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Introduction

In a sense, computer science is as ancient as mathematics; some of its concepts,
like the idea of a general procedure to solve a mathematical problem, or the
very concept of computation, are indispensable to the development of the most
elementary ideas of mathematics. It is also certainly older than any device
we may nowadays think about when we hear the word “computer”, something
which has the risk of rendering its English name a little unfit to describe the
full scope of this science.

While perhaps the equivalents used in most other European languages, all
cognates to the English word information, are better behaved in this respect,
the essence remains the same: computer science has been and is a fundamental
branch of mathematics, even more so as an ever growing host of other areas
of human knowledge, from physics to biology, from philosophy to cognitive
sciences, appear to develop more and more profound relationships to it. Not to
forget, speaking of “computers”, about new technologies, which tend to become
more and more connected to the advances —not just practical but theoretical—
made in this science.

Computer science took its modern attire during the third decade of the last
century. Using mostly ideas coming from mathematical logic, it started roughly
as an attempt to rigorously address questions such as “what does computing
exactly mean?”, and “what does it take to do it?”. Today we know that there
exists a multitude of different answers, each of these corresponding to a particu-
lar computational model : Turing machines, the λ-calculus, and partial recursive
functions are the very first examples of such models, while more recent propos-
als include cellular automata, process algebras, and quantum-based models. Of
course also the fundamental questions driving computer science have evolved
through the years (a notable example being the theory of computational com-
plexity), but the exploration of different models of computation and the search
for finer, more abstract mathematical descriptions of them still continue at
present.

We have said that the original foundations of computer science lay in mathe-
matical logic; the link between these two disciplines has actually grown stronger
over time. In this respect, the work we are now introducing would not even
have existed if it were not for at least two achievements which have renewed
and refreshened such a connection through the years: Haskel Curry and William
Howard’s two-step discovery, in 1958 and 1969 respectively, of the correspon-
dence between λ-calculus and natural deduction which bears their names, and
Jean-Yves Girard’s introduction of linear logic, just about twenty years ago.
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Interaction nets. It is precisely from the offspring of linear logic that the
computational model we are interested in comes from. Interaction nets, intro-
duced by Yves Lafont in 1990, are in fact a generalization of the proof-nets
of multiplicative linear logic. Proof-nets are graph-like structures which allow
to introduce a certain degree of parallelism in the representation of proofs. A
typical (and fundamental) example of such parallelism is the associativity of
deduction: if we have three lemmas stating respectively that A implies B, B
implies C, and C implies D, no reasonable mathematician will ever feel that we
are in posses of two different proofs that A implies D just because we can com-
pose our lemmas in two different ways. Yet, in the traditional proof-theoretical
formalism used for linear logic —sequent calculus—, these two ways correspond
to two different objects; on the contrary, if we are composing proof-nets, the
result is unique.

In proof-nets, cut-elimination becomes a graph-rewriting process; via the
Curry-Howard isomorphism, this allows us to see computation itself, i.e., ex-
ecutions of programs, as a form of graph-rewriting. Such rewriting process is
particularly well behaved when we restrict to the so-called multiplicative frag-
ment of linear logic. But the programs one can express in multiplicative linear
logic are really too few; the idea behind interaction nets is therefore to gener-
alize the kind of dynamics at work in multiplicative proof-nets so as to obtain
systems which are equally well behaved but far more expressive.

As a computational model, interaction nets can be compared to the
λ-calculus, which is also a rewriting system. There are indeed many similar-
ities between the two, most notably the existence of a typed and an untyped
framework, and the ability to define higher order functions, which is typical of
functional programming. But there are also differences: computation in inter-
action nets is asynchronous, i.e., the synchronization between components of
a computational process is completely local. On the contrary, the λ-calculus
supposes the presence of a global synchronization mechanism for duplicating
and erasing arbitrarily large structures. In this respect, interaction nets are not
far from being “parallel Turing machines”: computational steps are elementary
enough to be considered executable in constant time, and several steps may
be performed in parallel. This is very interesting from the point of view of
computational complexity.

There are also several nice applications of interaction nets. The first one,
and most notable, is the implementation of Lamping’s algorithm for optimal
reduction in the λ-calculus, which is done precisely by using particular interac-
tion nets called sharing graphs. Other interaction-net-based implementations or
conceptions of functional languages have later been proposed, and there is still
quite some work going on in this direction.

Actually, such applicative aspects of interaction nets have largely been pre-
ferred in the literature to the theoretical ones. One of the objectives of this thesis
is to “restore the equilibrium”: we attempt to make an in-depth study of the
semantical aspects of interaction nets, in particular finding results comparable
to those available for the λ-calculus.

Obsevational equivalence. We start by defining a notion of observational
equivalence for interaction nets, which will be the basis of all of our further
semantical investigations. In the context of a programming language, of which
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interaction nets and the λ-calculus are abstract examples, two programs are
observationally equivalent when there is no way to tell within the language
itself whether one of these programs has been replaced by the other, i.e., they
“behave” exactly in the same way. By “within the language itself” we mean
that to observe the behavior of a program we are only allowed to act as if we
were ourselves programs: we cannot look at the source code of two programs to
tell whether they are different; we can instead give the same input to both and
read the outcome. In other words, observational equivalence is an interactive
notion.

Denotational semantics. After a good notion of observational equivalence is
found, we go on to define a denotational semantics for interaction nets. Actually,
since interaction nets are a paradigm rather than a fixed formal system, we have
to choose a particular interaction nets system as the object of our analysis. For
this, the system of the interaction combinators, also introduced by Yves Lafont,
seems to be the best candidate, because of its universality : any interaction
nets system can be translated into the interaction combinators. Therefore, our
denotational semantics will interpret nets of interaction combinators, or rather
of symmetric combinators, a technical variant which is easier to model.

In general, the goal of denotational semantics is to give a description of
programs which is more abstract than that given by the syntax, and which
thus lends itself better to mathematical analyses and proof techniques. This
is supposed to allow one to prove properties about programs which would be
otherwise impossible, or very difficult to prove using only syntactical tools. In
our context, we would like our mathematical description to capture the essence
of the interactive behavior of our programs, which we have seen above is the ob-
ject of observational equivalence. Hence, to us, the ultimate goal of denotational
semantics is to find an abstract mathematical structure in which observational
equivalence becomes an equality. A denotational semantics verifying this is usu-
ally said to be fully abstract.

Unfortunately, we shall only partially fulfill this objective. In fact, we have
not been able to prove a full abstraction result for the class of models we shall
define; we are able though to exhibit other structures, similar to Böhm trees in
the λ-calculus, which characterize the interactive behavior of nets, and which
may be the basis for finding a “more semantical”, fully abstract model.

Geometry of interaction. Another component of our semantical study of
the symmetric combinators is the geometry of interaction (GoI). Introduced
by Girard in the context of linear logic, the geometry of interaction has the
objective of giving a more “operational” semantics of computation, in which
the execution of a program receives an elaborate mathematical meaning. In its
original formulation, the GoI semantics interprets linear logic proofs as pairs of
operators on the (denumerably) infinite-dimensional Hilbert space, only one of
which contains information in the case of a cut-free proof. The cut-elimination
process is interpreted as a way of mathematically composing these two operators
to obtain a third one, which is the interpretation of the cut-free result.

After Girard’s one, more “down-to-earth” GoI interpretations have been
proposed; in this thesis, we develop the GoI semantics sketched by Lafont in his
work introducing the interaction combinators. We interpret nets of (symmetric)
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combinators as homomorphisms of certain monoids, called interaction monoids,
and we give the mathematical formulation of execution in the terms described
above. These interaction monoids can also be used to interpret nets according
to the denotational semantics previously introduced; in fact, we show that there
actually exists a nice relation between the denotational and the GoI semantics.

Concurrency. We said above that interaction nets are a model of distributed
computation: the execution of a program takes place at several different loca-
tions, without any global synchronization. This implies the presence of a certain
parallelism, and indeed at some point we made the analogy of interaction nets
as “parallel Turing machines”. Yet, the parallelism at work in interaction nets
has a peculiar property, namely that no conflict can ever arise among compo-
nents of a computational process. In fact, the structure of interaction nets is
such that, for example, two threads of a program will never compete to access
the same resource.

This particular form of parallelism guarantees an exceptional property of
interaction nets, which is their strong determinism: not only the result of a
computation, but the computation itself is essentially unique. This is another
remarkable difference with respect to the λ-calculus: reduction strategies are
meaningless in interaction nets, at least from the point of view of efficiency.

However, this very nice property becomes an extremely heavy limitation if
we want to model realities in which conflicts not only arise, but are actually
the central feature we want to express. This is the case of concurrency theory,
a fairly recently developed but rapidly growing field of utter theoretical and
practical interest these days.

The rise of concurrency theory is a response to the ever growing importance
of computer networks and mobile technologies, which challenge the descriptions
of computational process given by the traditional models mentioned above, such
as Turing machines and λ-calculus. In modern computer networks, conflicts like
those suggested above arise all the time: two workstations wanting to use the
same printer at the same time, two customers wanting to book the same flight
at the same time, etc. A correct development of such networks, and of softwares
dealing with such realities requires a solid theory, just as the older results of
theoretical computer science have been essential for the progress of sequential
machines and softwares.

Many of the computational models introduced for concurrency theory gather
under the name of process calculi. A particularly successful one from a theo-
retical viewpoint is Robin Milner’s π-calculus, which, in one form or another, is
used by many as the standard model for concurrency theory. It is not as “sta-
ble” as the λ-calculus, but there is a vast number of results and proof techniques
available for it, which can be used as a source of inspiration in the definition
and development of other concurrent models.

As we said, interaction nets are doomed right from the start if we want to
use them as a model of concurrent computation. This is precisely the second
objective of our thesis: to define a concurrent extension of interaction nets, and
to adapt to it as many results existing on interaction nets as possible.

Multiport interaction nets. The extension we introduce here, called mul-
tiport interaction nets, is a quite natural one, and we found out that it had
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actually already been considered in two other Ph.D. thesis, Vladimir Alexiev’s
(1999) and Lionel Khalil’s (2003). It is a conservative extension, i.e., interaction
nets are special cases of multiport interaction nets.

The first thing we verify is the expressive power of such extension, and prove
that it is just as expressive as the π-calculus. As a by-product, we obtain a
graphical encoding for the π-calculus, which in many respects works better than
the previously existing ones: it covers all of the features of the calculus (even
though the encoding becomes heavily technical in presence of guarded choice,
which by the way is not considered to be fundamental in the π-calculus), and
it decomposes process reduction into purely local and asynchronous elementary
steps, much like the above-mentioned sharing graphs for the λ-calculus. At the
same time, the encoding seems to be easily adapted to a higher-order framework,
as this is actually a quite natural setting for interaction nets.

The next step would be to develop for multiport interaction nets the notions
introduced in the deterministic case, namely behavioral equivalence and deno-
tational semantics. This is unfortunately a little too ambitious to be realized
here; this thesis contains just the first results going in this direction.

Universality. As remarked above, when defining a denotational semantics for
interaction nets one must restrict to a particular system, possibly an interesting
one. The interaction combinators are such a system, because by universality
any denotational semantics for them is also, via an encoding, a denotational
semantics for any other interaction nets system. Therefore, the task of finding
a denotational semantics in the multiport case cannot be properly addressed if
we do not first find the equivalent of the interaction combinators in this new
setting.

By definition, an interaction nets system is universal just if any other inter-
action nets system can be translated into it. Thus, the key concept concerning
universality is the definition of translation. In the deterministic case, Lafont
gave what is arguably the most natural definition. In the multiport case, the
situation is rendered delicate by the presence of non-determinism, and a good
notion of translation is harder to define. We propose one which makes use of
behavioral equivalence: the translation of a net must be able to simulate such
net up to some congruence. The stronger this congruence, the more convincing
the translation will be.

The multiport combinators. This brings up the issue of defining a behav-
ioral equivalence for the proposed universal system, a task which we are not able
to fulfill in general. However, we do have a partial, but fairly satisfactory result.
We define a system, called the multiport combinators, and we define a good
notion of behavioral equivalence for a small subsystem of it. Then, we exhibit a
map from any multiport interaction nets system to the multiport combinators.
This map has the property that whenever a net µ evolves to a net µ′ in the sys-
tem we want to translate, then the image of µ evolves to the image of µ′ in the
multiport combinators. We are able to prove that this map is a translation up
to the behavioral equivalence defined for the above-mentioned subsystem, and
thus only for such subsystem. Actually, we conjecture that it is a translation in
all cases, but we are lacking a general notion of behavioral equivalence to prove
it. The result is nevertheless satisfactory because the subsystem in question is
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as expressive as a relatively large fragment of the π-calculus (roughly speaking,
only guarded choice is not covered).

The overall structure of our work is divided into two parts, corresponding
to the two main objectives of the thesis we have just described. We shall now
enter into the details of each of them.

Semantics of Interaction Nets

Interaction Nets

This is an introductory chapter, containing the main definitions about interac-
tion nets, fundamental to the rest of the work. The main references for this
chapter are [Laf90, Laf97, Laf95].

Cells, wires, nets. In Sect. 1.1 we define the basic components of interaction
nets, namely cells and wires: the first are “agents” characterized by a symbol
and a certain number of ports, of which exactly one must be principal, the
others being auxiliary ; the second are used to plug the ports of cells together,
to form interaction nets. The introduction is done in two parts: we first give a
formal definition of interaction net, and then present the less formal graphical
representations used in practice. We also define important configurations used in
the sequel, such as active pairs (two cells with a wire connecting their principal
ports) and vicious circles (sort of cycles of principal ports, corresponding to
deadlocks), and define cut-free nets as nets containing no active pair and no
vicious circle.

Interaction rules: β-equivalence and totality. In Sect. 1.2 we introduce
interaction rules, which are the graph-rewriting rules driving the computational
process in interaction nets. The key property of interaction nets is that the left
member of interaction rules must be an active pair, and that each active pair
has at most one interaction rule. Whenever a net µ can be rewritten to µ′ by
means of one such rule, we write µ→ µ′; we define →∗ as the reflexive-transitive
closure of →, and we define β-equivalence as usual: µ 'β µ

′ iff there exists µ′′

such that µ→∗ µ′′ and µ′ →∗ µ′′. We say that a net µ is total iff there exists a
cut-free net ν such that µ→∗ ν. Reduction is strongly confluent: if µ→ µ1 and
µ→ µ2, then there exists µ′ such that µ1 → µ′ and µ2 → µ′. This implies that
'β is an equivalence relation, that the cut-free form is unique if it exists, and
that also the reduction of a net is unique, up to trivial permutations of rules. We
also give the definition of interaction nets system (INS), and introduce typing
and deadlock-freeness, together with the associated correctness criterion. These
two notions are mentioned only for the sake of self-containedness; we shall never
make use of them, except in a few examples.

Examples: proof-nets, interaction combinators, partial recursive
functions. Sect. 1.3 is dedicated precisely to giving detailed examples of in-
teraction nets systems. Such examples are chosen for their usefulness in the
sequel, or because they complement existing examples found in the literature.
The first one is the source of inspiration for the whole paradigm: multiplicative
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linear logic proof-nets. Then, we immediately introduce the interaction combi-
nators and their symmetric variant, the latter being essential in the sequel. We
also give an explicit proof of the Turing-completeness of the symmetric combi-
nators by encoding the SK combinators in them, an exercise which we have not
seen done in any previous work. We conclude with an INS capable of encoding
all partial recursive functions, probably the only classical computational model
which, to our knowledge, had not been translated into interaction nets.

Universality. Sect. 1.4 deals with the universality of the interaction combi-
nators. The notion of translation between interaction nets systems is defined;
it requires a system to be able to simulate another not just in expressiveness
but also as far as its complexity of reduction and degree of parallelism are con-
cerned. A universal system is thus defined as an INS in which all other INS’s
can be translated. The interaction combinators are universal; the symmetric
combinators are not, although virtually any “interesting” INS can be translated
into them (Theorem 1.9). We close with a few (new, as far as we know) remarks
on a subsystem of the interaction combinators (symmetric or not).

Observational Equivalence

This chapter opens the true original content of the thesis. To our knowledge,
the only existing pieces of work dealing with similar matters are Lafont’s paper
introducing the interaction combinators [Laf97], and Maribel Fernández and Ian
Mackie’s work on operational equivalence [FM03].

Path-based observational equivalence. In Sect. 2.1 we define the obser-
vational equivalence we use throughout the rest of the first part of the thesis.
The key notion is that of observable path. The importance of paths in proof-
nets (and interaction nets) has been pointed out by more than fifteen years’
worth of work on the geometry of interaction; in fact, the paths we define for
our nets, called interaction paths, are an extension of Danos&Regnier’s straight
paths [DR95] (the two notions indeed coincide in the interaction combinators,
symmetric or not).

Observable paths are simply interaction paths entering and exiting a net
through two of its free ports, and which are stable under reduction. We write
µ↓ if a net µ has an observable path; of course, by definition µ↓ and µ →∗ µ′

implies µ′↓. We say that a net µ is observable iff µ→∗ µ′↓, and we write µ⇓. If
µ reduces to no observable net, we say that it is blind, and we write µ⇑.

We then introduce the notion of context, which is particularly natural in
interaction nets: a context C for nets with n free ports is a net with at least
n + 1 free ports, and if µ is a net with n free ports, the application of C to
µ, written C[µ], is the net obtained by simply plugging all free ports of µ to
some of the free ports of C (the information concerning which ports are to be
used must therefore come together with the net C in the proper definition of
context).

Our observational equivalence is defined as follows: two nets µ, ν with the
same number of free ports are observationally equivalent, and we write µ ' ν,
iff C[µ]⇓ ⇔ C[ν]⇓ for every context C. In other words, any context either
makes both µ and ν observable, or both blind. As expected in a deterministic
framework such as interaction nets, we have 'β ⊆ '.
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There are strong reasons to think that observability and blindness corre-
spond to the λ-calculus notions of solvability and unsolvability, and that there-
fore ' corresponds to head-normal-form equivalence in the λ-calculus (two
λ-terms T,U are hnf-equivalent iff, for every context C, C[T ] and C[U ] are
either both solvable or both unsolvable). This is explained in Sect. 2.1.3, right
after the introduction of '. Another interesting thing is the comparison to
Fernández&Mackie’s definition of observational equivalence, very briefly dis-
cussed at the end of the same section.

Bisimilarity. Sect. 2.2 redefines the observational equivalence introduced
above by means of a notion of bisimilarity. Two nets µ, ν are bisimilar, written
µ

¦∼ ν, iff µ↓ implies ν⇓, µ → µ′ implies ν →∗ ¦∼ µ′, and the same holds with
the rôles of µ and ν exchanged. The determinism of interaction nets trivializes
the definition of bisimilarity, and in fact we prove that µ ¦∼ ν iff µ and ν are
either both observable or both blind. But this is actually quite interesting for
us, because it implies that observational equivalence can be redefined as µ ' ν

iff C[µ] ¦∼ C[ν] for every context C, i.e., observational equivalence is bisimilar-
ity under any context (this is what is usually called barbed congruence in the
π-calculus and similar process calculi). This opens up the possibility of prov-
ing observational equivalence by means of coinduction; the rest of the section
is in fact dedicated to the development and application of such typical proof
techniques, used later on in the thesis.

Interaction combinators and internal separation. Sect. 2.3 applies the
previous two sections to the fundamental case of the interaction combinators.
It contains one of the main results of our work, the Separation Theorem 2.19,
which is analogous to Böhm’s Theorem for the λ-calculus. First of all, we
introduce further rewriting rules for the interaction combinators, which induce
an equational theory on nets denoted by 'η. These rules are not interaction
rules, but, as the notation suggests, they play the same rôle as the η-rule in
the λ-calculus. We define βη-equivalence as the transitive closure of 'β ∪ 'η,
and, using the coinductive techniques introduced above, we prove that µ 'βη ν
implies µ ' ν.

In Sect. 2.3.3 we prove the Separation Theorem; one of its consequences is
that, if we restrict to total nets, then the above implication can be reversed.
Actually, the result is stronger: we consider two nets W and E, which are the
cut-free “incarnations” of resp. the observable and of the blind net, and we state
that, given two total nets with the same number of free ports such that µ 6'βη ν,
then there exists a context C (which moreover has a particularly simple form)
such that C[µ] →∗ W and C[ν] →∗ E, or viceversa. This was indeed our
starting point to define the observational equivalence '.

An immediate application of the Separation Theorem is the maximality of
'βη on total nets: if ∼ is a non-trivial congruence on total nets containing
'β , then ∼ ⊆ 'βη. We conclude by giving some remarks on internal separa-
tion, and by introducing η- and βη-equivalence for the symmetric combinators,
mentioning that the Separation Theorem holds also for this system.

Totality-base observational equivalence. In Sect. 2.4 we define an alter-
native observational equivalence, based on totality rather than observability:
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µ '◦ ν iff, for every context C, either C[µ] and C[ν] are both total, or they
are both non-total. While this equivalence seems to correspond to normal-
form equivalence in the λ-calculus (two λ-terms T,U are nf-equivalent iff, for
every context C, C[T ] and C[U ] are either both normalizable or both non-
normalizable), it is readily seen that this is not the case. In fact, nf-equivalence
strictly implies hnf-equivalence in the λ-calculus, whereas in interaction nets
'◦ and ' are orthogonal, i.e., neither is included in the other. This is because
totality does not coincide with normalizability; it is stronger than it.

Nevertheless, '◦ does coincide with ' (and thus with 'βη) on total nets,
and in the case of the interaction combinators (symmetric or not) it accepts a
definition closely resembling the definition of observational equivalence in Gi-
rard’s ludics [Gir01]. This allows a nice comparison between syntactical and
topological separation, which is done in Sect. 2.4.3.

The Symmetric Combinators

This chapter studies to a certain depth the symmetric combinators, defining
several denotational semantics for them, and analyzing the properties of each.
The only other work attempting a semantical study of the interaction combina-
tors (symmetric or not) is Lafont’s paper introducing them [Laf97], in which he
sketched the GoI semantics we develop here.

Denotational semantics. Sect. 3.1 starts with the definition of a very simple
class of denotational models for the symmetric combinators, inspired by the
relational semantics of linear logic. In the multiplicative case, the relational
semantics interprets a formula A by a set |A|, and a proof of A by a subset of
|A|. The two multiplicative connectives are both interpreted by the Cartesian
product: |A⊗B| = |A�B| = |A| × |B|.

The symmetric combinators have three kinds of cells, two with two auxiliary
ports and one with zero. If they are of the same kind, two binary cells interact
with each other in much the same way a tensor and a par interact in proof-nets;
if they are of different kind, they “commute”, duplicating each other. The idea
is then to consider the relational interpretation, but of course untyped; we take
an infinite pointed set D, the distinguished element of which we denote by 0,
and we interpret each binary cell using a bijection between D × D and D, and
the zeroary cell with 0. If we denote by 〈·, ·〉 and [·, ·] these two bijections, to
correctly interpret the interaction rules we need the following equalities to hold:

〈0,0〉 = [0,0] = 0

〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉], for all a, b, c, d ∈ D
An infinite pointed set satisfying all of the above is called an interaction set.

Two bijections verifying the second equation (which is reminiscent of the
“exchange rule” for the composition of 2-arrows in a 2-category) are said to be
companions. In Sect. 3.1.1 we make sure that companion bijections do exist,
and immediately find examples of interaction sets. The simplest example is N∗,
the set of strictly positive integers. By the fundamental theorem of arithmetics,
each positive integer n admits a unique decomposition as a product of powers
of primes:

n =
∏

phi
i

9



where pi is the sequence of prime numbers, and hi is an almost-everywhere
zero sequence of non-negative integers. Therefore, we define two functions from
N∗ × N∗ to N∗ as follows:

〈
∏

phi
i ,

∏
phi

i 〉 =
∏

phi
2i

∏
pki
2i+1

[
∏

phi
i ,

∏
phi

i ] =
∏

p
β(hi,ki)
i

where β is a bijection between N × N and N such that β(0, 0) = 0. These two
functions can in fact be checked to be companion bijections.

The interpretation of a net in an interaction set is defined by means of
experiments. Introduced by Girard for linear logic [Gir87a], experiments allow
one to compute the interpretation of a proof-net without looking at one of its
corresponding sequent calculus proofs. In other words, experiments allow the
definition of a denotational interpretation on objects which are not necessarily
built inductively, as in our case.

An experiment e on a net µ in an interaction set D is an assignment of
elements of D to the ports of µ, satisfying the following requirements:

• if the two auxiliary ports of a binary cell of the first kind are labelled by
c and d, then the principal port of the same cell is labelled by 〈c, d〉;

• the same is true for the second kind of binary cells, but using the bijection
[·, ·];

• the principal port of a zeroary cell is always labelled by 0.

If µ has n free ports, the labels di assigned by e to the free ports of µ form a
tuple (d1, . . . , dn), which is called the result of e, and is denoted by |e|.

The denotational interpretation in an interaction set D of a net µ, denoted
by JµK, is the set containing all the results of all experiments on µ in D:

JµK = {|e| ; e experiment on µ in D}.

One can show that this defines a denotational semantics for the symmetric com-
binators: µ 'βη ν implies JµK = JνK (the interpretation models βη-equivalence),
which in turn implies that, for every context C, JC[µ]K = JC[ν]K (the interpreta-
tion induces a congruence), and there exist two nets µ, ν such that JµK 6= JνK (the
interpretation is non-trivial). A simple additional property of interpretations is
that they are always pointed, i.e., for all µ, (0, . . . ,0) ∈ JµK.

If we restrict to total nets, this interpretation has two additional properties:
it is injective with respect to 'βη, and there exists a characterization of the sub-
sets of D×· · ·×D which are the interpretation of some net (a full completeness
result). Injectivity is nothing but the converse of the first implication above:
if µ, ν are two total nets such that JµK = JνK, then µ 'βη ν. This of course
does not hold for arbitrary nets; something similar happens in the λ-calculus,
where for example Ω and λx.Ω are not βη-equivalent, and yet receive the same
interpretation in any sensible model.

The last important result of the section is a semantical characterization of
observability (Corollary 3.25), in a certain interaction set which we call Φ2(A).
This characterization states that, if we interpret nets in Φ2(A), then a net µ is
observable iff JµK 6= {(0, . . . ,0)}. Since observability corresponds to solvability,
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this result basically tells us that Φ2(A) is the equivalent of a sensible model for
the λ-calculus.

The “only if” part of the characterization is a straightforward consequence
of the definition of observability and of the basic properties of interaction
sets; the “if” part is on the contrary quite hard to prove, and requires real-
izability techniques similar to those introduced by Jean-Louis Krivine [Kri90].
Very briefly, we define what it means for a net µ to realize an element ~x of
Φ2(A)× · · · × Φ2(A), which we denote by µ ° ~x; the set of all nets µ such that
µ ° ~x is called the set of realizers of ~x. Then, we prove two fundamental results:
the Adaptation Lemma 3.18, stating that the realizers of any ~x 6= (0, . . . ,0) are
all observable nets, and the Adequacy Lemma 3.23, stating that if ~x ∈ JµK, then
µ ° ~x. Put together, these two lemmas (whose proofs rely on a host of rather
technical intermediate results) obviously yield the “if” part of the characteriza-
tion.

We close this section by giving a technical justification to our choice of
modeling the symmetric combinators instead of the interaction combinators,
which enjoy a stronger universality property and which would thus seem more
interesting to analyze.

Full abstraction. Sect. 3.2 is an attempt to address the problem of full ab-
straction for the symmetric combinators. As we said above, in our case a de-
notational semantics achieves full abstraction iff, for all nets µ, ν, µ ' ν iff
JµK = JνK. Unfortunately, we do not know at present of any interaction set
yielding a fully abstract semantics. The above mentioned characterization of
observability trivially implies one of the two parts of full abstraction, namely
what is usually called the adequacy of a semantics: in Φ2(A), JµK = JνK implies
µ ' ν.

To look for hints on how to obtain full abstraction, we define a quite inter-
esting kind of structure, called edifice. An edifice is the symmetric combinators’
equivalent of a Böhm tree; however, because of the symmetries of interaction
nets, i.e., the fact that no free port can be privileged with respect to the others,
edifices are more complex (but more symmetrical) than trees.

An edifice is a set of unordered pairs of infinite words, called arches. After
defining a distance on arches, which is based on Cantor’s distance for infinite
binary words, we consider edifices as metric spaces, and deem an edifice to be
complete iff it is a complete metric space according to the metric defined. Given
an edifice E, we denote by E its completion.

The first step is to assign to each cut-free net ν a complete edifice E•(ν),
whose arches basically correspond to the observable paths of ν. In order to
extend the assignment to arbitrary nets, we define the notion of approximation:
up to some details, a cut-free net µ0 approximates µ, which we denote by µ0 v µ,
iff µ reduces to a net µ′ containing µ0 and such that, for any reduct µ′′ of µ′,
also µ′′ contains µ0. In other words, µ0 is a “piece” of the cut-free form of µ (if
this exists).

The idea is that an edifice must represent the cut-free form of a net µ even
if this is not total, i.e., it must be a sort of “infinite normal form”. Then, we
define the set of approximate edifices of a net µ by Apx(µ) = {E•(µ0) ; µ0 v µ}.
At this point, the most natural thing to do would be to take the union of the
edifices of all approximations of µ to be the edifice of µ; but this edifice is not
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complete in general, so we rather set

E(µ) =
⋃

Apx(µ).

We are then able to prove that interpreting nets as edifices yields a denota-
tional semantics, i.e., µ 'βη ν implies E(µ) = E(ν). But this time we can do
more (cf. Theorem 3.35): if E(µ) 6= E(ν), then we are able to find a context
discriminating between µ and ν, i.e., µ 6' ν, which is the contrapositive of the
full abstraction property.

The proof of this fact heavily relies on the completeness of the edifices in-
terpreting nets. In fact, in Sect. 3.2.3 we shall show an example of a net which
reduces forever, and yet is observationally equivalent to a simple wire. This net
admits as approximations an infinity of cut-free nets, each “almost” η-equivalent
to the wire; the “almost” comes from the fact that one observable path is miss-
ing. This observable path actually forms “in the limit”, when reduction is
carried on forever. Completeness precisely accounts for this fact: it makes of
this intuition of “taking the reduction to the limit” a true topological limit.

The situation is in fact very similar to the so-called “infinite η-expansion”
of λ-terms, considered by Christopher Wadsworth and Martin Hyland when
proving that Scott’s D∞ model is fully abstract with respect to what we called
hnf-equivalence. In fact, it is well known that in the λ-calculus one can find a
non-normalizable term J which is hnf-equivalent to the identity I = λz.z.

Geometry of interaction. Sect. 3.3, the last of Chapter 3, develops the ge-
ometry of interaction (GoI) semantics sketched by Lafont for the interaction
combinators [Laf97]. We require interaction sets to have a minimal of algebraic
structure, and we thus define interaction monoids, the distinguished element of
the pointed set being the zero of the monoid (which is supposed to be commu-
tative). Then, given an interaction monoid M , we associate to a net with n free
ports and k active pairs and/or vicious circles two endomorphisms µ• and σ of
Mn+2k, where M i = M ⊕ · · · ⊕M i times. The assignment is such that σ = 0
(the everywhere-zero endomorphism) iff µ is cut-free. Then, Lafont has proved
that, if µ is total and if its cut-free form is ν, the GoI interpretation of ν is
obtained by means of Girard’s execution formula:

ν• = πt

( ∞∑

i=0

µ•(σµ•)i

)
π,

where π is the matrix of the inclusion homomorphism of Mn into Mn+2k, and
πt its transposed, i.e., the homomorphism from Mn+2k to Mn “chopping off”
the last 2k components of an element. Composition of two homomorphisms is
denoted by juxtaposition, i.e., σµ• = σ ◦ µ•.

The execution formula makes sense because one can prove that, under the
hypotheses that µ is total, σµ• is nilpotent. Here we show that the converse
holds as well (Theorem 3.45), i.e., we give a characterization of totality by
nilpotency: µ is total iff σµ• is nilpotent. This is similar to what done by
Vincent Danos and Laurent Regnier in the λ-calculus [DR95].

Finally, we show that, in the case of cut-free nets, there exists a nice con-
nection between the GoI semantics and the denotational semantics based on
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interaction sets (which can be defined on interaction monoids as well, these
being special cases of interaction sets). In fact, if ν is a cut-free net, we have

JνK = fix(ν•),

where the interpretation is taken in any interaction monoid M , and fix(ν•)
denotes the submonoid of the fixpoints of the endomorphism ν•, which is the
GoI interpretation of ν in M (we remind that, ν being cut-free, we have σ = 0).

Multiport Interaction Nets and Concurrency

Multiport Interaction Nets

The first two sections of this chapter introduce multiport interaction nets. These
are obtained from interaction nets simply by allowing cells to have more than
one principal port. The definitions of wire, net, and interaction rule remain the
same; in particular, active pairs are still pairs of cells with a wire connecting
two of their principal ports, and there still can be at most one rule defined for
each active pair.

The fundamental difference is that, in the multiport case, one cell may be
involved in several active pairs, as many as its principal ports. The choice of
which one is reduced is non-deterministic; in Sect. 4.3 we show an immediate
example of how this implies the presence of non-confluent nets. In particular, we
show how to implement a random binary stream generator, i.e., a net having as
normal forms all finite binary words. We also show how a few parallel algorithms
can be implemented, such as parallel or and bottom-avoiding merge.

As the deterministic case, we also introduce typed systems, but this time
we shall make use of them later on (cf. Chapter 5). “Multiport interaction
nets system” is abbreviated with mINS. If a system uses cells with at most n
principal ports, we say that it is an nINS; if n = 1, we are back to usual INS’s.

Multiport interaction nets have already been introduced by Vladimir Alex-
iev in his Ph.D. thesis [Ale99], as one of several non-deterministic extensions
of interaction nets. Alexiev’s concern was principally the inter-representability
of these extensions into one another; he concluded that all of them are equally
expressive, except an extension in which the topology of cells and nets is left
untouched, but several rules for each active pair are allowed. This extension,
which is the one independently defined by Thomas Erhard and Laurent Regnier
in their differential interaction nets [ER06], is proved to be unable to faithfully
encode multiport interaction nets. However, a recent work by Ehrhard himself
with Olivier Laurent [EL06] has shown that, in spite of this, it makes perfect
sense to say that differential interaction nets can express concurrent computa-
tions.

The only other work dealing with multiport interaction nets is Lionel Khalil’s
Ph.D. thesis [Kha03], in which he shows how the multiport extension can actu-
ally be encoded in interaction nets plus McCarthy’s amb, which is represented
by a cell with two principal ports and two auxiliary ports. Nevertheless, it is
often much more practical to use cells with an arbitrary number of principal
ports, and this is why we prefer to keep working within this larger framework.

Essentially, our thesis adds two main contributions to the theory of multiport
interaction nets: an encoding of the full π-calculus, and a universal system of
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multiport combinators, the multiport equivalent of the interaction combinators.
These are treated resp. in Chapters 5 and 6.

Encoding the π-calculus

In Sect. 5.1 we briefly recall the basic definitions concerning the π-calculus: pro-
cesses, structural congruence (denoted as usual by ≡), reduction, and transi-
tions. We also define barbed bisimulation and barbed congruence, the latter usu-
ally being considered as the standard behavioral equivalence for the π-calculus.
We conclude by defining two subcalculi which will be of interest in the rest of
the chapter: the finite π-calculus Fπ, only featuring name passing and name
restriction, and the “core” π-calculus Cπ, which also includes replication, and is
thus virtually as expressive as the full π-calculus. Neither subcalculus includes
guarded choice. The main reference for this section is [SW01].

