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Orevkov’s result [Ore82], [Ore91] states that, in the case of first order logic,
the hyperexponential upper bound on the length of the normalization of an
intuitionistic proof can actually be attained:

Theorem 1 (Orevkov, 1982) There exists a sequence {Ck}k∈N of first order
formulas such that, for every k, Ck has a non-normal proof of size O(k), while all
cut-free proofs of Ck have size Ω(2k), where 2n is the hyperexponential function
defined by 20 = 1, 2n+1 = 22n .

The general idea behind Orevkov’s proof is that of logically encoding the
hyperexponential function itself, by means of simple first order formulas. The
language that needs to be considered has the following symbols:

• A constant symbol, 0.

• A unary function symbol, s.

• A ternary relation symbol, R.

The symbols 0 and s are obviously intended to be interpreted respectively by
zero and successor, while R is meant to represent the graph of the function

f(x, y) = 2x + y

In other words, Rxyz is supposed to mean z = f(x, y). The meaning of R is
coded by the following two formulas:

H1 := ∀y.R0y(sy)
H2 := ∀xywz.(Rxyw ⇒ Rxwz ⇒ R(sx)yz)

We now consider the following sequence of formulas:

Ck := ∃z0 . . . ∃zk.Rk~z

where
Rk~z := R00zk ∧Rzk0zk−1 ∧ . . . ∧Rz10z0

∗Richard Statman claims he actually proved this theorem before Orevkov; here we used
“Orevkov’s Theorem” since the result came to be most widely and generally known with this
name.

†These notes aim at reorganizing and restating Orevkov’s proof in a hopefully simpler and
more understandable manner. Fundamental contributions to this (admittedly not so easy)
work have been given by Lorenzo Tortora de Falco, Harry Mairson, and Simone Martini.
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Since R00zk means zk = 1, and since in general Rzi+10zi means zi = 2zi+1 , Ck is
simply stating that the hyperexponential function is defined for all non-negative
integers up to k. Orevkov indeed proved that each formula H1 ⇒ H2 ⇒ Ck

has no cut-free proof of size less than 2k, while there exist non-normal proofs of
the same formulas whose size is linear in k.

To prove Ck in sequent calculus under the hypotheses H1 and H2 obviously
amounts to derive the sequent H1,H2 ` Ck. In order to do this, we will need a
sequence of auxiliary formulas, each containing a free variable:

A0x := ∀y.∃z.Rxyz

Ai+1x := ∀y.(Aiy ⇒ ∃z.(Aiz ∧Rxyz))

We will write Aixt to note the formula Aix where the universal quantifier has
been removed and every occurrence of the quantified variable has been replaced
by the term t.

The intuitive meaning of the formulas Ai can be described as follows. We’ve
said that what we are trying to prove is actually that, from the two hypotheses
introduced, one can deduce that the hyperexponential function is well defined
anywhere. But the values taken by the hyperexponential function are nothing
more that towers of exponentials; therefore, if we can prove that towers of any
height are well defined, we are done. We will see that the Ai formulas are
indeed a very smart way of describing the recursive definition of each tower as a
function of the previous. In particular, they state that to obtain the definition
of a tower of height i + 1 anywhere, the tower of height i needs only be defined
in zero.

To see this, consider A0x0; from what we said earlier about the signification
of R, this formula means that the exponential function is defined for any non-
negative integer x. Now take A1x0; this one says “if the exponential function
is defined in zero, then it is also defined in any other value of the form 2x”.
In other words, if the exponential is defined in zero, the double exponential is
defined anywhere. A2x0 obviously takes care of the triple exponential, and so
on.

