
Towards a Sheaf-Theoretic Definition of Decision
Problems
Damiano Mazza1

1 CNRS, LIPN, UMR 7030, Université Paris 13, Sorbonne Paris Cité
damiano.mazza@lipn.univ-paris13.fr

A functorial approach to decision problems. Traditionally [18, 9, 2], a decision problem
L is defined as a function

L : {0, 1}∗ −→ {0, 1}

where {0, 1}∗ is the set of binary strings (i.e., sequences of zeros and ones) and {0, 1} the
set containing only 0 (no) and 1 (yes). This means that underlying the definition of every
decision problem there is an encoding, often implicit, of its instances as binary strings (except
of course when the instances are binary strings themselves, as it happens sometimes). This
insightful abstraction, going all the way back to Gödel and Turing, is quite convenient because
it allows us to focus on just one very simple, universal set of instances rather than having
to deal with arbitrarily many of them. However, one may also complain that flattening
everything into {0, 1}∗ may cause interesting structure to be lost. The justification “this
is fine because in the end CPUs manipulate only zeros and ones” is superficial: in reality,
algorithms do exploit the structure of their input, often in sophisticated ways and any
programming language used in practice offers much more than just binary strings as data
type. This observation, which is a staple of programming languages theorists, may have been
overlooked by structural complexity theorists: seeing everything as a binary string is perhaps
too much of an abstraction.

The last half century of developments in (among others) algebra [12], geometry [3],
topology [5], logic [13], theoretical physics [7] and, last but not least, the semantics of
programming languages [1] has given time and again evidence that adopting a category-
theoretic approach to mathematics may be highly beneficial over the more traditional
set-theoretic approach, providing in particular the “right” level of abstraction. In a way,
categories are “structured sets” and offer a natural alternative to something like {0, 1}∗ for
abstracting instances of decision problems. Accordingly, we believe that decision problems
should be defined as suitable functors. In this note we outline a possible route in the direction
of such a definition.

Sites and sheaves. Toposes were introduced by Grothendieck [3] as a generalization of topo-
logical spaces in the context of his work in algebraic geometry. By definition, a (Grothendieck)
topos is a category equivalent to the category of sheaves on a site. A site is a category
equipped with a so-called Grothendieck topology, a collection of families of arrows sharing
the same target called covering families and satisfying certain conditions (which we will not
detail here). Intuitively, the objects of a site C must be seen as “decomposable” into “pieces”,
the pieces being themselves objects. Accordingly, an arrow f : y → x should be thought of
as a specific way in which y is a piece of x. Composition of arrows is just transitivity of
the “being a piece of” relation, and identities are saying that each object is a piece of itself.
A covering family {fi : yi → x}i∈I is saying that x may be entirely decomposed into the
pieces yi as specified by the fi, where by “entirely” we mean that no piece of x is left out.
An essential point here is that such a decomposition need not be disjoint: some yi and yj

with i 6= j may “overlap”, i.e., share a piece.
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A sheaf on a site C is a functor

F : Cop −→ Set

satisfying the sheaf condition. Intuitively, if x is an object of C, then the set F (x) should
be seen as containing global information on x which may be reconstructed from the local
information about the pieces of x, provided this local information is consistent. Indeed, if
{fi : yi → x}i∈I is a covering family for x, then any global information a ∈ F (x) induces local
information F (fi)(a) ∈ F (yi) for each piece of x just by virtue of F being a (contravariant)
functor. The sheaf condition says that one may go in the other direction: one may take
consistent local information ai ∈ F (yi) (for all i ∈ I) and “glue it together” into a unique
global information a ∈ F (x) satisfying F (fi)(a) = ai for all i ∈ I. Formally, consistent
means that, for all i, j ∈ I and g : z → yi, h : z → yj such that fig = fjh, we have
F (g)(ai) = F (h)(aj). One may think of x as a floor made of tiles yi: if each pair of tiles
sharing a border is painted with the same color, then the whole floor will be painted with
the same color.