Encoding the finite π-calculus. Sect. 5.2 introduces a mINS F∞ in which
Fπ can be faithfully encoded. In order to represent communication channels,
the system uses an infinite family of cells with an arbitrarily large number of
principal ports; for this reason, we say that F∞ is an infinite mINS.

The encoding works as follows. Each process P of Fπ is assigned a net [P ] of
F∞. A single internal transition in Fπ (denoted by τ→) is simulated by several
reduction steps in F∞; however, there is one particular interaction rule which
in some sense “marks” the synchronization of two processes. We write µ ³ µ′

iff a net µ of F∞ reduces to a net µ′ by applying such interaction rule exactly
once, preceded and followed by the application of any number of other rules.

Because of the decomposition of a single π-calculus transitions in several
steps, a generic reduct of a net of the form [P ] may not be itself the encoding
of a process. For this reason, we introduce a readback operation which, given a
net µ which is the reduct of a net of the form [P ], yields a net µ̃ which is of the
form [Q] for some process Q.

Then, given any process P of Fπ, the following results can be proved:

• P ≡ Q implies [P ] = [Q] (Proposition 5.3);

• if P τ→ Q, then [P ] ³ µ such that µ̃ = [Q] (completeness, Theorem 5.8).

• if [P ] ³ µ, then P τ→ Q such that [Q] = µ̃ (soundness, Theorem 5.8).

Adding replication and other features. In Sect. 5.3 we extend the above
system, finding a mINS C∞ in which Cπ can be encoded. The encoding uses local
duplication to implement replication, much like fan nodes implement copying
in sharing graphs. The same results mentioned above can be proved for this
encoding.

The two mINS’s introduced so far have an unpleasant feature: they are
infinite, i.e., the number of principal ports used in unbounded, and depends on
the complexity of the process we are translating, in particular on how many
of its subprocesses communicate at the same time on the same channel. In
Sect. 5.4 we take care of this problem, showing that F∞ and C∞ can be encoded
resp. by two systems F and C, both finite. In fact, the maximum number of
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principal ports used by both systems is 2, i.e., the are 2INS’s. This can be seen
as a weak form of the above mentioned result by Khalil.

Sect. 5.5 addresses the issue of encoding the full π-calculus. The only features
which are not covered by C are guarded choice and match prefixes; these are
dealt with resp. in Sections 5.5.1 and 5.5.2. This part of the chapter is rather
informal; the encoding becomes so technical that it would take way too long to
expose it in full detail. Besides, doing so would not give much benefit, since
guarded choice and match prefix are seldom considered essential.

It must be mentioned that Alexiev had already given an encoding of Fπ into
a variant of multiport interaction nets; our encoding, quite different from his,
has the advantage of using only “pure” multiport interaction nets, and of being
able to cope with every feature of the π-calculus, in particular with replication.

Although we do not give any explicit proof, it is not hard to imagine how the
concurrent behavior of multiport interaction nets can be faithfully encoded in
the π-calculus; therefore, the main consequence of this chapter is that mINS’s
are just as expressive as the π-calculus. We would like to remark here that,
contrarily to all other graphical formalisms used to represent the π-calculus,
multiport interaction nets were not “built around” any process calculus, i.e.,
they are not ad hoc at all. Our encoding should be seen as a benchmark, a
way to test the expressiveness of mINS’s, rather than as yet-another-graphical-
encoding of the π-calculus.

The Multiport Combinators

In this chapter we seek the multiport equivalent of the interaction combinators,
i.e., a multiport interaction net system having the property of being universal.
We have seen that, in order to define universality, we must first define the notion
of translation.

Translations up-to. In the deterministic case, a translation from an INS S
to an INS S ′ is a map Φ from the nets of S to the nets of S ′ verifying the
following properties (below, µ is a generic net of S):

(1) the active pairs of µ are in bijection with the active pairs of Φ(µ);

(2) µ→ ν implies Φ(µ) →∗ Φ(ν).

In the non-deterministic case, (1) and (2) are insufficient to guarantee the cor-
rectness of a translation: nothing forbids Φ(µ) from reducing to a net which has
nothing to do with the translation of any reduct of µ.

For this reason, in Sect. 6.1 we introduce the notion of translation up to. If
S and S ′ are two mINS’s, and if ∼ is a congruence on the nets of S ′, we say
that a map Φ from the nets of S to the nets of S ′ is a translation of S into S ′
up to ∼ iff, for any net µ of S, the following holds:

(1) the active pairs of µ are in bijection with the active pairs of Φ(µ);

(3) if Φ(µ) → µ′, then µ′ ∼ Φ(ν), where ν is the one-step reduct of µ obtained
by reducing the active pair corresponding to the one reduced in Φ(µ)
(according to the bijection given by (1)).
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Deterministic translations are translations up to 'β (or actually up to →∗, if we
allow precongruences). The stronger the congruence ∼, the more “convincing”
a translation will be; the intention is that ∼ should be a suitable behavioral
equivalence.

The meaning of property (3) is that, whenever S can be translated into S ′,
S ′ is able to simulate the choices of S instantaneously: in fact, due to non-
determinism, µ → ν in S may imply that µ has “made a choice”, i.e., it has
taken a non-confluent computational branch; property (1) guarantees that Φ(µ)
can “move” accordingly, and property (3) states that if µ′ is the result of such
“move”, the choice has already been made, because µ′ behaves exactly as Φ(ν),
even though it is not necessarily equal to it (as usual, it may take several steps
of S ′ to syntactically simulate a step of S).

The multiport combinators. In Sect. 6.2 we introduce the multiport combi-
nators. These are a conservative extension of Lafont’s interaction combinators;
they form an infinite mINS (in the sense that the number of principal ports is
unbounded), but for all n ≥ 1, one can define a finite nINS with n+ 2 cells, the
n-port combinators. The 1-port combinators are exactly the interaction combi-
nators, and, for every n ≥ 1, the n-ports combinators are strictly contained in
the n+ 1-port combinators.

In Sect. 6.3 we define a notion of behavioral equivalence for the 2-port com-
binators, denoted by ∼=. Just as the observational equivalence defined in the
deterministic case, it is defined as the contextual-closure of a bisimilarity based
on observable paths, although these need to be redefined in presence of several
principal ports. In particular, it is not yet clear how the definition can be ex-
tended in case there are more than two principal ports; this is why we have
preferred to restrict to the 2-port combinators. The main result of this sec-
tion is Lemma 6.2: we deem deterministic certain reduction rules (in particular
those of the 1-port combinators), and we prove that if µ →∗ µ′ by means of
deterministic rules only, then µ ∼= µ′.

Universality. Sect. 6.4 contains the proof of the universality of the 2-port
combinators: any 2INS can be translated up to ∼= in the 2-port combinators.
The translation we give is a concurrent extension of Lafont’s translation for the
deterministic case; in fact, when one restricts to INS’s, the translation essentially
becomes Lafont’s one [Laf97]. Lemma 6.2 is crucial: if [µ] is the translation of
a net µ containing an active pair yielding the reduction µ → ν, we have that
[µ] → µ′ ∼= [ν], because µ′ →∗ [ν] by means of deterministic steps only.

By the results of Sect. 5.4, Cπ can be encoded using a 2INS; therefore, in
spite of their simplicity (4 cells and 10 rules), the 2-port combinators are at
least as expressive as Cπ, which in turn is essentially as expressive as the full
π-calculus.
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Part I

Semantics of Interaction
Nets
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Chapter 1

Interaction Nets

1.1 Cells, wires, nets

Interaction nets are a graph-rewriting model of deterministic distributed com-
putation, introduced by Lafont [Laf90]. They are inspired by the proof-nets of
multiplicative linear logic [Gir87a, Gir87b, DR89, Laf95], and share many nice
properties with them, with the advantage of being much more expressive.

1.1.1 The formal definitions

Formally, an interaction net is the union of two structures, a labelled, directed
hypergraph, and an undirected graph. The directed edges will be called cells,
and their label symbols; the undirected edges will be called wires. We now go
through the details of the definition.

An alphabet Σ is a finite set of symbols, ranged over by α, β, each with an
associated non-negative integer called its arity.

Let Σ be an alphabet such that the maximum arity of its symbols is m.
We denote by Σn the subset of symbols of Σ of arity n. A net µ on Σ is a
triple (Ports(µ),Cells(µ),Wires(µ)), where Ports(µ) is a finite set, the elements
of which are called the ports of µ, and

Cells(µ) ⊆
m⋃

n=0

Σn × Ports(µ)n+1

Wires(µ) ⊆ M2(Ports(µ))

where M2(Ports(µ)) is the set of multisets of Ports(µ) of cardinality 2, and
Ports(µ)k denotes the Cartesian product of k copies of Ports(µ). The elements
of Cells(µ) and Wires(µ) are called resp. the cells and wires of µ; they must
satisfy the following constraints:

• in each cell, each port appears at most once;

• each port appears in exactly one wire, and can appear at most twice in
Cells(µ) ∪Wires(µ).

The ports of µ which appear only once in Cells(µ) ∪Wires(µ) are called free. A
free port can be principal, auxiliary, or neither, depending on the nature of the
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other port to which it is connected by the only wire using it. The set of the free
ports of a net is referred to as its interface. The set of all nets on an alphabet
Σ is denoted by 〈Σ〉, and is ranged over by µ, ν.

Given a net µ, we can extract an undirected multigraph from it, which will
be useful to formally speak of paths in a net (see Sections 1.2.4 and 2.1):

Definition 1.1 (Port graph) The port graph of a net µ, denoted PG(µ), is
the undirected multigraph whose vertices are the elements of Ports(µ), and such
that, for i, j ∈ Ports(µ), there is an edge between i and j iff one of the following
conditions holds:

• [i, j] ∈ Wires(µ);

• i and j are resp. principal and auxiliary ports of the same cell.

Note that PG(µ) is a mulitigraph because the two conditions above are not
mutually exclusive, so there may be more than one edge between two ports.

1.1.2 Graphical representations

The above definition of net has the advantage of being mathematically pre-
cise, but is far too heavy to work with; we now introduce the usual graphical
representations of nets, which will be used in the rest of the thesis. In such
representations, the ports of a net will be left implicit, and only cells and wires
will be drawn.

A cell (α, i0, i1, . . . , in) is represented as

. . .

α

i1 in

i0

or

α

. . .
i1in

i0

The names of the ports have been specified to make the reader understand which
port is principal and which are auxiliary (and in which order); as we said, they
will in general be omitted. In case n = 0, we use the following representation:

α

or the corresponding “upside down” version.
Wires will be simply pictured as. . . wires; the following is an example of

graphical representation of a net on an alphabet with three symbols α, β, γ of
resp. arity 2, 1, 0:
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α

β

γ γγ

γ

β

α α

α

α

In graphical representations, the free ports of a net correspond to the “dan-
gling” extremities of wires. The net above has for example 5 free ports, of which
1 is principal and 2 are auxiliary.

Observe that two nets have the same graphical representation iff they differ
only by an injective renaming of the ports; we shall always consider nets modulo
such renamings.

The fact that graphical representations “forget the names of ports” is a nice
simplification, because most of the time these are completely irrelevant. The
only ports one must pay attention to are the free ones: from these the formal
version of a net can be uniquely recovered. Therefore, we shall consider equiva-
lent any two graphical representations which, once the free ports are specified,
yield the same formal net. In particular, wires can be yanked or twisted, and
cells can be flipped or turned, as long as the free ports “stay where they are”.

For example, when we have a fixed graphical representation of a net µ, the
generic one being pictured as

µ
. . .

it will sometimes be useful to consider the same representation rotated 180
degrees. We write this as

µ

. . .

Of course, if µ has n free ports, numbered from 1 to n (we shall often consider
this to be the case), and if we stipulate that the numbering increases “from left
to right” in the first representation, then the numbering must increase “from
right to left” in the second.

The notation µ is actually rather sloppy, because it is not applied to µ itself,
but to a particular graphical representation of it: strictly speaking, µ = µ.
However, this will not be a problem, as this notation will seldom be used, and
whenever we make use of it, there will be no ambiguity as to its meaning. It has
been introduced mainly for the purpose of Definition 1.2, and for other similar
contexts where we need a handy way to denote 180-degree rotations of graphical
representations of nets.

1.1.3 Wirings

A net containing no cells and no cyclic wires will be called a wiring. We shall
represent the generic wiring as
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. . .

. . .

σ ω

. . .

or

The following are examples of wirings:

Observe that a wiring has always an even number of free ports.

1.1.4 Trees

Trees are defined inductively as follows. A single zeroary cell is a tree with
no leaves; a single wire is a tree with one leaf (it is arbitrary which of the
two extremities is the root and which is the leaf); if τ1, . . . , τn are trees with
k1, . . . , kn leaves, and if α is cell of arity n, then the net

τ

τ1 τn

=

. . .

. . . . . .

α

. . .

is a tree with k1 + · · ·+ kn leaves.

1.1.5 Vicious circles

A vicious circle is either a cyclic wire, or a net consisting of n ≥ 1 cells
α1, . . . , αn, all of arity at least 1, such that, for all 1 ≤ i < n, the principal
port of αi is connected to an auxiliary port of αi+1, and the principal port of
αn is connected to an auxiliary port of α1.

With the notations introduced so far, a generic vicious circle can be repre-
sented as follows:

τ

. . .

σ
. . .
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with the requirement that τ be “minimal”, i.e., that no cell can be removed
from τ without breaking the cycle. Here is an example of vicious circle, using
only a cell γ of arity 2:

γ

γ

γ

γ

Notice that, because of its cyclic nature, a given vicious circle may not have
a unique representation in terms of a tree and a wiring as above; in fact, a
vicious circle with n ≥ 1 cells may in general admit n different trees and wirings
τ, σ representing it.

1.1.6 Active pairs and cut-free nets

A net consisting of two cells connected through their principal ports is called an
active pair. If α and β are the two cells composing the active pair, we denote
it by α ./ β. A net containing no active pair and no vicious circle is said to be
cut-free.1

It is not hard to verify that any net µ with n free ports and k active pairs
and/or vicious circles can be decomposed (although not uniquely, by the above
remark concerning vicious circles) in terms of trees and wirings as follows:

τ1 τn
. . .

. . . . . .

τ ′1 τ ′2k
. . .

. . . . . .

. . .

µ =

ω

ω′

The wiring ω′ accounts for the active pairs and vicious circles of the net; there-
fore, a cut-free net ν with n free ports admits the following decomposition,
which this time is unique:

ω

τ1 τn
. . .

. . . . . .

. . .

ν =

1Reduced in Lafont’s terminology [Laf97].
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1.1.7 Principal nets and packages

A principal net of arity n is either a single wire (in which case n = 1), or a
cut-free net with n free auxiliary ports and 1 free principal port. If n = 0,
we say that the net is a package. Principal nets can be seen as “compound”
cells, and will be drawn just like ordinary cells. Notice that trees are particular
examples of principal nets.

Following the decomposition of cut-free nets given above, a principal net ν
and a package π take the following shape according to our notations:

= =ν π

τ

τ

ω

σ

ω

. . .
. . .

. . .

. . .

. . .

The set of all principal nets over an alphabet Σ is denoted by ℘(Σ).

1.2 Interaction rules

The distinction between principal and auxiliary ports comes into play when
defining the dynamics of nets. As a matter of fact, a net µ can be seen as one step
of a (local) graph-rewriting process: according to some fixed interaction rules, a
subnet of µ may be replaced by another subnet with the same interface, yielding
a new net µ′. The process continues until no further rewriting is possible, i.e.,
until we reach a normal form. The key feature of interaction nets is that the
left member of an interaction rule, i.e., the subnet which is susceptible of being
replaced by another net, must be an active pair, and that for each active pair
at most one interaction rule is defined.

1.2.1 Reduction and β-equivalence

Given an alphabet Σ and two symbols α, β ∈ Σ, an interaction rule for α and
β associates to the active pair α ./ β a cut-free net ν ∈ 〈Σ〉, together with
a bijection between the free ports of ν and those of α ./ β. We shall write
interaction rules as follows:

→ ν

. . .

. . .
. . .

. . .

α

β

In this way, the bijection will never need to be made explicit, because it is clear
from the graphical representation.

When we want to apply the above interaction rule to an active pair α ./ β
contained in a net µ ∈ 〈Σ〉, we first remove α ./ β from µ; this creates a number
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of free ports, which are then connected to the free ports of ν, according to the
bijection given by the rule. This operation can of course be described more
precisely using the formal definitions given in Sect. 1.1.1, but we shall content
ourselves with the above informal description, which we hope the reader will
find clear enough.

If µ′ is the net resulting from µ after applying an interaction rule, we say
that µ reduces in one step to µ′, and we write µ→ µ′. We can then define the
reduction relation →∗ as the reflexive-transitive closure of →. We say that two
nets µ and µ′ are β-equivalent, and we write µ 'β µ′, iff there exists µ′′ such
that µ→∗ µ′′ and µ′ →∗ µ′′.

Clearly, due to the essential lack of orientation of active pairs, the above rule
can be rewritten as

→ ν

. . .

. . .
. . .

. . .

β

α

where we have used the notation introduced at p. 20.
There is also the following alternative way of writing interaction rules, which

will be used from time to time in the sequel:

→

. . . . . . . . . . . .

α β ν

Of course, in this case the rule can be rewritten as

→

. . . . . . . . . . . .

ν′αβ

where

=ν′

. . . . . . . . . . . .

ν

Notice that interaction rules are purely local; if we add to this the fact that
cells have exactly one principal port, and that there is at most one rule for each
active pair, we immediately obtain

Proposition 1.1 (Strong confluence) The relation → is confluent, i.e., if
µ, µ1, µ2 are three nets such that µ→ µ1 and µ→ µ2, then there exists µ′ such
that µ1 → µ′ and µ2 → µ′.
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Proposition 1.1 means that the reduction process, i.e., the relation →∗, is
strongly confluent. Confluence implies that 'β is an equivalence relation, and
that the system is deterministic in the sense that each net has at most one
normal form. Strong confluence reinforces this determinism, because it implies
that also the computation is unique, up to permutation of rules.

We remark here a substantial difference with respect to the λ-calculus, which
is the absence of a meaningful concept of strategy, at least as far as the efficiency
of reduction is concerned. All reductions leading from a net to its normal form
have the same length and require the same work; in particular, if a net is
normalizable, then it is strongly so.

Observe that vicious circles are deadlocked configurations with respect to
reduction: they can never be removed from a net, since cells can only interact
through their principal port. A net admitting a cut-free form (necessarily unique
by confluence) is said to be total. Cut-free nets are the “true” normal forms of
the reduction; they can be seen as the final result of a computation. On the
other hand, non-total nets represent deadlocked or divergent computations.

Another difference with respect to the λ-calculus is attested by the following
result:

Proposition 1.2 A net µ is total iff all of its subnets are total.

Proof. The “if” part is trivial: if µ is not total, then there obviously exists a
subnet of µ which is not total, it is µ itself! For what concerns the “only if”
part, assume that µ is total. By definition, and by confluence, there exists a
unique cut-free net ν such that µ →∗ ν. Now, if a subnet µ0 of µ were to be
non-total, at least one of following would hold:

1. µ0 contains vicious circles or irreducible active pairs, or reduces to a net
containing them. But vicious circles and irreducible active pairs cannot
be eliminated, so they would be present in ν, contrarily to our hypothesis;

2. µ0 has an infinite reduction sequence; then, µ would also have an infinite
reduction sequence, which is against our hypothesis because of strong
confluence.

In any case we obtain a contradiction, thus µ0 must be total. ¤
The above result tells us that being non-total in interaction nets is somewhat
“stronger” than being non-normalizable in the λ-calculus: if a λ-term T contains
a non-normalizable subterm, T may still be normalizable, an obvious example
being (λy.x)Ω; on the contrary, if µ is a non-total net, any net containing it will
still be non-total.

1.2.2 Interaction net systems

We can now give a formal definition of interaction net system (INS). To simplify
matters, we assume that the free ports of nets are indexed with integers from
1 to n, so that whenever two nets have the same interface, there is a default
bijection between their free ports (the identity on their indices).

Definition 1.2 (Interaction net system) An interaction net system (INS
for short) is a triple (Σ,R,N ) where Σ is an alphabet, R a partial function
from Σ× Σ to 〈Σ〉, and N ⊆ 〈Σ〉 such that:
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• for all α, β ∈ Σ, if (α, β) is in the domain of R, then R(α, β) is a cut-free
net with the same interface of α ./ β, and R(β, α) is also defined and
equal to R(α, β);

• if µ ∈ N , and if µ → µ′ according to the interaction rules given by R,
then µ′ ∈ N .

The set N of the above definition is called the set of correct nets of the system.
Most of the time, the set of correct nets is omitted, i.e., an INS is defined simply
as a couple (Σ,R); in this case, it is assumed that N = 〈Σ〉.

1.2.3 Typing and polarized systems

A typical way one can define the set of correct nets to be smaller than the
totality of nets is through typing. Given a set of type constants, ranged over
by T , we define input types and output types, denoted resp. by T− and T+. An
alphabet Σ can be typed by assigning to each port of each cell a type constant
plus an input/output specification. Then, we say that a net µ of 〈Σ〉 is well-typed
iff each wire of µ connects ports of the same type but of opposite polarity.

Given a typed alphabet Σ, an INS (Σ,R,N ) is said to be typed iff N is the
set of well-typed nets on Σ, R is defined only on well-typed active pairs, and
the interaction rules preserve the typing of the interface of the active pair they
reduce.

A typed INS with only one type constant is said to be polarized. In this case,
the type assignment is reduced to a simple input/output specification, and the
requirement of a net to be well-typed can be reformulated by saying that the
wires are directed, the type of a port being the incoming/outgoing nature of the
connections it accepts.

1.2.4 Deadlock freeness

One of the nicest feature of interaction nets is the definability of deadlock-
free (i.e., vicious-circle-free) fragments by means of purely structural condi-
tions [Laf90], inspired to Danos&Regnier’s correctness criterion for multiplica-
tive linear logic [DR89]. As Lafont says [Laf98], this is indeed a beautiful ex-
ample of transfer of concept from logic to computer science: logical correctness
becomes deadlock freeness.

Given an alphabet Σ, we call partitioning of Σ a function P assigning to
each cell of Σ a partition of its auxiliary ports. Remember our convention
establishing that the auxiliary ports of a cell of arity n are numbered from 1 to
n; if P(A) denotes the powerset of a set A, then P can be seen as a function
from Σ to P(P(N)), such that, if the arity of α is n, then P (α) is a partition of
{1, . . . , n}. A pair (Σ, P ) where Σ is an alphabet and P a partitioning of Σ is
called a partitioned alphabet. The following definition uses the port graph of a
net (Definition 1.1):

Definition 1.3 (Switching) Let (Σ, P ) be a partitioned alphabet, and let
µ ∈ 〈Σ〉. A switching of µ is a subgraph of PG(µ) such that, if α is a cell
of µ, then for all A ∈ P (α) all edges connecting the ports of A to the principal
port of α have been suppressed except one.
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Definition 1.4 (Deadlock-free net) Let (Σ, P ) be a partitioned alphabet. A
net µ ∈ 〈Σ〉 is deadlock-free2 iff every switching of µ is acyclic.

We call deadlock-free any INS (Σ,R,N ) such that Σ is partitioned by some
function P , N is the set of deadlock-free nets according to P , and the rules of
R preserve deadlock-freeness. The terminology is justified by the following:

Theorem 1.3 (Lafont [Laf90]) Let (Σ,R,N ) be a deadlock-free INS, and let
µ ∈ N . Then, for any µ′ such that µ→∗ µ′, µ′ does not contain vicious circles.

Proof. A deadlock-free net does not contain vicious circles, for if it did, it is
immediate to see that there would be a cyclic switching. But, by definition,
deadlock freeness is preserved through reduction, hence the result. ¤

1.3 Examples

In this section we illustrate the expressive power of interaction nets by giving a
few interesting examples of interaction net systems. These examples have been
chosen so that they complement those already found in the existing literature.
In Sect. 1.3.1 we treat to a certain depth multiplicative linear logic proof-nets,
which are the source of the interaction nets paradigm, expanding to some ex-
tent part of a previous survey by Lafont [Laf95]. In Sect. 1.3.2 we introduce the
interaction combinators and their symmetric version [Laf97], the latter being of
fundamental importance for the rest of our work (see Chapter 3). As a proof
of the expressive power of the symmetric combinators, we give what to our
knowledge is the first explicit encoding of the SK combinators into the interac-
tion combinators. We also show how to solve generic recursive equations in the
interaction combinators (symmetric or not), using a fundamental construction
due to Lafont, and briefly discuss the non-existence of fixpoint combinators. In
Sect. 1.3.3 we use once again Lafont’s construction to show how all partial re-
cursive functions can be programmed into a simple interaction net system. This
completes in some sense an example by Lafont showing how elementary arith-
metical expressions involving addition and multiplication could be programmed,
and is also a novelty with respect to the existing literature.

For other interesting examples, we refer the reader to the following pieces
of work: Lafont’s papers for Turing machines, one-dimensional cellular au-
tomata, and other more basic programming examples like list manipulation
[Laf90, Laf97]; Ian Mackie and Jeorge Pinto’s encoding of linear logic proof nets
[MP02]; and Sylvain Lippi’s encoding of the left-reduction λ-calculus [Lip02a].

1.3.1 Multiplicative proof-nets

The prototypical example of interaction net system is given by the pre-proof-
structures of multiplicative linear logic without units, or MLL [Gir87b, DR89].

2Semi-simple in Lafont’s terminology. Lafont’s original definition included also the notion
of simple net, which would correspond to requiring all switchings to be acyclic and connected.
However, this definition is notoriously problematic in the presence of zeroary cells: it is the old
issue of defining proof-nets for multiplicative linear logic with units. A solution has recently
been proposed by Dominic Hughes [Hug05], but we do not know if it is adaptable to the
more general context of interaction nets. To avoid any problem, Lafont used an inductive
definition [Laf90]. Anyway, since semi-simplicity already guarantees Theorem 1.3, we chose
not to consider simplicity at all.
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The alphabet ΣMLL consists of two binary symbols ⊗ and �, corresponding to
the cells

⊗ �

The function RMLL is defined on the active pair ⊗ ./ � as follows, and it is
undefined on the other two active pairs:

⊗

�
→

We refer of the system (ΣMLL,RMLL) as the “pre-proof-structures” of MLL
because of the absence of typing. The typing system of multiplicative linear
logic is not as simple as the typing systems introduced in Sect. 1.2.3: it does
not consist simply of a set of dual type constants, and it involves a sort of
polymorphism, in which the ports of a cell accept any type. Nevertheless, given
a net µ ∈ 〈ΣMLL〉, we may assign an MLL formula3 to the ports of Ports(µ) as
follows:

• a wire connecting two auxiliary ports of µ, or an auxiliary port and a free
port, or two free ports, is called an axiom; a wire connecting two principal
ports of µ is called a cut ; all other wires of µ are referred to as simple;

• if i, j, k ∈ Ports(µ) are resp. the first and second auxiliary ports and the
principal port of a ⊗ cell, and if the formulas assigned to i and j are resp.
A and B, then the formula assigned to k must be A⊗B;

• if i, j, k ∈ Ports(µ) are resp. the first and second auxiliary ports and the
principal port of a � cell, and if the formulas assigned to i and j are resp.
A and B, then the formula assigned to k must be A�B;

• if i, j ∈ Ports(µ) are connected by an axiom or a cut, then the formulas
assigned to them must be linear negations of each other;

• if i, j ∈ Ports(µ) are connected by a simple wire, then the same formula
must be assigned to them.

A net of 〈ΣMLL〉 that admits an assignment satisfying the above requirements
is called a proof-structure; we denote the set of proof structures by PS. It is not
hard to check that, since De Morgan duals are defined by (A⊗B)⊥ = B⊥�A⊥

3We recall that the formulas of unit-free multiplicative linear logic (ranged over by A, B)
are generated by the grammar A, B ::= X | X⊥ | A ⊗ B |A � B, with X, X⊥ ranging over
a denumerable set of dual variables, and with linear negation, denoted (·)⊥, being involutive
and defined by De Morgan’s laws, knowing that the connectives ⊗ (tensor) and � (par) are
duals of each other.
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and (A � B)⊥ = B⊥ ⊗ A⊥, the set PS is stable under the interaction rule of
RMLL, so (ΣMLL,RMLL,PS) is an INS.

As the reader may know, not all proof-structures are logically meaningful.
By “logically meaningful” one usually means the following. We know that it is
possible to define a function (·)• associating to each sequent calculus proof π of
MLL a proof-structure π•. It is easy to see that this function is not injective; in
fact, this lack of injectivity is the interesting property of the translation, because
it comes from the the elimination of useless sequential information. However, π•

is not surjective either; the elements of PS which are in the image of (·)• are what
one usually refers to as “correct”, or “logically meaningful” proof-structures.

There is another, more interesting way of defining logical correctness though.
By an easy argument (the number of cells strictly decreases after each reduction
step) one can show that the reduction process always terminates already in the
case of pre-proof-structures. Yet, it may terminate with a non-cut-free net,
i.e., a net containing irreducible active pairs and/or vicious circles. The first
are avoided when switching to proof-structures: the typing guarantees that
irreducible active pairs never arise through reduction. On the contrary, the
second are still possible, even though they are reduced to the cyclic wire only
(all other vicious circles are not typable). The idea is then to say that “logically
meaningful” means “satisfying cut-elimination”, i.e., correct proof-structures
should interact in a way that never produces deadlocks.

Girard’s key idea was to isolate by purely geometrical means (with a so-called
correctness criterion) a class of proof-structures, called proof-nets, satisfying
cut-elimination; then, his sequentialization theorem showed that proof-nets are
exactly the proof-structures in the image of (·)•, so that the two definitions
of logical soundness given above eventually coincide (provided we make the
technical adjustment of adding the mix rule4 to linear logic). In the context of
interaction nets, we have seen that deadlock-freeness can be achieved by suitably
partitioning the auxiliary ports of the alphabet ΣMLL.

In fact, knowing Danos and Regnier’s version of the correctness criterion
[DR89], we can choose our partitioning P by setting P (⊗) = {{1}, {2}} and
P (�) = {{1, 2}}; then, the deadlock-free nets of Definition 1.4 are exactly the
proof-nets of MLL (with the mix rule). The stability of deadlock freeness under
reduction can be proved as follows. First of all, consider the port graphs of the
two members of the interaction rule:

→

If we assume that the ⊗ cell is at the top of the active pair, then the left member
of the rule has two switchings:

4In sequent calculus, the mix rule allows to prove Γ, Γ′ ` ∆, ∆′ from Γ ` ∆ and Γ′ ` ∆′.
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l k l k

i j ji

Now, assume that the active pair is part of a deadlock-free net µ, and fix a
switching G for it. We may assume that for our active pair G chooses the
configuration which is on the left, the other one being perfectly symmetrical.
Of course the “same” switching can be consider on the reduct µ′: we simply
ignore the � cell which disappears, switching all other cells exactly as in G. We
call G′ such switching.

The first thing we remark is that i and j cannot be connected in G by a path
other than the one present in the active pair, otherwise we would have a cycle,
against our hypothesis of deadlock freeness. On the other hand, nothing forbids
k and l to be connected in G, and this (lack of) connection is preserved in G′,
because the rule is local. If k and l are connected in G, then the active pair
forms one connected component, and what is left of it keeps being a connected
component in G′; if they are not, then there are two connected components, and
again the situation is identical in G′. In both cases, the number of connected
components of G and G′ is the same.

We denote by v, e, c, and y resp. the number of vertices, edges, connected
components, and cycles of G, and by v′, e′, c′, and y′ the same quantities in G′.
Now, by hypothesis G has no cycle; therefore, by the Euler-Poincaré invariant5,
we have c = v − e. But v = v0 + 10 and e = e0 + 8, where v0 and e0 are the
number of vertices and edges of G not accounted for by the active pair and the
ports to which it is connected. We thus obtain c = 2+ v0− e0. Since the rule is
local, we have v′ = v0 + 4 and e′ = e0 + 2, so that using again Euler-Poincaré,
we obtain c′ − y′ = c. But we have shown above that c′ = c, so we must have
y′ = 0, which means that G′ is acyclic. Since no particular assumption was
made about the switching G′, we have proved that µ′ is deadlock-free.

This shows that the triple (ΣMLL,RMLL,PN) is an INS, where PN is the
set of proof-nets, i.e., typable and deadlock-free nets of 〈ΣMLL〉. Denis Bechet
[Bec98] has proved a very interesting property of the set PN, namely that it is a
maximal deadlock-free subset of PS: if one adds to PN a proof-structure µ not
satisfying the deadlock freeness condition (i.e., having a cyclic switching), then
one can find a proof-net which, upon interaction with µ, produces a deadlock.

Another nice system can be defined by typing the cells of Σ with a single
type T , this time in accord to what discussed in Sect. 1.2.3; as already said,
in this case the system is polarized, and it is enough to consider directed wires.
The typing is assigned as follows:

5We remind that the Euler-Poincaré invariant can be rephrased graph-theoretically by
saying that for any undirected graph with v vertices, e edges, c connected components, and y
cycles, we have v − e = c− y.
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⊗ �

The well-typed nets of 〈ΣMLL〉 according to this typing system are the pure
(i.e., untyped) proof-structures of MLLpol (polarized multiplicative linear logic
without units); if we consider the same partitioning given above, we obtain the
pure polarized proof-nets of MLLpol (with mix). The stability of typing under
reduction is obvious; the stability of deadlock freeness can be proved exactly as
above.

1.3.2 The interaction combinators

In the previous section we have seen how the pre-proof-structures of unit-free
multiplicative linear logic can be seen as an interaction net system. In the
definition, it is quite clear that the interaction between tensor and par does not
“need” to know which is which; in other words, we could take a multiplicative
proof-structure and “forget” the nature of cells, transforming all cells into a
binary cell γ interacting with itself as follows:

γ

γ

→

The dynamics of a net of 〈ΣMLL〉 obtained by turning every cell into a γ cell
will be exactly that of a pre-proof-structure, with the advantage of no longer
having irreducible cuts.

For semantical reasons (see Sect. 3.1.6), it is actually better to consider,
instead of γ, a cell δ interacting as follows:

→

δ

δ

Of course the dynamics of such nets is nearly identical to that of nets composed
of γ cells, and thus to multiplicative pre-proof-structures. In fact, the system
({δ},Rδ) (where Rδ is the rule above) corresponds to the “skeleton” of MLL
cut-elimination: for the reader acquainted to categorical interpretations of linear
logic, we can say that passing from MLL to this system is similar to passing
from a ∗-autonomous to a compact closed category. The analogy is rather loose,
because it forgets the units, but it is intuitively sound.
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We can now think of making the two cells introduced so far interact with
each other in a way which is reminiscent of the multiplication/comultiplication
interaction of bialgebras:

γ

δ

δ δ

γ γ

→

In spite of its simplicity, the system ({γ, δ},Rγ,δ) (where Rγ,δ accounts for the
three rules introduced do far) has an incredibly complex dynamics. In particular,
in contrast to the previous two systems, it contains non-terminating nets like
the following, which increases its size exponentially:

δ

γ

The one above is actually but a trivial example; as a matter of fact, the INS
({γ, δ},Rγ,δ) is Turing-complete.

We can add to it one more cell, an eraser cell, which interacts as follows:

ε ε ε ε→

ε

δ

→
ε

ε

ε

γ

→

Notice that the rule εε is forced by the requirement that right members of
interaction rules be cut-free nets (the only cut-free net with an empty interface
is the empty net).

