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Abstract

We give an implicit, functional characterization of the class of non-uniform polynomial time lan-
guages, based on an infinitary affine lambda-calculus and on previously defined bounded-complexity
subsystems of linear (or affine) logic. The fact that the characterization is implicit means that the
complexity is guaranteed by structural properties of programs rather than explicit resource bounds.
As a corollary, we obtain a proof of the (already known) P-completeness of the normalization problem
for the affine lambda-calculus which mimics in an interesting way Ladner’s P-completeness proof of
CIRCUIT VALUE (essentially, the argument giving the Cook-Levin theorem). This suggests that
the relationship between affine and usual lambda-calculus is deeply similar to that between Boolean
circuits and Turing machines, opening some interesting perspectives, which we discuss.

This work will appear in the proceedings of ICALP 2014 [Maz14]. An extended version with
proofs is available on the author’s web page.

Implicit computational complexity and linear logic. Loosely speaking, the aim of implicit com-
putational complexity is to replace clocks (or other explicit resource bounds) with certificates. For
example, if we consider polynomial time computation, the idea is to define a structured programming
language whose programs guarantee a polynomial dependence of the runtime on the input by construc-
tion, i.e., because they satisfy some syntactic condition, not because their execution is artificially stopped
after a polynomial number of steps. At the same time, such a programming language must be expressive
enough so that every polynomial time function may be somehow implemented. Notable early examples
of such methodology are the work of Bellantoni and Cook [BC92], Leivant and Marion [LM93], and
Jones [Jon99].

We consider here the question of finding an implicit characterization of non-uniform polynomial
time, i.e., the class P/poly. Our approach brings together two lines of work, both based on linear
logic. The first is the linear-logical take at implicit computational complexity initiated by Girard [Gir98]
and reformulated in the λ-calculus, for example, by Asperti and Roversi [AR02]. The second is the
author’s work on the infinitary affine λ-calculus [Maz12], previously considered also by Kfoury [Kfo00]
and Melliès [Mel06].

For our present purposes, the essence of linear logic is in its resource awareness. Linear (or, more
precisely, affine) types describe volatile data, which may be accessed only once. Accordingly, the linear
(or affine) functional type A ( B describes programs producing an output of type B by using their
input of type A exactly (or at most) once. Persistent data is described by the type !A, which may be
understood as volatile access to a bottomless pile of copies of A, thus obtaining unlimited access to A.
The usual functional type A→ B may then be expressed by !A( B.

In the λ-calculus, which is the prototypical functional language, affinity takes the form of forbidding
duplication, which translates into an extremely simple syntactic restriction: each variable must appear
at most once in a term. Let us give a more formal presentation.

The infinitary affine λ-calculus. We start by introducing patterns, inductively generated by

p, q ::= a | x | p⊗ q,

1



where a and x range over disjoint sets of linear and non-linear variables, respectively, and we stipulate
that, in p⊗ q, p and q share no variables. Consider now the terms co-inductively generated by

t, u ::= ⊥ | a | xi | λp.t | tu | t⊗ u | 〈u0, u1, u2, . . .〉,

where xi is an occurrence of x, with i ∈ N, and 〈u0, u1, u2, . . .〉 is an infinite sequence of terms, called
box. We use u to succinctly denote boxes and u(i) to denote the i-th term. The concept of free and
bound variable, along with the usual notion of α-equivalence, are defined as usual, noting that, if x is in
p, then all occurrences of x are bound in λp.t.

We denote by `Λ∞ the set of all above-defined terms t verifying the following:
Affinity: after α-converting all bound variables so that all λs bind distinct variables, every linear variable

appears at most once in t and, if xi and xj both appear in t, then i 6= j. So, for instance,
λx.x0⊗λx.x0 ∈ `Λ∞, because it can be α-converted to λx.x0⊗λy.y0, whereas λx.x0x0 is excluded.

Boxes: boxes of t have no free linear variable.
Well-foundedness: the underlying tree of t is well-founded, i.e., it has no infinite path. For instance,

we accept 〈x0, x1, x2, . . .〉 but refuse x0(x1(x2 . . .)).
The first two conditions are the important ones; well-foundedness is more technical and, at the intuitive
level, may be replaced with requiring the height of terms to be finite (an example of well-founded term
of infinite height is 〈λx.x0, λx.x0x1, λx.x0(x1x2), . . .〉).

For defining reduction, the important case is

(λx.t)u→ t[u(i)/xi],

i.e., u(i) replaces the unique (if any) occurrence xi in t. Reduction for general patterns is defined as
expected, with any term matching a linear variable and t⊗ u matching p⊗ q as soon as t matches p and
u matches q (so, for instance, (λa ⊗ b.t)u is not a redex unless u is of the form u1 ⊗ u2, in which case
the reduct is t[u1/a][u2/b]).

