∼k r
sh, with m+ k = n− 1;

2’ frt1 ∼n gst2 implies that t1 = pq and t2 = qp for some independent radicals p, q,

and there exists a reduction h and m, k ∈ N such that fr ∼m hq and gs ∼k hp, with

m+ k = n− 1.

(Note that n = 0 is excluded by the fact that r and s are distinct). For point (1’) we shall

use the forward cube property; point (2’) is the dual, and therefore uses the backward

cube property. We shall only give the proof of point (1’), the other proof being similar.

If n = 1, the result is obvious, with h = id and m,n = 0. Let now n > 1. Since r 6= s,

the sequence of “tiles” used to derive rf ∼ sg must at some point involve r, i.e., we

have n0, n
′ ∈ N, with n′ > 0, such that rf ∼n0

rtrf ′ ∼1 tr
tf ′ ∼n′ sg, for some radical

t independent from r. Now, if t = s, we are done (simply put h = f ′, m = n0, k = n′).

Otherwise, since n′ < n, we may apply the induction hypothesis and obtain a reduction

h′ and two integers m′, k′ such that rtf ′ ∼m′ sth′ and g ∼k′ tsh′, with m′ + k′ = n′ − 1.

Now, if we put p = rt, q = st, the fact that m′ < n′ allows us once again to apply the

induction hypothesis, and infer the existence of a reduction h′′ and two integers m′′, k′′

such that f ′ ∼m′′ qph′′ and h′ ∼k′′ pqh′′, with m′′ + k′′ = m′ − 1. By the forward cube

property, we have that r, s are independent, and we further have a radical t′ = trsr

= tsrs

.

Therefore, if we put h = t′h′′, composing the homotopies we get

f ∼n0
trf ′ ∼m′′ trqph′′ ∼1 s

rt′h′′ = srh,

g ∼k′ tsh′ ∼k′′ tspqh′′ ∼1 r
st′h′′ = rsh,

which, if we put m = n0 +m′′+1 and k = k′+k′′+1, prove that f ∼m srh and g ∼k r
sh,

with m+ k = n0 + k′ +m′′ + k′′ + 2 = n0 + k′ +m′ + 1 = n0 + n′ = n− 1.

Lemma 2.8. Let f, g be compatible reductions. Then:

1 if src f = µ and trg f = ν, then idf
µ = idν ;

2 if f = hk, fg = (hk)g = hgkgh

;

3 fgf ∼ gfg.

Proof. Point (1) is easily proved by induction on ‖f‖.

For point (2), we start with the case in which h = r, where r is a radical, and we

proceed by induction on ‖g‖. The case g = id follows immediately from the definitions;

if g = sg′, we have, by applying the above definitions and the induction hypothesis,

(rk)sg′

= ((rk)s)g′

= (rsksr

)g′

= (rs)g′

(ksr

)(g
′)rs

= rgksr(g′)rs

= rgk(sg′)r

= rgkgr

.

The general case of point (2) is proved by induction on ‖h‖. If h = id, we have, thanks

to point (1), (id k)g = kg = idgkgid

; if h = th′, we apply the restricted result proved above

and the induction hypothesis, to obtain (th′k)g = tg(h′k)gt

= tgh′
gt

k(gt)h′

= hgkgh

.

For what concerns point (3), we start again by proving it in case f = r, where r is a

radical; we do this by induction on ‖g‖. If g = id, we immediately have rgr = r = grg.

Otherwise, we have two cases: either g = rh, or g = sh with s 6= r. In the first case,

observe that, by definition rr = id, so rg = rrh = (rr)h = idh = id by point (1); hence,

Measuring the Expressiveness of Rewriting Systems through Event Structures 35

we can write rgr = r(rh)r = rh = g = grg. In the second case, by observing that, thanks

to point (1) of Lemma 2.7, r and s are independent, and by invoking the induction

hypothesis, we have rgr = r(sh)r = rsr(hrs

) ∼ srshrs

∼ sh(rs)h = shrsh = grg.

We now prove point (3) in the general case, by induction on ‖f‖. The case f = id

is a straightforward consequence of the definitions and of point (1). If f = rh, we have

fgf = rhgrh = rh(gr)h, which by the induction hypothesis is equal to rgrhgr

; this, by

applying the restricted version proved above, is equal to grghgr

; but this, thanks to point

(2), is equal to g(rh)g = gfg.