If we set R to encompass all of the six rules introduced above, we can
define the INS C = ({γ, δ, ε},R), which is called the system of the interaction
combinators [Laf97]. We shall see that C is universal, in the sense that any
other interaction net system can be translated into it (see Sect. 1.4).

The interaction rules of C can be neatly divided into two groups: the anni-
hilations, which tell how two cells carrying the same symbol interact, and the
commutations, which tell how two cells carrying distinct symbols interact. Con-
sidering the universality of the interaction combinators, this has led Lafont to
speculate that, with respect to interaction nets, the fundamental laws of compu-
tation are precisely annihilation and commutation, as opposed to substitution
in the λ-calculus, or erasing and duplication in the SK combinators.
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The subsystems built on the alphabets {γ, ε} and {δ, ε} (which are called
resp. the γε and δε fragments of the interaction combinators) are also interest-
ing. As discussed above, they are “isomorphic”; they can be seen as a sort of
multiplicative pre-proof-structures plus daimon, i.e., the possibility of proving
any formula. Moreover, in Sect. 1.4 we shall prove that any INS can be seen
as an extension of the two fragments, in accord with the claim that interaction
nets generalize the structure of the multiplicative rules of linear logic.

If we change the γγ interaction rule to be exactly as the δδ rule, we obtain
another very interesting system, known as the symmetric interaction combi-
nators (or simply symmetric combinators). Formally, the system is defined
as Csym = ({δ, ε, ζ},Rsym), where Rsym describes the following rules (below,
α ∈ {δ, ζ}): the annihilations

→
ε

ε

→

α

α

and the commutations

→
ε

α

ε ε→

ζ

ζ ζ

δ δ

δ

Even though the symmetric combinators lack the universality property of the
interaction combinators, they are equally expressive, i.e., they are also Turing-
complete, as we see shall see in a moment. Chapter 3 will be dedicated to an
extensive semantical study of this system.

The Turing-completeness of the symmetric combinators is a corollary of The-
orem 1.9; nevertheless, we shall explicitly prove it here, by providing an encoding
of the (call by name) SK combinators in Csym.

First of all, let us define a family of principal nets (actually trees) which we
call multiplexors. For all n ≥ 1, we pose

ε

Zn

= = =Z0 Z1 Zn+1

. . .

ζ

The reader can check that multiplexors have the following annihilation property,
for all n (this can be proved by a straight-forward induction):
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Zn

→∗

. . .

. . .

. . .

. . .

Zn

An identical construction can be done with δ cells, yielding a family of principal
nets Cn, called copiers, with the same annihilation property as multiplexors,
and with the property that, if τ is a tree not containing δ cells, we have

τ

Cn

Cn Cn

τ τ

→∗

. . .

. . .

. . .

. . . . . .

. . .

. . .

. . .

This is also easily established by induction on n and on the size of τ . Notice that,
the rules for δ and ζ being identical, the same property holds for multiplexors
whenever τ does not contain ζ cells.

We now introduce a fundamental construction due to Lafont [Laf97]. Take
a generic package π containing n δ cells; we can always write π as

δ δ
. . .

π′

=π

where π′ contains no δ cell. We want to “abstract” the δ cells contained in π,
forming a package !π which does not contain δ cells, but from which π can be
recovered.

Using the multiplexors introduced above, we define
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Zn Zn

Zn

. . .

. . . . . .

. . .

π′

=∂π

Then, we put

Z4

δ

!π

∂π

= =
Z4

D

The reader can check that we have

!π

D

π→∗

The package !π is called the code of π, and the principal net D is called the
decoder.

The following lemma is a straight-forward consequence of the rules concern-
ing ε and of the properties of copiers stated above:

Lemma 1.4 (Erasure and duplication) Let π be a package, and π′ a pack-
age containing no δ cells. Then, we have

π′

π′ π′
π

ε

→∗ →∗

Cn
. . .

. . .

In particular, a package of the form !π can be erased and duplicated.
Now we build the two packages
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Z3

D ε

=K

and

S

δ

Z4

Z4

Z4

ζ

ζ

ζ

D

=

and we define the translation [·] from SK-terms to nets:

[K] = K [S] = S [xy]

[x]

![y]

ζ=

If x, y are SK-terms, we write x Â y if x reduces to y through call-by-name
reduction. For example, K(KSK)S Â KSK, but K(KSK)S 6Â KSS.
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The translation defined above has the following property:

Proposition 1.5 Let x, y be SK-terms. Then, x Â∗ y implies [x] →∗ [y].

Proof. It is enough to check that, for all terms x, y, z,

[Kxy] →∗ [x]

and
[Sxyz] →∗ [xz(yz)].

The first verification is easy and is left to the reader; Lemma 1.4 is needed for
erasing. Here we shall concentrate on the second, which is more complex.

We have

ζ

ζ

ζ

=
Z4

![x] ![y] ![z]

S

![x] ![y] ![z]

S

=[Sxyz]

The Z4 tree annihilates with the Z4 tree contained in S (see p. 34), and we
obtain
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δ

Z4

Z4

ζ

ζ

ζ

D

![z]

![x]

![y]

Now the decoder extracts [x] from its code, and by Lemma 1.4 the code of [z]
is duplicated, so we get

Z4

![z]

![z]

[x]

Z4

ζ

ζ

ζ

![y]

At this point, the “topmost” Z4 tree annihilates with the Z4 tree inside ![y],
and we are left with
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Z4

![z]

![z]

[x]

ζ

ζ

ζ

∂[y]

Remember that ![z] does not contain any δ cell; this means that

![z]

ζ∂[yz]

∂[y]

=

Therefore, the last net obtained is indeed equal to [xz(yz)]. ¤
Several remarks are in order here. First of all, multiplexors can be defined

also in the interaction combinators using γ cells; because of the nature of the
annihilation rule for these cells, there is actually the need for two dual families
Mn and M∗

n, annihilating as follows (see Sect. 6.4.2 for the details)

. . .

. . .

Mn

M∗
n

→∗ . . .

The fundamental annihilation/duplication properties of copiers stay the
same (but notice that the symmetrical duplication property holding for Zn

nets fails for the Mn and M∗
n families). Thanks to this, Lafont !-construction

can be defined on the interaction combinators as well, and our encoding of the
SK combinators easily adapted to this system. Indeed, Lafont’s originally in-
troduced his !-construction on the interaction combinators, in order to show
their universality (cf. Sect. 1.4); here we have presented it for the symmetric
combinators simply because this latter system has a greater importance in our
work than the interaction combinators.
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We also remark that Lafont’s !-construction is a very powerful tool for defin-
ing a sort of general recursion inside the interaction combinators (symmetric or
not), analogous to the fix-point constructions in the λ-calculus. More precisely,
thanks to it we can define a general procedure for building, given any net ν with
sufficiently many free ports, a net µ satisfying the following property:

µ
. . .

µ
. . .

µ
. . .

→∗
ν
. . .

. . .

In other words, µ reduces to a net containing a certain (arbitrarily large) number
of copies of itself.

In the case of the symmetric combinators (the case of the interaction combi-
nators being perfectly analogous), we proceed as follows. Suppose that, in the
above reduction, µ has n free ports, and the right member contains k copies of
µ; then, given our net ν with (k + 1)n free ports, we construct a package α out
of ν and the multiplexors, copiers, and decoders introduced above:

Zn+1

D

. . .
Zn+1

D

. . .

. . .

C2k

. . .

. . .

Zn+1

=α

ν

Then, the desired net µ can be built as

µ
. . .

α

!α . . .

Zn+1

=

We leave it as an instructive exercise to the reader to verify that µ does indeed
satisfy the recursive reduction above.
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It is interesting to notice that, however, the above construction cannot be
internalized; in other words, there is no fixpoint combinator in the interaction
combinators. In the λ-calculus, the recursive equation we dealt with above
would look something like

M →∗ N [M/x],

that is, M is a term reducing to a term containing it (we suppose that x is free in
N). It is well known that a general solution to such recursive equations can be
given in the λ-calculus by means of a fix-point combinator, i.e., a term Y verify-
ing YF →∗ F (YF ) for any term F . In fact, it is enough to pose M = Y(λx.N)
to satisfy the above reduction. In the interaction combinators, this would cor-
respond to solving the recursive equation by finding, for all k, n ≥ 1, a family of
nets υk

n with kn free ports such that, given any net ν with (k + 1)n free ports,
we had

υk
n

ν

. . .

. . .

υk
n

ν

. . .

. . .→∗
υk

n

ν

. . .

. . .

. . .
ν

. . .

This is impossible because, even when k = 1, υ1
n should be able to duplicate ν

regardless of its shape, and there is no way of building a universal duplicator
in interaction nets (see Sylvain Lippi’s Ph.D. thesis for a proof [Lip02b]). In
the interaction combinators, only nets not containing δ can be duplicated; in
the symmetric combinators, one can duplicate also those not containing ζ, but
nothing can be done for nets containing both combinators. This is why Lafont
had to devise his !-construction, which has an external nature, and cannot be
internalized.

The ability of encoding general recursion is at the base of the universality of
the interaction combinators, and of the polarized universality of the symmetric
combinators (cf. Sect. 1.4). In any case, it shows that the expressive power
of both systems is potentially very high, and indeed we know it to be Turing-
complete, as the encoding of the SK combinators shows. Notice that, not
surprisingly, in that encoding Lafont’s !-construction plays a crucial rôle.

1.3.3 Recursive functions

As another example of the power and versatility of interaction nets, we use the
constructions introduced in the previous section to show an INS in which all
recursive functions can be programmed. If f is a partial function from Nk to
N, we denote by domf the domain of f , and we write f(x)↑ if x 6∈ domf . A
function f : Nk → N is total just if domf = Nk.

We remember that, if Nat is the set of all partial functions from Nk to N for
all k, the set Rec of the recursive functions is the smallest subset of Nat such
that:

Projections: for all k ≥ 1 and 1 ≤ i ≤ k, the total function πk
i : Nk → N such

that πk
i (x1, . . . , xk) = xi is in Rec;
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Addition: the total function add : N2 → N mapping (x, y) ∈ N2 to x+ y is in
Rec;

Multiplication: the total function mul : N2 → N mapping (x, y) ∈ N2 to x× y
is in Rec;

Composition: if h : Nn → N and g1 : Nk → N, . . . , gn : Nk → N are in Rec,
then the function f : Nk → N defined as follows is in Rec:

∀~x ∈ Nk, f(~x) =





h(g1(~x), . . . , gn(~x)) if, ∀i, ~x ∈ domgi,
and (g1(~x), . . . , gn(~x)) ∈ domh

f(~x)↑ otherwise

Unbounded search: if g : Nk+1 → N is in Rec, then the function f : Nk → N
defined as follows is in Rec:

∀~x ∈ Nk, f(~x) =





y if g(~x, y) = 0,
and ∀z ≤ y, (~x, z) ∈ domg

f(~x)↑ otherwise

We now define the alphabet Σ = {γ, δ, ε,0,S,+,×,Z}, where γ, δ, and ε are
the interaction combinators (Sect. 1.3.2), and the arities of 0, S, +, ×, and Z
are resp. 0, 1, 2, 2, and 4. The rules R defined on Σ are the following:

→

0

+

→

S

+

+

S

→

0

×

→

S

0ε
+

×

δ
×

ε

ε
γ

Z

S0

Z

ε ε→ →
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ε
ε ε

α

. . .

. . .

→

α

δ

→

. . .

. . . . . .

. . .

α α

δ δ

α 6= δ

The γ, δ, and ε cells interact between them exactly as in the interaction combi-
nators; all other active pairs are left undefined. We call Srec the INS (Σ,R).

The multiplexors Mn/M∗
n, the copiers Cn, and the decoder D can obviously

be defined in Srec; Lafont’s !-construction also applies to this system, with its
fundamental property that a package of the form !π can be erased and dupli-
cated.

The intuitions behind the cells and rules of Srec are the following:

• the interaction combinators are needed for structural manipulations (mul-
tiplexing/demultiplexing, erasing, copying, etc.);

• the 0 and S cells are the unary integers constructors, representing resp. 0
and the successor; the cells + and × represent addition and multiplication:
the interaction rules concerning them are nothing but a graphical form of
the fundamental equations recursively defining these two operations:

x+ 0 = x
x+ S(y) = S(x+ y)

x× 0 = 0
x× S(y) = x× y + x

Notice that erasing and duplication are needed for multiplication because
in the first equation x is not used, while in the second equation it is used
twice;

• the cell Z represents a sort of “test for zero” construct: it waits for an
integer x on its principal port, and carries two other values y0 and y1,
which occupy two of its auxiliary ports; the other two auxiliary ports are
the result, and an extra “control port”. If x is zero, the cell returns y0,
erases y1, and sends an eraser to the control port; if x is not zero, the cell
returns y1, erases y0, and sends a γ package to the control port.

By the way, because of the universality of the interaction combinators, we know
that 0, S, +, ×, and Z could actually be encoded using only γ, δ, and ε; these
extra cells can therefore be seen as “syntactic sugar”, added to make the task
of encoding recursive functions easier and more readable.

First of all, we give our interpretation of natural numbers. For all x ∈ N, we
define a package x, called numeral, as follows:

0 =

x

S0 x+ 1 =
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A net µ ∈ 〈Σ〉 is said to be functional of arity k iff it has a distinguished
free port, called the output, and k free ports, called inputs; graphically, if µ is
such a net, we shall represent inputs at the top, and the output at the bottom,
as follows:

. . .

µ

We shall say that a functional net µ of arity k represents a recursive function
f : Nk → N iff, for all ~x = (x1, . . . , xk) ∈ Nk, ~x ∈ domf and f(~x) = y implies

µ

xkx1 . . .

→∗ y

whereas f(~x)↑ implies that the net on the left hand side is not total. A recursive
function f : Nk → N is representable in Srec iff there exists a functional net of
arity k representing f .

Proposition 1.6 Every recursive function is representable in Srec.

We shall not go into the details of proving Proposition 1.6; we shall just give the
idea of the proof, which we hope the reader will find to be convincing enough.
Proposition 1.2 will play a fundamental rôle; the following result will also be
often used in the sequel:

Lemma 1.7 Numerals can be erased by ε cells and duplicated by δ cells.

Proof. A straight-forward induction. ¤
We start by programming the base functions of Rec. By Lemma 1.7, the

projection πk
i can be represented by a net of the form

ε ε

. . .

i−1︷ ︸︸ ︷

ε ε

. . .

k−i︷ ︸︸ ︷

We invite the reader to check that addition and multiplication are represented
by the following two nets:

+ ×

Composition is encoded in the natural way: if f : Nk → N is defined by
composing h : Nn → N with n functions gi : Nk → N, and if θ and ηi (for
1 ≤ i ≤ n) represent resp. h and gi, then the net
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Cn Cn
. . . . . .

. . .

. . . . . .

η1 ηn

θ

k︷ ︸︸ ︷

. . .

represents f . This is a consequence of Proposition 1.2: given ~x ∈ Nk, if one of
the gi is not defined on ~x, then the net

ηi

xkx1 . . .

is not total, which means that the whole net representing f applied to ~x is
non-total (Lemma 1.7 is used for copying the arguments).

Unbounded search is encoded using the general recursion construction pre-
sented at the end of Sect. 1.3.2. In fact, defining f : Nk → N by unbounded
search on g : Nk+1 → N is equivalent to using the following recursive definition,
in which a helper function h is defined:

h(~x, y) = if g(~x, y) = 0 then y else h(~x, y + 1)
f(~x) = h(~x, 0)

Given the functional net η representing g, the representation of h can be
constructed as follows. First of all, we need to introduce a variant of the
!-construction which, given a net µ with one free port, yields a package (i.e.,
a cut-free net) µ̂, from which µ can be recovered. We know that in general, if
such a net µ has n active pairs/vicious circles, we can write it as

. . .

ν

︸ ︷︷ ︸
n

where ν is cut-free. So we pose
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=R

M∗
2

M∗
2

M2

Cn

M2 M2

ν

=µ̂

. . .

from which it is evident that µ̂ is a package, and that

→∗
µ̂

R

µ

In the sequel, we shall use the following abbreviations:

=§µ !µ̂ =U
D

R

Now we can define
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α =

. . .

. . .

. . .

. . .

Mk+3

M∗
k+3

C2

U

C2 C2 C3

η

Z

M∗
2

S

Then, we pose

α

§α

. . .

. . .
M∗

k+3=θ

. . .

We claim that θ represents the helper function h defined above. This can be
proved by checking a few reductions steps:
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→∗
θ

. . .

→∗

. . .

. . .

. . .

M∗
k+3

C2

U

C2 C2 C3

η

Z

M∗
2

S

§α

x1 xk y

yxkx1

η

Z

M∗
2

§α

. . .

xky + 1y x1

. . .

M∗
k+3

C2

U

→∗

x1 xk y

At this point, we can concentrate on the net η applied to the numerals
x1, . . . , xk, y, since the rest of the above net is cut-free. If g(~x, y)↑ then this
net is non-total, and by Proposition 1.2 the whole net is non-total, which is
correct, because in this case h is undefined. If (~x, y) ∈ domg, then there are two
possibilities. The first is that g(~x, y) = 0; then, by hypothesis the above net
reduces to

→
Z

M∗
2

§α

xky + 1y x1

. . .

M∗
k+3

C2

U0
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→∗

M∗
2

§α

xky + 1 x1

. . .

M∗
k+3

C2

U

→
y ε ε

y

which is exactly what we want, since in that case h(~x, y) = y. The second
possibility is that g(~x, y) = z 6= 0, in which case we do a recursive call on
h(~x, y + 1). In fact, this time we have

→
Z

M∗
2

§α

xky + 1y x1

. . .

M∗
k+3

C2

U

z − 1

S

z − 1

ε

xky + 1 x1

. . .

M∗
k+3

C2

U

xky + 1 x1

. . .

M∗
k+3

C2

U

§α

M∗
2

§α

y

→
ε

M2

→∗ →∗

xky + 1 x1

. . .

§α

α

M∗
k+3

→ =
. . .

x1 xk y + 1

θ

Of course, if there is some z > y such that g(~x, z)↑, the above net will be non-
total; the same will happen if there is no z ≥ y such that g(~x, z) = 0, because this

49



would yield an infinite reduction. In both situations, this is perfectly correct,
because in neither case h is defined.

Now, after having verified that θ represents h, it should be clear that the
net

0

θ

. . .

represents our function f defined by unbounded search.

1.4 Interaction combinators and universality

1.4.1 Translations

We have introduced the interaction combinators (and their symmetrical variant)
in Sect. 1.3.2, and we have made repeated allusions to their “universality”.
In order to state precisely what it means for an interaction net system to be
universal, we first need the notion of translation. The main idea is that the
existence of a translation from an INS S to an INS S ′ should not simply mean
that S ′ can “encode” S, or in other words that S ′ is at least as expressive as S;
it rather ought to mean that the fundamental computational properties of S can
also be simulated by S ′, in particular its complexity and degree of parallelism.
Then, we shall say that an INS is universal just in case any other INS can be
translated into it.

In the following, if Σ,Σ′ are two alphabets and Φ is a function from Σ to
℘(Σ′), we say that Φ is arity-preserving iff Φ maps cells of arity n to principal
nets of arity n. Notice that such a function can obviously be extended into a
function from 〈Σ〉 to 〈Σ′〉, still denoted Φ: given a net µ ∈ 〈Σ〉, simply define
Φ(µ) to be the net in which each cell α in µ is replaced by Φ(α), keeping the
connections between ports exactly as they are in µ.

Definition 1.5 (Translation, [Laf97]) Let S = (Σ,R) and S ′ = (Σ′,R′) be
two INS’s, and let Φ be an arity-preserving function from Σ to ℘(Σ′). We say
that Φ is a translation from S to S ′ iff, for all α, β ∈ Σ such that R(α, β) is
defined, we have Φ(α ./ β) →∗ Φ(R(α, β)).

The above definition is formulated without taking correct nets into account, or
rather, the INS’s are supposed to be such that the set of correct nets coincides
with all possible nets. Obviously this is not restrictive at all: when we say that
an INS S can be translated into an INS S ′, we assume that the correct nets of
S can be translated (in the sense of Definition 1.5) into correct nets of S ′.

If Φ is a translation from (Σ,R) to another INS such that, for all α ∈ Σ,
Φ(α) contains at least one cell, then Φ is said to be strict. In the following, we
shall assume that all translations are strict.

Observe that, if Φ is a translation from S to S ′, and if µ is a net of S, then
Φ(µ) is cut-free iff µ is. In particular, Φ(µ) contains the same number of active
pairs as µ; by the simulation property stated in Definition 1.5, if µ→∗ µ′, then
Φ(µ) →∗ Φ(µ′), so not only S ′ encodes S through Φ, but it also simulates its
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degree of parallelism. Moreover, each rule of S is simulated by S ′ in a constant
number of steps; if M and K are resp. the minimum and maximum number of
steps taken by S ′ to simulate an interaction rule of S, and if a reduction µ→∗ µ′

in S takes n steps, then the corresponding reduction Φ(µ) →∗ Φ(µ′) takes m
steps in S ′, where Mn ≤ m ≤ Kn. Therefore, the time complexity of reduction
is preserved by the translation; a similar fact holds for space complexity, in
terms of number of cells. Notice that all of these properties may fail (for stupid
reasons) in case Φ is not strict.

1.4.2 Universality

The following result is the object of [Laf97]:

Theorem 1.8 (Universality) Any INS can be translated into the interaction
combinators.

We shall not enter into the details of the proof of Theorem 1.8; in fact, in
Sect. 6.4 we shall give a detailed proof of the universality of the multicombi-
nators, of which the above result is a particular case. As expected, Lafont’s
!-construction (Sect. 1.3.2) plays a crucial rôle in the proof, because the reduct
of a generic active pair α ./ β may contain occurrences of α and β themselves,
generating a recursive reduction of the kind described at the end of Sect. 1.3.2.

The symmetric combinators, which will be the object of Chapter 3, do not
enjoy Theorem 1.8. Instead, they verify a property that we refer to as polarized
universality :

Theorem 1.9 (Polarized universality) Any polarized INS can be translated
into the symmetric combinators.

What the symmetric combinators really lack is the ability to simulate a cell
interacting with itself, i.e., a rule reducing an active pair of the form α ./ α.
The typical problematic example is the γγ rule of the interaction combinators:

Proposition 1.10 In the symmetric combinators, there is no principal net ν
of arity 2 such that

→∗

ν

ν

The above result is a consequence of the following lemma, which can be proved
by means of a straight-forward induction:

Lemma 1.11 Let τ be a tree of symmetric combinators. Then, we have
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→∗

τ

τ
. . .

. . .

. . .

. . .

Now, remember that a principal net ν of arity 2 is a tree plus a wiring connecting
some of the leaves except two, which are left free. When ν interacts with itself,
because of Lemma 1.11 the pairs of leaves connected by the wiring in one copy
of ν exactly match those in the other copy, resulting in cyclic wires; the only
two free leaves match each other, yielding a configuration which, if we neglect
the cyclic wires, is identical to the right member of the δδ (and ζζ) rule, and
thus different from that of the γγ rule.

If an INS is polarized, we only care about polarized interactions, which
cannot be defined between a cell and itself. This asymmetry is exploited in the
proof of Theorem 1.9. For instance, the ⊗/� rule of Sect. 1.3.1 (or rather its
polarized version), which is structurally identical to the γγ rule, can be trivially
simulated in the symmetric combinators, for example using two ζ cells, one of
which has its auxiliary ports “twisted”:

ζ

ζ

=→

It is possible to see that virtually any “traditional” computational model can
be encoded into a polarized INS. Important examples include Turing machines,
one-dimensional cellular automata, SK combinators, the λ-calculus, and multi-
plicative exponential linear logic proof-nets. For example, following Ian Mackie
and Jorge Sousa Pinto [MP02], we know that these latter can be encoded into
the interaction combinators; the same encoding works for the symmetric com-
binators, up to minor adjustments which basically amount to “twisting wires”
as in the example above. In Sect. 1.3.2 we gave a direct encoding of the call-by-
name SK combinators into the symmetric combinators, which is another way
of showing that, even though failing to satisfy full universality, this system has
the same expressive power as the interaction combinators.

1.4.3 The δε fragment

In this section we shall use the notion of translation introduced above to show
that any INS can be seen as an extension of the δε fragment of the (symmetric)
interaction combinators.
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Proposition 1.12 Let S = (Σ,R) be an INS, such that δ, ε 6∈ Σ (if δ or ε
belong to Σ, simply rename them), and let Σ′ be the alphabet composed of δ,
ε, of resp. arity 2 and 0, and of α′ of arity 1 for all α ∈ Σ. Then, S can be
translated into an INS S ′ whose alphabet is Σ′.

Proof. We use the multiplexors Cn introduced in Sect. 1.3.2 (actually we
called them copiers in that context, but what is interesting to us here is their
annihilation property, which is the same as that of the Zn family). Given a cell
α ∈ Σ of arity n, we define Φ(α) as follows:

. . .

Cn

α′

. . .

Φ(α) =

Then, we define the interaction rules of S ′, whose alphabet is Σ′, according to
the rules of S; if α, β are two cells of Σ of resp. arity m and n, we pose:

→

α′

β′

Cm

Cn

Φ(R(α, β))

. . .

. . .

. . .

. . .

δ and ε cells interact between them exactly as in the δε fragment, while their
interaction with the other cells of Σ′ is left undefined.

Following these definitions, if α, β are two cells of Σ of resp. arity m and n,
by the annihilation property of Cn nets, we have
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Cm

Cn

. . .

. . .

Φ(α)

Φ(β)

→

. . .

. . .

. . .

. . .

Cm

Cn

Φ(R(α, β))Φ(R(α, β))

. . .

. . .

. . .

. . .

→∗

which shows that Φ is a translation from S to S ′. ¤
Of course the above proof can be adapted without problems to the γε fragment:
we just need to use Mn and M∗

n nets instead of Cn nets, and we do not need
to cross the wires in the definition of the reduction rules.

Proposition 1.12 also shows that the arity of the cells of an alphabet is
practically irrelevant: any INS can be translated into an INS in which all cells
but two have arity 1; in particular, there is no need for cells of arity greater
than 2. The interest of using cells with higher arities is that rules usually
become simpler, i.e., the right members contain less cells, as the translation of
Proposition 1.12 shows.

The δε (and γε) fragment can be seen as a sort of “pure arity” system:
its dynamics simply consists in multiplexing/demultiplexing wires. We observe
that this is nothing but the dynamics of MLL proof-structures. A generic
INS simply adds to this the possibility of defining “arbitrary connectives”, i.e.,
symbols (which determine the behavior) plus an arity (which is given by the
multiplexors, i.e., MLL basic connectives).
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Chapter 2

Observational Equivalence

2.1 Path-based observational equivalence

In the following, we fix a generic untyped INS (Σ,R), and we take the terms
“cell”, “net”, and “rule” to implicitly mean resp. “cell of Σ”, “net of 〈Σ〉”, and
“rule of R”.

2.1.1 Straight paths and interaction paths

Our observational equivalence will be based on the fundamental notion of
straight path, inspired by the corresponding notion in linear logic proof-
nets [DR95]. The formal definition uses the port graph of a net, introduced
in Definition 1.1.

Definition 2.1 (Straight path) Let µ be a net. A path φ (not necessarily
simple) of PG(µ) is straight iff:

(non-bouncing) if φ contains a sequence of the form iji, then i and j are
ports of the same cell, and they are connected by a wire in µ (i.e., there
is a vicious circle);

(non-twisting) if i, j, k are resp. the principal port and two different auxiliary
ports of the same cell, then φ does not contain the sequence jik.

Seen directly on cells, the requirement that a path is non-bouncing means that
we forbid paths like those of Figures 2.1a and 2.1b. Similarly, the non-twisting
requirement excludes the paths like that shown in Fig. 2.1c. In other words,
when a straight path enters a cell through one of its auxiliary ports, it exits
through its principal port, and when it enters a cell through its principal port,
it exits through one of its auxiliary ports.

By the way, the graph PG(µ) is needed for formal purposes only; in the
sequel, we shall freely speak of a “straight path of µ” meaning “straight path of
PG(µ)”, using PG(µ) only in formal definitions. The same will be done for the
other kinds of paths we shall introduce.

Definition 2.2 (Bouncing cell) A cell α is 0-bouncing iff there exists a cell
β such that in R(α, β) there is a straight path between two free ports (not nec-
essarily distinct) corresponding to the auxiliary ports of β, i.e., we have
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α

. . .

α

. . .

α

. . .

a. b. c.

Figure 2.1: a,b. Bouncing paths. c. Twisting path.

. . . . . .. . .

. . .

R(α, β)

. . .

. . .

α

β

→

For n > 0, we say that a cell α is n-bouncing iff there exists a cell β such that
in R(α, β) there is a tree whose root is one of the free ports corresponding to the
auxiliary ports of β which contains an (n− 1)-bouncing cell. In other words, we
have

. . .

. . .

α

β

→

. . .

. . . . . .

R(α, β)

γ

where γ is an (n − 1)-bouncing cell. A cell is bouncing iff it is n-bouncing for
some n.

The cell 0 in the system Srec introduced in Sect. 1.3.3 is an example of bouncing
cell (it is in fact 0-bouncing, because of the rule with the + cell). On the
other hand, in the interaction combinators (symmetric or not) there are no
bouncing cells; by universality, bouncing cells are thus not necessary as far as
the expressive power of an interaction net system is concerned.

Definition 2.3 (Interaction path) Let µ be a net. A path φ (not necessarily
simple) of PG(µ) is called an interaction path iff:

(weakly non-bouncing) if φ contains a sequence of the form iji, then either
i and j are ports of the same cell, and they are connected by a wire in µ
(i.e., there is a vicious circle), or j is the principal port of a bouncing cell
and i is not an auxiliary port of the same cell;

(non-twisting) if i, j, k are resp. the principal port and two different auxiliary
ports of the same cell, then φ does not contain the sequence jik.
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Seen directly on nets, interaction paths are straight paths allowing configura-
tions like that of Fig. 2.1b in the case of a bouncing cell. Because of the absence
of bouncing cells, in the interaction combinators (symmetric or not) straight
paths and interaction paths coincide. The same happens in multiplicative ex-
ponential linear logic proof-nets seen as interaction nets, i.e., sharing graphs;
this is why all paths mentioned in the Geometry of Interaction are always non-
bouncing.

The main property of interaction paths is that of being preserved under
anti-reduction:

Proposition 2.1 Let µ →∗ µ′, and let i, j be two free ports (not necessarily
distinct) of µ and µ′ (reduction preserves the interface, so the ports of µ′ can
be unambiguously identified with those of µ). If i and j are connected by an
interaction path in µ′, then they are connected by an interaction path in µ as
well.

Proof. It is obviously enough to prove the result in case µ→ µ′. The reduction
can then be supposed to have the following form:

µ0

i j

α β

. . . . . .
→

µ0

i j

. . . . . .

R(α, β)

where, for brevity, only the free ports i and j are shown. There are three
mutually exclusive situations:

• The interaction path in µ′ does not go through R(α, β). This case is
trivial.

• The interaction path in µ′ goes through R(α, β), and it is of the following
shape:

i j

. . . . . .

R(α, β)

µ0

This case too is trivial: an interaction path obviously exists in µ as well,
it simply goes through the active pair.

• The interaction path in µ′ goes through R(α, β), and it is of the following
shape:

i j

. . . . . .

R(α, β)

µ0
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This means that in R(α, β) there is either a straight path or a bouncing
cell “on the side” of the auxiliary ports of α. But then β is bouncing, so
an interaction path exists in µ as well. The case in which the path uses
only the interface of R(α, β) corresponding to the auxiliary ports of β is
identical; similarly, if the path uses both interfaces, “wiggling” a number
of times between R(α, β) and µ0, then both cells are bouncing, and the
result holds as well.

¤

2.1.2 Observable paths

Interaction paths are preserved also under reduction whenever they cross no
active pair. Upon these kind of paths is based our notion of observability.

Definition 2.4 (Observable path) Let µ be a net, and i a free port of µ. We
say that there is an observable path starting from i iff there exists a free port
j of µ (not necessarily distinct from i) such that i and j are connected by a
non-empty interaction path crossing no active pair. In this case, we say that the
free port i is immediately observable, and we write µ↓i.

It is perhaps useful to “visualize” what it means for a free port to be immediately
observable. Indeed, it is a straight-forward consequence of the definition that,
if µ↓i, only two (non-mutually exclusive) situations are possible: either µ is of
the form

µ0

. . . . . .

. . . . . .

. . .

β

τ

i

where β is a bouncing cell, or µ is of the form

i j

τ1 τ2

. . . . . . . . .

. . .. . .. . .

µ0

. . .

where, if i = j, then τ1 = τ2 and the wire shown actually connects two leaves of
the same tree. Of course, if i 6= j, then µ↓i implies µ↓j . Notice also that one of
τ1 or τ2 (or both!) may be equal to a wire, so an observable port need not be
principal.
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We remark that, since they do not contain active pairs, and since interaction
rules are completely local, observable paths are preserved under reduction, as
anticipated above:

Proposition 2.2 Let µ be a net such that µ↓i, and let µ→∗ µ′. Then, µ′↓i.

Proof. Obvious. ¤

Definition 2.5 (Observability predicates) Let µ be a net, and i a free port
of µ. We say that i is observable, and we write µ⇓i, iff µ →∗ µ′ and µ′↓i. If
a port i is not observable, i.e., no reduct µ′ of µ is such that µ′↓i, then we say
that i is blind, and we write µ⇑i.

If we have µ⇓i for some free port i of µ, then we say that µ is observable,
and we write µ⇓. On the other hand, if for all free ports i of µ we have µ⇑i,
then we say that µ is blind, and we write µ⇑.

Using observable paths, one can build a “proto-semantics” for interaction
nets: to a net µ with n free ports, numbered from 1 to n, we associate a matrix
with boolean coefficients [µ] such that [µ]ij = 1 iff µ reduces to a net contain-
ing an observable path from the free port j to the free port i. Of course, if
µ →∗ µ′, then [µ] = [µ′]. This interpretation, even forgetting its näıveness,
does not yield a denotational semantics because it does not give rise to a con-
gruence: if C is a context (see the following section), then [µ] = [µ′] does not
imply [C[µ]] = [C[µ′]]. It is however the prototype for the Geometry of Inter-
action semantics (see Sect. 3.3): there, the coefficients of matrices belong to a
more complex structure, which is able to take into account very precisely the
reduction of nets and their interaction with contexts. This only works nicely
for the interaction combinators (symmetric or not), which is nevertheless quite
satisfying thanks to their universality.

While observability can be altered by putting a net into a context, blind-
ness sort of “propagates” inside a net, and blind free ports are “dull” with
respect to interaction, as shown by the results below. In the following, we call
non-bouncing tree a tree containing no bouncing cell.

Lemma 2.3 Let µ be a net.

1. Let i1, . . . , im be free ports of µ, and τ a non-bouncing tree with m leaves.
Then, if we pose

im

τ

µ

. . .

. . .

=µ′

i

i1

we have µ′⇑i iff µ⇑ik
for all 1 ≤ k ≤ m, and for any free port j which is

free in both µ and µ′, we have µ′⇓j iff µ⇓j.

2. Let i be a blind free port of µ. Then, if we pose
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µ′

imi1
. . . . . .

α

µ

i=

we have µ′⇑ik
for all 1 ≤ k ≤ m, where α is an arbitrary cell of arity m,

and for any port j which is free in both µ and µ′, we have µ′⇓j iff µ⇓j.