Given a site C, we define Sh(C) to be the category of sheaves on C and natural
transformations between them. This is called the sheaf topos on C. By definition, every
Grothendieck topos is equivalent to a sheaf topos on some site. It is a fundamental theorem
of topos theory [10] that if E is a topos and x an object of E, then the slice category E/x is
also a topos, called the slice topos over x.

Decision problems as sheaves. Although we do not yet have a fully developed theory,
it seems clear that not every site is computationally meaningful, i.e., functorial decision
problems will be sheaves on sites with a particular structure. The following is not necessarily
the most general definition of such structure but it gives the idea for our purposes.

A vocabulary B is a site with the following properties:
it is directed: there are no non-identity endomorphisms and every arrow is monic;
its objects are partitioned in three sets: a finite set of sorts, a finite set of morphemes
and a countable set of terms;
arrows may only go in the direction sort → morpheme → term → term; in particular,
the subcategories on sorts alone and on morphemes alone are discrete;
a sort or morpheme x has only the trivial covering family {idx};1
every term x admits a finite covering family composed only of arrows f : a→ x with a a
morpheme.

The covering family of the last point may be shown to be unique and is called the morpheme
decomposition of x. Let x be a term and let {fi : ai → x}i∈I be its morpheme decomposition.
We say that x is closed if, for each i ∈ I and non-identity arrow g : s→ ai (so s is necessarily
a sort), there exist j ∈ I, j 6= i and h : s → aj such that fig = fjh. The closed terms are
also called instances.

As an example, there is a vocabulary Str such that:
it has one sort •;
it has four morphemes denoted by ·0·, ·1·, B· and ·C;
it has terms of the form x (open string), By (right-open string), yC (left-open string)
and ByC (closed string) for all x, y ∈ {0, 1}∗, x non-empty;
for each morpheme a there are as many distinct arrows • → a as occurrences of · in a;

1 Here we are using the definition of site using coverages [10] instead of Grothendieck topologies.
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for each term x and morpheme a, there are as many distinct arrows a→ x as there are
occurrences of a in x (disregarding the ·); composition of arrows • → a with a → x is
defined so that there are exactly n + 1 distinct arrows • → x, one for each “junction”
between two letters of x, plus its borders if x is open; for instance, if f : • → ·0· corresponds
to the right dot and g : • → ·1· corresponds to the left dot, and if h : ·0· → 01 and
k : ·1· → 01 correspond to the obvious substring inclusions, then hf = kg, corresponding
to the junction between 0 and 1;
given two terms x, y, there are as many distinct arrows x→ y as there are occurrences of
x as a substring of y; composition of these is defined in the obvious way;
a family F is covering for a term x precisely when, for every arrow g : z → x with z a sort
or morpheme, there exists an arrow f : y → x in F such that g factors through f ; with
this definition, the set of all arrows of the form a→ x with a a morpheme is a covering
family and it is indeed the morpheme decomposition of x.

Suppose that X is the set of instances of the problem we wish to define. Rather than
mapping it to {0, 1}∗, we will embed X in a vocabulary B, that is, we will find a suitable
vocabulary B such that its closed terms are (in one-to-one correspondence with) the elements
of X. Note the radical change of perspective: rather than “squashing” X into {0, 1}∗, we
regard it as part of a larger world. The fundamental intuition is that the vocabulary “around”
X describes the local structure of the elements of X, i.e., how they may be decomposed into
pieces. This is precisely the structure that is destroyed by mapping everything to {0, 1}∗.
Another, perhaps more illuminating way of looking at a vocabulary is to see it as a description
of how an algorithm may “apprehend” inputs in X: how it may access them, read them,
manipulate them, etc. Note that the same X may be embedded in different vocabularies:
this corresponds to giving more or less power to the algorithms processing inputs in X.

The exact definition of functorial decision problem is still unclear. For the moment, let us
define a decision problem simply as a sheaf L : Bop → Set on some vocabulary B. Intuitively,
if x is an instance, L(x) is the set of witnesses of the fact that x is a “yes” instance. In
particular, if L(x) = ∅ then x is a “no” instance. Another possible intuition is that L(x) is
the set of solutions for x: for example, the set of satisfying truth assignments for a CNF x.
The functoriality of L and the sheaf condition ensure that such solutions are built following
the local structure of B. This matches the idea, exemplified by the Cook-Levin theorem,
that “computation is local” [2, Sect. 2.3].