We now prove a few useful structural properties.

Lemma B.1. Let t be a radical, and let f, g be reductions such that t . f, g. Then,

f ∼ g implies f t ∼ gt.

Proof. It is enough to prove that f ∼1 g implies f t ∼1 g
t; the general result follows

by induction on n from the hypothesis f ∼n g. We therefore assume that f = hrsrk and

g = hsrsk for some independent radicals r, s and some reductions h, k, and reason by

induction on ‖h‖. In the base case, we start by considering the situation in which t = r

(or t = s, which is perfectly symmetric). Then, we have f t = (tstk)t = stk = st(tsk)ts

=

(stsk)t = gt. Let now r, s, t be all pairwise distinct; then, point (1) of Lemma 2.7 assures

us that they are also pairwise independent, so we have (rsrk)t = rt(srk)tr

= rtsrtr

ktrsr

.

Now, we invite the reader to check that r, s, t and their residues with respect to each

other form a “cube”, and that we can write rtsrtr

∼1 strsts

; moreover, by the tiling

axiom of Definition 2.2, we have trsr

= tsrs

, so we can rewrite the last term above into

rtsrtr

ktsrs

∼1 s
trsts

ktsrs

, which by the same computations as above is easily seen to be

equal to (srsk)t.

Let now h = ph′, where p is a radical. If p = t, we have f t = h′rsrk ∼1 h
′srsk = gt;

if p 6= t, using the induction hypothesis we have f t = (ph′rsrk)t = pt(h′rsrk)tp

∼1

pt(h′srsk)tp

= gt.

Another important structural result is the following, which is a direct consequence of

the above lemma and states that reductions are “epic modulo homotopy”:

Lemma B.2. For all reductions f, g, h, we have that hf ∼ hg implies f ∼ g.

Proof. It is enough to prove the statement when h is a radical; the general case can

once again be obtained from this by an easy induction on ‖h‖. So let t be a radical, and

let tf ∼ tg; we obviously have t . tf, tg, so Lemma B.1 applies, giving (tf)t ∼ (tg)t; but

(tf)t = f and (tg)t = g.

In order to prove Lemma 2.9, we first show the following:

Lemma B.3. For all reductions f, g, f . g implies fg = id.

Proof. We first prove the result in case f = r, where r is a radical, reasoning by

induction on ‖g‖. Observe that g 6= id, so the base case is g = r, in which we have

rr = id by definition. If g = sg′, observe that rs is either an identity reduction (in case

Damiano Mazza 36

s = r), or is well defined by point (1) of Lemma 2.7; in both cases, we have rs . g′, and

since rsg′

= (rs)g′

, we may conclude by applying the induction hypothesis.

To prove the full result, we proceed once again by induction on ‖f‖. If f = id, we

conclude by point (1) of Lemma 2.8. If f = rf ′, we have fg = (rf ′)g = rg(f ′)gr

by point

(2) Lemma 2.8; since r . g, by the restricted result proved above, this is equal to (f ′)gr

.

Now, observe that ‖f ′‖ < ‖f‖, so if we manage to prove f ′ . gr, we may conclude by

applying the induction hypothesis. We start by applying point (3) of Lemma 2.8, and

write g = grg ∼ rgr; but f . g implies that g ∼ rf ′h for some reduction h; then, by

Lemma B.2, we have gr ∼ f ′h, which proves f ′ . gr.

Lemma 2.9. For all reductions f, g, h, we have

1 f . gh iff fg . h;

2 f ∼ gh implies fg ∼ h.

Proof. We start with point point (1), and consider the backward implication: fg . h

means that, for some k, fgk ∼ h; now, using point (3) of Lemma 2.8, we have fgfk ∼

gfgk ∼ gh, which proves f . gh. We move on to the forward implication of point (1),

and reason by induction on ‖h‖. If h = id, then we conclude by Lemma B.3; if h = th′,

by the induction hypothesis we obtain fgt . h′. Then, for some reduction k, using point

(3) of Lemma 2.8, we can write h = th′ ∼ tfgtk = t(fg)tk ∼ fgtf
g

k, which proves that

fg . h, as desired.