To sum things up, if we put

B0z := Rz10z

Biz := Ai−1 ∧Rzi+10z

we can say that ∃z.Biz means “the tower of height i is defined on any non-
negative integer zi+1”; therefore, a good idea would be to look for a proof of
something like

∃z.B0z, . . . , ∃z.Bkz ` Ck

and then use the Ai’s to obtain, for each 0 ≤ i ≤ k, a proof of

H1,H2 ` ∃z.Biz

to cut against the former proof.
Let us then start our search for the proof of Ck. Our first partial result is
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the following:

R00zk ` R00zk

Bkzk ` R00zk

Rz20z1 ` Rz20z1

B1z1 ` Rz20z1 B0z0 ` B0z0

B0z0,B1z1 ` R1~z···
B0z0, . . . ,Bk−1zk−1 ` Rk−1~z

B0z0, . . . ,Bkzk ` Rk~z
=================
B0z0, . . . ,Bkzk ` Ck

It’s not exactly what we were looking for — but it’s close. The only thing
that seems quite annoying concerns the existential quantification of the various
Bi, which is rendered impossible by the fact that each variable zi (apart from
z0) occurs free both in Bi and Bi−1, so that no formula (except B0) can be
quantified first. But this is not going to be a problem; in fact, we can proceed
by quantifying over z0 in B0 (which is the only quite possible thing to do), then
get rid of ∃z.B0z by cutting it against some proof of Γ ` ∃z.B0z, so that now
it is safe to quantify over z1 in B1, and so on.

Our next task will be to show that those proofs of Γ ` ∃z.Biz actually exist,
and in this respect our definition of the sequence Ai will be of the greatest help.
Like we said, the Ai’s are made in such a way that the definition of a tower
of exponentials becomes a consequence of the definition of the previous tower
in zero. As a result, if we find, for any i, a proof of H1,H2 ` Ai0, then it
cannot possibly take too long to arrive to our goal, i.e., prove that for any i,
H1,H2 ` ∃z.Biz. This is the object of the following lemma:

Lemma 2 For each i, there is a proof of H1,H2 ` Ai0 whose size is O(1), i.e.,
it is bounded by a constant.

Proof. Case i = 0 is easy:

R0y(sy) ` R0y(sy)

H1 ` R0y(sy)
===========

H1 ` A00

H1,H2 ` A00

For the other cases, let us remark that if we have a proof of H2,Ai−1y ` Ai−1(sy),
then we can obtain the desired proof in the following manner:

H2,Ai−1y ` Ai−1(sy) R0y(sy) ` R0y(sy)

R0y(sy),H2,Ai−1y ` Ai−1(sy) ∧R0y(sy)
=================================

H1,H2,Ai−1y ` ∃z.(Ai−1z ∧R0yz)

H1,H2 ` Ai−1y ⇒ ∃z.(Ai−1z ∧R0yz)

H1,H2 ` Ai0
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For i = 1, the missing part is

Ryuz ` Ryuz

Ryzw ` Ryzw R(sy)uw ` R(sy)uw

Ryzw ⇒ R(sy)uw, Ryzw ` R(sy)uw

Ryuz ⇒ Ryzw ⇒ R(sy)uw, Ryuz, Ryzw ` R(sy)uw
========================================

H2, Ryuz,Ryzw ` R(sy)uw

H2, Ryuz, Ryzw ` ∃c.R(sy)uc

H2, Ryuz, ∃c.Ryzc ` ∃c.R(sy)uc

H2, Ryuz,A0y ` ∃c.R(sy)uc
======================
H2,A0y,A0y ` ∃c.R(sy)uc

H2,A0y,A0y ` A0(sy)

H2,A0y ` A0(sy)

The general case of i ≥ 2 is taken care of by the following derivation:

··· θ2

··· θ1

Ai−2w ` Ai−2w

Ai−2w ∧Rxzw ` Ai−2w

Rxyz ` Rxyz

Rxzw ` Rxzw R(sx)yw ` R(sx)yw

Rxzw ⇒ R(sx)yw, Rxzw ` R(sx)yw

Rxyz ⇒ Rxzw ⇒ R(sx)yw,Rxyz, Rxzw ` R(sx)yw
=========================================

H2, Rxyz,Rxzw ` R(sx)yw
====================================
H2,Ai−2z ∧Rxyz,Ai−2w ∧Rxzw ` R(sx)yw