Proof. Part 1 is very easy. The fact that µ′⇑i iff µ⇑ik
for all k is a consequence

of the hypothesis that τ is non-bouncing, and of the remark that all observable
paths starting from i must pass through one of the ik. The fact that µ′⇓j iff µ⇓j

for j 6= i is also trivial: τ hardly changes anything, since it does not interact
with µ and is perfectly transparent to observable paths.

On the other hand, at the moment we are not able to show that part 2
holds; its proof requires the notion of bisimilarity, and is therefore deferred to
Sect. 2.2.3 ¤

2.1.3 Observational equivalence

The observational equivalence we shall introduce will be a contextual equiva-
lence, i.e., it will be based on observing the outcome of plugging a net into a
context. In the framework of interaction nets, a context is particularly easy to
define: it is just. . . a net, with a compatible interface. For convenience, we
shall assume in the following that all nets have their free ports numbered by a
positive integer from 1 to n, where n is the number of free ports.

Definition 2.6 (Context) A context for nets with n free ports is a net C with
at least n+ 1 free ports, together with an injection ι from {1, . . . , n} to the free
ports of C. If µ is a net with n free ports, we denote by C[µ] the net obtained
by plugging each free port i of µ to the free port ι(i) of C, i.e., graphically, we
have

=
. . .

C[µ]

µ

. . .
C

ι

. . .

where ι is the wiring corresponding to the injection.

The reader may have remarked that the notation C[µ] “forgets” the injection
ι; as a matter of fact, the rôle of ι is purely formal, and we shall nearly always
leave it implicit in the sequel, i.e., when we say “for any context C. . . ” we
actually mean “for any net C with a compatible interface and any injection
ι. . . ”, and when we say “there exists a context C. . . ” we actually mean “there
exists a net C with a compatible interface and an injection ι. . . ”. In fact,
according to our convention, if the interface of µ is I = {1, . . . , n} and that of C
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is J = {1, . . . , n+ k+ 1}, we can always consider ι to be the canonical injection
of I into J , i.e., the one behaving like the identity. This particularly economical
solution is the one we adopt in graphical representations.

We are now ready to define our notion of observational equivalence:

Definition 2.7 (Observational equivalence) Let µ, ν be two nets with the
same number of free ports. We say that µ and ν are observationally equivalent,
and we write µ ' ν, iff, for any context C, C[µ]⇓ iff C[ν]⇓.

This notion of observational equivalence can be seen as an extension of head-
normalization equivalence in the λ-calculus, which is defined as follows: let T
be a λ-term, and write T ⇓ iff T has a head normal form, or equivalently iff
the head reduction of T terminates, or equivalently iff T is solvable. Then, two
λ-terms T,U are observationally equivalent with respect to head normal form
iff, for every context C[·], C[T ]⇓ iff C[U ]⇓. In fact, when we see λ-terms as
multiplicative exponential linear logic proof-nets, or as sharing graphs (which
are interaction nets), a head normal form λ~x.xT1 . . . Tn looks something like

. . .

⊗

⊗

Tn

T1

. . .

. . . . . .

. . .

σ
. . .

. . .

�

�
i

. ..

?

where ⊗ and � cells represent resp. applications and abstractions (@ and λ
nodes in sharing graphs), the ? cell is a dereliction corresponding the head
variable (a croissant in sharing graphs), and σ is a net contracting/weakening
variables (in case they appear more than once or not at all) and assigning them
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to their respective abstractions. The free port labelled by i is the “root” of the
term, while the other free ports represent free variables.

One clearly sees that, if we call µ the above net, then µ↓i. Therefore, head-
normalization equivalence in the λ-calculus coincides with our observational
equivalence restricted to a distuinguished free port, the “root”. The fact that
λ-terms have a “root” is what allows one to define the very concept of head
normal form. In interaction nets, no free port can in general be assigned a
privileged rôle, so there may be several “head normal forms”. Our observational
equivalence cannot but treat all of them equally, without any of them being
considered more “special” than any other.

The first thing we verify is that 'β ⊆ ', as one might reasonably expect
considering the determinism of interaction nets reduction:

Proposition 2.4 Let µ, ν be two nets such that µ 'β ν. Then, µ ' ν.

Proof. By definition, µ 'β ν means that there exists a net o such that µ→∗ o
and ν →∗ o. Then, for any suitable context C, we have C[µ] →∗ C[o] and
C[ν] →∗ C[o], so obviously C[µ]⇓ iff C[ν]⇓. ¤

If the INS considered has an eraser cell, which we call ε, then not all contexts
are actually needed to discriminate two nets with respect to '. An eraser cell
is a cell interacting as follows:

ε

α

. . .

→ ε ε

. . .

→
ε

ε

for all cells α of the system. Notice that eraser cells are non-bouncing; the
principal port of an eraser cell can be seen as the “incarnation” of a blind port.
An INS containing an eraser cell will be called an εINS.

Definition 2.8 (Principal context) A context C, with associated injection ι,
is principal iff:

1. it is cut-free;

2. if i is a free principal port of C, then it is in the image of ι;

3. if i, j are two free ports of C connected by a wire, then they are in the
image of ι.

In other words, a principal context has the following shape:

. . .

. . .

. . .

. . .

. . .

σ

ω

τ1 τn
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where the “upper” free ports are those connected to the net to which the context
is applied.

Lemma 2.5 (Context) Let µ, ν be two nets of an εINS, with the same number
of free ports. If µ 6' ν, then there exists a principal context C discriminating
between µ and ν, i.e., such that C[µ]⇓ and C[ν]⇑, or vice versa.

Proof. By hypothesis, there exists a context C ′ such that, for example, C ′[µ]⇓
and C ′[ν] ⇑. We shall gradually remove the features of C ′ making it non-
principal, thus building a principal context C.

We can write the generic context C ′ as follows:

. . . . . . . . . . . . . . . . . .
ω

ω′
. . . . . . . . .

τ1 τn τ ′1 τ ′k τ ′′1 τ ′′m

where the roots of the trees τ1, . . . , τn are the free ports which will be connected
to those of µ and ν when C ′ is applied to them. Our goal is to arrive to a
context C of the form

. . . . . .

. . .

τ̂1

ω̂

. . .

τ̂n

having the same behavior as C ′ with respect to µ and ν, and where no wire of
ω̂ connects two of the “rightmost” free ports.

Since C ′[µ]⇓, by definition we have that C ′[µ] →∗ µ′, where µ′ is a net con-
taining an immediately observable free port. In the reduction sequence leading
from C ′[µ] to µ′, some of the active pairs reduced may be already present in C ′.
By strong confluence, we can choose a reduction sequence that reduces all and
only these active pairs first, and then everything else. In other words, we split
the reduction sequence into C ′[µ] →∗ C1[µ] →∗ µ′, where C1 is of the following
shape:

. . . . . . . . . . . . . . .

. . .

τ1 τn τ ′′1

. . .

τ ′′m

µ0

µ′′

with µ0 a suitable cut-free net. Now, by hypothesis, the subnet µ′′ does not
take part in the interaction with µ, so if we put

. . . . . . . . . . . . . . .

. . .

τ1 τn τ ′′1

. . .

τ ′′m

µ0

εε=C2
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we obviously have C2[µ]⇓. By looking at the interaction rules for ε, it is not
hard to see that, since µ0 is cut-free, C2 has a cut-free form C3, which of course,
by confluence, verifies C3[µ]⇓.

For what concerns ν, we also have C ′[ν] →∗ C1[ν]. Now, if, as we know
by hypothesis, no observable path is ever created during the reduction of C1[ν],
then there can be no observable path created after replacing µ′′ with ε cells, since
the principal ports of eraser cells are the archetypal blind ports. Therefore, we
have C2[ν]⇑, and so C3[ν]⇑.

We have thus arrived at a discriminating context C3 of the form

. . . . . . . . . . . .

. . .

τ̂n

ω̂

τ ′′′1

. . .

τ ′′′mτ̂1

To conclude, we can assume that τ ′′′1 , . . . , τ
′′′
m are non-bouncing, and that there

is no connection between any of their leaves in ω̂. In fact, such situations would
yield observable paths whose presence is independent of the interaction with µ
or ν, and which therefore add no discriminatory power to C3. Then, by part 1
of Lemma 2.3, τ ′′′1 , . . . , τ

′′′
m cannot hide nor add observable paths, so we can

completely remove them, obtaining our principal context C. ¤
Notice that eraser cells are not used to actually erase, but rather to allow

the restriction to cut-free contexts. In fact, as far as observational equivalence
is concerned, an eraser cell ought to be seen as a “reification of blindness”: it is
a way to represent a blind port without resorting to vicious circles or infintely-
reducing nets. It is fair to say that erasers play the same rôle as Ω leaves in Bhöm
trees. In fact, any blind net with n free ports is, by definition, observationally
equivalent to a net consisting of n ε cells.

If erasers are not available, a similar effect would be obtained by a configu-
ration like

α

where α is a binary cell. Of course, in this case principal contexts would loose
the property of being cut-free. Anyway, since eraser cells arise very naturally
when programming with interaction nets, for practical purposes one can always
consider INS’s to have eraser cells.

It may be interesting to analyze the relationship between our observational
equivalence and that defined by Fernández and Mackie [FM03]. We do not
have precise results in this sense, although it seems clear that the two are quite
orthogonal, i.e., neither is included in the other. In fact, Fernández&Mackie’s
equivalence is in some sense more “intensional”. It allows for example equiva-
lences like

≈ε ε

64



whenever eraser cells only appear in situations in which a net reduces to the
empty net, i.e., it is actually erased; in that case, the equivalence (seen from
right to left) corresponds to a natural optimization which speeds up the erasing
process, and is therefore perfectly sound. By contrast, our observational equiv-
alence is crucially based on the distinction between the two nets above, which
are resp. the prototypes of a blind and an observable net.

On the other hand, our observational equivalence makes the identification

ε

µ
. . .

α'

whenever µ is blind and α is non-bouncing, whereas Fernández&Mackie’s equiv-
alence distinguishes between the two nets if α is a constructor1, and nothing for-
bids a constructor to be non-bouncing (the λ node in sharing graphs is a typical
example). This last distinction appears much like the distinction between λx.Ω
and Ω in the observational equivalence based upon weak-head-normalization in
the λ-calculus. In fact, Fernández&Mackie’s equivalence, which uses the con-
cept of interface normal form, may be closer to observing weak head normal
forms rather than head normal forms.

2.2 Bisimilarity

In this section we develop a notion of bisimulation, with the associated bisimi-
larity, which may be of help in proving observational equivalence of nets. This
is similar to what done by Fernández and Mackie [FM03], although our defini-
tion of observational equivalence (and above all of bisimilarity) is different, as
discussed above.

The bisimilarity we define is inspired to what is usually called barbed bisim-
ilarity in process calculi (cf. Sect. 5.1, and Sangiorgi and Walker’s book for a
complete reference [SW01]). Actually, we shall see that the confluence property
of interaction nets reduction in some sense trivializes this notion with respect
to the concurrent case. Nevertheless, it will turn out to be crucial in proving
several results, and it will be the source of inspiration for a similar definition,
this time in a non-confluent framework, that will be needed in the multiport
case to speak of behavioral equivalence (Sect. 6.3).

As done above, all throughout the rest of the section we fix a generic untyped
INS (Σ,R), and we take the terms “cell”, “net”, and “rule” to implicitly mean
resp. “cell of Σ”, “net of 〈Σ〉”, and “rule of R”.

1Fernández&Mackie’s equivalence is based among other things upon a partitioning of the
alphabet of an INS into constructors and destructors, which is specified when giving the
alphabet itself (as in [Laf90]). Their observational equivalence takes into account the con-
structor/destructor nature of cells, which we do not do. This is another example of the
“intensionality” of Fernández&Mackie’s equivalence.
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2.2.1 Bisimulation and bisimilarity

In what follows, we use the notation µ↓ to say that there exists a free port of µ
which is immediately observable.

Definition 2.9 (Bisimulation) A binary relation B relating only nets with
the same number of free ports is a bisimulation iff, whenever (µ, ν) ∈ B, we
have:

1. µ↓ implies ν⇓;
2. µ→ µ′ implies that there exists ν′ such that ν →∗ ν′ and (µ′, ν′) ∈ B;

3. ν↓ implies µ⇓;
4. ν → ν′ implies that there exists µ′ such that µ→∗ µ′ and (µ′, ν′) ∈ B.

Immediate observability and single-step reduction can actually be replaced resp.
by observability and reduction:

Lemma 2.6 Let B be a bisimulation, and let (µ, ν) ∈ B. Then:

1. µ⇓ iff ν⇓;
2. if µ →∗ µ′, then ν →∗ ν′ such that (µ′, ν′) ∈ B, and similarly with the

rôles of µ and ν exchanged.

Proof. We start with the second statement. If µ →∗ µ′, by definition
µ→ µ1 → · · · → µn−1 → µn = µ′; we reason by induction on n. If n = 0, then
µ′ = µ, and the fact is vacuously true. If n > 0, then we know by induction
hypothesis that there exists ν′′ such that ν →∗ ν′′ and (µn−1, ν

′′) ∈ B. But B
is a bisimulation, so µn−1 → µ′ implies the existence of a ν′ such that ν′′ →∗ ν′

and (µ′, ν′) ∈ B, which is what we were looking for. In case ν →∗ ν′, finding a µ′

such that µ→∗ µ′ and (µ′, ν′) ∈ B is done following exactly the same argument.
Suppose now that µ⇓. By definition, we have µ →∗ µ′↓. By point 2 just

proved, we have ν →∗ ν′ with (µ′, ν′) ∈ B; but since B is a bisimulation, µ′↓
implies ν′⇓. Now, since ν′ is a reduct of ν, we also have ν⇓. The proof of the
converse is perfectly analogous, just exchanging the rôles of µ and ν. ¤

The standard properties of bisimulations are verified; they are straight-
forward consequences of the definition:

Lemma 2.7 Bisimulations are closed under inversion, arbitrary unions, and
reflexive-transitive closure.

Proof. The proofs of all three properties are standard and left to the reader.
Lemma 2.6 is needed to prove closure under transitivity. ¤

Definition 2.10 (Bisimilarity) Bisimilarity, denoted ¦∼, is the union of all
bisimulations.

Notice that, by definition, two nets µ, ν are bisimilar iff there exists a bisimula-
tion B such that (µ, ν) ∈ B. From Lemma 2.7 it follows that ¦∼ is an equivalence
relation, and that it is also a bisimulation; in particular, we have
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Lemma 2.8 Bisimilarity is the largest equivalence relation such that, whenever
µ

¦∼ ν, we have

1. µ⇓ iff ν⇓;

2. if µ→∗ µ′, then ν →∗ ¦∼ µ′.

Proof. As observed above, this is a straight-forward consequence of Lem-
mas 2.6 and 2.7, and, for what concerns maximality, of the fact that bisimilarity
is defined to be the union of all bisimulations. ¤

Just as with observational equivalence, the first result we prove about bisim-
ilarity is that it contains β-equivalence.

Lemma 2.9 Let µ, ν be two nets such that µ 'β ν. Then, µ ¦∼ ν.

Proof. It is enough to prove that 'β is a bisimulation. By definition, µ 'β ν
means that there exists o such that µ →∗ o and ν →∗ o. Now suppose µ↓.
Observable paths are preserved under reduction, so o↓; but o is also a reduct
of ν, so ν⇓. Now suppose that µ → µ′; this implies in particular that µ 'β µ

′,
which by transitivity of 'β implies µ′ 'β ν. Points (3) and (4) of Definition 2.9
are established in a similar way. ¤

Observe how, in the above lemma, the transitivity of 'β , which is a conse-
quence of the confluence of reduction, makes the proof of properties (2) and (4)
of Definition 2.9 completely trivial. In fact, the Church-Rosser property implies
a trivialization of the whole definition of bisimilarity, namely that the latter is
characterized by property 1 of Lemma 2.8:

Lemma 2.10 µ
¦∼ ν iff µ and ν are either both observable, or both blind.

Proof. The forward implication is nothing but point 1 of Lemma 2.8. For the
converse, it is enough to show that the set

B = {(µ, ν) | µ⇓ iff ν⇓}

is a bisimulation. Properties (1) and (3) of bisimulations hold by definition of B;
if µ→ µ′, by confluence we have µ′⇓ iff µ⇓, but by definition of B µ⇓ iff ν⇓, so
(µ′, ν) ∈ B. The same can be said in case ν → ν′, so B is indeed a bisimulation.

¤

Corollary 2.11 µ ' ν iff C[µ] ¦∼ C[ν] for every context C.

The above result allows us to prove observational equivalence using coin-
ductive techniques, similarly to what is usually done in process calculi, and
to what Fernández and Mackie have already done in the context of interac-
tion nets [FM03]. The advantage is that, instead of having to prove C[µ]⇓
iff C[ν]⇓, we can first show that the weaker implications C[µ]↓⇒ C[ν]⇓ and
C[ν]↓⇒ C[µ]⇓ hold, and then show that C[µ] and C[ν] are able to simulate the
one-step reductions of each other. Of course there is still the quantification over
all contexts which may make the task difficult, but in several interesting cases
(see Sect. 2.3.1) Corollary 2.11 will turn out be just what we need.
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2.2.2 Bisimulations up to reflexive-transitivity

We now introduce the notion of bisimulation up to reflexive-transitivity, which
can be very useful in proving that a relation which is the reflexive-transitive
closure of another relation is a bisimulation. The reader can safely skip this
section until the notion is used in Sect. 2.3.1.

Definition 2.11 (Bisimulation up to reflexive-transitivity) Let B be a
binary relation relating only nets with the same number of free ports. We say
that B is a bisimulation up to reflexive-transitivity iff, whenever (µ, ν) ∈ B, we
have:

1. µ↓ implies ν⇓;
2. µ→ µ′ implies that there exists ν′ such that ν →∗ ν′ and (µ′, ν′) ∈ B∗;
3. ν↓ implies µ⇓;
4. ν → ν′ implies that there exists µ′ such that µ→∗ µ′ and (µ′, ν′) ∈ B∗;

where B∗ denotes the reflexive-transitive closure of B.

The reader can check that the proof of Lemma 2.6 can be easily adapted mutatis
mutandi to bisimulations up to reflexive-transitivity: if (µ, ν) ∈ B for a bisim-
ulation up to reflexive-transitivity B, then µ⇓ iff ν⇓, and µ →∗ µ′ implies that
there exists ν′ such that ν →∗ ν′ with (µ′, ν′) ∈ B∗, and vice versa exchanging
the rôles of µ and ν.

Of course, if B is a bisimulation up to reflexive-transitivity, then it is not in
general a bisimulation. However, B∗ is:

Lemma 2.12 If B is a bisimulation up to reflexive-transitivity, then B∗ is a
bisimulation.

Proof. Let (µ, ν) ∈ B∗. If µ = ν, the four properties defining bisimulations
(Definition 2.9) hold trivially. If µ 6= ν, then by definition there exist n nets
o1, . . . , on such that (µ, o1), (o1, o2), . . . , (on−1, on), (on, ν) ∈ B. We shall prove
that properties (1) through (4) of Definition 2.9 hold by induction on n. If
n = 0, this is true thanks to the hypothesis that B is a bisimulation up to
reflexive-transitivity. If n > 0, let us pose on = o. By induction hypothesis,
properties (1) through (4) hold for the pair (µ, o). These properties have the
consequence (cf. Lemma 2.6) that µ⇓ iff o⇓, and, as remarked above, since B is
a bisimulation up to reflexive-transitivity and (o, ν) ∈ B, we have that o⇓ iff ν⇓,
so properties (1) and (3) are verified for (µ, ν). Now suppose that µ → µ′. By
induction hypothesis, o→∗ o′ with (µ′, o′) ∈ B∗; by property (2) of Lemma 2.6,
and because (o, ν) ∈ B with B bisimulation up to reflexive-transitivity, o→∗ o′

implies ν →∗ ν′ such that (o′, ν′) ∈ B∗. We then conclude that (µ′, ν′) ∈ B∗ by
transitivity of B∗. This proves property (2); the same argument applies to show
that property (4) holds as well. ¤

2.2.3 Proof of part 2 of Lemma 2.3

To close this section on bisimilarity, we give a direct application of the concepts
introduced so far, or more precisely to a variant of them. In fact, we shall give
a proof of part 2 of Lemma 2.3 using a notion which is related to, but stronger
than, bisimilarity:
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Definition 2.12 (Portwise bisimulation) A binary relation B relating only
nets with the same number of free ports is a portwise bisimulation iff, whenever
(µ, ν) ∈ B, we have:

1. µ↓i implies ν⇓i for every free port i;

2. µ→ µ′ implies that there exists ν′ such that ν →∗ ν′ and (µ′, ν′) ∈ B;

3. ν↓i implies µ⇓i for every free port i;

4. ν → ν′ implies that there exists µ′ such that µ→∗ µ′ and (µ′, ν′) ∈ B.

Notice that in points (1) and (3) it is sound to quantify over “all free ports”
because we have supposed that µ and ν have the same interface.

It is not hard to check that all of the properties verified by bisimulations, namely
Lemmas 2.6 and 2.7, are verified by portwise bisimulations too. Therefore, we
can define portwise bisimilarity as expected:

Definition 2.13 (Portwise bisimilarity) Portwise bisimilarity, denoted
¦≈,

is the union of all portwise bisimulations.

An adapted version of Lemma 2.8 holds for portwise bisimilarity; in particular,
what is interesting to us is that µ

¦≈ ν implies µ⇓i iff ν⇓i for all free ports i of
µ and ν.

In the sequel, we shall assume that the INS we are considering has an eraser
cell; if it does not, we just add it to it, and our arguments will not be harmed.

Let µ be a net, and I a subset of its interface. We shall say that µ is relatively
blind on I iff, for all µ′ such that µ →∗ µ′, there is no observable path in µ′

between any two free ports (not necessarily distinct) of I. In what follows, we
shall always represent a relatively blind net µ with its relatively blind interface
I drawn at the bottom, and the rest of the interface drawn at the top:

. . .

µ
. . .

︸ ︷︷ ︸
I

If µ0 is a net with interface J ∪ K such that all of the free ports in J are
blind, and if µ1 is a net with interface I ∪ J ′ which is relatively blind on I
and such that J ′ is in bijection with J , then we shall write µ0 • µ1 for the net
obtained by plugging the free ports in J with the free ports in J ′ according to
the bijection. In general, we shall assume the bijection to be the identity, and
picture the situation as follows:

. . .

µ1
. . . . . .

µ0

︸ ︷︷ ︸
K

︸ ︷︷ ︸
I
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If µ = µ0 • µ1 as above, we shall write µε for the net obtained by replacing µ1

with a suitable net made entirely of eraser cells:

. . .

. . .

µ0

. . .

︸ ︷︷ ︸
I

︸ ︷︷ ︸
K

ε ε

εε

We shall see that µ
¦≈ µε, so the free ports of I are actually blind in µ.

In fact, define the set

B = {(µ, µε) | for all µ of the form µ0 • µ1}.
Then, we have the following:

Claim 2.3.1 B is a portwise bisimulation.

Proof. In what follows, I, J,K denote sets of free ports as in the above defi-
nitions and pictures. Let us start with property (3) of Definition 2.12. If µε↓k,
then clearly k ∈ K, because all free ports of I are blind in µε. Then, the
observable path must obviously pass through µ0, and thus µ↓k.

Similarly, if we suppose µ↓k, by the hypothesis that µ1 is relatively blind
on I, assuming k ∈ I would imply that there is an observable path entering
µ0 through a port of J ; but sub-paths of observable paths are observable (once
we consider their extremities as free ports), so this would imply µ0↓j for some
j ∈ J , a contradiction, since all ports of J are blind by hypothesis. Therefore,
k ∈ K, and so µε↓k, which proves property (1).

Let us turn to property (2), for which we suppose that µ → µ′. If the
reduction takes place inside µ0, i.e., µ0 → µ′0, then µ′0 is also blind on J by
definition, so µ′ = µ′0 • µ1; but clearly µε → µ′ε, and by definition (µ′, µ′ε) ∈ B.
Another possibility is that the reduction takes place inside µ1, i.e., µ1 → µ′1.
By definition, µ′1 is also relatively blind on I, so µ′ = µ0 • µ′1, and since the
interface of µ′1 is the same as that of µ1, we have µ′ε = µε, so (µ′, µε) ∈ B. The
last possibility is that of an interaction between a cell of µ0 and a cell of µ1, in
which case we have

→

α

β

µ′0

µ′1

. . .

. . .

. . .

. . . . . .

µ′0

µ′1

. . .

. . . . . .

. . .

. . .

R(α, β)
=µ = µ′

We start by observing that α is not bouncing, otherwise there would be an
immediately observable port in J , contradicting our hypotheses; then, by part 1
of Lemma 2.3, the “leftmost” ports of µ′0 are all blind. Now pose
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=µ′′1

µ′1

. . .

. . .

. . .

R(α, β)

. . .

︸ ︷︷ ︸
I

and suppose that a reduct of µ′′1 has an observable path φ between two ports of
I. Notice that, since β does not participate in any interaction of µ1, removing it
hardly changes anything, so µ′1 is also relatively blind on I. Therefore, φ must
pass through (a reduct of) R(α, β). Then, observable paths being particular
interaction paths, by Proposition 2.1 there would be an interaction path between
two “lower” ports of R(α, β) (i.e., those ports which were connected to the
auxiliary ports of β in µ). But R(α, β) is cut-free, so such a path would actually
be observable, contradicting the fact that α is non-bouncing. This proves that
µ′′1 is relatively blind on I, and that µ′ = µ′0 • µ′′1 . Now, since ε are eraser cells,
in µε we have

=µε

. . .

α

ε

ε ε
. . .

ε ε

. . .

. . .

µ′0

→

ε ε
. . .

ε ε ε ε

. . .

. . .

. . .

µ′0

= µ′ε

and (µ′, µ′ε) ∈ B by definition of B.
We have only property (4) left to prove. For this, suppose µε → µ′ε. Again,

if the reduction takes place inside µ0, the statement is trivial. Otherwise, the
only other possibility is that an eraser cell interacts with µ0 as in the above
picture. For what concerns µ, suppose that µ1 →∗ µ′1 such that the free port of
µ′1 connected to the cell α is principal; then we are back to the above case, and
the result follows by similar considerations. Otherwise, the port connected to α
is not principal in all reducts of µ1. Then, α can never interact with µ1, hence
the net

. . .

. . .

. . .

α

︸ ︷︷ ︸
I

µ1
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is relatively blind on I, and (µ, µ′ε) ∈ B by definition. ¤
Part 2 of Lemma 2.3 is a consequence of the above claim. In fact, notice

that, for any cell α of arity m, the net

imi1
. . .

α

is relatively blind on {i1, . . . , im}. Then, if i is a blind free port of a net µ, and
if

µ′

imi1
. . . . . .

α

µ

i=

then by Claim 2.3.1 we have µ′
¦≈ µ′ε, where

µ

i

imi1

. . .. . .

ε

ε ε

=µ′ε

Therefore, µ′⇑il
for all 1 ≤ l ≤ m; additionally, for any port k which is free

in both µ and µ′, we have µ′⇓k iff µ′ε⇓k iff µ⇓k. The last equivalence comes
from the fact that an observable path in a reduct of µ′ε cannot use the ε cell
connected to the port i (or any of the ε cells it may generate), hence such a
path must exist in a reduct of µ as well.

2.3 Path-based equivalence in the interaction
combinators

In the following, we shall only consider the INS of the interaction combinators
(see Sect. 1.3.2), so the terms “cell”, “net”, and “rule” will mean resp. “com-
binator”, “net of combinators”, and “combinator rule”. Before getting to the
heart of the matter, we make some preliminary definitions and conventions.

ε-wirings and inverse wirings. Together with the usual wirings, we shall
also consider ε-wirings. These are wirings in which free ports are allowed to
belong to ε cells. The following are examples of ε-wirings:
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ε ε εε

ε

ε-wirings of the kind shown on the left will be denoted by σ̃, those of the kind
shown on the right will be denoted by ω̃.

Notice also that the wirings we denote with σ (cf. p. 21) can be considered
permutations; given one such wiring, we can then define σ−1 to be the unique
wiring such that

σ

σ−1

. . .

. . .

. . .

. . . . . .= =

. . . . . .

σ−1

σ

Trees. Contrarily to what we have done in the previous sections, in the case
of the interaction combinators trees are considered to contain no ε cell. In other
words, trees of combinators are defined inductively as follows: a single wire is a
tree with one leaf, denoted by 1 (it is arbitrary which of the two extremities is
the root and which is the leaf); if τ1 and τ2 are two trees with resp. n1 and n2

leaves, then the net

τ

τ1 τ2

α

=

. . .

. . . . . .

is a tree with n1 + n2 leaves, where α ∈ {γ, δ}. This tree is denoted α(τ1, τ2).
Trees containing also ε cells will be called tests (see below).

Any tree can be annihilated my means of another tree:

Definition 2.14 (Cotree) If τ is a tree, we define its cotree τ † by induction
on τ :

• 1† = 1;

• γ(τ1, τ2)† = γ(τ †2 , τ
†
1 );

• δ(τ1, τ2)† = δ(τ †1 , τ
†
2 ).

It follows straight-forwardly from the definition that the co-cotree of τ is τ itself.

Lemma 2.13 (Cotree) For any tree τ , the net obtained by plugging together
τ and τ † through their roots reduces to a wiring.
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Proof. By induction on τ , using the annihilation rules for γ and δ cells. ¤
If we call στ the wiring of Lemma 2.13, we can define a net τ∗ which annihilates
with τ in the simplest way, i.e., which yields the identity permutation:

→∗

. . .

τ

τ∗

. . .

. . .

. . .
τ∗

= . . .

. . .
σ−1

τ

τ †

We shall say that any “tree plus permutation” τ ′ annihilating with τ as above is
an anti-tree of τ . The net τ∗ just defined is called the canonical anti-tree of τ .

Tests, ε-packages, filiform trees. We define an n-test to be a tree (in the
above sense) with n + m leaves such that m leaves are connected to principal
ports of ε cells. Both m and n can be zero, but not at the same time. This
means that trees with n leaves are special cases of n-tests. A test is simply
an n-test for some n that we do not want or need to specify. Of particular
interest to us will be 0-tests, 1-tests, and 2-tests; the first two will be called
resp. ε-packages and filiform trees.

2.3.1 η- and βη-equivalence

We introduce a few additional rewriting rules to the system of the interaction
combinators, which are not interaction rules but which will turn out to have
very interesting properties with respect to observational equivalence.

Definition 2.15 (η-equivalence) Given two nets µ, µ′, we write µ '1
η µ

′ iff
they can be rewritten one into the other by means of exactly one of the following
equalities, applied under any context:

δ

δ

γ

'1
η

ε ε

α

α ∈ {γ, δ}

γ

γ

γ γδ δ

δ

'1
η

ε'1
η '1

η

74



We write 'η for the reflexive-transitive closure of '1
η, and whenever µ 'η µ

′,
we say that µ and µ′ are η-equivalent.

The top-right and bottom equations of Definition 2.15, which we call resp. γε
(or δε) and γδ equations, were already considered by Lafont [Laf97]; in partic-
ular, the γε and δε equations state the η-equivalence of all ε-packages to the ε
combinator. On the other hand, the top-left equations, which we refer to as γγ
and δδ equations, can be found in the work of Fernández and Mackie as part of
a larger study on operational equivalence for interaction nets [FM03].

Definition 2.16 (βη-equivalence) We write 'βη for the transitive closure of
'β ∪ 'η, and if µ 'βη µ

′, we say that µ and µ′ are βη-equivalent.

Notice that, by definition, η- and βη-equivalence are actually congruences, i.e.,
if µ 'η ν (resp. µ 'βη ν), then C[µ] 'η C[ν] (resp. C[µ] 'βη C[ν]) for all
contexts.

It is perhaps interesting to remark that βη-equivalence can actually be de-
fined using a much smaller equivalence than 'β . Let µ →− µ′ iff µ →∗ µ′ by
means of annihilation rules only; of course →− is confluent, so we can define
an equivalence relation '−β as µ '−β ν iff there exists o such that µ →− o and
ν →− o. One can then prove that βη-equivalence is equal to the transitive
closure of '−β ∪ 'η. In other words, once η-equivalence is considered, the same
equational theory is generated even if only half of the reduction rules are al-
lowed. We show this in the case of the γδ and the γε commutations, the δε
commutation being identical to the latter:

γ

δ

γ

γ

γ γγ

γ

γ γ

γ

γ

γ γ

δ

δ δ

δ δ

'η 'η →−

'η →−

γ

ε

γ

γ

ε ε

ε ε

We also point out that there is no reasonable orientation for the equations
defining η-equivalence, so there are no canonical representatives for the equiv-
alence classes of 'βη on total nets (as opposed to βη-normal forms in the

75



λ-calculus). Nevertheless, we shall see that, just like in the λ-calculus, βη-
equivalence is maximal on total nets: if two non-βη-equivalent total nets are
identified, then all total nets must be identified (cf. Theorem 2.27).

Before that, we shall prove in the reminder of the section that if two nets are
βη-equivalent, then they are also observationally equivalent. To do this, we ap-
ply the notion of bisimulation up to reflexive-transitivity, defined in Sect. 2.2.2.

Lemma 2.14 'βη is a bisimulation.

Proof. Observe that 'βη can be defined as the reflexive-transitive closure of
the set B = 'β ∪ '1

η. Therefore, by Lemma 2.12, it is enough to prove that
B is a bisimulation up to reflexive-transitivity. Moreover, by Lemma 2.9, we
know that 'β is a bisimulation, so the only thing that is left to prove is that,
whenever µ '1

η ν, we have

1. µ↓ implies ν⇓;

2. µ→ µ′ implies that there exists ν′ such that ν →∗ ν′ and µ′ 'βη ν
′;

and similarly for properties (3) and (4), which are obtained by exchanging the
rôles of µ and ν in resp. (1) and (2). There is a total of five cases to be checked,
one for each η-equation, but since the δδ and δε equations are virtually identical
to the γγ and γε equations, we shall neglect the former two equations and only
analyze three cases.

We start with the γδ equation. Call µ0 and ν0 the two members of such
equation, so that µ = C[µ0] and ν = C[ν0] for some context C. First of all,
observe that the rewriting rule does not alter the presence of observable paths,
so µ↓ iff ν↓, which is enough to establish properties (1) and (3). Now suppose
µ → µ′. If the reduction takes place inside C, i.e., C[µ0] → C ′[µ0], then
obviously ν = C[ν0] → C ′[ν0] '1

η C
′[µ0]. Otherwise, a cell has interacted with

µ0. Since µ0 has only one principal port, there are three cases, one for each
combinator. Let us start with the case of the γ combinator:

. . .
C ′

δ δ

γ

γ

. . .
C ′

δ δ

→=µ = µ′

For what concerns ν, we can write
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. . .
C ′

γ

. . .
C ′

→=ν = ν′

δ δ

γ γ

γ γ

γγ

δ

and the reader can check that ν′ →∗ µ′, so in particular µ′ 'β ν
′, which implies

µ′ 'βη ν′. The case of the δ combinator is practically identical, so we pass
directly to consider the ε combinator. We have

. . .
C ′

δ δ

γ

. . .
C ′

δ δ

→=µ = µ′

ε

ε ε

and for concerns ν we can write
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. . .
C ′

. . .
C ′

→∗=ν = ν′

γγ

δ

ε

ε ε ε ε

Now it is easy to see that µ′ →∗ ν′, so µ′ 'β ν′, and we are done. This
establishes property (2); property (4) is proved in a similar way.