Point (2) follows from point (1) by remarking that, for any f ′, f ′′ f ′ ∼ f ′′ iff f ′ . f ′′

and f ′′ . f ′. Then, thanks to point (1) above, f ∼ gh immediately gives us fg . h; it

also implies g . f , so by Lemma B.3 we have gf = id. Now, from gh . f , we can write,

for some reduction k and applying by point (3) of Lemma 2.8, ghk ∼ f = fgf ∼ gfg,

which by Lemma B.2 gives hk ∼ fg, which means that h . fg.

The last important structural property we prove is a sort of stability result (in the

sense of Berry) for residues, which is a consequence of the backward cube property, and

is used in the proof of Lemma 2.15:

Lemma B.4 (Stability). Let f, g, h, k be reductions such that fh ∼ gk, let t be a

radical such that src(t) = trg(fh) = trg(gk), and suppose that there exist two radicals

t1, t2 coinitial with h, k, respectively, such that th1 = tk2 = t. Then, there exists a reduction

f0, two coinitial reductions h0, k0 and a coinitial radical t0 such that f ∼ f0h0, g ∼ f0k0,

h0h ∼ k0k, and t1 = th0

0 and t2 = tk0

0 .

Proof. By induction on n = ‖f‖+ ‖h‖ = ‖g‖+ ‖k‖. If n = 0, all reductions are equal

to identities and the lemma vacuously holds. If n > 0, we start by considering the case

in which one of h, k is an identity; so suppose, without loss of generality thanks to the

symmetry, that k = id, which forces t2 = t. It is then easy to verify that the lemma holds

with f0 = f , h0 = id, k0 = h and t0 = t1. We may therefore suppose that h = h′r and

k = k′s. If r = s and h′, k′ are identities, then t1 = t2 and the lemma trivially holds.

Hence, if r = s, we may suppose that h′ = h′′r′ and k′ = k′′s′. Now, if we still have r′ = s′,

then we may conclude by applying the induction hypothesis to fh′ ∼ gk′. Therefore, we

may restrict to the case in which h = h′r = h′′r′r, k = k′s = k′′s′s, and either r 6= s,

Measuring the Expressiveness of Rewriting Systems through Event Structures 37

or r′ 6= s′. In both cases, point (2) of Lemma 2.7 applies, giving us a reduction h̃ and

two independent radicals p, q such that r = pq, s = qp, and fh′ ∼ h̃q, gk′ ∼ h̃p. Now the

reductions qth
′

1 r
th′

1 ∼ ptk
′

2 s
tk′

2 and the three radicals r, s, t form a structure to which we

can apply the backward cube property, which gives us a radical t′ such that th
′

1 = t′
q

and

tk
′

2 = t′
p
. Then, we may apply the induction hypothesis to fh′ ∼ h̃q and gk′ ∼ h̃p, which

gives us six reductions h1, k1, f1, h2, k2, f2 and two radicals t3, t4 such that: f ∼ f1h1,

h̃ ∼ f1k1 ∼ f2h2, g ∼ f2k2, t1 = th1

3 , t2 = tk2

4 , and t′ = tk1

3 = th2

4 . This latter equation

tells us that we can apply once more the induction hypothesis to f1k1 ∼ f2h2; this gives

us three reductions f0, h̃0, k̃0 and a radical t0 such that: f1 ∼ f0h̃0, f2 ∼ f0k̃0, and

t3 = t
eh0

0 , t4 = t
ek0

0 . Composing all this, we can verify that the lemma is satisfied by f0,

h0 = h̃0h1, k0 = k̃0k2, and t0.

Lemma 2.14. x ∈ P(H(S)) iff x is essential.

Proof. For the forward implication, consider the contrapositive, and suppose that x is

not essential. The first possibility is x = [id], which is not prime, because it covers no

other class. Otherwise, x = [fr], and there exists gs ∼ f and a radical t such that r = ts.

Observe that [gs], [gt] ≤ [fr]; now suppose gs ∼ gt; by Lemma B.2 we have s = t, which

is a contradicts the self-conflict axiom (s and t are independent); so x covers at least two

distinct classes, namely [gs] and [gt], and is not prime. Conversely, if x = [fr] is essential,

by definition it covers exactly one class, namely [f].

Lemma 2.15. Let fr be a reduction, with r a radical. Then, there exists a unique

essential homotopy class [ht], with t a radical, such that f ∼ hg and r = tg for some

reduction g.