From functorial to traditional decision problems, and back, via type systems. So we have
replaced the “passepartout” set {0, 1}∗ with a host of structured vocabularies, such that each
problem may have its own. It is still possible however to recover the traditional definition.
If X is our set of instances, the traditional definition starts with an encoding function
enc : X → {0, 1}∗; we may invert this and define a decoding function dec : {0, 1}∗ → X,
which sends the string x to the instance it encodes, or to an arbitrary instance in case x does
not encode anything. Now, if B is the vocabulary in which we embedded X, we may extend
the decoding into a functor dec : {0, 1}∗ → B by considering {0, 1}∗ as a discrete category.
We may therefore define a functor Lang(L) : {0, 1}∗ → Bool as the composition

{0, 1}∗ dec // Bop L // Set cntr // Bool

where Bool is the category 0→ 1 and cntr is the functor mapping ∅ to 0 and every non-empty
set to 1. Since {0, 1}∗ is discrete, Lang(L) is just a function from binary strings to the set
{0, 1} (the objects of Bool): it is a decision problem in the traditional sense.
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So each functorial decision problem induces a traditional decision problem. Is the
converse true? The answer is trivially yes: for every subset S ⊆ {0, 1}∗, there is a sheaf
LS : Strop → Set such that Lang(LS) = S, because we may use an infinite set to encode S.
This is why the current, unrestricted definition of functorial decision problem is unsatisfactory.
The indiscriminate use of infinite sets is a “trick” to bypass the structure of instances, which
is precisely what we wanted to avoid in the first place. While waiting to find the right
definition, we already know that we may recover all recursively enumerable2 languages in
terms of a non-trivial sheaf, which uses infinite sets in a much more “constructive” way.
What is even more interesting is that this is possible thanks to type systems, thus drawing
an unexpected and enticing connection with the theory of programming languages.

In recent work, Melliès and Zeilberger [16] advocated that functors are just a very abstract
notion of type systems. In particular, if we present a programming language L as a category,
then a type system for L is just a functor

D −→ L

where D is a category of type derivations, i.e., witnesses of the fact that a certain program may
be typed in a certain way. Now, by a standard categorical device known as the Grothendieck
construction (or, rather, its discrete version) it turns out that a presheaf (so, in particular, a
sheaf) on B is the same thing as a special kind of functor into B, called a discrete fibration.
But, according to Melliès and Zeilberger, a functor into B is a type system for B! This seems
very strange because, when B is a vocabulary as in our case, we hardly think of the objects
of B as programs. And yet, this surprising perspective is precisely the one we will adopt to
show that every recursively enumerable language induces a non-trivial functorial decision
problem.

Let S ⊆ {0, 1}∗ be recursively enumerable. By definition, there is a program M such
that, for all x ∈ {0, 1}∗, Mx (the program applied to x) evaluates to 1 iff x ∈ S, where x and
1 are the representations of the binary string x and the boolean 1, respectively. We define a
vocabulary VM which, intuitively, has as objects all syntactic expressions of the form Mx as
well as all their subexpressions, and such that there is an arrow N → P for each occurrence
of N as subexpression of P (there may be more than one). The Grothendieck topology is
defined in the natural way: a family {Ni → P}i∈I is covering when every subexpression of
P is a subexpression of some Ni, i.e., the Ni account for every “piece” of P .3 That VM is a
vocabulary follows from the fact that expressions of a programming language are composed
of a finite number of instructions. We embed {0, 1}∗ in VM by mapping each string x to
Mx.

Now, when we take our programming language to be the λ-calculus, there are type
systems called intersection type systems verifying the following property [11]: there is a type
true such that an expression P has type true iff P evaluates to 1.4 For an expression P , let
TypeDerA(P ) denote the set of type derivations assigning type A to P , and let TypeDer(P )
be the set of all type derivations for P , regardless of the type. Given an expression P of

2 Recall that a language S ⊆ {0, 1}∗ is recursively enumerable if it is accepted (not necessarily decided!)
by a Turing machine, i.e., there is a Turing machine accepting x when x ∈ S and rejecting or not
terminating when x 6∈ S.