We now turn to the γε equation. As before, let µ0 and ν0 be the resp. the
left and right member of the equation, so that µ = C[µ0] and ν = C[ν0] for
some context C. Observe that µ0 and ν0 are both blind subnets of resp. µ and
ν, so they do not contribute to observable paths, which means that µ↓ iff ν↓.
Now suppose that µ → µ′. Again, if the reduction happens inside C, ν has no
problem in simulating. So we can consider the case of a cell interacting with
µ0. If this is a γ cell, the reader can check that ν → µ′, so no problem. If it is
a δ cell, then we have

ε ε

γ

C ′
. . .

δ

εε

δ δ

γ γ

. . .
C ′

→=µ = µ′

whereas

C ′
. . .

δ

ε

→

C ′
. . .

ε ε = ν′ν =
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By applying two δε rules in µ′, we obtain a net which is η-equivalent to ν′, so
µ′ 'βη ν

′. The case of an ε cell is trivial. Again, we have established property
(2); establishing property (4) is done by applying nearly identical arguments.

The last equation to be taken care of is the γγ equation. Again, let µ0 and
ν0 be resp. the left and right member of the equation (i.e., ν0 is a wire), and
let µ = C[µ0] and ν = C[ν0] for some context C. This equation too preserves
observable paths regardless of the direction in which it is applied, so µ↓ iff ν↓
holds as in the previous cases. Now suppose µ → µ′. As usual, we consider
directly the case in which a cell has interacted with µ0, otherwise the situation
is trivial. This time there are two principal ports in µ0, but fortunately the net
is perfectly symmetrical, so we do not need to (and actually cannot!) distinguish
which of the two ports has interacted. The cases in which the cell interacting
with µ0 is a γ or an ε cell are easy: in both cases, the reader can check that
µ′ is resp. equal and η-equivalent to ν. The case of a δ cell is a little bit more
complicated:

C ′
. . .

γ

γ

δ

C ′
. . .

γ

γ γ

δ δ→=µ = µ′

But notice that

'η

C ′
. . .

γ γ

C ′
. . .

γ

γ γ

δ δ

δ

γγ

. . .
C ′

δ'η = ν

so µ′ 'η ν. This is all as far as property (2) is concerned. To prove property
(4), suppose that ν → ν′. The only interesting situation is that in which the

79



wire ν0 is used in the reduction, i.e., ν0 connects two principal ports in ν. There
are six possible cases, one for each active pair. We shall only check the δε active
pair; in all other cases, we let the reader verify that µ →∗ ν′. The situation is
the following:

C ′
. . .

δ

ε

→

C ′
. . .

ε ε = ν′ν =

In µ, we have

→
δ

γ′
. . .

γ

γ

ε ε

γ

ε ε

εε

δ

γ′
. . .

γ

γ

ε

γ′
. . .

→∗=µ 'η ν′

so µ is able to reduce to a net η-equivalent to ν′, and we are done. ¤

Proposition 2.15 Let µ, ν be two nets. Then, µ 'βη ν implies µ ' ν.

Proof. An easy corollary of Lemma 2.14 and of the fact that 'βη is a congru-
ence: suppose µ 'βη ν, and let C be any suitable context; by the congruence
property, we have C[µ] 'βη C[ν], and by Lemma 2.14 we obtain C[µ] ¦∼ C[ν].
No assumption has been made on C (except that of being an adequate context
for µ and ν, which by the way must have the same number of free ports because
they are βη-equivalent), so we can conclude that µ ' ν thanks to Corollary 2.11.

¤
In Sect. 2.3.3 we shall prove that, if we restrict to total nets, then the converse

of Proposition 2.15 also holds; this is the analogue of Bhöm’s Theorem in the
λ-calculus.

2.3.2 Termination

In this section we give a sufficient condition for a net to be total, formulated in
terms of straight paths (Definition 2.1). In the case of a generic INS, interaction
paths should be used; however, as already remarked, these coincide with straight
paths in the interaction combinators.
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Definition 2.17 (Maximal path) A maximal path in a net µ is a straight
path ending into a free port of µ or into the principal port of an ε cell of µ.

In the following, if µ is a net and α a cell of µ, we say that a straight path φ
starts from α if φ = pxφ′, where p is the principal port of α, and x is not an
auxiliary port of α.

Definition 2.18 (Well-founded net) A net µ is well-founded iff for each cell
α of µ, there is a finite non-null number of maximal paths starting from α.

Basically, the definition above assures that in a well-founded net there are no
infinite straight paths.

Lemma 2.16 (Stability of well-foundedness under reduction) Let µ be
a net such that µ→ µ′. If µ is well-founded, then so is µ′.

Proof. By simple inspection of the reduction rules. ¤

Proposition 2.17 If a net is well-founded, then it is total.

Proof. Let µ be a well-founded net. First of all observe that if µ contains a
vicious circle, then by definition there is a cell of µ (maybe a “virtual cell”, in the
case of a cyclic wire) admitting no maximal path starting from it. Therefore,
the well-foundedness of µ implies the absence of vicious circles in µ, and by
Lemma 2.16 also in any reduct of µ.

We need only show then that the reduction of µ terminates. For this, let µ0

be a generic well-founded net, and let α be a cell of µ0. We define the weight of
α, denoted ](α), as the sum of the lengths of all maximal paths starting from α
and crossing at least one active pair, i.e., containing a sequence pq where p and
q are the principal ports of two cells of µ0. By definition of well-founded net,
this is a non-negative integer. Then, we define the weight of µ0, still denoted
](µ0), as

](µ0) =
∑

](α),

where the sum is taken over all cells of µ0; this too is clearly a non-negative
integer.

We now prove termination by induction on ](µ):

• ](µ) = 0. This is equivalent to saying that µ contains no active pair. In
fact, the presence of an active pair immediately yields two cells α, α′ such
that ](α), ](α′) > 0; for the converse, by definition the absence of active
pairs implies ](α) = 0 for all α.

• ](µ) > 0. By the previous remark, µ contains an active pair. We reduce
it, obtaining µ′, and we show that ](µ′) < ](µ) (remember that, thanks
to Lemma 2.16, the weight of µ′ is defined). Then we apply the induction
hypothesis: since µ′ is a reduct of µ, if µ′ is total then so is µ.

Proving that the weight strictly decreases is done by a case-by-case anal-
ysis of the six reduction rules. The only interesting case is that of the γδ
rule, since in all other cases the number of cells strictly decreases, and the
paths involved in the rules are shortened.

So let α be one of the two cells involved in a γδ active pair. The rule
being perfectly symmetrical, we can consider only α and one its two copies
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after the application of the rule, which we call α1 and α2. To make the
situation even more symmetrical, it does not harm to assume that both
cells involved in the active pair have weight ](α), so that ](µ) = m+2·](α)
and ](µ′) = m′+2 · ](α1)+2 · ](α2), where m and m′ are suitable integers.

First of all, observe that for each straight path φ “passing through” the
active pair in µ, there is a straight path φ′ of the same length in µ′, and
vice versa. This means that m′ = m.

Now, any maximal path starting from α must pass through one of the
two auxiliary ports of the cell that α is interacting with. This means
that the set of maximal paths starting from α can be partitioned into
two. Moreover, in any case a maximal path starting from α has length
at least 2. Therefore, ](α) =

∑
(w1

i + 2) +
∑

(w2
i + 2), where the wj

i are
suitable non-negative integers, and the sums are taken over the paths in
each element of the partition.

If we turn to α1, we see that all maximal paths starting from it “come
from” the maximal paths starting from α of one of the two components of
the partition considered above. The same holds for α2, so we can write,
for j ∈ {1, 2}, that ](αj) =

∑
wj

i .

Now clearly
∑
w1

i +
∑
w2

i <
∑

(w1
i + 2) +

∑
(w2

i + 2), so we are done.

¤
We observe that well-foundedness is not a necessary condition for a net to

be total. To see why, it is enough to consider the net

δ

δ

This net is not well-founded, since there is an infinite number of maximal paths
starting from both of the cells it contains. And yet, the net is total, because it
reduces in one step to a wire. This shows in particular that well-foundedness is
not stable under anti-reduction.

The reader acquainted to the Geometry of Interaction (GoI) may see that
well-foundedness is indeed a stronger version of nilpotency [Gir89, Laf97]. In
the GoI semantics, fewer straight paths are taken into consideration, namely
those that have a non-null weight in the dynamic algebra, or regular paths
in Danos&Regnier’s terminology. It is possible to show that well-foundedness
formulated in terms of maximal regular paths, i.e., finiteness of regular paths,
becomes also a necessary condition for a net to be total, and thus nilpotency
characterizes total nets. This will be proved in Sect. 3.3, Theorem 3.45.

Although weaker, Proposition 2.17 is however enough for our present pur-
poses; in fact, it suffices to prove the following result, which will be constantly
(and often silently) used in the rest of the section.
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Lemma 2.18 Let ν be a reduced net with n > 0 free ports, and let θ1, . . . , θn

be tests. Then, the net

θ1 θn

. . .

. . . . . .

ν

is total.

Proof. It is not hard to check that the above net is well-founded, therefore
total by Proposition 2.17. ¤
In particular, Lemma 2.18 shows that the net obtained by plugging any two
trees by their roots is total.

2.3.3 The separation theorem

We now formulate and prove an internal separation result similar to Böhm’s
Theorem in the λ-calculus: given two non-βη-equivalent nets, we build a context
separating them.

It is important to observe however that “separating” does not have exactly
the same sense as in Böhm’s classical result: in the λ-calculus, two distinct
βη-normal forms can be separated by sending them to any pair of distinct
terms (the typical choice being the projections λxy.x and λxy.y); in the in-
teraction combinators, the uninformative behavior of the ε combinator forces
it to be one of the separation values, as no context can extract any informa-
tion from it. Therefore, we actually obtain something more akin to Hyland’s
Theorem (sometimes referred to as “semi-separation”), which extends Böhm’s
result to non-normal terms. This reveals a sharp difference between interaction
combinators and the λ-calculus, as “full” separation already fails for normal
nets.

Nevertheless, the separation is still strong enough to have important se-
mantical consequences, i.e., the maximality of βη-equivalence: any non-trivial
denotational semantics of the interaction combinators must distinguish non-βη-
equivalent total nets (cf. Theorem 2.27).

The internal separation result will be formulated for nets with only one free
port. This is just a convenient choice; taking into account nets with more than
one free port is a straight-forward generalization, as will become clear by looking
at the techniques used in the proof.

If µ is a net with one free port and θ a test, we write θ[µ] for the net obtained
by plugging the only free port of µ into the only free principal port of θ (or into
any of its free ports in case θ is a wire). In what follows, we write E for the
net with two free ports consisting of two ε combinators, and W for the net
consisting of a single wire.

Theorem 2.19 (Separation) Let µ, µ′ be two total nets with one free port
such that µ 6'βη µ′. Then, there exists a 2-test θ such that θ[µ] →∗ E and
θ[µ′] →∗ W , or vice versa.
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The Separation Theorem states in particular that, on total nets, 'βη and '
coincide. In fact, the values used for separating two non-βη-equivalent nets are
the prototypical examples of an observable (W ) and a blind (E) net. Addition-
ally, the theorem improves the Context Lemma 2.5 given in Sect. 2.1: not all
principal contexts are needed to discriminate nets, but only tests suffice, i.e.,
principal contexts in which there is no connection between the leaves of the trees
that compose them.

The rest of the section is devoted to the proof of Theorem 2.19. A few
intermediate results are needed, which we go through in the sequel.

Lemma 2.20 Anti-trees are unique up to η-equivalence, i.e., if τ ′ is an anti-
tree of τ , then τ ′ 'η τ

∗.

Proof. We shall prove the following implication:

τ∗

σ

. . .'ητ ′

. . .

. . .

τ

τ ′

. . .

. . .

→∗ σ

. . .

. . .

=⇒

where σ is a generic wiring. The statement of the lemma is obviously a special
case of it.

We reason by induction on τ . If τ = 1, the result is obvious. Let then
τ = δ(τ1, τ2). The key observation is that

. . . . . . . . . . . .

. . .

τ ′

τγ

δ δ

τ ′12 τ ′11 τ ′m2 τ ′m1

. . .

. . . . . . . . . . . .

σ′

=

where τγ is the maximal subtree of τ ′ containing no δ cell. In fact, all leaves of
τγ must be connected to a δ cell; if it were otherwise, a leaf of τγ would be free,
so that τ and τ ′ would not reduce to a wiring. Hence we have
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τγ
. . .

τγ
. . .

. . . . . . . . . . . .

σ′
. . .

τ ′

τ

. . .

τ ′11
. . .

τ ′m1 τ ′m2τ ′12
. . .. . . . . .

. . . . . . . . . . . .

. . . . . .

→∗

τ1 τ2

Now, if we put, for i ∈ {1, 2},

=τ ′i

τγ

τ ′1i τ ′mi. . . . . . . . .

. . .

and if we absorb σ′ and the other wirings into a wiring called σ′′, we obtain

. . .
τ ′1 τ ′2

σ′′

τ1 τ2

. . . . . .

. . .

. . .

. . .

. . .

τ

τ ′

→∗ →∗

σ′′
. . .

. . . . . .

. . .. . .

σ1 σ2
σ

. . .

=
. . .

where σ1 and σ2 must be wirings because by hypothesis σ is a wiring. Now we
can apply the induction hypothesis as follows:

. . .
τ ′i

'η . . .

. . .
σi

τ∗i

for i ∈ {1, 2}. We shall not do it explicitly here, but using the γδ equation, it is
possible to prove by induction on τγ that

. . . . . . . . . . . .. . . . . . . . . . . .

. . .

τ ′ =
τ ′12 τ ′11 τ ′m2 τ ′m1
. . . . . . . . . . . .

σ′

'η

δτγ

δ δ

τ ′12 τ ′11 τ ′m2 τ ′m1

. . .

. . . . . . . . . . . .

σ′

τγ τγ
. . . . . .
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from which we obtain

δ

τ ′2 τ ′1

σ′ σ

σ−1
τ1

τ †

σ−1
τ2

. . .

τ ′ 'η

δ

τ∗1

σ′

'η
σ2 σ1

τ∗2

=

Now the reader can check that, since τ = δ(τ1, τ2), we have

σ−1
τ2

σ−1
τ1=σ−1

τ

which proves what we wanted (see the definition of canonical anti-tree, p. 74).
A similar argument can be given for the case τ = γ(τ1, τ2); the details are left
to the reader. ¤

Lemma 2.21 (Wire characterization) Let ν be a cut-free net with two free
ports. Then, ν is η-equivalent to a wire iff it has the following shape:

. . . . . .

τ τ ′

where τ ′ is an anti-tree of τ .

Proof. The “only if” part is proved by induction on the number of η-equations
applied to “expand” the wire. For what concerns the “if” part, by Lemma 2.20
we have τ ′ 'η τ

∗. It is then not hard to prove that

. . . . . .

τ τ∗ 'η

by induction on τ . The details are left to the reader. ¤
Consider now the principal nets γ1, γ2, δ1, δ2 defined as follows:
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=α1
α

ε ε

=α2
α

where α ∈ {γ, δ}. These nets can be seen as cells behaving according to the
following interaction rules:

→

δi

δj
ε

ε

if i 6= j

if i = j

→

γi

γj

if i 6= j

if i = j

ε

ε

γi

δj

δj

γi

→

Now, if φ is a filiform tree, using the two equations of η-equivalence concerning
the ε combinator, one can see that, for some n, we have

...

α1
i1

αn
in

φ 'η

where αj ∈ {γ, δ} and ij ∈ {1, 2}. For this reason, we shall identify filiform
trees with finite words over the alphabet {γ1, γ2, δ1, δ2}; the example above
corresponds to the word α1

i1
· · ·αn

in
. We can thus show the following:

Lemma 2.22 Let φ be a filiform tree such that
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ε ε

=φ
. . .

τ

. . .

i

where we have numbered the leaves of τ from 1 to n and we have supposed that
the only one not connected to an ε cell is the ith one. Let now φ′ be another
filiform tree, and call µ the net obtained by plugging φ and φ′ together by means
of their roots. Then

1. µ reduces to a wire iff

ε ε

'ηφ′
. . .

τ∗
. . .

j

where j = n− i+ 1;

2. if µ does not reduce to a wire, then its cut-free form contains ε cells.

Proof. We start by proving part (ii). Considering that any filiform tree is
η-equivalent to a sequence of cells interacting as described above, the reader
will easily convince him/herself that the cut-free form of µ must be η-equivalent
to one of the following nets:

ε ε or φ1 φ2

where φ1, φ2 are themselves filiform trees. In any case, if one of φ1, φ2 is different
from 1 (i.e., the cut-free form of µ is not a single wire), then the cut-free form
of µ contains ε cells, because the presence/absence of ε cells is preserved under
η-equivalence.

Let us turn to part (i). The “if” direction is a direct consequence of the
property defining anti-trees (see p. 74). For the converse, suppose that µ reduces
to a wire. By the above remark, we know that φ 'η φ0 = α1 · · ·αm and
φ′ 'η φ

′
0 = α′1 · · ·α′m′ , where the αk and α′k are elements of {γ1, γ2, δ1, δ2}. Call

µ0 the net obtained by plugging φ0 and φ′0 together by means of their roots.
Clearly µ0 'η µ, so µ0 is βη-equivalent to a wire. Now let ω0 be the cut-free
form of µ0. It is enough to inspect the interaction rules introduced at p. 87 to
see that the “filiform structure” is preserved under reduction, i.e., no reduct of
µ0 has more than two auxiliary ports connected together by a wire. But then,
by Lemma 2.21, ω0 must be a single wire as well.

Now, since cells annihilate in pairs, if µ0 reduces to a wire we must have
m′ = m; additionally, for each αk = γ1 (resp. αk = γ2), there must be exactly
one α′l = γ2 (resp. α′l = γ1), and for each αk = δ1 (resp. αk = δ2), there must be
exactly one α′l = δ1 (resp. α′l = δ2), and no γ1 must “meet” a γ1, or a γ2 “meet”
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a γ2, etc. In other words, we must have φ′0 'η α
∗
1 · · ·α∗m, where we put γ∗1 = γ2,

γ∗2 = γ1, δ∗1 = δ1, and δ∗2 = δ2. It is not hard to see that this corresponds to the
canonical anti-tree of τ . ¤

In the following, if ν is a net with two free ports, we use the notation
(φ1, φ2)[ν] to denote the net obtained by plugging the roots of two filiform
trees φ1, φ2 into the free ports of ν.

Lemma 2.23 (Wire separation) Let ν be a cut-free net with two free ports,
such that ν 6'η W . Then, there exist two filiform trees φ1, φ2 such that
(φ1, φ2)[W ] →∗ W and (φ1, φ2)[ν] →∗ E, or (φ1, φ2)[W ] →∗ E and
(φ1, φ2)[ν] →∗ W .

Proof. Since ν 6'η W , by Lemma 2.21 we have three possibilities:

• ν contains at least one ε cell. In this case, we will show how to send ν
to E, and W to itself. First of all, we can assume w.l.o.g. that ν has the
following shape:

ε

=ν

ν0
. . .

τ

where ν0 is a reduced net. Now, consider an anti-tree τ∗ with ε cells
plugged on every leaf except the one corresponding to the ε cell present in
ν. What we obtain is a filiform tree, and the same happens if we repeat
the construction on τ . We then have

ε

εε εε

ε

ε ε

. . .

τ

τ∗
. . .

ν1

εε

ε

ε

ν0
. . .

τ

τ∗ τ
. . . . . .

. . .
ν1

π→∗ →∗ →∗

for a suitable reduced net ν1 and package π. Notice that, on the other
hand, when the same two filiform trees are plugged to the two extremities
of the wire ν′, they annihilate and we obtain again a wire.

If π = ε, we are done; otherwise, w.l.o.g. π can be assumed to be of the
form

=π τ ′

ω̃
. . .

ω̃0
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where ω̃0 is W if π is not an ε-package, or E otherwise. Hence, we can
consider two more filiform trees as in the following net, the reduction of
which gives

ε

ε ε εε ε ε

ε ε

τ ′

ω̃
. . .

. . .. . .
τ ′ τ ′∗

→∗

ω̃0

regardless of the nature of ω̃0. When plugged together through a wire,
these two new filiform trees yield once again a wire. We have thus realized
our goal by using a context consisting of two trees which are in turn
compositions of two filiform trees, and are therefore themselves filiform.

• ν contains no ε cell, and there is a maximal path starting from one of the
free ports of ν and ending into the same free port; in this case too we show
how to send ν to E and W to itself. W.l.o.g., we can assume

ν0
. . .

τ=ν

for a suitable reduced net ν0. Then, we consider two filiform trees which
yield (for some package π) the following reduction:

ε ε ε

ε

. . .

τ

ε ε ε

ν0

τ∗ τ

π→∗

. . . . . .

Now we are back to a situation already met in the first case, which we
know how to handle.

• ν contains no ε cell, and all maximal paths starting from a free port lead
to the other. This time we show how to send ν to W and W to E. The
situation is the following:
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τ1 τ2
=ν

. . .. . .

. . .

σ2σ1

. . .

Suppose first that τ2 and σ2 form an anti-tree τ ′1 of τ1; by Lemma 2.20,
it does not harm to suppose that τ ′1 = τ∗1 . Then, by Lemma 2.21 and by
our assumption that ν 6'η W , σ1 must contain a crossing of wires, so that
there exists a leaf of τ1 and a leaf of τ∗1 which are not “symmetrical” but
are connected by a wire. More precisely, if we number the leaves of τ1 and
τ∗1 from 1 to n, there is a connection between a leaf i of τ1 and a leaf j of
τ∗1 such that j 6= n − i + 1. Then, we can extract this connection using
two filiform trees as follows:

ε ε ε ε

τ1

. . .
σ1

. . . . . .

. . . . . .

i

j

. . . . . . . . . . . .

i j

τ∗1

τ∗1

τ1

→∗

By Lemma 2.22, when the same two filiform trees interact with each other
through W , they yield a net containing ε cells. But then we can stop here,
since we are back to our first case.

In case τ2 and σ2 do not form an antitree of τ1 (and τ1 and σ1 do not form
an anti-tree of τ2), the situation is simpler; we can assume w.l.o.g. that
there is a wire linking the “rightmost” leaf of τ1 to the “leftmost” leaf of
τ2, which can be extracted using two filiform trees as follows:
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ε ε ε ε

τ1 τ2

. . . . . .

ω′

τ∗1 τ∗2
. . . . . .

→∗

Now by Lemma 2.20 τ∗1 and τ∗2 are certainly not anti-trees of each other, so
by Lemma 2.22 their interaction through W produces a net which always
contains at least an ε cell, just as above.

¤

Lemma 2.24 (Equivalence lemma) Let π be a package. Then, for any tree
τ with n leaves, there exists a cut-free net ν with n free ports such that

ν
. . .

τ'βηπ

Proof. Applying in the order Lemmas 2.21 and 2.18, we have

. . .

τ

ν

→∗'ηπ

τ

. . .

π

τ∗

for a suitable cut-free net ν. ¤
We can at last go into the proof of the Separation Theorem 2.19. First of

all, if µ is a total net with one free port and π its cut-free form, by confluence
we have that for any test θ, θ[µ] and θ[π] have the same cut-free form, therefore
it is enough to prove our result for packages.

So let π, π′ be two packages such that π 6'η π
′. Suppose that

ω̃

τ=π

. . .
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By the Equivalence Lemma 2.24, there exists a cut-free net ν such that

ν

τ'βη

. . .

π′

so it does not harm to assume that π and π′ “end” with the same tree.
Now, at least one of the following two situations must apply:

(a) there exists a leaf of τ which is connected to an ε combinator of ω̃, but is
connected to something not η-equivalent to ε in ν;

(b) there exist two leaves of τ which are connected by a wire of ω̃, whereas in
ν the same two leaves are either not connected, or their connection is not
η-equivalent to a wire.

As a matter of fact, if neither (a) nor (b) applied, we would have proved that
π 'η π

′, against our hypothesis.
Suppose that situation (a) applies, and suppose w.l.o.g. that the leaf in

question is the “leftmost” one, i.e., we have

τ

ε ω̃′
. . .

π =

By hypothesis, the “leftmost” free port of ν, let us call it x, is connected to
something not η-equivalent to ε; this means that if we “go up” the tree rooted
at x in ν, let us call it τ0, we must find a leaf of τ0 connected by a wire to some
other tree of ν. It may happen that all connections are within τ0 itself, i.e., we
have

ν

. . .

= τ0

ω̃0
. . .

ν′

. . .

(for graphical convenience, we have assumed w.l.o.g. that there is a direct con-
nection between the “leftmost” two leaves of τ0). Under such assumptions, one
can verify that the 2-test

. . .
ε ε

. . .
ε ε

θ =

τ∗

τ∗0
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is such that θ[π′] →∗ W , whereas θ[π] →∗ E. Suppose instead that τ0 is
connected to some other tree of ν, and suppose w.l.o.g. that this tree is the one
immediately “to the right” of τ0, let us call it τ1:

τ0 τ1

ν′

. . .

=
. . .

ν
. . . . . .

(again, in the picture we have made a convenient assumption about the connec-
tion between τ0 and τ1, without affecting the generality of our argument). In
this case, one may check that the 2-test

ε ε
. . .

ε ε
. . .

ε ε
. . .

θ =
τ∗

τ∗0τ∗1

is such that θ[π′] →∗ W and θ[π] →∗ E.
Let us now consider situation (b), i.e., π has a direct connection for τ which

π′ is missing. Then, we can use an anti-tree τ∗ and isolate the two leaves
involved in the connection:

τ

τ∗

ω̃′′
. . .

. . .

ε ε

→∗

τ

τ∗

. . .

. . .

ε ε

→∗

ν

ν0

(as usual, for graphical purposes we have supposed w.l.o.g. that the two leaves
in question are the “leftmost” ones). It is not too hard to show that, under the
hypotheses we have, ν0 cannot be η-equivalent to a wire. In fact, there are two
cases, depending on the shape of ν. The trivial case is when

. . .
ν =

. . .
ν0 ν1

in which ν0 6'η W by hypothesis. The other case is that in which the two trees
“above” the two “leftmost” free ports of ν are connected to the rest of the net,
i.e., we have
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. . .
ν

. . . . . . . . . . . .

τ1 τ2 τ3 τn
. . .

ω̃1

=

and in ω̃1 there at least one wire connecting a leaf of τ1 or τ2 to a leaf of one of
the τi, for i ≥ 3. In this case, we have

τ

τ∗

. . .

. . .

ε ε

ν

. . . . . . . . . . . .

ε ε ε ε
→∗

τ1 τ2

ω̃1

in which, thanks to the supposed connection, we see that there is at least one
leaf of τ1 or τ2 connected to an ε cell. But this means that ν0 contains at least
one ε cell, which by Lemma 2.21 entails ν0 6'η W .

Hence, the Wire Separation Lemma 2.23 applies, giving us two filiform trees
φ1 and φ2 which are able to distinguish between the wire and ν0. Therefore, if
we define

ε ε
. . .

τ∗θ =

φ1 φ2

we have θ[π] →∗ E and θ[π′] →∗ W , or viceversa, which completes the proof.
Notice that the canonical anti-tree of τ contains γ or δ cells only if τ does;

since the filiform trees of Lemma 2.23 are also built out of canonical anti-trees,
we get the following for free:

Corollary 2.25 (Internal separation for fragments) Theorem 2.19 holds
also for the fragments γε and δε of the interaction combinators.

We conclude by showing how the Separation Theorem can be easily gener-
alized to nets with arbitrary (non-empty) interfaces, as stated at the beginning
of the section. We first need the following lemma:

Lemma 2.26 Let µ, ν be two nets defined as follows:

. . .

. . .

τ

µ0

=µ

. . .

. . .

τ

ν0

=ν
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where τ is a tree and µ0, ν0 two generic nets with at least as many free ports as
the number of leaves of τ . Then, µ 'βη ν implies µ0 'βη ν0.

Proof. The result is obvious: since τ is equal in both nets, and since it can
never be involved in any active pair, all the rewriting work applied to show that
µ and ν are βη-equivalent must take place inside µ0 and ν0. ¤

Let now µ, ν be two total nets with n > 1 free ports such that µ 6'βη ν. We
choose an arbitrary tree τ with n leaves, an form two nets with one free port µ′

and ν′ as follows:

µ

τ

. . .

=µ′

ν

τ

. . .

=ν′

By Lemma 2.26, we still have µ′ 6'βη ν
′. Therefore, Theorem 2.19 applies, giving

us a 2-test θ such that, for example, θ[µ′] →∗ E and θ[ν′] →∗ W . But, applying
Lemma 2.21 and Lemma 2.18 as in the proof of the Equivalence Lemma 2.24,
we get

σ

ε ε

τ0 τ

τ∗

C

. . .

. . .

. . .

. . .

. . .

. . .

= →∗θ

τ0

σ

'η

τ∗

ε ε

where C is a suitable cut-free net. From this we deduce C[µ] 'βη E and
C[ν] 'βη W , so we have found a context separating µ and ν.

2.3.4 Maximality

As anticipated above, internal separation implies the maximality of βη-
equivalence (and thus of ') on total nets:

Theorem 2.27 (Maximality) 'βη is the greatest non-trivial congruence on
total nets containing 'β, i.e., if ∼ is a congruence on total nets such that
'β ⊆ ∼, then either ∼ ⊆ 'βη, or µ ∼ µ′ for all total nets µ, µ′.

Proof. Once again, we prove the result in case µ and µ′ have only one free port;
the general case follows easily. If ∼ is a congruence such that 'β ⊆ ∼, and if
µ ∼ µ′ for two total nets with one free port such that µ 6'βη µ

′, by Theorem 2.19
we have a 2-test θ such that, for example, θ[µ] →∗ E and θ[µ′] →∗ W . Now put
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θ

=θπ

π

where π is any package. It is not hard to verify that plugging µ into the free
principal port of θπ yields a net which reduces to ε (i.e., the ε combinator), while
doing the same with µ′ yields a net reducing to π. But ∼ is a congruence and is
preserved through reduction, so µ ∼ µ′ implies ε ∼ π, for all π. By transitivity
of ∼, and by its stability under reduction, we conclude that it must identify all
total nets with one free port. ¤

2.3.5 On the strength of separation

We have already remarked that the separation achieved by Theorem 2.19 is in
some sense “weaker” than that of Böhm’s Theorem, because of its asymmetry:
the or vice versa in the statement of the theorem is necessary, and cannot be
controlled, i.e., there are pairs of nets that “force” a certain separation, refusing
the symmetrical one (think of the ε package paired with any other non-βη-
equivalent package).

In spite of this, there are nets that can be separated in a “stronger” way.
For example, take the two nets

ε

δ and

If we call γ (resp. δ) the package consisting of a single γ (resp. δ) cell with
its auxiliary ports connected by a wire, we invite the reader to check that the
context

γ

ε

ε

δ δ

δ

δ

sends one of the above nets to γ, and the other to δ. The reader can also check
that the net
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δ

γ γ

γ δ
ε

“exchanges” γ and δ; therefore, this kind of separation is symmetrical, just as
in Böhm’s Theorem.

There are also “intermediate” situations, in which, although Theorem 2.19
holds with an and vice versa, there is no principal net of arity 1 achieving
“strong” separation, i.e., sending one net to γ and the other to δ. An example
is given by the following pair of packages:

δ δ

δ

δ δ

δ

ε ε εε

2.3.6 The separation theorem in the symmetric combina-
tors

In this section, we consider the INS of the symmetric interaction combinators,
with the obvious conventions on the terms “cell”, “net”, and “rule”.

A notion of η-equivalence can be defined also in the symmetric interaction
combinators, just as one would expect:

Definition 2.19 (η-equivalence, symmetric combinators) Two nets µ, µ′

are η-equivalent, notation µ 'η µ
′, iff they can be rewritten one into the other

by means of the following equalities (applied any number of times and under any
context):
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ζ

ζ ζδ δ

δ

'η

α

'η 'η

ε ε

α
ε

α

where α ∈ {δ, ζ}.
As usual, βη-equivalence is defined as the transitive closure of 'β ∪ 'η.

Since the structure of the rules for the symmetric combinators is nearly identical
to that of the interaction combinators, there is no surprise in checking that all
of the results needed to prove internal separation hold without any problem.
Therefore, we have

Theorem 2.28 (Separation, symmetric combinators) The Separation
Theorem 2.19 holds also for the symmetric combinators.

As we shall see, internal separation in the symmetric combinators will be of
crucial importance in the semantical study of Sect. 3.1.

2.4 Totality-based observational equivalence

The observational equivalence discussed so far is based on observing the presence
or absence of certain interaction paths upon interaction with a context. Instead
of this, we can imagine to observe simply normalization, or rather, totality.

2.4.1 Observing totality

About totality upon immersion into a context, in the case of εINS’s we can
prove the following:

Lemma 2.29 If µ is a net and C an adequate context, C[µ] is total iff the net

. . .

. . .

ε ε

µ

C
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reduces to the empty net.

Proof. If C[µ] is total, by definition it reduces to a cut-free net ν, which can
be easily proved to be “eaten up” by ε cells. Conversely, if C[µ] is not total,
then it either reduces to a net containing vicious circles, which by their nature
can never be eliminated, or each of its reducts contains an active pair, which
too cannot be deleted by ε cells. ¤

Therefore, if we are dealing with an εINS, as it is always the case, we can
take as contexts for nets with n free ports. . . nets with n free ports themselves,
which is particularly elegant, because it makes nets and contexts live even more
in “the same world” than before. So, in the rest of the section we shall only
consider εINS’s.

If µ, ν are two nets with the same number of free ports, numbered from 1 to
n, we can build a net o with empty an interface by plugging the free port i of µ
to the free port n− i+1 of ν. This particular way of connecting the two nets is
chosen only for convenience: it assures the planarity of our drawings, because in
our pictures we always assume that the numbering increases from left to right.
Of course any other way of connecting the two interfaces is equivalent, as long
as one is fixed once and for all. Now, o is either total (in which case the only
possibility is that it reduces to the empty net), or not. In the first case, we write
¿ µ | ν À= f, in the second ¿ µ | ν À= Ω.

We can then give the following alternative definition of observational equiv-
alence:

Definition 2.20 Let µ, µ′ be two nets with n free ports. We write µ '◦ µ′ iff,
for any net with n free ports ν, ¿ µ | ν À = ¿ µ′ | ν À.

Of course we can restrict our quantification over cut-free nets only, since using
a non-total net as a context does not give any discriminative power:

Lemma 2.30 (Context) If µ 6'◦ µ′, then there exists a cut-free net ν such
that ¿ µ | ν À 6= ¿ µ′ | ν À.

The difference between ' and '◦ is in spirit akin to the difference between
observing head normalization and normalization tout court in the λ-calculus.
For example, a non-total net “producing” observable paths can be equivalent
to a cut-free net with respect to ' (an example will be given for the interaction
combinators, p. 139), while no such equivalence is ever possible with respect to
'◦. Also, '◦ is based on an a priori distinction between the empty net and
all other nets with no free ports, while all nets with an empty interface are
identified by '.

Nevertheless, contrarily to what happens in the λ-calculus, there is no in-
clusion between the two equivalences (in the λ-calculus, normalization-based
equivalence is strictly more discriminative than the one based on head normal-
ization; in fact, it is well known that the equational theory corresponding to
this latter is the greatest sensible λ-theory). As a matter of fact, a non-total
net producing observable paths and a blind net are distinguished by ', but are
identified by '◦.
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2.4.2 Totality-based equivalence in the interaction combi-
nators

In spite of the discussion at the end of the previous section, it is possible to
prove that, for total nets of interaction combinators (symmetric or not), the
equivalences ' and '◦ coincide.