Proof. We proceed by induction on ‖f‖: we prove the statement for fr by supposing

it to hold for all reductions f ′r′ such that ‖f ′‖ < ‖f‖. There are two cases: either fr is

essential, or it is not.

In the first case, induction is not needed: we may put h = f , t = r, and g = id to meet

the requirements. To prove uniqueness, let h′t′ be an essential reduction such that there

exists g′ such that f ∼ h′g′ and r = t′
g′

. If g′ = g′′s, we have that r = (t′g
′′

)s, which

contradicts the essentiality of fr. So we must have g′ = id, and h′t′ ∼ fr.

In the second case, by definition there exist a reduction f ′ and a radical s such that

f ∼ f ′s, and such that r = ps for some radical p independent from s. We may then

apply the induction hypothesis to f ′p, which gives us an essential reduction h′t′ and a

reduction g′ such that f ′ ∼ h′g′ and p = t′
g′

. Then, setting h = h′, t = t′ and g = g′s

satisfies the requirements. For what concerns uniqueness, suppose h′′t′′ is an essential

reduction, with t′′ a radical, such that there exists g′′ such that r = t′′
g′′

. Then, by

Lemma B.4, there exist three reductions f0, h0, k0 and a radical t0 coinitial with h0 such

that h′ ∼ f0h0, h
′′ ∼ f0k0, and t′ = th0

0 , t′′ = tk0

0 . If both h0 and k0 are identities, then

we immediately have h′′ = h′ and t′′ = t′, as desired; we shall see that all other cases

lead to contradictions. In fact, let h0 = h′0q; we then have t′ = (t
h′

0

0)q, in contradiction

with the essentiality of h′t′. We may then suppose h0 = id and k0 = k′0q; then, we have

t′′ = (t
k′

0

0)q, this time contradicting the essentiality of h′′t′′.

Damiano Mazza 38

Lemma 2.17. For every reduction f , ♯[f] ≤ ‖f‖!.

Proof. We start by recalling that the group of permutations over {1, . . . , n}, with n > 0,

which we denote by Sn, may be presented by n−1 generators τ1, . . . , τn−1 satisfying the

equations τ2
i = 1 for all 1 ≤ i ≤ n − 1 and τiτi+1τi = τi+1τiτi+1 for all 1 ≤ i ≤ n − 2;

indeed, the generators correspond to the elementary transpositions, i.e., permutations

exchanging exactly two consecutive elements and behaving as the identity on the others.

Now, observe that [id] = {id}, so we may assume f 6= id, and ‖f‖ = n > 0. Then,

by the injectivity axiom, there are at most n− 1 reductions g such that f ∼1 g. In fact,

these come from “exchanging” pairs of radicals in f by means of a tile, and injectivity

imposes at most one tile for every pair. We write f̃i, with i ∈ {1, . . . , n− 1}, for the tile

“exchanging” the i-th and i + 1-th radical of f (if it exists), and write f ∼ efi
g when

f ∼1 g by means of “applying” the tile f̃i. We then invite the reader to check that:

— f ∼ efi
g ∼egi

h implies h = f ;

— f ∼ efi
g ∼egi+1

h ∼ehi
k and f ∼ efi+1

g′ ∼eg′

i
h′ ∼eh′

i+1

k′ implies k′ = k.

From this, we may infer that the different g reachable from f through homotopy are at

most as many as the elements of Sn, which are n!, as is well known.

Lemma 2.19. Let µ be an object of a normal rewriting system, let [ht] ∈ |Ev(µ)|, and

let u ∈ C(Ev(µ)), with ε(u) = [f]. Then, u enables [ht] iff there exists a radical r such

that [ht] is the unique homotopy class given by Lemma 2.15 applied to fr.

Proof. For the backward implication, simply observe that under these hypotheses we

have [fr] = [f] ∨ [ht], which implies ε−1([fr]) = u ∪ {[ht]}, and [ht] 6∈ u, so u enables

[ht]. For the forward implication, the hypothesis tells us that [f] ∨ [ht] exists. Assume,

for the sake of contradiction, that h . f does not hold, so h = f ′r′ and hf = f1r1 for

some radicals r′, r1 and reductions f ′, f1. If we apply Lemma 2.15 to f ′r′, we obtain a

unique [h′t′] and a g′ such that f ′ ∼ h′g′ and r′ = t′
g′

. Consider now the reduction f ′f ;

we have ff1 ∼ h′g′f ′f and r1 = t′
g′f ′f

, so [h′t′] satisfies the conditions of Lemma 2.15

also for ff1r1 = fhf ; then, by uniqueness of [h′t′] we have that h′t′ . f does not hold,

whereas obviously h′t′ . ht, which means that [h′t′] is an event below [ht] which is not

in u, so u does not enable [ht], contradicting the hypothesis. Then, we must have h . f ,

so that setting g = fh meets the conditions of Lemma 2.15 for [ht] with respect to fr.