3 The formal definition of VM is a bit subtler, in the style of the definition of Str above, but the informal
description here gives the idea.

4 For the acquainted reader, assuming the standard representation of booleans, true = α→ β → α with
α 6= β atomic.
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VM , we define

LM (P ) :=
{

TypeDertrue(P ) if P = Mx for some x ∈ {0, 1}∗
TypeDer(P ) otherwise

It turns out that LM is a sheaf on VM : this is because intersection type systems assign their
type locally, i.e., to assign a type to an expression P one must only know the type assigned
to the immediate subexpressions of P . Moreover, by the property of intersection types
mentioned above, we have Lang(LM ) = S. Indeed, for all x ∈ {0, 1}∗, Lang(LM )(x) = 1 iff
LM (Mx) 6= ∅ (by definition of Lang(LM )) iff Mx has type true (by definition of LM ) iff Mx

evaluates to 1 (by the property of intersection types) iff x ∈ S (by hypothesis).
So we took intersection types, a standard technology in the world of programming

languages theory, regarded them as a discrete fibration (thanks to Melliès and Zeilberger),
regarded this as a sheaf and obtained that every recursively enumerable language is a
functorial decision problem in a non-trivial way. This is not just an amusing trick: as shown
in [14, 15], this same methodology is at the basis of a type-theoretic reconstruction of the
Cook-Levin theorem, one of the pillars of structural complexity theory.

The topos of a decision problem. Every standard complexity class is a subclass of the
class of recursively enumerable languages, so the bulk of traditional complexity theory may,
at least in principle, be reformulated under a (non-trivial) functorial perspective. But we
do not just want to reformulate, we want to go beyond. This is where topos theory enters
the scene. By definition, a functorial decision problem L on a vocabulary B lives in the
sheaf topos Sh(B) and we may therefore associate with it the slice topos Sh(B)/L, which
we denote by Top(L). This is a sort of generalized topological space, which comes with an
imposing arsenal of invariants from algebraic topology (cohomology, homotopy, etc. [10]).
Indeed, remember that toposes were invented precisely to transfer methods of algebraic
topology to algebraic geometry [3]. In the next section we explain how, in some interesting
cases, Top(L) is the generalization of an algebraic object which played a central role in the
proof of the dichotomy theorem for CSPs [4, 6, 19]. This is very interesting, because we
now have a way of associating such objects not just to CSPs but, in principle, with every
decision problem. The perspective of being able to apply methods of algebraic topology to
structural complexity theory with such a level of generality, surpassing any previous work of
this kind [8, 17], is very exciting, but it is of course too early to say whether it will develop
into something fruitful.

Extending the CSP dichotomy. We saw that allowing unrestricted use of infinite sets
in sheaves on vocabularies trivializes the theory. While we still do not know the “right”
restriction to impose on shaves, we may certainly try the most drastic: consider only finitary
sheaves Bop → FinSet, i.e., restrict to finite sets. We call these shaves regular decision
problems (rdps).

The name “regular” comes from the fact that the rdps on Str may be shown to be
exactly the regular languages, in the sense of the subsets of {0, 1}∗ recognizable by a finite
state automaton. We see here an example of how the Grothendieck topology of different
vocabularies describes different, more or less restrictive ways in which a program may access
its input string: in the vocabulary VM defined above, they may be accessed with the power
of M , an arbitrary program of a Turing-complete language (e.g. the λ-calculus); in Str, they
may be accessed only one letter after another, as a one-directional, read-only automaton
would do. When we couple this with the finite set restriction, we obtain exactly finite state
automata (the image of • is the set of states of the automaton).