H2,Ai−2z ∧Rxyz, (Ai−2w ∧Rxzw)(2) ` Ai−2w ∧R(sx)yw
===============================================
H2,Ai−2z ∧Rxyz,Ai−2w ∧Rxzw ` ∃z.(Ai−2z ∧R(sx)yz)

H2,Ai−2z ∧Rxyz, ∃w.(Ai−2w ∧Rxzw) ` ∃z.(Ai−2z ∧R(sx)yz)
cut

H2,Ai−1x, (Ai−2z ∧Rxyz)(2) ` ∃z.(Ai−2z ∧R(sx)yz)
===========================================
H2,Ai−1x, ∃z.(Ai−2z ∧Rxyz) ` ∃z.(Ai−2z ∧R(sx)yz)

cut
H2, (Ai−1x)(2),Ai−2y ` ∃z.(Ai−2z ∧R(sx)yz)
====================================

H2,Ai−1x ` Ai−1(sx)

where θ1 and θ2 are respectively

Ai−2z ` Ai−2z ∃w.(Ai−2w ∧Rxzw) ` ∃w.(Ai−2w ∧Rxzw)

Ai−2z ⇒ ∃w.(Ai−2w ∧Rxzw),Ai−2z ` ∃w.(Ai−2w ∧Rxzw)

Ai−1x,Ai−2z ` ∃w.(Ai−2w ∧Rxzw)

Ai−1x,Ai−2z ∧Rxyz ` ∃w.(Ai−2w ∧Rxzw)

and

Ai−2y ` Ai−2y ∃z.(Ai−2z ∧Rxyz) ` ∃z.(Ai−2z ∧Rxyz)

Ai−2y ⇒ ∃z.(Ai−2z ∧Rxyz),Ai−2y ` ∃z.(Ai−2z ∧Rxyz)

Ai−1x,Ai−2y ` ∃z.(Ai−2z ∧Rxyz)

We see that the derivation has exactly the same size for any i ≥ 2, so that in
general all proofs of H1,H2 ` Ai0 admit a constant bounding their sizes. ¤
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We remark that, by the lemma we just proved, also H1,H2 ` Ai0t is provable
in constant size, for every i and for any term t.

Now all that remains to do is to show the provability, for all fixed k and for
all 0 ≤ i ≤ k, of Γ ` ∃zBiz, where Γ is an appropriate context. Case i = 0
doesn’t need lemma 2:

∃z.B0z ` ∃z.B0z

A0z1 ` ∃z.B0z

B1z1 ` ∃z.B0z

For 0 < i < k − 1, we use the following derivation:

··· lemma 2

H1,H2 ` Ai−10 ∃z.Biz ` ∃z.Biz

H1,H2,Aizi+10 ` ∃z.Biz

H1,H2,Aizi+1 ` ∃z.Biz

H1,H2,Bi+1zi+1 ` ∃z.Biz

Last but not least, the case i = k:

··· lemma 2

H1,H2 ` Ak00

··· lemma 2

H1,H2 ` Ak−10 ∃z.Bkz ` ∃z.Bkz

H1,H2,Ak00 ` ∃z.Bkz
cut

H1,H1,H2,H2 ` ∃z.Bkz
====================

H1,H2 ` ∃z.Bkz

Now the first main result:

Proposition 3 For any k, the formula H1 ⇒ H2 ⇒ Ck has a non-normal
proof of size O(k).

Proof. It suffices to consider the following derivation, which uses the strategy
previously discussed in order to avoid variable problems in existential quantifi-
cations on the left:

···
H1,H2 ` ∃z.Bkz

···
H1,H2,B2z2 ` ∃z.B1z

···
B1z1 ` ∃z.B0z

···
B0z0, . . . ,Bkzk ` Ck

∃z.B0z, . . . ,Bkzk ` Ck
cut

B1z1,B1z1, . . . ,Bkzk ` Ck
=====================
∃z.B1z, . . . ,Bkzk ` Ck

cut
B2z2,B2z2, . . . ,Bkzk,H1,H2 ` Ck···∃z.Bkz,H1,H2 ` Ck

cut
H1,H1,H2,H2 ` Ck
================
` H1 ⇒ H2 ⇒ Ck

The size of the sub-proof of B0z0, . . . ,Bkzk ` Ck is obviously linear in k (the
derivation is the one we introduced first). After that, the number of cuts per-
formed is k + 1, so by lemma 2 we still remain linear in k. ¤
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If n is a non-negative integer, we put

n := s . . . s︸ ︷︷ ︸
n

0.