Appendix C. Proofs of Sect. 3

C.1. Proofs of Sect. 3.1

Proposition 3.3. If, E
ι′

→֒ E′ and E′ ι′′

→֒ E′′, then E
ι′′◦ι′

→֒ E′′, where ◦ denotes standard

composition of relations.

Proof. One checks that, if B′,B′′ are bisimulations associated with ι′, ι′′, respectively,

then {(u, φ, u′′) | (u, φ1, u
′) ∈ B′, (u′, φ2, u

′′) ∈ B′′, φ = φ2 ◦ φ1} is a bisimulation associ-

ated with ι′′ ◦ ι′.

Measuring the Expressiveness of Rewriting Systems through Event Structures 39

C.2. Proofs of Sect. 3.2

The following is a sort of binary reformulation of Lemma 2.19:

Lemma C.1. Let µ be an object of a normal rewriting system, and let [fr], [gs] ∈

|Ev(µ)|. Then, there exists u ∈ C(Ev(µ)) enabling both [fr] and [gs] iff there exist a

reduction h and two radicals r′, s′ coinitial in trg(h) such that f, g . h, r′ = rhf

and

s′ = shg

.

Proof. For the backward implication, we invite the reader to check that ε−1([h]) enables

[fr] and [gs], as in Lemma 2.19. For the forward implication, if we set ε(u) = [h], the

existence of r′, s′ satisfying the requirements immediately follows from Lemma 2.19.

Proposition 3.8. A normal rewriting system S is confusion-free iff, for every object µ

of S, Ev(µ) is confusion-free.

Proof. We start by supposing that S is confusion-free. Let µ be an object of S,

and let [fr], [gs], [ht] ∈ |Ev(µ)|. Suppose [fr] #[gs] and [gs] #[ht]. The first implies,

by Lemma C.1, the existence of a reduction k1 and two radicals r1, s1 coinitial in trg(k1)

such that f, g . k1 and r1 = rk
f
1 , s1 = sk

g
1 . Now, since fr(kf

1)r ∼ k1r
′ and gs(kg

1)s ∼ k1s
′,

the fact that [fr] and [gs] are in conflict implies that r and s are not independent, there-

fore not separated; hence, by confusion-freeness of S, r and s must be contemporary.

The uniqueness provided by Lemma 2.15 then forces f ∼ g, r, s coinitial and k1 = fk′1
for some reduction k′1 (we can actually set k1 = gk′1, there is no loss of generality since

f ∼ g). By the essentiality of [fr], [gs], we immediately have ⌈[fr]⌉ = ⌈[gs]⌉.

A similar reasoning stems from [gs] #[ht], which leads us to conclude that [gs] = [fs],

[ht] = [ft], and there is actually one configuration enabling all three events, namely

ε−1([k]) with k = fk′ for some reduction k′; additionally, we have three radicals r′, s′, t′

which are the residues of r, s, t, respectively, by reduction of k′, and the pairs r′, s′ and

s′, t′ are not independent. These latter two statements imply that, whenever r′ 6= t′, these

are not separated, hence in simple conflict by confusion-freeness of S, so in particular they

are not independent, which shows that either [fr] = [ht] or [fr] #[ht], and establishes

the fact that Ev(µ) is confusion-free.