CVIT 2016



23:6 Towards a Sheaf-Theoretic Definition of Decision Problems

Interestingly, constraint satisfaction problems (CSPs) are also rdps. Indeed, given a CSP
Γ, we may define a vocabulary BΓ whose objects are conjunctive formulas on the constraints5
and whose arrows are subformula relations. It is then possible to define an rdp LΓ on BΓ such
that Lang(LΓ) = CSP(Γ) intuitively because: 1) the truth of a conjunction is given locally
by the fact that each constraint is individually satisfied, which allows the sheaf condition to
be met; 2) the domain of Γ is finite, which guarantees that we land in FinSet rather than
Set.

So rdps are a simultaneous generalization of CSPs and regular languages. It is also not
hard to see that every rdp still lies within NP. But there are many more rdps than regular
languages or CSPs! Well-known examples of rdps which are not CSPs are: all sorts of variants
of the circuit value problem (and their complement), all sorts of reachability problems for
directed or undirected graphs (and their complement), as well as Hamiltonian path; more
generally, any P problem which is the verification task induced by an NP-complete rdp (like
circuit value for circuit sat) is an rdp which is not a CSP.

We conjecture that there is no NP-intermediate rdp, i.e., that rdps enjoy the same
dichotomy as CSPs. This is a considerable strengthening of the dichotomy for CSPs and
is therefore all the more interesting. We already know that the proofs [6, 19] of the CSP
dichotomy theorem do not immediately extend to rdps. Indeed, these crucially rely on
associating with a CSP L an algebraic object Pol(L) (its clone of polymorphisms [4]) such
that if L and K are CSPs having different complexity, then Pol(L) 6= Pol(K). Unfortunately,
there is a CSP L and an rdp K with different complexity (K ∈ P while L is NP-complete)
such that Pol(L) = Pol(K). But not all is lost, and in fact this is where things get
interesting: it turns out that the polymorphisms (of arity n) of K exactly correspond to
natural transformations Kn ⇒ K; recall that the objects of Top(K) (introduced above) are
natural transformations F ⇒ K for arbitrary sheaves F , so Top(K) strictly extends Pol(K)
and might therefore provide just what we need to separate L and K and “reboot” the CSP
technology for rdps.

Acknowledgements. Partially supported by ANR project Elica (ANR-14-CE25-0005).

References
1 Roberto Amadio and Pierre-Louis Curien. Domains and Lambda-calculi. Cambridge Uni-

versity Press, 1998.
2 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-

bridge University Press, 2009.
3 Michael Artin, Alexandre Grothendieck, and Jean-Louis Verder, editors. Séminaire de

Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale
des schémas - (SGA 4) - vol. 1–3, volume 269, 270, 305 of Lecture Notes in Mathematics.
Springer, 1972.

4 Libor Barto. Constraint satisfaction problem and universal algebra. SIGLOG News,
1(2):14–24, 2014.

5 Ronald Brown. Topology and Grupoids. BookSurge Publishing, 2006.
6 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Proceedings of FOCS,

pages 319–330, 2017.
7 Bob Coecke, editor. New Structures for Physics, volume 813 of Lecture Notes in Physics.

Springer, 2011.

5 As for the vocabulary VM , the exact definition is a bit subtler but this one conveys the intuition.



D. Mazza 23:7

8 Joel Friedman. Cohomology in grothendieck topologies and lower bounds in boolean com-
plexity. CoRR, abs/cs/0512008, 2005.

9 Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge Univer-
sity Press, 2008.

10 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Clarendon
Press, 2003.

11 Jean-Louis Krivine. Lambda Calculus, Types and Models. Ellis Horwood, 1993.
12 Serge Lang. Algebra. Springer, 2002.
13 Saunders MacLane and Ieke Moerdeijk. Sheaves in Geometry and Logic. Springer, 1994.
14 Damiano Mazza. Church meets Cook and Levin. In Proceedings of LICS, pages 827–836,

2016.
15 Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation thesis,

Université Paris 13, 2017.
16 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Pro-

ceedings of POPL, pages 3–16, 2015.
17 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory: Introduction. CoRR,

abs/0709.0746, 2007.
18 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
19 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Proceedings of FOCS, pages

331–342, 2017.

CVIT 2016