We say that a box u is finite if u(i) = ⊥ for almost all i ∈ N. A term of `Λ∞ is finite if it contains
only finite boxes. We denote by `Λ the set of finite terms. It is immediate to check that, whenever
t ∈ `Λ and t → t′, t′ ∈ `Λ and its size (in terms of number of symbols) is strictly smaller than that of
t, so the calculus is terminating. In fact, the whole infinitary calculus `Λ∞ is affine, because no term is
ever duplicated by reduction, so the fact that finite terms terminate is not surprising. Of course, infinite
terms may diverge, as Ω := ∆〈∆,∆,∆, . . .〉 shows, with ∆ := λx.x0〈x1, x2, x3, . . .〉.

In [Maz12], we showed how `Λ∞ may be endowed with a uniform structure1 such that:
• the space `Λ∞ is Cauchy-complete, with `Λ as a dense subspace;
• reduction is continuous (as a function from `Λ∞ to itself);
• if one restricts to the subspace generated by t ::= ⊥ | xi | λx.t | tu and takes the quotient under a

certain partial equivalence relation enforcing uniformity,2 one obtains exactly the pure λ-calculus.
So `Λ∞ may be seen as the completion of `Λ, in a way which is compatible with reduction (much like the
real numbers are the completion of the rational numbers, in a way which is compatible with the basic
operations), and usual λ-terms may be embedded in `Λ∞. However, the completion process introduces
a host of infinitary terms which do not correspond to any usual λ-term. The reason is easily explained:
to act as a persistent memory cell, a datum of type !A must contain infinitely many identical copies
of a datum of type A. Technically, the embedding of a λ-calculus application MN (with N closed) is
JMK〈JNK, JNK, JNK, . . .〉, where JMK, JNK are the embeddings of M,N , respectively.3 Without further
constraints, the infinitary affine λ-calculus allows memory cells whose content changes arbitrarily with
each access. This is the “functional gateway” to non-uniform computation.

A characterization of P/poly. Our first objective is to “tame” the non-uniformity of the unrestricted
calculus `Λ∞ so as to keep it within interesting boundaries, namely those of P/poly. Let us give an

1A uniform space is essentially a generalization of the concept of metric space still allowing one to speak of Cauchy
sequences. This use of the word “uniform”, standard in topology [Bou98], is unfortunately completely unrelated to the
equally standard meaning more common in computer science (and, in particular, in circuit complexity).

2In the usual sense of computer science.
3The attentive reader will at this point have noticed how the terms ∆ and Ω introduced above are just the embeddings

of their namesake standard λ-terms. The reader acquainted with linear logic will have gone even further and noticed that
we are just applying Girard’s translation of intuitionistic logic in linear logic.
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informal description of what this means. Using (an adaptation of) the standard λ-calculus encodings of
binary strings, we may say that a term t decides L ⊆ {0, 1}∗ in `Λ∞ if, given w ∈ {0, 1}∗, tw →∗ b with
b ∈ {0, 1} according to whether w belongs to L (w is the encoding of w). Now, t is generally infinite, but
we may define a canonical sequence btcn of approximations of t, which are finite affine terms such that
limbtcn = t. Intuitively, btcn behaves like t in which every internal memory cell is limited to at most
n accesses. We may then appeal to the continuity of reduction, by which, if we let un be the normal
form of btcn w, we have that b = limun. But our topology is such that pieces of data like b are isolated
points, so there exists m ∈ N such that un = b for all n ≥ m. This means that a finite approximation
of t suffices to compute tw. The size of btcm is linear in m, so the question is: How big is m? Can we
relate it to |w|? If we can make m be polynomial in |w|, the language decided by t is in P/poly: we may
use the btcm as (polynomial) advice and then normalize btcm w, which may be done in polynomial time
in |w| because it is a finite affine term.

There exist several λ-calculus characterizations of P based on linear logic (most notably Girard’s
light linear logic [Gir98] and Lafont’s soft linear logic [Laf04]) and the naive idea to polynomially bound
m would be to reuse the recipes given therein. However, non-uniformity in the λ-calculus is extremely
subtle and the approach “take your favorite λ-calculus characterization of P and add non-uniformity”
does not necessarily yield P/poly. The most surprising aspect is that polytime non-uniformity seems to
refuse the logical principle of contraction (expressed by the formula !A ( !A ⊗ !A): in its presence, m
may be exponentially big and we may therefore decide any language (an intuitive explanation is given
below). This rules out Girard’s approach. Lafont’s system does not use contraction but appears to have
the opposite problem: we are currently unaware of whether the expressiveness of its non-uniform version
reaches P/poly.