Let us now consider the converse; let r, s be coinitial radicals of S which are neither

separated nor in simple conflict (note that this latter implies r 6= s). This means that

there exists t coinitial with r, s such that both pairs r, t and s, t are not independent, and

that there exist a radical r0 and a reduction f such that r = rf
0 , but s = sf

0 holds for no

radical coinitial with r0. Let then µ = src(h) = src(r0). We shall prove that Ev(µ) is not

confusion free. Lemma 2.15 applied to fs and ft gives us two unique events [gs0], [ht0];

observe now that [r0], [gs0], and [ht0] are all enabled by [f], and that therefore the

non-independence of r, t and s, t implies [r0] #[ht0] and [ht0] #[gs0]. Now, if s and r are

independent, we immediately have that t must be different from both, and that r0 and

gs0 are compatible reductions (in fact, r0f
r0sr ∼ gs0g

s0

1 r
s, where g1 is the reduction

given by Lemma 2.15 satisfying f ∼ gg1 and s = sg1

0), which makes the transitivity

of
#
∼ fail for Ev(µ). On the other hand, if r and s are not independent, then we have

Damiano Mazza 40

[r0] #[gs0], but since by hypothesis g 6= id, we have ⌈[gs0]⌉ 6= ∅ while ⌈[r0]⌉ = ∅, so we

have once again an event structure which is not confusion free.

C.3. Proofs of Sect. 3.3

Lemma C.2. Let E
ι
→֒ E′, and let a ∈ |E|. Then, a′, a′′ ∈ ι(a) implies a′ ˇ′ a′′.

Proof. Let B be a bisimulation associated with ι, and suppose a′ ¨′ a′′. Then, u′ =

↓a′∪ ↓a′′ ∈ C(E′), so there must be u ∈ C(E) and a poset isomorphism φ such that

(u, φ, u′) ∈ B. Now obviously a′, a′′ ∈ suppι(u
′); but φ ⊆ ι, which implies (a, a′), (a, a′′) ∈

φ, contradicting the fact that φ is (the graph of) a function.

Lemma C.3. Let E be an event structure with no confusion of type II, and let (a, b, c)

be a confusion of type I in E. Then, a ¨ c.

Proof. The hypotheses force u = ⌈a⌉ = ⌈b⌉ = ⌈c⌉, so u enables both a and c; if we had

a ˇ c, we would have a# c, contradicting the definition of type I confusion.

Lemma C.4. Let ι be an embedding of E into E′, and let a, b ∈ |E| such that a# b.

Then, there exist a′ ∈ ι(a), b′ ∈ ι(b), b′0 ∈ |E
′| such that a′ #′ b′0 ≤

′ b′.

Proof. Let B be a bisimulation associated with ι, and let u be a configuration of E

enabling both a and b. Then, there must be u′ ∈ C(E′) and a poset isomorphism φ such

that (u, φ, u′) ∈ B; moreover, since u
a
−→ι u ∪ {a}, we must also have u′1, v

′
1, v

′ such

that u′ =⇒ι u
′
1

a′

−→ι v
′
1 =⇒ι v

′, with (u′, φ[a 7→ a′], v′) ∈ B and (a, a′) ∈ ι. Consider

now u′1; since there are no administrative transitions in E, we must have (u, φ, u′1) ∈ B.

Observe now that from u we also have a computational transition labelled by b, and

E′ must be able to simulate it from u′1, i.e., we must have u′2, v
′
2, v

′
3 such that u′1 =⇒ι

u′2
b′

−→ι v
′
2 =⇒ι v

′
3, with b′ ∈ ι(b). Now, if neither the events used by the administrative

transitions u′1 =⇒ι u
′
2 nor b′ are in conflict with a′, then we are contradicting the fact

that B is a bisimulation (it would be possible to perform both a and b in E′, while

these are mutually exclusive in E); therefore, if b′0 is the “first” event in conflict with

a′ occurring in these transitions, we have a′ # b′0. Note that either b′0 = b′, or b′0 must

be necessary for b′ to occur, otherwise another transition involving b′ would be possible,

and we would still obtain a bisimulation associated with ι.

Proposition 3.9. Let E,E′ be event structures with E containing a confusion. Then,

E →֒ E′ implies that also E′ contains a confusion.

Proof. Let ι be an embedding of E into E′, and let B be an associated ι-bisimulation.

Suppose there is a pair (a, b) which is a confusion of type II in E, and assume w.l.o.g.

that there exists c ∈ ⌈a⌉ \ ⌈b⌉. Note that u = ⌈a⌉∪⌈b⌉ is necessarily a configuration of E;

hence, there must exist u′ ∈ C(E′) such that (u, φ, u′) ∈ B, with φ a poset isomorphism.