This notation will be convenient for the following result:

Lemma 4 Any normal proof of H1,H2 ` Rmnk has size Ω(2m) and satisfies
k = 2m + n.

Proof. By induction on m. We start with m = 0, for which the shortest cut
free proof is

R0n(sn) ` R0n(sn)

H1 ` R0n(sn)

H1,H2 ` R0n(sn)

The size is 3, which can be put in the form 9 · 20− 6, and the three terms m, n,
and k respect k = 2m + n, since k = n + 1 and m = 0.

For the induction step, the shortest proof of H1,H2 ` R(sm)nk is

··· θ2

H1,H2 ` Rmnu

··· θ1

H1,H2 ` Rmuk R(sm)nk ` R(sm)nk

Rmuk ⇒ R(sm)nk,H1,H2 ` R(sm)nk

Rmnu ⇒ Rmuk ⇒ R(sm)nk,H(2)
1 ,H(2)

2 ` R(sm)nk
=========================================

H1,H2 ` R(sm)nk

By induction hypothesis, the sizes of θ1 and θ2 are both 9 · 2m − 6, and we
have u = 2m + n and k = 2m + u. That yields 2 · 9 · 2m − 12 + 6 for the
size of the whole proof, which is exactly equal to 9 · 2m+1 − 6. Moreover,
k = 2m + 2m + n = 2m+1 + n, so we are done. ¤
We can now state the other main result, which, combined with proposition 3,
gives theorem 1:

Proposition 5 Every normal proof of H1 ⇒ H2 ⇒ Ck has size Ω(2k).

Proof. The right implication rule is negative, i.e. reversible, so we are looking
for a cut-free proof of H1,H2 ` Ck. Since (H1 ∧H2) ⇒⊥ admits a counter-
model (namely our standard interpretation of R as a relation over N), by sound-
ness H1,H2 ` is not provable, so Ck cannot have been introduced by weakening.
Moreover, by the sub-formula property, Ck is not a direct conclusion of an ax-
iom, since in the general case it contains several conjunctions, and there is no
trace of them on the left (the same applies for H1 and H1). Therefore, Ck must
have been built up from its atoms, by means of k right conjunction rules and
k + 1 right existential quantification rules. Now H1 and H2 are positive, and if
we consider the conjunctions in Ck as negative, we can make the universal rules
on the left commute with the conjunction rules on the right, in order to “push
down” these latter, and transform any proof of H1,H2 ` Ck into something
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like this, up to a certain (irrelevant) number of contractions:

···
H1,H2 ` R00tk

···
H1,H2 ` Rt20t1

···
H1,H2 ` Rt10t0

H1,H2 ` Rt20t1 ∧Rt10t0···
H1,H2 ` Rtk0tk−1 ∧ . . . ∧Rt20t1 ∧Rt10t0

H1,H2 ` Rk~t
===========
H1,H2 ` Ck

where ~t are k+1 terms, none of which is a variable. We can make this assumption
without losing any generality, since those terms are all converted into variables
upon existential quantification; if any among them were already a variable, we
could replace it all through the proof with any constant term (for example 0)
with no difference.

So every ti must be in the form n for some non-negative integer n; by lemma
4, we know that tk = 1, tk−1 = 2, and, in general, ti = 2k−i. Therefore, still by
lemma 4, the derivation of H1,H2 ` Rt10t0, which is just a part of the whole
derivation, has size Ω(22k−1) = Ω(2k). ¤

The fact of having used sequent calculus to state the lower bound does not
turn out to be restrictive. As a matter of fact, Orevkov originally proved his
result for Hilbert-style deduction systems, and the same argument we used here
applies to natural deduction systems as well; a proof can be found in [TS96].
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