It is immediate that '◦ ⊆ 'βη. To see this, suppose µ 6'βη µ
′. By Theo-

rem 2.19, we have a test θ such that, for example, θ[µ] →∗ E and θ[µ′] →∗ W .
Then, by connecting the two free auxiliary ports of θ with a wire, we clearly
obtain a package π such that ¿ µ | π À= f while ¿ µ′ | π À= Ω. Moreover,
by a similar argument to that given for Proposition 2.15, we can prove that, on
total nets, 'βη ⊆ '◦. Therefore ', '◦, and 'βη coincide on total nets.

The Separation Theorem also shows that, in the case of the combinators, not
all cut-free nets are necessary as contexts (as Lemma 2.30 says), but “bundles”
of packages already suffice to discriminate between nets. If a net µ has its free
ports numbered from 1 to n, we can take n packages π1, . . . , πn and form a net
with an empty interface by plugging each πi into the free port i of µ; then, we
write ¿ µ | π1, . . . , πn À= f if such a net is total, ¿ µ | π1, . . . , πn À= Ω
otherwise.

Then, the Separation Theorem says that whenever µ, µ′ are two nets with
n free ports such that µ 6'βη µ′, there exist n packages π1, . . . , πn such that
¿ µ | π1, . . . , πn À 6=¿ µ′ | π1, . . . , πn À. This is reminiscent of the Separation
Theorem holding for the designs of Girard’s ludics [Gir01]. In fact, in the
following section we shall relate internal separation to topological separation
exactly as done by Girard in ludics.

2.4.3 Internal separation and topological separation

Following Girard [Gir01], we can give a topological interpretation to the Sepa-
ration Theorem 2.19. Call Π the quotient of the set of packages of combinators
under 'βη. For, π, π′ ∈ Π, define π ¹ π′ iff, for all ρ ∈ Π, ¿ π | ρÀ= f im-
plies ¿ π′ | ρÀ= f. The set Π can be endowed with the Alexandrov topology
associated to ¹: a set O ⊆ Π is Alexandrov open iff it is upper-closed, i.e., if
π ∈ O and π ¹ π′, then π′ ∈ O.

The Separation Theorem states that the Alexandrov topology on Π is T0.
To see why, consider the following. Given X ⊆ Π, define

∼X = {π′ ∈ Π | ∀π ∈ X,¿ π | π′ À = f} .

It is not hard to convince oneself that all sets of the form ∼X are Alexandrov
open. Now take any two distinct π, π′ in Π. This means that π 6'βη π

′; Theo-
rem 2.19 then gives us a package ρ such that ∼{ρ} is a neighborhood of π not
containing π′, or vice versa.

In some cases, the or vice versa can be replaced by an and vice versa,
(cf. Sect. 2.3.5), which means that there exist pairs of packages which are
T1-separable. Nevertheless, there is no hope of achieving T2 (Hausdorff) sepa-
ration for the Alexandrov topology: for all π, π ¹ ε, so the package ε belongs to
all open sets, and the intersection of two neighborhoods can never be empty. It
is interesting to remark in this respect the similarity between the ε combinator
and the daimon of ludics.
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Chapter 3

The Symmetric
Combinators

3.1 Denotational semantics

As already recalled, interaction nets are a generalization of multiplicative proof-
nets. Thus, in seeking a denotational semantics for the symmetric combinators,
it seems natural to draw inspiration from linear logic.

The simplest denotational semantics of linear logic is the relational seman-
tics1, which in the multiplicative case is obtained from coherent spaces by simply
ignoring the coherence relation: a formula A is interpreted by a set |A|, and a
proof of A by a subset of |A|; no particular structure is attached or required
on |A|. In categorical terms, the denotational interpretation takes place in the
category Rel of sets and relations.

The denotational interpretation of a sequent calculus proof is, as usual, de-
fined by induction. More interestingly, the interpretation can also be defined
directly on proof-structures (so, in particular, on proof-nets) by means of ex-
periments [Gir87a]. This will be our main source of inspiration, as a sequent
calculus is obviously not available in our framework.

3.1.1 Companion bijections

The relational semantics of linear logic is typed; in particular, the two multi-
plicative connectives (which are the only ones of interest to us) are interpreted
by the Cartesian product : if the formulas A and B are interpreted resp. by |A|
and |B|, then A ⊗ B and A � B are interpreted by |A| × |B|. Our nets are
not typed, which means that if we see our binary combinators as multiplicative
rules, the natural thing to do would be to consider a set D in bijection with
D ×D, i.e., any infinite set.

The presence of two combinators actually requires two bijections, and the
δζ commutation inspires the following:

1To our knowledge, relational semantics has not been formally introduced in any particular
work. The best way to see it is perhaps as “coherent spaces without coherence”; it has been
considered by many as the starting point for building other denotational semantics of linear
logic (semantics = relational semantics + structure), as for example in the work of Thomas
Ehrhard [Ehr05].
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Definition 3.1 (Companion bijections) Let D be an infinite set and

〈·, ·〉, [·, ·] : D ×D → D

two bijections. 〈·, ·〉 and [·, ·] are said to be companions iff, for all a, b, c, d ∈ D,

〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉].

Companion bijections do exist, as proved by the following example. Let A
be any infinite set, and let β : A×A → A be a bijection. We denote by S(A)
the set of all infinite sequences of elements of A. Then we define two functions
from S(A)× S(A) to S(A) as follows:

〈d, e〉n =
{
dk if n = 2k
ek if n = 2k + 1

[d, e]n = β(dn, en)

In other words, 〈·, ·〉 takes two sequences and builds a new one by interleaving
them, while [·, ·] simply superposes the two sequences using the bijection β. The
two functions are clearly bijections; moreover, given four sequences a, b, c, d, for
even indexes we get

〈[a, b], [c, d]〉2k = [a, b]k = β(ak, bk) = β(〈a, c〉2k, 〈b, d〉2k) = [〈a, c〉, 〈b, d〉]2k,

and similarly for odd indexes, which proves that the two bijections are indeed
companions.

In the rest of the section, we take an infinite set D and define a sufficient
condition that a bijection D × D → D must satisfy in order for a companion
bijection to exist. The result is not strictly needed for the development of
a denotational semantics for the symmetric combinators (the examples given
above suffice), so the uninterested reader may safely skip to Sect. 3.1.2.

In what follows, tree will always mean non-empty finite binary tree. Given
two trees τ1, τ2, we denote τ1•τ2 the tree having τ1 and τ2 as immediate subtrees,
and τ1 ∨ τ2 their lub.

Obviously, (τ1 • τ2) ∨ (τ3 • τ4) = (τ1 ∨ τ3) • (τ2 ∨ τ4). Notice that this equiv-
alence is structurally identical to the equation defining companion bijections
(Definition 3.1); unfortunately, • is not surjective, and ∨ is clearly not injective.
As we will see, our solution will add some structure to binary trees to make
these two functions “become” bijective.

In the following, D2 = D ×D.

Definition 3.2 (Fixpoints) Let 〈·, ·〉 be a function from D2 to D. A full fix-
point of 〈·, ·〉 is an element p ∈ D such that 〈p, p〉 = p. A fixpoint of 〈·, ·〉 is
an element h ∈ D such that 〈h, p〉 = h for some full fixpoint p (therefore, full
fixpoints are particular fixpoints).

Definition 3.3 (Finitary bijection) Let 〈·, ·〉 : D2 → D be a bijection, and
let F be the set of its fixpoints. If F generates D through 〈·, ·〉, then 〈·, ·〉 is said
to be finitary.
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If 〈·, ·〉 is a finitary bijection, any element a ∈ D can be seen as a tree whose
leaves are labelled by fixpoints of 〈·, ·〉. More generally, given a tree τ , we say
that a labeling for τ is a function from the leaves of τ to the fixpoints of 〈·, ·〉.
We will use the notation τ{f} to indicate that the tree τ is labelled by f . The
element of D corresponding to τ{f} will be called its value, and denoted by
¿ τ{f} À.

If f1, f2 are two functions of disjoint domains X1, X2 to D, we write f1 • f2
for the function of domain X1 ∪X2 to D mapping x to fi(x) whenever x ∈ Xi.
Using this notation, it is clear that if τ1{f1} and τ2{f2} are two labelled trees,
then τ1 • τ2{f1 • f2} is also a well defined labelled tree. Moreover, we have

Lemma 3.1 ¿ τ1 • τ2{f1 • f2} À= 〈¿ τ1{f1} À,¿ τ2{f2} À〉.
Proof. Straightforward. ¤

Let f1, f2 be two functions from a set X to D, and g a function from D2 to
D. Then, we write gLf1, f2M for the function from X to D that maps x ∈ X to
g(f1(x), f2(x)).

Lemma 3.2 Let f1, f3 : X → D and f2, f4 : Y → D be four functions such that
X ∩ Y = ∅, and g : D2 → D. Then, gLf1 • f2, f3 • f4M = gLf1, f3M • gLf2, f4M.
Proof. Straightforward. ¤

Labelled trees having the same value are naturally order by τ{f} ≤ τ ′{f ′}
iff τ ≤ τ ′, so we can introduce the following definition:

Definition 3.4 (Canonical tree) If 〈·, ·〉 : D2 → D is a finitary bijection, the
canonical tree of a ∈ D is the smallest element of the set

{τ{f} | ¿ τ{f} À= a} .

Proposition 3.3 (Extension) Let τ{f} be the canonical tree of a ∈ D, and
τ ′ a tree such that τ < τ ′. Then, there exists a unique labeling f̂ of τ ′, called
the extension of f w.r.t. τ ′, such that ¿ τ ′{f̂} À= a.

Proof. f̂ clearly exists, it suffices to extend f remembering that a fixpoint
h is such that 〈h, p〉 = h. The uniqueness comes from the fact that 〈·, ·〉 is a
bijection. ¤

Lemma 3.4 Let τ{f1•f2} be the canonical tree of a ∈ D, and let τ < τ ′. Then,
the extension of f1 • f2 with respect to τ ′ is such that

f̂1 • f2 = f̂1 • f̂2 .

Proof. We first observe that if the labeling is of the form f1•f2, then τ = τ1•τ2
as well, and by definition we have ¿ τi{fi} À= ai, with 〈a1, a2〉 = a. Now, if
τ1 •τ2 < τ ′, then it is necessarily τ ′ = τ ′1 •τ ′2, with τi ≤ τ ′i . It is clear then that if
f̂i are the extensions verifying ¿ τ ′i{f̂i} À= ai, then ¿ τ ′1 • τ ′2{f̂1 • f̂2} À= a,
and we conclude by the uniqueness of the extension (Proposition 3.3). ¤

As remarked above, a finitary bijection 〈·, ·〉 can be seen as a bijective version
of • (the binary tree constructor). As a matter of fact, the only tree which
cannot be written as τ1 • τ2 is the tree made up of a single root/leaf x. Now,
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if h = 〈h, p〉 (with p full fixpoint), we have that the canonical trees of h and
p are resp. x{f} and x′{f ′}, where f(x) = h and f(x′) = p. We clearly have
¿ x • x′{f • f ′} À= h, so even single-node trees can be seen as composition of
two subtrees. We now need a way to make the lub function bijective too; this
will be possible when 〈·, ·〉 is “rich” enough:

Definition 3.5 (Rich bijection) A bijection between D2 and D is said to be
rich iff it has an infinite number of fixpoints.

In the sequel we shall prove that being finitary and rich is a sufficient con-
dition for a bijection to admit a companion:

Theorem 3.5 A finitary rich bijection admits a companion.

Suppose the existence of a finitary rich bijection 〈·, ·〉 : D2 → D. We call F
the set of its fixpoints. Since 〈·, ·〉 is rich, there exists a bijection β : F2 → F .
Now let a, b ∈ D, let τa{fa} and τb{fb} be their respective canonical trees, and
let f̂a and f̂b be the extensions of the two labellings w.r.t. τa ∨ τb. We define

[a, b] =¿ τa ∨ τb{βLf̂a, f̂bM} À

[·, ·] is clearly a function from D2 to D. We claim that [·, ·] is a bijection, indeed
a companion for 〈·, ·〉.

Let us first prove that 〈·, ·〉 and [·, ·] satisfy the equation of Definition 3.1.
Let a1, a2, a3, a4 ∈ D, and let τi{fi} be the canonical trees of ai, for 1 ≤ i ≤ 4.
Then we have, thanks to Lemmas 3.1, 3.2, and 3.4,

〈[a1, a2], [a3, a4]〉 = 〈¿ τ1 ∨ τ2{βLf̂1, f̂2M} À,¿ τ3 ∨ τ4{βLf̂3, f̂4M} À〉 =

= ¿ (τ1 ∨ τ2) • (τ3 ∨ τ4){βLf̂1, f̂2M • βLf̂3, f̂4M} À =

= ¿ (τ1 • τ3) ∨ (τ2 • τ4){βLf̂1 • f̂3, f̂2 • f̂4M} À =

= ¿ (τ1 • τ3) ∨ (τ2 • τ4){βLf̂1 • f3, f̂2 • f4M} À =
= [¿ τ1 • τ3{f1 • f3} À,¿ τ2 • τ4{f2 • f4} À] =
= [〈τ1{f1}, τ3{f3}〉, 〈τ2{f2}, τ4{f4}〉] =
= [〈a1, a3〉, 〈a2, a4〉]

All that remains to do is prove that [·, ·] is a bijection. First of all, let
α1, α2 : F → F be the projections associated to β. We extend these projections
to two functions ρ1, ρ2 : D → D by posing

ρi(a) =
{

αi(a) if a ∈ F
〈ρi(a1), ρi(a2)〉 if a /∈ F and a = 〈a1, a2〉

We will see that actually ρ1 and ρ2 are the projections associated to [·, ·].
Define the function P : D → D2 as P (a) = (ρ1(a), ρ2(a)). We will prove

that P is the inverse of [·, ·], i.e., that

∀a ∈ D, [ρ1(a), ρ2(a)] = a

∀(a1, a2) ∈ D2, (ρ1([a1, a2]), ρ2([a1, a2])) = (a1, a2)

which is enough to prove that [·, ·] is bijective.
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Both equalities will be established by an induction on (a pair of) canonical
trees. For the first one, start assuming that a ∈ F , so that the canonical tree of
a is just a leaf labelled by a itself, a situation that we denote by ε{a}. Clearly,
¿ ε{a} À= a. So we have

[ρ1(a), ρ2(a)] = [α1(a), α2(a)] = ¿ ε ∨ ε{β(α1(a), α2(a))} À = ¿ ε{a} À

and the base case is verified. For the induction step, assume a = 〈a1, a2〉. Then,
we have

[ρ1(〈a1, a2〉), ρ2(〈a1, a2〉)] = [〈ρ1(a1), ρ1(a2)〉, 〈ρ2(a1), ρ2(a2)〉] =
= 〈[ρ1(a1), ρ2(a1)], [ρ1(a2), ρ2(a2)]〉

and we conclude using the induction hypothesis.
For the second equality, start with both a1, a2 ∈ F . Then we have

ρi([a1, a2]) = ρi(¿ ε{β(a1, a2)} À) = αi(β(a1, a2)) = ai .

Then we proceed supposing that a1 ∈ F , but a2 = 〈a′1, a′2〉. Remembering that,
being a1 a fixpoint of 〈·, ·〉, we have 〈a1, p〉 = a1, we can write

ρi([a1, 〈a′1, a′2〉]) = ρi([〈a1, p〉, 〈a′1, a′2〉]) =
= ρi(〈[a1, a

′
1], [p, a

′
2]〉) =

= 〈ρi([a1, a
′
1]), ρi([p, a′2])〉

a1 and p are both fixpoints, so we can apply the induction hypothesis to obtain

ρ1([a1, 〈a′1, a′2〉]) = 〈a1, p〉 = a1

ρ2([a1, 〈a′1, a′2〉]) = 〈a′1, a′2〉

It remains the case a1 = 〈a1
1, a

1
2〉 and a2 = 〈a2

1, a
2
2〉, for which we have

ρi([〈a1
1, a

1
2〉, 〈a2

1, a
2
2〉]) = ρi(〈[a1

1, a
2
1], [a

1
2, a

2
2]〉) = 〈ρi([a1

1, a
2
1]), ρi([a1

2, a
2
2])〉

which by induction hypothesis yields 〈ai
1, a

i
2〉.

We remark here that being finitary and rich is not a necessary condition for
a bijection to admit a companion: as a matter of fact, the set Φ2(A) defined at
p. 107 admits two finitary companion bijections which are not rich as soon as
the base set A is finite.

3.1.2 Experiments and interpretation

The previous section suggests the following definition:

Definition 3.6 (Interaction set) An interaction set is an infinite pointed set
D (the distinguished element being denoted by 0), admitting two companion
bijections

〈·, ·〉, [·, ·] : D ×D → D
such that 〈0,0〉 = [0,0] = 0.
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The distinguished element will be used to interpret the ε combinator. Before
going on, let us prove with a few examples that interaction sets exist. Let Φ(N)
be the set of almost everywhere-zero sequences of natural numbers, and let β
be Cantor’s bijection between N× N and N, i.e., if m,n ∈ N,

β(m,n) =
(m+ n+ 1)(m+ n)

2
+m.

The distinguished element 0 will be the everywhere-zero sequence. Since Φ(N)
is a subset of S(N), we can define the two companion bijections 〈·, ·〉 and [·, ·] of
p. 103. It is obvious that 〈0,0〉 = 0; on the other hand, the equality [0,0] = 0 is
assured by the fact that β(0, 0) = 0. The restriction to almost everywhere-zero
sequences is not fundamental; we imposed it just to show that denumerable
interaction sets exist.

The following is a more symmetric example, which does not rely on a specific
bijection β; indeed, it does not even require such a bijection to exist, as the
base set A can be finite. Take any set A with at least two elements, one
of them denoted by 0, and define Φ2(A) to be the set of almost everywhere-
zero sequences of elements of A indexed by pairs of natural numbers. For any
x, y ∈ Φ2(A), we can define two bijections between Φ2(A)× Φ2(A) and Φ2(A)
as follows:

〈x, y〉i,j =
{
xk,j if i = 2k
yk,j if i = 2k + 1

[x, y]i,j =
{
xi,k if i = 2k
yi,k if i = 2k + 1

The fact that the functions just defined are bijective is obvious: they just build
a new sequence by interleaving two sequences; one of them interleaves them
“horizontally”, the other “vertically”. In other words, our sequences being bidi-
mensional, i.e., “sequences of sequences”, in the first case we consider them as
“sequences of columns”, and interleave them horizontally; in the second case,
we consider them as “sequences of rows”, and interleave them vertically. We
leave it to the reader to check that 〈·, ·〉 and [·, ·] are companions; the fact that
〈0,0〉 = [0,0] = 0 (where 0 is the everywhere-zero sequence) is obvious.

In Sect. 3.3 we shall indeed show that, when A is a monoid, Φ2(A) with the
above bijections is an interaction monoid, so in particular an interaction set.
Interaction sets of the form Φ2(A) will be considered in Sect. 3.2 to show the
existence of models which are fully abstract with respect to the observational
equivalence defined in Sect. 2.1. Even though S2(A) (the set of all bidimensional
sequences on A) is also an interaction set, such a result will crucially depend on
the fact that the sequences considered are almost everywhere-zero.

Let us now see how one can interpret nets of symmetric combinators into a
generic interaction set D.

Definition 3.7 (Experiment) Let µ be a net. An experiment on µ is a func-
tion e : Ports(µ) → D such that:

(a) if i, j ∈ Ports(µ) are connected by a wire, then e(i) = e(j);

(b) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal
port of a δ cell of µ, then e(k) = 〈e(i), e(j)〉;
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(c) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal
port of a ζ cell of µ, then e(k) = [e(i), e(j)];

(d) if i ∈ Ports(µ) is the principal port of an ε cell, then e(i) = 0.

If k1, . . . , kn are the free ports of µ, with n ≥ 1, the tuple (e(k1), . . . , e(kn)) is
called the result of the experiment and is denoted by |e|.
In the following, we write Dn for D × · · · × D n times.

Definition 3.8 (Interpretation) Let µ be a net with n ≥ 1 free ports. The
interpretation of µ in D, written JµK, is defined to be the subset of Dn containing
the results of all possible experiments on µ:

JµK = {|e| ; e experiment on µ}.

The interpretation of a net is always a pointed set, i.e., it is never empty. This
is an immediate consequence of the definition of experiment and of the fact that
0 is a fixpoint of both bijections:

Proposition 3.6 For all µ with at least one free port, 0 ∈ JµK.
Proof. The function assigning 0 to all ports of µ is an experiment. ¤

We can give a few examples to see some concrete applications of the above
definition. Consider the package ε consisting of a single ε cell. There is only
one possible experiment on it, which assigns 0 to the principal port of the ε cell
and to the free port of the package, so JεK = {0}. By Proposition 3.6, this is
the net with the smallest interpretation.

If we take the package δ consisting of a single δ cell whose auxiliary ports
are connected by a wire, we clearly have that all possible experiments are of the
following form:

δ

d d

〈d, d〉

〈d, d〉

so JδK = {〈d, d〉 ; d ∈ D}. Just as an axiom in linear logic, the net W with two
free ports consisting of a single wire is interpreted by the diagonal relation in
D ×D: JW K = {(d, d) ; d ∈ D}. The following is a more involved example:

ζ ζ δ

ε ε〈a, a〉
0 0

[a,0]

[0, 〈a, a〉]
[〈a, a〉,0] = 〈[a,0], [a,0]〉
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In the above picture, a label d on a wire means that the two ports connected
by the wire have both been assigned the element d by the experiment; a is a
generic element of D. We therefore see that, if we call µ the above net, we
have JµK = {[0, 〈a, a〉] ; a ∈ D}. The reader can check that this is also the
interpretation of the following net

δ

ζ

ε

which is the cut-free of form of µ.
As a matter of fact, the interpretation is a denotational semantics for the

symmetric combinators, i.e., it is preserved under reduction. Additionally, it
also models 'η.

Lemma 3.7 (Stability under reduction) Let µ, µ′ be two nets with at least
one free port. Then, µ→ µ′ implies JµK = Jµ′K.
Proof. We need to show that for any experiment e on µ, there exists an
experiment e′ on µ′ yielding the same result, and vice-versa. Since the rewriting
is local, it actually suffices to show that, for all reduction rules, the assignment
given by the experiment e on the interface of the left member of the rule can be
reproduced by e′ on the interface of the right member, and vice-versa; at this
point e and e′ can be assumed to be equal everywhere else, which guarantees
that the results are the same.

The case of the εε annihilation is trivial: e′ is just e restricted to the ports
which do not disappear after the application of the rule.

The δδ and ζζ annihilations are structurally identical, so we shall only con-
sider the first one:

b′ a′

a b

〈a, b〉
δ

δ

a

a′b′

b

→
〈a′, b′〉

Here, a, b, a′, b′ are generic elements of D. The assignment on the left hand side
must satisfy 〈a, b〉 = 〈a′, b′〉, which by the injectivity of 〈·, ·〉 implies a = a′ and
b = b′, therefore the assignment on the right hand side is correct. The converse
is trivial.

For what concerns the commutations, the δε and ζε commutations are again
structurally identical, so we only need to consider the first one:
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b a

δ

〈a, b〉

b a

0
→ ε ε

ε

Again, by injectivity of 〈·, ·〉, the requirement on the left hand side that 〈a, b〉 = 0
implies a = 0 and b = 0, so the assignment on the right hand side is correct.
The converse holds because of the hypothesis that 〈0,0〉 = 0.

On the other hand, for the δζ commutation, we get

ba

b′ a′

δ δ

ζ ζ

a1a2

a′1 a′2b′1 b′2

b2 b1

a b

〈a, b〉
δ

b′ a′

ζ

→
[a′, b′]

In the left hand side we must have 〈a, b〉 = [a′, b′]. By surjectivity of 〈·, ·〉 and
[·, ·], there exist a1, a2, a

′
1, a

′
2, b1, b2, b

′
1, b

′
2 ∈ D such that a = [a1, a2], b = [b1, b2],

a′ = 〈a′1, a′2〉, and b′ = 〈b′1, b′2〉. The above equality and the fact that 〈·, ·〉 and [·, ·]
are companions imply [〈a′1, a′2〉, 〈b′1, b′2〉] = [〈a1, b1〉, 〈a2, b2〉], which by injectivity
of 〈·, ·〉 and [·, ·] in turn implies a′1 = a1, a′2 = b1, b′1 = a2, and b′2 = b2.
Therefore, the assignment defined above for the right hand side of the rule is
correct. Conversely, if we know from the right hand side that a′1 = a1 = c1,
a′2 = b1 = c2, b′1 = a2 = c3, and b′2 = b2 = c4, we have a = [c1, c3], b = [c2, c4],
a′ = 〈c1, c2〉, and b′ = [c3, c4], which means that 〈a, b〉 = 〈[c1, c3], [c2, c4]〉 and
[a′, b′] = [〈c1, c2〉, 〈c3, c4〉]. But since 〈·, ·〉 and [·, ·] are companions, this implies
that 〈a, b〉 = [a′, b′], so the assignment on the left hand side is correct. ¤

Lemma 3.8 (Congruence) Let µ, µ′ be two nets with n free ports, and let C
be a context for µ, µ′. Then, JµK = Jµ′K implies JC[µ]K = JC[µ′]K.

Proof. An experiment on C[µ] must be the union of an experiment e on µ and
an experiment f on C, such that, if i and j are two free ports of resp. µ and C
which are connected in C[µ], e(i) = f(j). The same holds for C[µ′], so, if m is
the number of free ports of C[µ] and C[µ′], we have

JC[µ]K = {d ∈ Dm ; (d, c) ∈ JCK and c ∈ JµK}

JC[µ′]K = {d′ ∈ Dm ; (d′, c) ∈ JCK and c ∈ Jµ′K},
from which we clearly see that if JµK = Jµ′K, then JC[µ]K = JC[µ′]K. ¤
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Lemma 3.9 (Extensionality) Let µ, µ′ be two nets with at least one free port.
Then, µ 'η µ

′ implies JµK = Jµ′K.

Proof. The proof follows exactly the same argument used for Lemma 3.7. We
start by considering the η-expansion for δ, the corresponding rule involving ζ
being structurally identical:

δ

δ

a1a2

a′

a a

a′

'η
a′1 a′2

The left hand side imposes a′1 = a1 and a′2 = a2, which implies a = a′. Con-
versely, the right hand side imposes a′1 = a1; by surjectivity of 〈·, ·〉, a1 and a2

such that 〈a1, a2〉 = a exist, so the assignment on the left hand side is correct.
The cases of the δε and ζε commutations are trivial, and rest upon the fact

that 〈0,0〉 = [0,0] = 0.
The case of the δζ commutation is also trivial:

δ

δ δ

ζ

ζ ζ

'η

b c da b c da

〈[a, b], [c, d]〉 [〈a, c〉, 〈b, d〉]

The two experiments are the same thanks to the fact that 〈·, ·〉 and [·, ·] are
companions. ¤

Lemmas 3.7 and 3.8 together prove that J·K is a denotational semantics
of 'β for the symmetric combinators: it is preserved under reduction, and it
is a congruence. Lemma 3.9 proves that the semantics actually models 'βη.
Moreover, the examples given at p. 108 show that there exist two nets µ, µ′

such that JµK 6= Jµ′K, so the semantics is non-trivial.

3.1.3 Injectivity

So far, we know that for any two nets with at least one free port, µ 'βη µ′

implies JµK = Jµ′K. If we restrict to total nets, the internal separation result
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stated in Sect. 2.1 (Theorem 2.19) ensures also the injectivity of the semantics
with respect to 'βη, i.e., if two total nets have the same interpretation, then
they are βη-equivalent.

Theorem 3.10 (Injectivity) Let µ, µ′ be two total nets with at least one free
port. Then, µ 'βη µ

′ iff JµK = Jµ′K.
Proof. As already said, the forward implication is a consequence of Lem-
mas 3.7 and 3.9. For the converse, which is the actual injectivity property, we
can restrict to packages, since:

• total nets containing active pairs can be reduced and their cut-free form
considered;

• cut-free nets with more than one free port can be “closed” by means of
any fixed tree, and the argument below can thus be easily generalized.

So take two packages π, π′ such that π 6'βη π′. By Theorem 2.19, there
exists a 2-test θ such that θ[π] →∗ E and θ[π′] →∗ W (or viceversa, but we do
not lose generality in assuming this situation), where we rimind that E is the
net with two free ports consisting consisting of two ε cells and W is a single
wire. We therefore have

Jθ[π]K = JEK = {(0,0)}

Jθ[µ′]K = JW K = {(d, d) ; d ∈ D}.
Since D is infinite, Jθ[π]K 6= Jθ[π′]K, which by Lemma 3.8 implies JπK 6= Jπ′K. ¤

Injectivity with respect to 'βη fails in general for non-total nets, as the
following example shows. Let Φ2(A) be an interaction set as introduced at
p. 107. Now consider the following non-total net µ:

δx

y

The labels indicate that the generic experiment on µ in Φ2(A) assigns the se-
quence x on the left auxiliary and principal ports of the δ cell, and the sequence
y to the right auxiliary port of the δ cell and to the free port of µ. Therefore,
we have

JµK = {y ∈ Φ2(A) ; ∃x ∈ Φ2(A).〈x, y〉 = x}.
But Lemma 3.12 (see Sect. 3.2 below) proves that the only possible such y is 0,
so JµK = {0} = JεK, where ε is the package consisting of the sole ε combinator.
Now, both µ and ε do not contain active pairs, hence the only hope of rewriting
one into the other is through η-equivalence. But a simple inspection of the
η-rules of Definition 2.19 reveals that the presence of ε cells is preserved by 'η:
no rule can produce a net containing no ε cell from a net containing one, and
no rule can add ε cells if there are none. Therefore, µ 6'βη ε, and yet JµK = JεK.

This is actually not so surprising; when non-total nets are considered, the
situation is in some sense similar to considering non-normalizable terms in the
λ-calculus. For example, Ω and λx.Ω are not βη-equivalent, and yet they have
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the same interpretation in any sensible model, since they are both unsolvable.
Indeed, we shall see that the interaction sets of the form Φ2(A) are fully ab-
stract models of the observational equivalence defined in Sect. 2.1; in this sense,
identifying the net µ above with the ε combinator is observationally sound, i.e.,
µ ' ε.

3.1.4 Full completeness

If D is an interaction set, even denumerable, for obvious resons of cardinality
not every subset of Dn is the interpretation of some net. In this section we
characterize those that are interpretations of total nets.

In the following, D is a generic interaction set.

Definition 3.9 (Bracket expression) Let x range over a denumerable set of
variables. A simple bracket expression b is a syntactical expression belonging to
the following grammar:

b ::= x | 0 | 〈b, b〉 | [b, b]

A bracket expression is a tuple of simple bracket expressions.

We denote by var(b) the set of variables occurring in the simple bracket expres-
sion b. We define as usual the substitution of a variable y in place of x in b,
denoted by b[y/x]. If x ∈ var(b) and z 6∈ var(b), then we say that b and b[x/z]
are α-equivalent.

Similarly, if B = (b1, . . . , bn) is a bracket expression, we define
var(B) = var(b1) ∪ · · · ∪ var(bn), i.e., variables are shared by the simple expres-
sions in the tuple, and substitution is performed on the whole expression;
α-equivalence is trivially extended, and bracket expressions are always consid-
ered modulo α-equivalence.

If B is a bracket expression containing n simple expressions such that
var(B) ⊆ {x1, . . . , xm}, and if d1, . . . dm ∈ D, we can define an element
B{x1 := d1, . . . , xm := dm} of Dn in the obvious way: just assign each di to xi,
and compute the expression considering the symbols 0, 〈·, ·〉 and [·, ·] as resp. the
distinguished element and the two bijections of D. For example, suppose that
d, e, f are three elements of D such that f = [〈d, e〉, d]; then, if B = [〈x, y〉, x], we
have B{x := d, y := e} = f . In this way, each bracket expression B containing n
simple bracket expressions and a total of m variables defines a function from Dm

to Dn. Because of the obvious shortage of bracket expressions, the assignment
cannot be surjective; it is not injective either, as the expressions 0 and 〈0, 0〉
show (they both represent the constant function 0).

In the following, occx(B) denotes the number of occurrences of the variable
x in the bracket expression B.

Definition 3.10 (Balanced bracket expression) A bracket expression B is
balanced iff, for any variable x, either occx(B) = 0 or occx(B) = 2. A function
from Dm to Dn is said to be balanced if it can be defined through a balanced
bracket expression containing n expressions using m variables. A set B ⊆ Dn is
called balanced if it is the codomain of a balanced function.

Theorem 3.11 (Full completeness) If µ is a total net with n ≥ 1 free ports,
then JµK is balanced. Conversely, if n ≥ 1, given a balanced set B ⊆ Dn, there
exists a cut-free net µ with n free ports such that JµK = B.
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Proof. Since µ is total, we can consider its cut-free form ν. By Lemma 3.7,
JµK = JνK; now, if we remember that cut-free nets are trees of δ and ζ cells with
wires and ε cells “on top”, it is clear that the first statement is a straight-forward
consequence of the definition of experiments.

For what concerns the converse, let B ⊆ Dn be balanced, and let B be the
bracket expression such that B is the codomain of B. Simple bracket expressions
can obviously be provided with a complexity measure ](·), which is the total
number of binary syntactical constructs used:

– ](x) = ](0) = 0;

– ](〈b1, b2〉) = ]([b1, b2]) = ](b1) + ](b2) + 1.

For an expression B = (b1, . . . , bn), we pose ](B) = ](b1) + · · ·+ ](bn).
We can then reason by induction on ](B). If ](B) = 0, knowing

that B is balanced, we can assume without loss of generality that B =
(0, . . . , 0, x1, x1, . . . , xk, xk). It is easy to see that if we interpret the net

. . .

k

ε ε

. . .

n′

(where n′ + k = n), we obtain exactly B.
If ](B) > 0, then we can assume without loss of generality that B =

(〈b′1, b′′1〉, b2, . . . , bn) or B = ([b′1, b
′′
1 ], b2, . . . , bn). In both cases, the bracket

expression B′ = (b′1, b
′′
1 , b2, . . . , bn) has measure strictly smaller than B, so the

induction hypothesis applies, giving us a net µ′ with n+ 1 free ports such that
Jµ′K is the codomain of B′. Clearly, adding a δ or a ζ cell (according to the
shape of B) to µ′ yields a net with n free ports µ such that JµK = B. ¤

The above proof actually tells us that, for n ≥ 1, the balanced subsets of Dn

are in bijection with the cut-free nets with n free ports. As an example, take
the balanced sets induced by the expressions [0, 〈x, x〉] and ([0, x], 〈x, 0〉); they
correspond to the following two nets:

δ

ζ

ε ε ε

ζ δ

This is not surprising at all: a balanced expression is just a list of trees, the
connections between leaves being expressed as pairs of occurrences of the same
variable. Therefore, balanced expressions are nothing but an alternative, linear
syntax for cut-free nets. It must also be mentioned that this full completeness
result is very similar to that proved by Michele Pagani for multiplicative linear
logic proof-nets [Pag06].

114



3.1.5 Semantical characterization of observability

We now give a compact semantical characterization of observability in the model
given by the interaction set Φ2(A), introduced at p. 107 (where A is any set
with at least two elements, one of them called 0). Namely, we shall prove that,
in this model, a net is blind iff its interpretation is the smallest possible one,
i.e., the set containing only the tuple (0, . . . ,0), which by Proposition 3.6 must
always be part of the interpretation of a net. This is similar to what happens
in sensible order-theoretical models of the λ-calculus, in which unsolvable terms
are all assigned the least element of the domain.