Moreover, by Lemma C.4, we have a′ ∈ ι(a), b′ ∈ ι(b) and b′0 ∈ |E
′| such that a′ #′ b′0 ≤

′

b′, and u′
a′

=⇒ι v
′
1, u

′ b′

=⇒ι v
′
2, with b′0 occurring during this second transition. Now,

since c ≤ a, we have φ(c) ≤′ a′; on the other hand, c 6≤ b, so φ(c) 6≤′ b′, otherwise the

Measuring the Expressiveness of Rewriting Systems through Event Structures 41

posets u ∪ {b} and v′2 would not be isomorphic. But this implies φ(c) 6≤′ b′0, so (a′, b′0) is

a confusion of type II in E′.

Suppose now there is no confusion of type II in E, and let (a, b, c) be a confusion of

type I. If we apply Lemma C.4 twice, we obtain a′ ∈ ι(a), b′, b′′ ∈ ι(b), c′ ∈ ι(c) and

a′0, c
′
0 ∈ |E

′| such that b′ #′ a′0 ≤
′ a′ and b′′ #′ c′0 ≤

′ c′. By Lemma C.2, we have b′ ˇ′ b′′,

so by Lemma 3.5 we have b′0, b
′′
0 ∈ |E

′| such that b′0 #′ b′′0 and b′0 ≤
′ b′, b′′0 ≤

′ b′′. Now,

the absence of confusion of type II forces b′0 ≤ a′0 and b′′0 ≤ c′0, which implies a′ ˇ′ c′.

But Lemma C.3 tells us that a ¨ c, so a′ ˇ′ c′ would prevent the simulation by a′, c′

of the occurrence of both a, c; hence, there must be another event c′′ ∈ ι(c) such that

b′0 ≤
′ c′′ and such that a′ ¨′ c′′. Of course we must also have b′ ˇ′ c′′, otherwise E′

could perform both b and c; suppose that such conflict is not immediate; then, applying

once more Lemma 3.5, we would have b′1, c
′′
1 ∈ |E

′| such that b′1 #′ c′′1 , b′1 ≤
′ b′, c′′1 ≤

′ c′′.

Again by absence of type II confusion, we would have b′1 ≤
′ a′0, which implies a′ ˇ′ c′′,

contradicting what we said above. Then, we have a′0 #′ b′0 #′ c′′, with a′0 ¨
′ c′′ and a′0 6= c′′

by injectivity of ι, so (a′0, b
′
0, c

′′) is a confusion of type I in E′.

Appendix D. Proofs of Sect. 4

Lemma 4.17. Let Σ be a finite alphabet, and let m = max{coar(α) | α ∈ |Σ|}. Then, the

normal rewriting system induced by any multiport interaction net system on Σ has degree

of non-determinism bounded by ⌊ 3m
2 ⌋ (where ⌊x⌋ is the greatest integer not greater than

x).

Proof. Let S be a multiport interaction net system on a finite alphabet. An anticlique

of cardinality n > 1 in Ev(S) is given by a net µ containing n active pairs a1, . . . , an such

that, for all i, j, ai and aj share at least one cell. Since the cells involved in an active

pair are always distinct, we can represent the situation by saying that each ai is a set

containing exactly 2 cells, and that we have ai ∩ aj 6= ∅ for all i, j. Then, the minimum

coarity required by a cell c ∈ C =
⋃n

i=1 ai is equal to to the number of sets ai such that

c ∈ ai; we denote this number by ♭c. We shall prove a lower bound to m = maxc∈C ♭c

in terms of n, which will give us the desired bound. Choose some 1 ≤ i ≤ n, and let

ai = {c′, c′′}; for 1 ≤ j ≤ n, let x = ai∩aj . We have three mutually exclusive possibilities:

x = ai, x = {c′}, or x = {c′′}. Let q, p′, p′′ be the number of aj which fall in the first,

second, and third case, respectively. Note that q > 0 (at least ai ∩ ai = ai), and that

obviously q + p′ + p′′ = n. Suppose one of p′′ = 0; then all sets intersect in c′, so we

have m = ♭c′ = n. The case p′ = 0 is symmetric. On the other hand, if none of p′, p′′ is

null, we have that necessarily all aj with j 6= i intersect in a third cell d, and we have

♭d = p′ + p′′, ♭c′ = q + p′, ♭c′′ = q + p′′. The minimum value for m is obtained when n

is equally split into three parts: 2n
3 ≤ m. This lower bound is smaller than the previous

m = n, so we may conclude that in all cases n ≤ 3m
2 , as desired.