The key to our solution is a new structural constraint on terms, which we call parsimony. In
`Λ∞, contraction (corresponding to duplication) is implemented using “Hilbert’s hotel”: from an in-
finite family (xi)i∈N representing an argument of type !A, we make two infinite families, as in the term
λx.〈x0, x2, x4, . . .〉 ⊗ 〈x1, x3, x5, . . .〉 : !A ( !A ⊗ !A. By discarding one of the two families, we obtain
λx.〈x1, x3, x5, . . .〉 : !A( !A, which, iterated n times, yields a family whose first element is xO(2n), caus-
ing the exponential growth rate of m mentioned above (we point out that both the latter term and its
iteration would be allowed following the approach of light linear logic). A very high level description of
parsimony is that boxes may not “waste” occurrences: a box contains either finitely many xi or almost
all of them (i.e., a co-finite family). Parsimony therefore refuses contraction, which requires infinite
co-infinite families. Instead, it allows an asymmetric form of contraction, also known as absorption,
expressed by the formula !A ( !A ⊗ A. Unfortunately, the exact definition of parsimony is a bit too
technical for this abstract; the details may be found in [Maz14] (available on the author’s web page).

Parsimony is coupled with stratification, which is a staple of Girard’s work [Gir98]. Stratification
partitions a program into rigid levels which may not interact and, very roughly speaking, forbids the
self-reference that makes the λ-calculus Turing powerful. Alone, it guarantees termination (in elementary
time, in the uniform case). Without it, parsimonious terms may diverge and the question of bounding
m may not make sense.

By restricting to parsimonious stratified terms one obtains an infinitary calculus `Λps
∞ with the fol-

lowing property:

Theorem 1 The class of languages decidable by terms of `Λps
∞ (w.r.t. a suitable adaptation of the usual

λ-calculus representations of binary strings and Booleans) is exactly P/poly.

Soundness (i.e., that every language decidable in `Λps
∞ is in P/poly) is obtained by polynomially bounding

the parameter m, as delineated above. Completeness is shown by encoding deterministic polytime Turing
machines with polynomial advice in `Λps

∞. The encoding of polytime machines (without advice) is done
in the uniform fragment of the calculus, which may actually be seen as the image (via Curry-Howard) of
a subsystem of linear logic with a monoidal § modality (as light linear logic) and a monoidal ! modality
enjoying weakening and the law !A ( !A ⊗ §A (contrarily to the ! modality of light linear logic, which
enjoys weakening and contraction but is not monoidal). Hence, we obtain as a by-product a new linear-
logical characterization of P.

Perspectives. Let L ∈ P. By Theorem 1, we know that L is decided by a (usual, finite but not
necessarily affine) λ-term term M whose infinitary affine embedding JMK is in `Λps

∞, so deciding whether
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w ∈ L amounts to normalizing JMKw. But, for this, we know that it is enough to normalize bJMKcm w
with m polynomial in |w|. One may see that building bJMKcm from M may be done in logarithmic space
(in |w|), much like building the circuit representing the computation of a polytime Turing machine from
the trace of its execution on w.

We have therefore given an alternative proof of the P-completeness of the normalization problem for
the affine λ-calculus (given an affine λ-term, decide whether its normal form is the Boolean tt). Mairson
[Mai04] showed this by encoding Boolean circuits in affine λ-terms. The interest of the above proof
is that it is virtually identical to the usual P-completeness proof of circuit value [Lad75], which is
essentially the Cook-Levin theorem and does not rest on the P-completeness of another problem. It is
also noteworthy that the “locality of computation” is reflected in the continuity of normalization.

Our results seem to suggest the following “equation”:

affine λ-terms

(infinitary affine) λ-terms
=

Boolean circuits

Turing machines (with advice)

The relationship between Boolean circuits and affine calculi was of course already known [Mai04, Ter04].
However, we are seeing a connection here which is deeper than what was shown by any previous result.

An interesting perspective given by the above “equation” is to study the notion of uniformity of
families of Boolean circuits via the uniformity of the infinitary affine λ-calculus. This may be defined
in a purely algebraic way: the terms which are embeddings of usual λ-terms may be characterized by
means of a partial equivalence relation, as in [Maz12]. This might be turned into a notion of uniform
family of Boolean circuits which is purely intrinsic, i.e., it depends only on the “shape” of the circuits
in the family and does not invoke external algorithms producing the circuits themselves.

Another line of research is the development of a denotational semantics for a simply-typed version
of `Λps

∞. In the usual λ-calculus, semantic arguments have been used to show the impossibility of repre-
senting certain functions (e.g. subtraction) with simple types [BDS13]. The interest of such arguments
is that they are not natural in the sense of Razborov and Rudich: denotational semantics allows one to
exploit extensional properties of functions, breaking the so-called largeness property. Preliminary results
(via [Ter04]) show that the class of languages decidable in simply-typed `Λps

∞, call it λC0, is such that
TC0 ⊆ λC0 ⊆ AC1 (non-uniform). Any application of denotational semantics showing that some L 6∈ λC0

would therefore give us a non-natural proof of L 6∈ TC0, an extremely interesting perspective.
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