In the following, we call 0-column (resp. 0-row) a sequence z ∈ Φ2(A) such
that zi,j 6= 0 implies i = 0 (resp. j = 0), and we call scalars those elements of
Φ2(A) which are both 0-rows and 0-columns.

Lemma 3.12 Both 〈·, ·〉 and [·, ·] are finitary (see Definition 3.3); their fixpoints
are resp. all 0-columns and all 0-lines.

Proof. It is easy to see that for any 0-column z, we have

〈z,0〉 = z.

In fact, we claim that all fixpoints of 〈·, ·〉 are of this form. To see this, we define
for all x ∈ Φ2(A) the “norm” ‖x‖ as the smallest I such that, for all j and for all
i ≥ I, xi,j = 0; this quantity exists because all sequences in Φ2(A) are almost
everywhere null. Observe now that a fixpoint of a bijection must be a fixpoint of
at least one of its two projections. So let π1, π2 be the left and right projections
of 〈·, ·〉, and take a sequence x which is not a 0-column. If we put I = ‖x‖,
this means that I ≥ 2. Recall now that π1(x)I−1,j = x2I−2,j ; but I ≥ 2 implies
2I−2 ≥ I, which by definition of ‖ ·‖ implies π1(x)I−1,j = 0 for all j. Of course
this is true more in general for all i ≥ I − 1, so ‖π1(x)‖ ≤ I − 1 < ‖x‖, hence
π1(x) 6= x. For what concerns π2, we can even make the stronger assumption
that x 6= 0. Then, if we put again I = ‖x‖, we have I ≥ 1. In this case we have
π2(x)I−1,j = x2I−1,j ; but I ≥ 1 implies 2I−1 ≥ I, so once again π2(x)I−1,j = 0,
and we have ‖π2(x)‖ ≤ I − 1 < ‖x‖. Therefore, the only fixpoints of π1 are
0-columns, and the only fixpoint of π2 is 0, exactly as we claimed.

The fact that, for any k ∈ {1, 2}, ‖πk(x)‖ < ‖x‖ whenever x is not a 0-column
also implies that, for any x ∈ Φ2(A), given a long enough sequence k1, . . . , kn

of indices in {1, 2}, πkn · · ·πk1(x) must be a 0-column, which proves that 〈·, ·〉
can generate any element of Φ2(A) starting from its fixpoints.

The bijection [·, ·] is treated in the same way; the only difference is that, in
that case, ‖x‖ must be defined as the smallest J such that, for all i and for
all j ≥ J , xi,j = 0. One sees then that the fixpoints of [·, ·] are all 0-rows.
In particular, the scalars are the only fixpoints in common between the two
bijections. ¤

In the following, we shall adopt the uniform notation L·, ·Mα for our bijections,
where α ∈ {δ, ζ}, so that L·, ·Mδ = 〈·, ·〉 and L·, ·Mζ = [·, ·]. Lemma 3.12 actually
tells us that we can see the elements of Φ2(A) as finite binary trees whose nodes
are labelled by elements of {δ, ζ} and whose leaves are labelled by scalars. Since
〈·, ·〉 and [·, ·] are companions, such a tree is not unique; for example, if x is
the sequence such that x0,0 = a, x0,1 = b, x1,0 = c, x1,1 = d, and xi,j = 0
everywhere else, then

x = 〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉].
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Of course the lack of unicity is also given by the fact that La,0Mα = a for all α
and for any scalar a, so that a leaf of a tree can always be expanded.

Notice however that, in the first case, the two “equivalent” trees have the
same number of nodes, while in the second case we can always choose the
generating tree to be minimal in terms of number of nodes.

Therefore, to each x ∈ Φ2(A) we can associate a non-negative integer ]x
which is equal to the number of nodes of a minimal tree generating x; this
definition is sound because, as remarked above, all such trees have the same
number of nodes. For a scalar a, we have ]a = 0; for any other sequence x,
]x > 0.

Additionally, if we pose

C =
⋃

1≤k<ω

Φ2(A)k,

we can extend the measure ] to the elements of C as follows,

for all (x1, . . . , xn) ∈ C, ](x1, . . . , xn) =
n∑

k=1

]xk.

This will allow us to reason by induction when considering tuples of elements
of Φ2(A). In fact, if use ~x as a generic notation for an element of C, ]~x > 0
means that ~x = (x1, . . . , xi, . . . , xn), where at least xi is not a scalar; then, there
always exists α ∈ {δ, ζ} such that xi = Lx′i, x′′i Mα and ]x′i + ]x′′i < ]xi, so that, if
we put

~x′ = (x1, . . . , x
′
i, x

′′
i , . . . , xn),

we have ]~x′ < ]~x. In the sequel, whenever we “expand” a non-scalar element
x of Φ2(A) as Ly, zMα without specifying α, we always assume that α has been
chosen so that both y and z are not fixpoints, which guarantees that ]y+]z < ]x.

We shall now prove by a realizability argument (cf. Jean-Louis Krivine’s
book [Kri90]) that, given a net µ with n ≥ 1 free ports, if JµK contains a non-
zero tuple of Φ2(A)n, then µ⇓. The converse is trivial; by definition, µ⇓ means
that µ reduces to a net which without loss of generality can be assumed to be
of the form

τ1 τ2

. . .

. . .. . .

µ0

We can then consider the experiment assigning 0 to all ports of µ0, and an
element x 6= 0 to the two ports connected by the wire shown in the above
picture. By injectivity of 〈·, ·〉 and [·, ·], the two “leftmost” free ports (or just
the “leftmost” free port if τ1 = τ2 and the wire connects two leaves of the same
tree) are labelled by non-zero elements of Φ2(A). Then, by invariance under
reduction, (x1, x2, . . . , xn) ∈ JµK, where at least x1 6= 0.

We shall now define what it means for a net to realize an element of C. The
difference with realizability in the λ-calculus is that we shall need to specify
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on which ports a net realizes a tuple, i.e., we shall introduce realization with
respect to a certain subset of the interface of a net.

To make notations lighter, we shall use the following conventions. First of all,
we assume that the free ports of nets are numbered by positive intergers. Then,
whenever a net µ with n ≥ 1 free ports realizes (x1, . . . , xk), with 1 ≤ k ≤ n, we
shall assume that each xi is realized on the free port indexed by i. Additionally,
in graphical representations we shall always suppose that those labelled with
1, . . . , k are the “rightmost” k free ports, with the labelling increasing from left
to right. In other words, the free ports of µ are labelled as follows:

. . .. . .
1 k

µ

It is then implicit that, for example, the net

. . .. . .

µ

realizes (x1, . . . , xk, xk−1). With this convention, the interface on which a tuple
is realized is implicit in the arity of the tuple, so we shall not need to specify
it each time. By the way, in the end we shall be interested in nets realizing
tuples whose arity is exactly equal to the number of their free ports, in which
case there is no choice for the interface, except for the ordering, which is always
assumed to be “from left to right”.

Definition 3.11 (Realizability relation) Let µ be a net with at least n ≥ 1
free ports, and let ~x = (x1, . . . , xn) ∈ C. We define the relation µ ° ~x, which is
read µ realizes ~x, by induction on ]~x:

• ]~x = 0. In this case, the xi are all scalars, and the definition is by induc-
tion on n:

– n = 1, which means that ~x is a single scalar a. Then, µ ° a iff,
whenever a 6= 0,

µ′

. . . . . . . . .

. . . τ1 τ2
→∗µ

where the observable path starting from the “rightmost” free port (the
one on which a is realized) must necessarily use the “leftmost” leaf
of τ2.

– n > 1, which means that ~x = (a1, . . . , an). Then, µ ° (a1, . . . , an) iff
for all 0 < i < n and for all ν such that ν ° (a1, . . . , ai), the net
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. . .. . . . . .

ν
. . .. . .
µ

realizes (ai+1, . . . , an).

• ]~x > 0. This means that at least one of the xi is not a scalar; call it x,
and put ~x = (x1, . . . , x, . . . , xn). Then, µ ° ~x iff, for all α ∈ {δ, ζ} such
that x = Ly, zMα and ]y + ]z < ]x, the net

. . .

µ

. . .

α

. . .

realizes (x1, . . . , z, y, . . . , xn) (of course the port to which the α cell is con-
nected is the port corresponding to x).

Notice that no condition is required to realize the scalar 0: any net realizes it.
In particular, ε ° 0; this will be fundamental for the proof of the Adequacy
Lemma 3.23.

We start by showing a few fundamental properties of the realizability rela-
tion.

Lemma 3.13 (Saturation) Let µ be a net, let ~x ∈ C, and let µ ° ~x. Then:

1. µ′ →∗ µ implies µ′ ° ~x;

2. µ′ 'η µ implies µ′ ° ~x.

Proof. We start by proving point 1, by induction on ]~x. In case ]~x = 0, we
use a further induction on the arity of ~x. In case the arity is 1, the fact is a
trivial consequence of the definition.

If the arity is strictly greater than 1, we pose ~x = (x1, . . . , xn), and we have
to check that, given any 0 < i < n and any net ν realizing (x1, . . . , xi), the net

. . .. . . . . .

ν
. . .. . .
µ′

=µ′′

realizes ~x′ = (xi+1, . . . , xn). Now if, inside µ′′, we reduce µ′ to get µ, we obtain
a net which by hypothesis realizes ~x′; now, the arity of ~x′ is strictly smaller than
that of ~x, so the induction hypothesis applies, and we have µ′′ ° ~x′ for all ν as
above. But then we have just proved that µ′ ° ~x.

We get to the case in which ]~x > 0. We can suppose without loss of generality
that ~x = (~x′, Ly, zMα). Then, we want to prove that the net
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. . .. . .

µ′

α

=µ′′

realizes ~x′′ = (~x′, z, y). Now, just as before, we can reduce µ′ inside µ′′ to get
µ, so that by hypothesis we obtain a net realizing ~x′′. In this case too ]~x′′ is
strictly smaller than ]~x, so by induction hypothesis we have that µ′′ ° ~x′′, which
is what we wanted to prove.

Point 2 is proved in exactly the same way; the only difference is the base
case, i.e., ]~x = 0 and arity 1, in which the argument used is that we know
that η-equivalence cannot alter the observability of a port (in fact, 'η⊆', cf.
Proposition 2.15), and in particular that the observability of the “leftmost” leaf
of the tree on which the scalar is realized is preserved by 'η. We leave the
detials to the reader. ¤

Lemma 3.14 (Mix) Let µ′ ° ~x′ and µ′′ ° ~x′′. Then, the net

. . . . . . . . . . . .

µ′ µ′′

µ =

realizes ~x = (~x′, ~x′′).

Proof. Again, the proof is by induction on ]~x. If ]~x = 0, we reason by
induction on the arity n of ~x. The base case is n = 2, which is trivial. If n > 2,
we need to plug into µ a net ν realizing a “sub-tuple” of ~x, and prove that the
net thus obtained, which we call µ̂, realizes “the rest” of ~x. There are two cases:

• The first one is that in which ~x′ can be decomposed into (~x′1, ~x
′
2), and

ν ° x′1. Then, we need to prove that µ̂ ° (~x′2, ~x
′′). But we know by

hypothesis that composing ν with µ′ yields a net µ0 realizing ~x′2; now,
since (~x′2, ~x

′′) has arity strictly smaller than n, when we juxtapose µ0 to
µ′′, we obtain a net which by induction hypothesis realizes (~x′2, ~x

′′); but
this net is exactly µ̂.

• The second case is that in which ~x′′ decomposes into (~x′′1 , ~x
′′
2), and

ν ° (~x′, ~x′′1), so we need to prove that µ̂ ° ~x′′2 . Here we do not even
need the induction hypothesis: when we plug µ′ into ν, we obtain a net
µ0 which realizes ~x′′1 ; now, plugging µ0 into µ′′ yields a net realizing ~x′′2 ,
which is exactly µ̂.

For what concerns the case ]~x > 0, we can suppose without loss of generality
that ~x′′ = (~x′′0 , Ly, zMα), so we need to prove that the net

. . . . . . . . .

µ′ µ′′

µ̂ = . . .

α
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realizes (~x′, ~x′′0 , z, y). Now, by hypothesis, if we remove µ′ from µ̂, we obtain a
net µ0 realizing ~y = (~x′′0 , z, y). Of course we have ]~y < ]~x′′, so the induction
hypothesis gives us that the net obtained by juxtaposing µ′ and µ0 realizes
(~x′, ~x′′0 , z, y); but this net is nothing but µ̂ itself. ¤

Lemma 3.15 (Composition) Let µ ° (~x1, ~x2). Then, for any net ν such that
ν ° ~x1, the net

. . .. . . . . .

ν
. . .. . .
µ

realizes ~x2.

Proof. We pose ~x = (~x1, ~x2), and we reason by induction on ]~x. If ]~x = 0, then
the result follows immediately from the definition. If ]~x > 0, we can suppose
without loss of generality that ~x2 = (~x′2, Ly, zMα). Now, by definition we know
that the net

. . .. . .

µ

α

=µ′

realizes ~x′ = (~x1, ~x
′
2, z, y). Since ]~x′ < ]~x, the induction hypothesis assures us

that when we plug ν into µ′, we obtain a net which realizes (~x′2, z, y). But then,
by definition, removing the α cell from this net yields a net realizing ~x2, which
is what we wanted to prove. ¤

Lemma 3.16 If W is a single wire, then for all x ∈ Φ2(A), W ° x.

Proof. By induction on ]x. If x is a scalar, the result a trivial consequence of
the definition. If x is not a scalar, then any tree generating x from scalars by
means of 〈·, ·〉 and [·, ·] naturally induces a tree τ (in the sense of a net), and,
by definition, µ ° x is equivalent to the fact that the net

τ

. . .

=µ

realizes (a1, . . . , an), where n is the arity of τ , and the ai are the scalars gener-
ating x. But then, by definition, proving µ ° (a1, . . . , an) amounts to showing
that, for any 0 < j < n and any net ν realizing (a1, . . . , aj), the net
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. . . . . .. . .. . .

ν τ=µ′

realizes (aj + 1, . . . , an). We can prove this by induction on n. The base case is
n = 2 (n = 1 would mean that x is a scalar, and µ = W ), in which case clearly
there is an observable path starting from the “rightmost” port of µ′ no matter
what net ν we plug into the other leaf of τ . The induction step is trivial: some
leaves of τ are connected to ν, leaving a number smaller than n free, to which
the induction hypothesis applies. ¤
The following is an immediate application of the above results:

Corollary 3.17 If µ ° (~x1, ~x2), then µ ° ~x2.

Proof. From Lemma 3.16 and the Mix Lemma 3.14, we know that the net

. . .. . .

realizes ~x1. Then, by the Composition Lemma 3.15, the net

. . . . . .. . .. . .
µ

realizes ~x2; but the above net is µ itself! ¤
It is perhaps useful to observe here the difference between realizing separately

two elements x, y ∈ Φ2(A) on two free ports, and realizing the couple (x, y)
simultaneously on the same two ports. For example, as Lemma 3.16 shows, it is
correct to write that W ° x on one free port and W ° y on the other; however,
as we shall see in Lemma 3.19, W ° (x, y) only if x = y.

Lemma 3.18 (Adaptation) Let ~x = (x1, . . . , xn) ∈ C, and let µ ° ~x. Then,
for all 1 ≤ i ≤ n, xi 6= 0 implies µ⇓i.

Proof. For convenience, we shall suppose i = n. As usual, the proof is by
induction on ]xn. If xn is a scalar, by Corollary 3.17 we know that µ ° xn, and
since xn 6= 0, by definition we have µ⇓n.

If xn = Ly, zMα, we know by hypothesis and by Corollary 3.17 that the net

. . .. . .

µ

α

=µ′

realizes (z, y). Now one of y, z must be different from 0; then, by induction
hypothesis, we have µ′⇓k, where k is the free port of µ′ associated to the non-
zero element. But then part 2 of Lemma 2.3 implies µ⇓n. ¤
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Lemma 3.19 Let W be a single wire. Then, for all x ∈ Φ2(A), W ° (x, x).

Proof. By induction on ]x. If x is a scalar, we just need to check that plugging
any net ν such that ν ° x on any extremity of W yields a net realizing x; but
this is trivial, since the net obtained in this way is exactly ν itself. If x = Ly, zMα,
we need to check that the net

α

realizes (Ly, zMα, z, y). But, by definition, this is equivalent to saying that the
net

αα

realizes (z, y, z, y). Such a net reduces to

which by induction hypothesis and the Mix Lemma 3.14, does indeed realize
(z, y, z, y); we can then conclude by saturation (Lemma 3.13). ¤

Lemma 3.20 Let ~x = (~y, x), and suppose that µ ° ~x. Then, for all α ∈ {δ, ζ},
if x = Ly, zMα, and if

µ′ =

α
. . .

µ

then µ′ ° (~y, z, y).

Proof. By induction on ]~x. If ]~x = 0, we reason by induction on the arity of
~x. If it is 1, then ~x is a scalar a; if a = 0, we leave it to the reader to check that
any net realizes (0,0). Then we can assume a 6= 0, and we must prove that
µ′ ° (0, a). By definition, we must first of all check that if we plug the port
realizing a of some net ν into the “rightmost” free port of µ′, we obtain a net
realizing 0; but this is obvious, since any net realizes 0. Then, we must take a
generic net ν (which surely realizes 0), and make sure that the net
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µ′′ =

α
. . .

µν

. . .

realizes a. By hypothesis, we do have µ ° a, so if we reduce µ inside µ′′, we
must obtain

ν µ1

τ1 τ2

α

. . .. . .

→∗µ′′

. . . . . .

for some net µ1. Now, by Lemma 2.18, the net made of τ2 and α is total; if we
call ν′ its cut-free form, we have

ν µ1

τ1

. . .. . .

→∗µ′′

ν′

. . .

and we invite the reader to check that, regardless of the shape of τ2, there is
always an observable path in ν′ from the rightmost free port to τ1, so that the
last net obtained indeed realizes a. Then, we can conclude by saturation.

Suppose now that the arity of ~x is greater than 1. Then, we put ~y = (~y′, ~y′′),
and for any ν ° ~y′, we must have that the net

µν

α

. . . . . . . . . . . .. . .
=µ′′

realizes (~y′′,0, a), where x = a, and a is a scalar. But if we remove the α
cell from µ′′, we have by hypothesis a net realizing (~y′′, a). Now (~y′′, a) has
arity strictly smaller than ~x (~y′ contains at least one element), so the induction
hypothesis applies, and we have µ ° (~y′′,0, a) as desired.
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The base case being verified, we can suppose ]~x > 0. If this is because
of an element of ~y, i.e., ~y = (y1, . . . , yi, . . . , yn) with ]yi > 0, then by our
hypothesis that µ ° ~x we know that there exists β ∈ {δ, ζ} such that yi =
Ly′i, y′′i Mβ and ]y′i + ]y′′i < ]yi, so that, if call µ′′ the net obtained by plugging
the principal port of a β cell to the free port of µ realizing yi, we obtain a
net realizing (y1, . . . , y′′i , y

′
i, . . . , yn, x), to which the induction hypothesis can be

applied. Therefore, we can suppose that ]~y = 0, and ]x > 0. Now, if x = Ly, zMα
and ]y+ ]z < ]x, the thesis holds by definition of realizability. So we must only
check the case in which z = 0 and y is a fixpoint of L·, ·Mα.

Observe that ]x > 0 implies that y cannot be a scalar; so, if α = δ (resp.
α = ζ), by Lemma 3.12 we have that y is a 0-column (resp. a 0-row) and we
put β = ζ (resp. β = δ). We now have y = Ly1, y2Mβ with ]y1 + ]y2 < ]y, and
y1, y2 are still fixpoints of L·, ·Mα. By hypothesis, the net

µ

. . .

β

realizes (~y, y2, y1). But ](~y, y2, y1) < ]~x, so by applying twice the induction
hypothesis we obtain that the net

β

α α

. . .

µ

realizes (~y,0, y2,0, y1). Hence, by saturation, the net

. . .

µ

β

α

β

realizes (~y,0,0, y2, y1). Now, since there is no condition on realizing 0, we
can remove the leftmost β cell and obtain a net realizing (~y,0, y2, y1); but, by
definition, this means that µ′ ° (~y,0, Ly1, y2Mβ) = (~y,0, y). ¤

Lemma 3.21 If µ ° (~x, y, z), then, for all α ∈ {δ, ζ}, the net
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µ

α

. . .

=µ′

realizes (~x, Ly, zMα).

Proof. By induction on n = ](~x, Ly, zMα). If n = 0, y is a scalar and z = 0.
We can then reason by induction on the arity of ~x. This may as well be zero,
in which case the fact that µ′ ° y is an easy consequence of the definition. In
case the arity of ~x is greater than 0, we work as usual: we decompose ~x into
(~x′, ~x′′), with the arity of ~x′ being at least 1, and we plus a net ν ° ~x′ into µ′,
obtaining a net µ′′. If we remove the α cell from µ′′, we find a net realizing
(~x′′, y,0); since the arity of ~x′′ is strictly smaller than that of ~x, we apply the
induction hypothesis, and infer that µ′′ ° (~x′′, y), which implies by definition
that µ′ ° (~x, y).

We get to the case n > 0. As in the proof of Lemma 3.20, if this is beacuse
of an element of ~x, we can always expand an element xi of ~x such that ]xi > 0
and apply the induction hypothesis. Then, we can suppose that ]~x = 0. We
start by analizing the case ]y + ]z = n. This implies z = 0 and that y is a
non-scalar fixpoint of L·, ·Mα. Then, by denoting by β the “other” binary cell
which is not α, we know that y = Ly1, y2Mβ , with ]y1 + ]y2 < ]y, and y1, y2
are as well fixpoints of L·, ·Mα. By hypothesis, and by the fact that there is no
condition on realizing 0, we have that the net

β β

µ

. . .

realizes (~x, y2, y1,0,0). Now ](~x, y2, y1,0,0) < n, so the induction hypothesis
applies (twice) and, if we put

β β

µ

. . .

α α

=µ′′

we get µ′′ ° (~x, Ly2,0Mα, Ly2,0Mα) = (~x, y2, y1). But the net
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µ

. . .

α

β

reduces to µ′′, so by the Saturation Lemma 3.13, it also realizes (~x, y2, y1); but
then, by definition, µ′ ° (~x, y).

We are left with the case in which ]y + ]z < n. First of all we have, by
saturation, that the net

µ

α

. . .

α

realizes (~x, z, y), because it reduces to a net which by hypothesis realizes that
tuple. In case z = 0, and y is a fixpoint of L·, ·Mβ , this is enough to prove that
µ′ ° (~x, Ly, zMα). Otherwise, given y = Ly1, y2Mβ and z = Lz1, z2Mβ , we have

Ly, zMα = LLy1, z1Mα, Ly2, z2MαMβ ,
and we must check that

µ

. . .

α

β

=µ′′

realizes (~x, Ly2, z2Mα, Ly1, z1Mα). Now, by hypothesis, the net

β β

µ

. . .

realizes (~x, y2, z2, y1, z2). This tuple has measure strictly smaller than n, so we
can apply (twice) the induction hypothesis and obtain that the net
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β β

µ

. . .

α α

=µ′′

realizes (~x, Ly2, z2Mα, Ly1, z1Mα). Since µ′′ reduces to the above net, we can con-
clude by saturation. ¤

Lemma 3.22 If µ ° (~x1, x, ~x2, x, ~x3), then the net

. . .. . .. . .
=µ′ µ

realizes (~x1, ~x2, ~x3), where the two ports connected by the wire are those corre-
sponding to the two occurrences of x.

Proof. To simplify the notations, we shall ignore ~x1 and ~x2, and we shall
assume that ~x3 is of arity 1 and equal to y, so µ ° (x, x, y); the proof in the
general case is identical, but much heavier with respect to the notations. First
of all, if τ is the tree naturally induced by a tree generating y from scalars, then,
by definition, saying that µ′ ° y is equivalent to saying that the net

µ

τ

. . .

realizes (a1, . . . , an), where n is the arity of τ and the ai are the scalars from
which y is generated. Therefore, we can assume y to be a scalar; if it is not, we
just add the required trees and, as the reader may check, the proof carries on
without any difference.

Now we reason by induction on ]x. Suppose first that x is a scalar. By
Lemma 3.19, the wire W realizes (x, x); but notice that µ′ can be seen as
the result of plugging W into µ, which by hypothesis realizes (x, x, y), so by
definition µ′ ° y. If x = Lx1, x2Mα, by hypothesis we know that the net

αα

µ
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realizes (x2, x1, x2, x1, y). Therefore, by applying twice the induction hypothe-
sis, we infer that the net

αα

µ

realizes y. But the above net is η-equivalent to µ′, so we can conclude thanks
to saturation (Lemma 3.13). ¤

Finally, here comes the crucial Adequacy Lemma:

Lemma 3.23 (Adequacy) Let µ be a net with at least one free port, and let
e be an experiment on µ. Then, µ ° |e|.
Proof. We reason by induction on the number of cells contained in µ. Notice
that µ cannot be empty; therefore, if µ contains no cells, it is necessarily a wiring
plus a number of cyclic wires (which by the way are ignored by the semantics).
This implies that |e| is a tuple of even arity, in which elements appear exactly
twice. But by Lemma 3.19 and the Mix Lemma 3.14, a wiring always realizes a
tuple of this form.

If µ contains at least one cell, we first distinguish the case in which µ has a
free principal port. If it is the principal port of an ε cell, then we can assume
without loss of generality that

ε

. . .

µ′=µ

In this case, |e| = (~x,0). Now, the restriction e′ of e on µ′ is clearly such
that |e′| = ~x, and since µ′ has fewer cells than µ, we can use the induction
hypothesis and say that µ′ ° ~x. Remember now how we observed, right after
Definition 3.11, that ε ° 0; hence, an application of the Mix Lemma 3.14 allows
us to conclude that µ ° (~x,0).

If the free principal port is that of a binary cell α, we can assume that

µ′

α

. . .

=µ

so that |e| = (~x, Ly, zMα). Again, the restriction e′ of e on µ′ yields |e′| = (~x, y, z).
Now, µ′ being smaller than µ, we can use the induction hypothesis and obtain
µ′ ° (~x, y, z). But then Lemma 3.21 applies, giving us µ ° (~x, Ly, zMα).

The only case left is that in which no free port of µ is principal. The
interesting configuration is
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µ′

. . .

=µ

α

In fact, if both auxiliary ports of α are free, the result is trivial consequence
of Lemma 3.20. Now, in the above situation, we have |e| = (~x, x). Then, by
definition, the restriction of e on µ′ must assign the tuple (~x, y, Lx, yMα) to the
free ports of µ′, where y is some element of Φ2(A). Once again µ′ has fewer cells
than µ, so an application of the induction hypothesis gives us µ′ ° (~x, y, Lx, yMα).
By definition, this means that the net

µ′

. . .
α

realizes (~x, y, y, x). It is then enough to apply Lemma 3.22 to conclude that
µ ° (~x, x). ¤

The following proposition is now an easy corollary of the Adequacy Lemma:

Proposition 3.24 Let µ be a net with n ≥ 1 free ports, numbered from 1 to n,
and let (x1, . . . , xn) ∈ JµK. Then, xi 6= 0 implies µ⇓i.

Proof. By definition of JµK, the tuple (x1, . . . , xn) must be the result of an
experiment on µ, so the Adequacy Lemma tells us that µ ° (x1, . . . , xn); but
then we can conclude by applying Lemma 3.18. ¤

Corollary 3.25 (Semantical characterization of observability) Let µ be
a net with at least one free port. Then, µ⇓ iff JµK 6= {(0, . . . ,0)}.

This semantical characterization has as immediate corollary the adequacy
of the model Φ2(A) with respect to the observational equivalence defined in
Sect. 2.1:

Proposition 3.26 (Semantical adequacy) For all nets µ, ν, JµK = JνK im-
plies µ ' ν, where the interpretation is taken in Φ2(A).

Proof. Consider the contrapositive statement, and assume that there exists a
context C such that, for example, C[µ]⇓ and C[ν]⇑. Then, by Corollary 3.25,
JC[ν]K = {0}, while JC[µ]K contains non-zero elements of Φ2(A). But, thanks
to Lemma 3.8, JC[µ]K 6= JC[ν]K implies JµK 6= JνK. ¤

3.1.6 Why the symmetric interaction combinators?

The reader may wonder why we have chosen to work with the symmetric com-
binators instead of the “standard” ones, which enjoy a stronger universality
property. The answer is of technical nature: there is a detail in the reduction
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rules of the interaction combinators which renders impossible the formulation
of a relational semantics like the one considered here.

We remind that the “standard” interaction combinators are defined exactly
as the symmetric ones, except that instead of ζ there is a binary cell γ, which
interacts with itself as follows:

γ

γ

→

All other interaction rules are unchanged. Notice that the above rule “ex-
changes” the auxiliary ports of the two γ cells: the first port of each cell is
connected to the second port of the other cell. On the contrary, the δδ (and
ζζ) annihilation connects first port with first port and second port with second
port.

Now, in a relational semantics, reduction is modeled by composition of rela-
tions: if the “rightmost” free port of a net µ is connected to the “leftmost” free
port of a net µ′, the denotational semantics of the resulting net will be (see the
proof of Lemma 3.8)

JµK ◦ Jµ′K = {(a, c) ; (a, b) ∈ JµK, (b, c) ∈ Jµ′K}.
This is ensured by our definition of experiment. But if we try to define

experiments in the presence of the γγ annihilation, we see that the only way
for the interpretation to model reduction is that both of the auxiliary ports of
γ cells receive the same value. In fact, in the rule

γ

γ

→(a, b)

a b

b a b

a b

a

we clearly need a = b. This is an unreasonable restriction; for example, it would
imply that the following two nets receive the same semantical interpretation:

ε

εεγ ≈

These two nets are not βη-equivalent; from Theorem 2.27, we infer that in such
a situation, if we ever managed to model 'β , we would do so by identifying all
total nets with a non-empty interface.

130



The argument given here of course does not rule out the possibility of find-
ing a denotational semantics for the interaction combinators; it simply shows
that the standard definitions do not work, and justifies our shift towards the
symmetric combinators.

3.2 Full abstraction

The aim of this section is to investigate the possibility of finding a fully-abstract
semantics for the symmetric combinators, with respect to the observational
equivalence introduced in Sect. 2.1. In other words, we seek a semantics in
which ' becomes an equality. Such a result would be analogous to Wadsworth
and Hyland’s result in the λ-calculus [Wad76, Hyl76], relating the observational
equivalence based on head normalization to the local structure of Scott’s D∞
model.

Unfortunately, we do not know at present how to define an interaction set
such that its corresponding interpretation satisfies the full abstraction property.
Nevertheless, we do have a syntactical model, similar to the model of Bhöm trees
in the λ-calculus, which fully corresponds to the observational equivalence. This
may serve as a starting point to find a “more semantical” model enjoying full
abstraction.

3.2.1 Edifices

We now introduce certain structures, called edifices, which can be seen as the
symmetric combinators’ equivalent of Böhm trees. Because of the symmetries
of interaction nets, i.e., the fact that there is no distinguished conclusion, these
structures will not be trees (or sets of branches), but rather sets of (unordered)
pairs of branches, called arches, which correspond to observable paths.

In what follows, C = {p,q}N, i.e., the set of infinite binary words2, ranged
over by x, y.

Definition 3.12 (Stream) A stream is an element of S = C × C, ranged over
by u, v, w and denoted by x⊗ y.

From here on, we fix a denumerably infinite set L of locations. We shall assume
L = N, but no algebraic structure is needed on locations. The elements of L will
be ranged over by i, j. A base is a finite set of locations; bases will be ranged
over by I.

Definition 3.13 (Pillar) A pillar is an element of P = S×L, denoted by u@i,
and ranged over by ξ, υ. The pillar u@i is said to be based at i.

Definition 3.14 (Arch) An arch is an unordered pair of pillars; formally, it
is a multiset containing exactly two pillars, denoted by ξ _ υ (or υ _ ξ). The
set of all arches is denoted by A and ranged over by a. An arch is based at the
locations at which its pillars are based.

2The notations we use for binary words and pairs of words have been chosen to be remi-
niscent of those used in the Geometry of Interaction (cf. Sect. 3.3)
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Observe that C is “the” Cantor space, on which we can define the usual
distance

d(x, y) = 2−k

where k is the length of the longest common prefix between x and y. By defini-
tion, P = C ×C ×L, so if we put the discrete topology on L, P can be endowed
with the product topology, which is also metrizable, with the distance

dP(x⊗ y@i, x′ ⊗ y′@i′) = max{d(x, x′), d(y, y′), ddisc(i, i′)},

where ddisc is the discrete distance. From this, if a = ξ _ υ and a′ = ξ′ _ υ′,
we can define

D(a, a′) = min{max{dP(ξ, ξ′), dP(υ, υ′)},max{dP(ξ, υ′), dP(υ, ξ′)}}.

In other words, we compare the pillars of the two arches in the two possible
ways, and we choose the one giving the “best correlation”. One can check that
in this way we obtain a distance, so A is also a metric space.

Definition 3.15 (Edifice) An edifice is any set E ⊆ A. We say that an edifice
E is of base I iff, whenever a ∈ E and a is based at i, j, then i, j ∈ I. An edifice
is complete iff it is a complete metric subspace of A; we denote by E the metric
completion of an edifice E.

3.2.2 Edifices as infinite cut-free forms

Definition 3.16 (Approximation) Let µ0, µ be two nets with the same num-
ber of free ports. We say that µ0 approximates µ, or that µ0 is an approximation
of µ, and we write µ0 v µ, iff µ0 is a cut-free net of the form

. . .
ε ε

. . .
ν

and

. . .

. . .
ν

µ′

→∗µ

for some net µ′.

Observe that, if µ is a net with n free ports, then the net with n free ports
consisting only of ε combinators is an approximation of µ: simply take, in the
picture of Definition 3.16, ν to be the identity wiring and µ′ = µ. In fact, from
the semantical point of view, we have that µ0 v µ implies Jµ0K ⊆ JµK, where
the interpretation is taken in any interaction set. To see this, observe that,
by definition, µ0 v µ implies that µ reduces to a net having µ0 as a cut-free
subnet, modulo some ε cells. With the notations of Definition 3.16, we can write
µ0 = ν[ε] and µ→∗ ν[µ′], where ε denotes a net made of the suitable number of
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ε cells. Now, given an experiment on µ0, it is always possible to turn it into an
experiment of ν[µ′]: simply assign 0 to all ports of µ′. Therefore, Jµ0K ⊆ Jν[µ′]K.
But the interpretation is stable under reduction, hence the claim.

Of course, if µ is total with cut-free form ν, then ν v µ, and ν is “maximal”
among the approximations of µ. If µ is not total, then there is no “maximal”
cut-free net approximating it. What is needed is a sort of infinite cut-free form,
i.e., a cut-free form which exists even if a net is not total, just as Böhm trees
can be seen as infinite normal forms of λ-terms which exist even if they are
non-normalizable (or unsolvable). This inspires the following definitions.

Let W = {p,q}∗, ranged over by a, b, with the empty word denoted by 1.
We call biword any element of Sfin = W×W ; biwords are denoted by a⊗ b and
ranged over by s, t. Sfin is a monoid with respect to the following concatenation
operation:

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

The neutral element is of course 1 ⊗ 1. Concatenation can be extended in the
obvious way into an operation from Sfin × S to S. We say that a finite biword
s is a prefix of a stream u when u = su′ for some stream u′. In this case, we
write s < u.

Definition 3.17 (Address of a leaf) We associate an element of Sfin to each
leaf of a tree τ , called its address in τ , by induction on τ :3

• if τ = 1, we associate to its only leaf the empty word 1;

• if τ = δ(τ1, τ2), and the leaf in question is a leaf of τ1 (resp. τ2) whose
address in that tree is s, then its address in τ is (p⊗1)s (resp. (q⊗1)s);

• if τ = ζ(τ1, τ2), and the leaf in question is a leaf of τ1 (resp. τ2) whose
address in that tree is s, then its address in τ is (1⊗p)s (resp. (1⊗q)s).

In the sequel, we shall always assume that the free ports of a net are labelled
by locations; for example, we can assume that the free ports of a net µ with
n free ports are labelled by the integers in the base I = {1, . . . , n}. For this
reason, we shall say that a net has base I iff I is as above and µ has n free ports.
Moreover, we shall assume that all nets have non-empty interfaces, so that I is
never empty.

Definition 3.18 (Edifice of a cut-free net) Let ν be a reduced net of base
I. Remember that ν can always be decomposed as

ω̃

τ1 τn
. . .

. . . . . .

. . .

ν =

Then, any leaf of any τi is uniquely identified by the pair (s, i), where s is its
address in τi. We say that (s, i) is connected to (t, j) iff there is a wire in ω̃

3This address is nothing but the GoI weight of the path starting from the leaf and going
down to the root of τ , see Definition 3.22.
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linking the two leaves. Then, we define the edifice of ν, which will be of base I,
as the set

E•(ν) = {sw@i _ tw@j | (s, i), (t, j) connected, ∀w ∈ S}.

Notice that the edifice of a cut-free net is either empty (when the net consists
solely of ε-packages) or infinite, and in that case its cardinality is ℵ1. Addition-
ally, it has the property of being complete:

Lemma 3.27 Let ν be a cut-free net of base I. Then, E•(ν) is complete.

Proof. Let i, j ∈ I; we shall assume i 6= j, and invite the reader to adapt
him/herself the proof in case i = j. Let a1, . . . , an, . . . be a Cauchy sequence of
E•(ν). We denote by ξn, υn the pillars of an based resp. at i and j; these pillars
are in turn denoted by un@i, vn@j. Now let q be the maximum of the lengths
of all words appearing in all addresses (which we remind are finite biwords) of
the leaves of ν. Because the sequence considered is Cauchy, we know that there
exists k ≥ 1 such that, if we choose m,n ≥ k, we have D(am, an) < 2−q. Now
suppose that dP(ξm, ξn) = 2−p and dP(υm, υn) = 2−r; we have

D(am, an) = min{max{dP(ξm, ξn), dP(υm, υn)}, 1} = max{2−p, 2−r} < 2−q,

so p, r > q. Now, by Definition 3.18, the streams um and un must extend
two addresses sm and sn of ν. But um and un agree on a prefix which is
strictly longer than any such address, so they actually extend the same address;
this is also true for vm and vn. Therefore, using again Definition 3.18, there
exist in ν two leaves of resp. addresses s and t such that, for all n ≥ k, we
have an = swn@i _ twn@j for some stream wn. The limit of the sequence is
obviously of the form su@i _ tv@j; but if u 6= v, then, for n big enough, there
would exist an an of a form different from the one given above. Hence, the limit
of the sequence must also have the form sw@i _ tw@j, and is thus in E•(ν) by
definition. ¤

Definition 3.19 (Approximate edifices) Let µ be a net of base I. We define
the set of approximate edifices of µ as

Apx(µ) = {E•(µ0);µ0 v µ}.

Definition 3.20 (Edifice of a net) Let µ be a net of base I. The edifice of
µ, denoted by E(µ) and of base I, is the completion of the lub of Apx(µ), i.e.,

E(µ) =
⋃

Apx(µ).

We observe that the above definition is compatible with Definition 3.18. In fact,
if ν is cut-free, it is easy to see that, for all ν0 v ν, we have E•(ν0) ⊆ E•(ν); more-
over, ν v ν, so E•(ν) ∈ Apx(ν). These two remarks imply

⋃
Apx(ν) = E•(ν).

Then, by Lemma 3.27, we obtain E(ν) = E•(ν).

3.2.3 Edifices as semantics

The interpretation of nets as edifices actually gives an alternative denotational
semantics for the symmetric combinators. In fact, we have the following:
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Lemma 3.28 Let µ→∗ µ′. Then, E(µ) = E(µ′).

Proof. By definition of edifice of a net, it is enough to prove that Apx(µ) =
Apx(µ′). Suppose µ0 v µ. Then, we know that µ→∗ ν[µ1], where ν is cut-free
and µ0 = ν[ε], ε being a suitable net consisting solely of ε cells. By confluence,
there exists o such that both ν[µ1] and µ′ reduce to o; but ν is cut-free and
there are no active pairs between ν and µ1, so we must have o = ν[µ′1], where
µ1 →∗ µ′1. Therefore, µ0 is an approximation of µ′ too. The converse is trivial:
whatever reduct of µ′ is a reduct of µ as well. ¤

Lemma 3.29 Let ν, ν′ be two cut-free nets such that ν 'η ν′. Then,
E•(ν) = E•(ν′).

Proof. It is easy to see that the addresses of leaves are invariant under the δζ
equation. The case of an equation involving ε is trivial, because ε cells produce
no arch in the edifice of a cut-free net. It remains to check the δδ and ζζ
equations. Firs of all observe that, since ν and ν′ are cut-free, these equations
can only be applied to a wire connecting two auxiliary ports, or an auxiliary
port and a free port, or two free ports; in fact, if this were not the case, there
would be active pairs in one of ν, ν′. Let us concentrate on the δδ equation,
the ζζ equation being structurally identical. We can suppose without loss of
generality that

τ2τ1 τ3 τn
. . .

. . . . . .. . . . . .

ω̃

=ν

and

δ δ

ω̃

τ2τ1 τ3 τn

. . . . . . . . . . . .

. . .

=ν′

(τ1 may be equal to τ2, and the wire in ν may then connect two leaves of the
same tree, but this does not pose any problem to the argument we shall give
below). Suppose that s and t are the addresses of the two leaves of resp. τ1 and
τ2 connected by the wire shown in ν. Then, the four “new” leaves of ν′ receive
the following addresses, from left to right in the above picture: s(p⊗1), s(q⊗1),
t(p⊗1), and t(q⊗1). This means that s(p⊗1)w@1 _ t(p⊗1)w@2 ∈ E•(ν′) and
s(q⊗ 1)w@1 _ t(q⊗ 1)w@2 ∈ E•(ν′) for all w; clearly, these arches belong to
E•(ν) as well, because, by definition, E•(ν) contains the arches sw@1 _ tw@2
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for all w. But all arches of this latter form are also in E•(ν′); in fact, if we pose
w = x⊗y, since x is infinite, it must either be of form px′ or qx′, so that either
w = (p⊗ 1)(x′ ⊗ y) or w = (q⊗ 1)(x′ ⊗ y). ¤
The next result is similar to the Equivalence Lemma 2.24, even though here we
do not have any requirement concerning totality:

Lemma 3.30 Let µ be a net with n free ports, and let τ1, . . . , τn be trees. Then,
there exists a net µ′ such that

µ′
. . . . . .

. . .
τ1 τn

'ηµ

Proof. A trivial application of Lemma 2.21. ¤

Lemma 3.31 µ 'η ν implies E(µ) = E(ν).

Proof. It is enough to show that Apx(µ) = Apx(ν); we shall only prove one
inclusion, the other being analogous thanks to the symmetry of 'η and 'βη.
So suppose that µ0 v µ. We can always write

ω̃ε ε

σ

τ1 τn

. . . . . .

. . . . . .

. . .

=µ0

so that

ω̃

σ

τ1 τn

. . . . . .

. . . . . .

. . .

→∗µ

µ′

for some net µ′. We call µ′′ the net obtained by juxtaposing µ′ and ω̃, and if
µ′ has m free ports, we write ω̃′ for the net obtained by juxtaposing m ε cells
and ω̃. Then, if we call µ1 the net consisting of the forest τ1, . . . , τn plus the
permutation σ, we can write more concisely that µ→∗ µ1[µ′′] and µ0 = µ1[ω̃′].
Now, by hypothesis ν 'η µ, so ν 'βη µ1[µ′′]. But by Lemma 3.30 there exists a
net ν′ such that ν 'η µ1[ν′], so µ1[µ′′] 'βη µ1[ν′]. By Lemma 2.26, this implies
µ′′ 'βη ν′, because µ1 is a forest. In particular, whenever two free ports are
connected by a wire in ω̃ (and thus of ω̃′), the corresponding two free ports of
ν′ are connected by something βη-equivalent to a wire. Hence, by Lemma 2.21,
these connections reduce to nets η-equivalent to wires, so that there exists a ν0
such that ν0 v ν and ν0 'η µ0. But then, by Lemma 3.29, E•(µ0) ∈ Apx(ν). ¤
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Proposition 3.32 µ 'βη ν implies E(µ) = E(ν).

Proof. A corollary of Lemmas 3.28 and 3.31. ¤
There is also a characterization of observability which is similar to that given by
Corollary 3.25, which this time comes straight-forwardly from the definitions:

Proposition 3.33 A net µ is observable iff E(µ) 6= ∅.
Proof. Suppose µ ⇓. Then, by definition, there is an approximation of µ
different from the net containing only ε cells, hence E(µ) 6= ∅. Conversely, if
µ⇑, then by definition no observable path ever develops between any free port
of µ, so E(µ) = ∅. ¤

The following result is fundamental. It is the reason why metric completeness
has been considered, instead of a simple union of successive approximations.

Lemma 3.34 Let µ, µ′ be two nets of base I. Then, E(µ) 6= E(µ′) implies
that there exist i, j ∈ I, two finite biwords s, t, and two cut-free nets µ0 v µ
and µ′0 v µ′ such that, if we put aw = sw@i _ tw@j, either for all w
aw ∈ E•(µ0) \ E(µ′), or for all w aw ∈ E•(µ′0) \ E(µ).

Proof. Set E0 =
⋃

Apx(µ). Suppose, without loss of generality, that there
exists a ∈ E(µ) \ E(µ′), based at i, j ∈ I. If such an arch has been added in
completing E0, then there exists a Cauchy sequence an ∈ E0 of limit a. Since a
subsequence of a Cauchy sequence is still a Cauchy sequence, there must exists
an integer m such that, for all n ≥ m, an ∈ E0 \ E(µ′), otherwise a would
belong to E(µ′) because of its completeness. Therefore, modulo replacing it by
one of these an, we can always assume that a ∈ E0, i.e., that it has not been
added in the completion process. If it is so, then by definition there exists an
approximation µ0 of µ such that a ∈ E•(µ0), which means that a = sw0@i _
tw0@j and, for every stream w, sw@i _ tw@j ∈ E•(µ0), where s and t are
the addresses of two leaves of µ0 connected by a wire. Now let s′1, . . . , s

′
n, . . . be

a sequence of prefixes of increasing length of w0, and set, for all n, sn = ss′n
and tn = ts′n. Suppose that, for all n, there exist two streams un, vn such that
an = snun@i _ tnvn@j ∈ E(µ′); it is not hard to verify that the arches an

would form a Cauchy sequence of limit a, and thus, by the completeness of
E(µ′), we would obtain a ∈ E(µ′), a contradiction. Therefore, there must exist
an integer n such that, for all w, snw@i _ tnw@j ∈ E•(µ0) \ E(µ′). ¤

We can now show that edifices completely characterize the observational
equivalence ':

Theorem 3.35 (Full abstraction) Let µ, ν be two nets with n ≥ 1 free ports.
Then, E(µ) = E(ν) iff µ ' ν.

Proof. Set E = E(µ) and F = E(ν). We shall only show the actual full
abstraction property, i.e., that µ ' ν implies E = F; the other implication
is a consequence of Proposition 3.33. For this, we consider the contrapositive
statement, and assume E 6= F. Let I be the base of µ and ν. By Lemma 3.34,
we know that there exist i, j ∈ I, µ0 v µ, and two leaves of µ0 of addresses s, t
such that, for all w, sw@i _ tw@j ∈ E•(µ0) \F (it could actually be that these
arches belong to E•(ν0) \E, where ν0 v ν, but obviously our assumption causes
no loss of generality). We shall suppose i 6= j; the reader is invited to check
that the argument can be adapted to the case i = j. By Definition 3.18, and by
the fact that µ0 v µ, we have
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. . . . . . . . . . . .
s t

τi τj

i j

→∗µ

. . .

µ′

where we have explicitly drawn the connection between the two leaves of resp.
addresses s and t. On the other hand, by Lemma 3.30, we have

. . . . . . . . . . . .
k l

τi τj

i j

'ην

. . .

ν′

where we have called k and l the two free ports of ν′ corresponding resp. to the
addresses t and s in of τi and τj . Observe that, by Proposition 3.32, the edifice
of the net on the right is still F. Now if, in any reduct of ν′, there appeared an
observable path between k and l, then we would contradict the fact that, for all
w, sw@i _ tw@j 6∈ F. Therefore, no observable path ever develops between k
and l, which means that ν′ is relatively blind on {k, l} (see Sect. 2.2.3).

Consider then the context

i j

. . .

. . . . . . . . . . . .

ε ε ε ε ε ε

s t

=C τ∗i τ∗j

where we have used the canonical antitrees defined at p. 74, and we have left
free only the leaves corresponding to the addresses s and t of τi and τj . Now
clearly C[µ]⇓; on the other hand, we have

ε ε ε ε ε ε

lk

ν′

→∗C[ν] . . . . . . . . . . . . . . .

But ν′ is relatively blind on {k, l}, so by Claim 2.3.1 (Sect. 2.2.3), C[ν]⇑. ¤
As an immediate application of Theorem 3.35, we give an example of a

net which is not total, and yet is observationally equivalent to a wire; this
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is analogous to Wadsworth’s “infinitely η-expanding” term J = RR, where
R = λxzy.z(xxy), which is well known to be observationally equivalent to the
identity I = λz.z, if one considers the observational equivalence based on solv-
ability (and not on normalizability). In fact, consider a net with the following
property:

ι

δ δ

ι →∗

Such a net exists by the arguments given in Sect. 1.3.2, p. 40. By inspecting
the reductions of ι, one can show that its approximations are all and only of the
form

δ

...

δ

ε

δ

ε

...

δ

. . . . . .

Observe that all approximations of ι are “almost” η-equivalent to a wire: they
just lack the “rightmost” connection. This connection forms only in the limit,
and this is what the completion accounts for. In fact, if we call 1 and 2 the two
free ports of ι, in

⋃
Apx(ι) there is, for all n and for every word y, an arch of

the form
an = (qnpx⊗ y)@1 _ (qnpx⊗ y)@2,

where x is an infinite word. The arches an form a Cauchy sequence converging
to (q∞ ⊗ y)@1 _ (q∞ ⊗ y)@2, where q∞ is the word consisting of an infinite
sequence of q’s. But then we have

E(ι) = {u@1 _ u@2 ; for every stream u},

which is exactly E(W ) = E•(W ), where W is the net consisting of a single wire.
Hence, by Theorem 3.35, we have ι 'W .

Note that the set of all edifices is huge (its cardinality is ℵ2). It would be
interesting to see if there exist a number of conditions characterizing those sets
of arches which are the edifice of some net (a full completeness result). Surely
one can restrict to edifices having a base, i.e., such that all arches are based on
a finite set of locations.
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Another condition which may be useful is coherence: if we denote by |a| the
support of an arch seen as a multiset, then we say that a and a′ are coherent
iff |a| ∩ |a′| is either empty or of cardinality 2. In other words, two arches are
coherent iff they are either equal and non-degenerated (composed of two distinct
pillars), or completely disjoint. One can verify that the edifice of a net is always
a clique with respect to this coherence relation. This is because the presence
of an arch in the edifice of a net reflects the presence of an observable path in
one of its reducts. An observable path is determined by a wire connecting two
leaves of two trees; coherence simply says that a wire must connect two different
leaves, and that to each leaf at most one wire can be attached.

Of course, much more needs to be done (and understood) for a full com-
pleteness result to be achievable.

3.3 The Geometry of Interaction

In this section we develop an algebraic semantics for the symmetric combinators,
in the style of Girard’s Geometry of Interaction (GoI) [Gir89], already sketched
by Lafont [Laf97]. We do so in connection with the denotational semantics
introduced above, and prove that there is a strong link between the two.

3.3.1 Interaction monoids

Up to here, we have seen that any infinite pointed set D can serve as the domain
for the denotational semantics of nets of symmetric combinators. We shall see
that it may be of interest to add some algebraic structure to D; the least we
can require is that D is a monoid.

In the following, the composition u ◦ v of two monoid endomorphisms is
denoted simply uv.

Definition 3.21 (Interaction monoid) An interaction monoid is a commu-
tative monoid (M,+, 0) admitting eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗

such that the functions 〈x, y〉 = c(x) + d(y) and [x, y] = f(x) + g(y) are com-
panion isomorphisms between M ⊕M and M , and c∗,d∗ and f∗,g∗ are their
respective projections.

Proposition 3.36 A commutative monoid (M,+, 0) is an interaction monoid
iff there exist eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗ of M such that:

1. c∗c = d∗d = f∗f = g∗g = 1, where 1 is the identity on M ;

2. c∗d = d∗c = f∗g = g∗f = 0, where 0 is the everywhere-zero endomor-
phism on M ;

3. cc∗ + dd∗ = ff∗ + gg∗ = 1;

4. c, c∗,d,d∗ commute with f , f∗,g,g∗.

Proof. Let us first prove that Definition 3.21 implies the four statements above:

1. By definition, for every x ∈ M , c(x) = 〈x, 0〉, and by the hypothesis that
c∗ is the left projection of 〈·, ·〉, we obtain c∗c(x) = c∗(〈x, 0〉) = x. The
same applies to the other annihilations.
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2. As above, for every x ∈ M we have d(x) = 〈0, x〉, from which we obtain
c∗d(x) = c∗(〈0, x〉) = 0. The same applies to the other annihilations.

3. From the surjectivity of 〈·, ·〉, given x ∈ M we know that there exist
y, z ∈M such that x = 〈y, z〉. Then, we have

(cc∗ + dd∗)(x) = cc∗(x) + dd∗(x) = c(y) + d(z) = 〈y, z〉 = x.

The case ff∗ + gg∗ = 1 is identical.

4. To prove that c,d commute with f ,g simply consider that, by the com-
panion hypothesis, for all x ∈ M , 〈[x, 0], 0〉 = [〈x, 0〉, 0], from which
we get cf(x) = fc(x), and 〈[0, x], 0〉 = [0, 〈x, 0〉], from which we obtain
cg(x) = gc(x), and so on.

To prove that c,d commute to f∗,g∗ consider, given a generic x ∈M , the
(unique) decomposition x = [y, z], so that

f∗c(x) = f∗cf(y) + f∗cg(z) = f∗fc(y) + f∗gc(z) = c(y) = cf∗(x),

where we have used point 1 and 2 proved above. The other cases are
handled similarly, as also the commutations between f ,g and c∗,d∗.

To prove that c∗,d∗ commute to f∗,g∗, we consider the same decomposi-
tion above for the generic x ∈M , and we obtain

f∗c∗(x) = f∗c∗f(y) + f∗c∗g(z) = f∗fc∗(y) + f∗gc∗(z) = c∗(y) = c∗f∗(x),

and similarly for the other cases.

Assume now that the eight endomorphisms verify the four statements above.
The fact that the maps (x, y) 7→ c(x) + d(y) and (x, y) 7→ f(x) + g(y) are
homomorphisms from M ⊕ M to M is obvious; we need to prove that they
are bijective. We shall do it for the first map, the second being structurally
identical.

Suppose that, given x, x′, y, y′ ∈ M , c(x) + d(y) = c(x′) + d(y′); then,
applying c∗ (resp. d∗) to both sides of the equation and using points 1 and
2, we get x = x′ (resp. y = y′), which proves injectivity. For what concerns
surjectivity, by point 3 for any element x ∈ M there exist y, z ∈ M such that
x = c(y) + d(z): just pose y = c∗(x) and z = d∗(x). The fact that c∗,d∗ are
the projections associated to this isomorphism is trivial.

We are left to proving that the two isomorphisms are companions. If we
pose 〈x, y〉 = c(x) + d(y) and [x, y] = f(x) + g(y), using point 4 we have

〈[w, x], [y, z]〉 = cf(w) + cg(x) + df(y) + dg(z) =
fc(w) + fd(y) + gc(x) + gd(z) = [〈w, y〉, 〈x, z〉],

which completes the proof. ¤
If (A,+, 0) is a commutative monoid, then the set Φ2(A) of all almost

everywhere-zero sequences of elements of A indexed by pairs of non-negative
integers is an example of interaction monoid. Addition is defined pointwise,
and the neutral element is the everywhere-zero sequence; the eight endomor-
phisms are defined as follows:

c(x)m,n =
{
xk,n if m = 2k
0 if m = 2k + 1 c∗(x)m,n = x2m,n
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d(x)m,n =
{

0 if m = 2k
xk,n if m = 2k + 1 d∗(x)m,n = x2m+1,n

f(x)m,n =
{
xm,k if n = 2k
0 if n = 2k + 1 f∗(x)m,n = xm,2n

g(x)m,n =
{

0 if n = 2k
xm,k if n = 2k + 1 g∗(x)m,n = xm,2n+1

from which it is not hard to check that points 1, 2, and 3 of Proposition 3.36 are
satisfied. For what concerns point 4, just notice that c, c∗,d,d∗ and f , f∗,g,g∗

act on separate indexes, so all operations commute.
Interaction monoids are clearly interaction sets (the distinguished element is

the zero of the monoid), so Definitions 3.7 and 3.8 can be applied just as they
are, yielding a semantics that interprets a net with n ≥ 1 free ports as a subset
of Mn, where Mn = M ⊕ · · · ⊕M .

Since we are considering monoids, it makes sense to add experiments point-
wise, i.e., given a net µ and two experiments e1, e2 on µ over an interaction
monoid M , we can define the function e1 + e2 from Ports(µ) to M that asso-
ciates to a port i the element e1(i)+ e2(i). One may wonder whether this yields
another experiment; the answer is indeed positive:

Lemma 3.37 (Additivity) Let µ be a net, and e1, e2 two experiments on µ
over an interaction monoid M . Then, e1 + e2 is an experiment.

Proof. The fact that e1 +e2 respects conditions (a) and (d) of Definition 3.7 is
obvious. Conditions (b) and (c) are consequences of the fact that our companion
bijections are monoid isomorphisms. For example, in the case of a δ cell, whose
auxiliary and principal ports are resp. i, j, and k, we have

(e1 + e2)(k) = e1(k) + e2(k) = 〈e1(i), e1(j)〉+ 〈e2(i), e2(j)〉 =
= 〈e1(i) + e2(i), e1(j) + e2(j)〉 = 〈(e1 + e2)(i), (e1 + e2)(j)〉.

The case of a ζ cell is identical. ¤
Therefore, if µ is a net with n ≥ 1 free ports, JµK is not just any subset of Mn,
it is a submonoid :

Corollary 3.38 Let µ be a net with n ≥ 1 free ports, and M an interaction
monoid. Then, the interpretation of µ in M is a submonoid of Mn.

Proof. By the Additivity Lemma 3.37, the only thing left to verify is that
0 ∈ JµK, which is obvious. ¤

3.3.2 The GoI semantics

Given an interaction monoidM , we shall now define a semantics which interprets
a cut-free net with n ≥ 1 free ports as an endomorphism of Mn = M ⊕ · · · ⊕
M . This is just a reformulation of what already done by Lafont [Laf97], so
most proofs will be omitted. Our only original contribution is the proof of
Theorem 3.45.

In the following, we denote by R the sub-semiring (with unit) of End(M)
generated by c, c∗,d,d∗, f , f∗,g,g∗.
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Definition 3.22 (Weight) Let M be an interaction monoid, µ a net, and p a
straight path of µ (see Definition 2.1). We define the weight of p in M , which
is an element of R and is denoted w(p), by induction on the length of p:

– p contains just one port: w(p) = 1 (the identity endomorphism);

– p = p′ · i, and the ending port of p′ and i do not belong to the same cell:
w(p) = w(p′).

– p = p′ · i, where p′ ends with the left (resp. right) auxiliary port of a δ
cell, and i is the principal port of the same δ cell: w(p) = cw(p′) (resp.
w(p) = dw(p′));

– p = p′ · i, where p′ ends with the principal port of a δ cell, and i is the
left (resp. right) auxiliary port of the same δ cell: w(p) = c∗w(p′) (resp.
w(p) = d∗w(p′));

– p = p′ · i, where p′ ends with the left (resp. right) auxiliary port of a ζ
cell, and i is the principal port of the same ζ cell: w(p) = fw(p′) (resp.
w(p) = gw(p′));

– p = p′ · i, where p′ ends with the principal port of a ζ cell, and i is the
left (resp. right) auxiliary port of the same ζ cell: w(p) = f∗w(p′) (resp.
w(p) = g∗w(p′)).

Given a graph-theoretical path, one can always consider its reversal, i.e., the
same path walked from target to source. Notice that the reversal of a straight
path is still straight. The unit semiring R can be equipped with an involution
(·)∗:

• (c)∗ = c∗, (c∗)∗ = c, and similarly for the other generators;

• 0∗ = 0, and for all u, v ∈W , (u+ v)∗ = u∗ + v∗;

• 1∗ = 1, and for all u, v ∈W , (uv)∗ = v∗u∗.

It is then straight-forward to check the following:

Lemma 3.39 (Reversal) Let µ be a net, p a straight path of µ, and p′ the
reversal of p. Then, w(p′) = w(p)∗.

By definition, if p is a straight path, w(p) is either the identity, or a composi-
tion of the endomorphisms c,d,g, f and c∗,d∗,g∗, f∗. We call such compositions
(plus the identity as well) monomials. It is easy to see that, if w(p) 6= 0, then
w(p) is equal to a monomial of the form ab∗, where a is a composition of c,d,g, f
and b∗ is a composition of c∗,d∗,g∗, f∗.

We are now ready to define the GoI interpretation of a cut-free net:

Definition 3.23 (GoI interpretation) Let M be an interaction monoid, let
ν be a cut-free net with n ≥ 1 free ports, and let Pji be the set of straight paths
of ν starting from the free port j and ending into the free port i. The GoI
interpretation of ν in M is an endomorphism of Mn, which we represent as a
formal n× n matrix ν•, whose entries are defined as follows:

ν•ij =
∑

p∈Pji

w(p).
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i and j range over the free ports of ν, and the sum is intended to be equal to 0
(the everywhere-zero endomorphism) if Pji = ∅.
If A is a formal matrix with coefficients in R, we can define A∗ as the transpose-
involute matrix of A: (A∗)ij = (Aji)∗. Then, the following clearly holds from
Lemma 3.39 applied to Definition 3.23:

Proposition 3.40 If ν• is the GoI interpretation of a cut-free net ν, then

ν•∗ = ν•.

We can give a few examples to clarify the definition. If ε, δ, and W are
the three nets defined in Sect. 3.1.2, p. 108, we have ε• = 0, δ• = cd∗ + dc∗,
while W • is the “flip” endomorphism of M ⊕M , i.e., W •(x⊕ y) = y ⊕ x. It is
represented by the following matrix:

W • =
[

0 1
1 0

]
.

A slightly more complicated example is the net

δ

δ ζ

ζ
ε

ε

whose GoI interpretation is
[

cg(cd∗ + dc∗)g∗c∗ df∗

fd∗ 0

]
.

In all cases, the reader can check that Proposition 3.40 is verified.
The reader may wonder why we have restricted our interpretation to cut-

free nets, in sharp contrast to Definition 3.8, where the denotational semantics is
defined for any net. The reason is quite simple: in the absence of any restriction,
Definition 3.23 would not make sense in general, since Pji may contain an infinite
number of non-zero-weighing paths. As a matter of fact, consider the following
example:

δ ζ
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There is obviously an infinite number of straight paths from, for instance, the
left free port to the right one; their weights are c∗(fd∗)ng, for every n ∈ N. No
element of R can be associated to the sum of all these paths, so the interpretation
would be undefined. On the other hand, the following result assures us that
Definition 3.23 is sound as we formulated it:

Proposition 3.41 Let ν be a cut-free net with at least one free port, and let
i, j be two free ports (maybe the same) of ν. Then, Pji is finite.

Proof. Remember the general decomposition of a cut-free net with n ≥ 1 free
ports: n trees τ1, . . . , τn with an ε-wiring ω̃ “on top”. Now, a straight path p
from port j to port i is necessarily of the following shape: p goes up along one
branch of τj from the root to its leaf, which is connected through a wire of ω̃
to a leaf k of τi; p follows this connection, and then goes down the branch of
τi leading from k to its root. Therefore, the number of straight paths in Pji is
bounded by the number of leaves of τj , which is of course finite. ¤

Any net with n ≥ 1 free ports and k active pairs and/or vicious circles can
be decomposed as follows:

. . . . . .

ν

kn

where ν is cut-free and has n+2k free ports. Notice that, because of the possible
presence of vicious circles, ν is not unique in general. Nevertheless, given an
interaction monoid M and a net µ with at least one free port and k active
pairs and/or vicious circles, we can associate to µ at least one endomorphism
µ• of Mn+2k, which is the GoI interpretation of the net ν in one of the possible
decompositions; the association will be unique exactly when µ does not contain
vicious circles.

We also consider the endomorphism σn,k of Mn+2k defined by the formal
matrix

σn,k =




0
. . .

0
0 1
1 0

. . .
0 1
1 0







n





2k

(the entries not specified are 0) and the homomorphism πn,k, which is the
inclusion of Mn into Mn+2k:

πn,k =




1
. . .

1
0 · · · 0
...

...
0 · · · 0







n





2k
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We just write σ and π when n and k are clear from the context, or when we do
not want to specify them.

We can now state the main theorem of the GoI semantics, which is the
interaction combinators’ equivalent of Girard’s fundamental result for linear
logic [Gir89]:

Proposition 3.42 (Lafont [Laf97]) Let µ be a total net with n ≥ 1 free ports
and k active pairs and/or vicious circles, and let µ• be the (unique) endomor-
phism associated to µ in an interaction monoid M . Then, if ν is the cut-free
form of µ, we have that its GoI interpretation is given by Girard’s execution
formula

ν• = Ex(µ•, σ) = πt

( ∞∑

i=0

µ•(σµ•)i

)
π,

where πt is the transpose of π.

The execution formula makes sense because σµ• is nilpotent. This is a con-
sequence of the fact that the execution formula is an invariant of reduction.
Therefore, if µ is total (which means that µ• is uniquely defined), then Ex(µ•, σ)
can be seen as a semantics for µ. In particular, if µ is cut-free, σ = 0 and
Ex(µ•,0) = µ•.

Proposition 3.42 tells us in particular that if a net µ is total, then σµ• is
nilpotent. In the rest of the section, we shall prove that the converse holds as
well. The result is analogous to that found by Danos&Regnier for the strongly
normalizable terms of the λ-calculus [DR95].

Definition 3.24 (Regular path, Danos-Regnier) A straight path p is reg-
ular iff w(p) 6= 0.

Recall now maximal paths as introduced in Definition 2.17; here, we shall prove
a result similar to Proposition 2.17 considering only regular maximal paths.

Definition 3.25 (Regularly well-founded net) A generic net µ is regu-
larly well-founded iff for each cell α of µ, there is a finite non-null number
of maximal regular paths starting from α (see p. 81, just before Definition 2.18,
for the meaning of “starting from α”).

Lemma 3.43 Let µ→∗ µ′. Then, µ is regularly well-founded iff µ′ is.

Proof. By Proposition 3.42, regular paths are invariant under reduction. ¤

Lemma 3.44 If a net is regularly well-founded, then it is total.

Proof. Even though a regularly well-founded net is not necessarily well-
founded, the proof carries over exactly as that of Proposition 2.17, using
Lemma 3.43. ¤

Theorem 3.45 (Characterization of totality by nilpotency) Let µ be a
net, and let µ• be the GoI interpretation of µ in an interaction monoid M .
Then, µ is total iff σµ• is nilpotent.
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Proof. We need only prove the “if” part, the “only if” being already given by
Proposition 3.42. By Lemma 3.44, it is enough to prove that if σµ• is nilpotent,
then µ is regularly well-founded.

First of all, referring to the decomposition of a generic net given at p. 145,
we can partition the interface of ν into two parts: one corresponding to the free
ports of µ, which we shall call visible interface, the other corresponding to the
active pairs and vicious circles of µ, which we shall call hidden interface. As
a consequence, we can use a block representation for µ• (which we remind is
defined to be equal to ν•), and write

µ• =
[
A B∗

B C

]

where A,B,C are suitable formal matrices: A contains the weights of the paths
from the visible interface to itself, C contains the weights of the paths from the
hidden interface to itself, and B,B∗ contain the weights of the paths between
the two interfaces. Of course, A and C satisfy A∗ = A and C∗ = C. Similarly,
we put

σ =
[

0 0
0 σ1

]

where σ1 is the only non-zero block of σ (cf. p. 145).
Now consider a cell α of µ (and hence of ν). We shall analyze how straight

paths starting from α may develop, paying particular attention to those that
are regular and maximal. Let us call τ the tree containing α. A maximal path
starting from α must first of all descend to the root of τ ; this path, which we call
φ, is in fact the prefix of any possible maximal path starting from α. There are
now two possibilities: either the root of τ is in the visible interface, or it is in the
hidden interface. In the first case, φ is maximal (and regular), and thus cannot
be extended further. In the second case, the path may continue by following a
wire to get to the root of another tree belonging to the hidden interface. From
the root of this tree the path continues inside ν, until reaching either an ε cell,
or a port of the visible interface, or a port of the hidden interface. In the first
two cases, we have a maximal path; in the second, we start all over again. We
can thus call n-path a straight path starting from α obtained after applying n
times the above process: the only 0-path is that we called φ, while 1-paths are
those obtained extending φ by passing once again through ν, and so on.

We now claim the following:

Claim 3.45.1 For all n, there is only a finite number of n-paths.

Proof. We can prove this by induction: in case n = 0, we have already said
that there is only one 0-path, φ; for what concerns n+ 1-paths, these are built
by taking an n-path and extending it through a free-port-to-free-port straight
path of ν. But ν is cut-free, so Proposition 3.41 assures us that n-paths can be
extended in only finitely many ways; we apply the induction hypothesis, and we
are done. ¤

The construction of n-paths can be described algebraically by applying the
matrices µ• and σ to a vector representing the initial path φ. In fact, µ• is
nothing but the adjacency matrix of the (multi)graph whose vertices are the
free ports of ν, and whose (weighed) edges are the straight paths between them.
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Whenever there is at least one path between two free ports, we see a sum of
monomials appearing in the corresponding entry of µ•; when no path exists,
we see 0. On the other hand, σ is nothing but the adjacency matrix of the
graph representing the connections between the free ports of ν accounting for
the active pairs and vicious circles of µ; these are the edges (of weight 1) which
are used each time we restart the process described above, to build an n+1-path
out of an n-path.

So suppose that w(φ) = u, and put

υ =




0
...
0
u
0
...
0




where the number of elements of the vector υ is equal to the number of free
ports of ν, u being placed in the position corresponding to the root of τ . In
general, we can split υ into two components U, V as follows:

υ =
[
V
U

]

V corresponds to the visible interface, and U to the hidden interface. Then, we
have that all of the weights of all n-paths can be obtained with the following
product:

(µ•σ)nυ =
([

A B∗

B C

] [
0 0
0 σ1

])n [
V
U

]

Now, for all n, the result of the above product is of the form
[
Vn

Un

]

where V0 = V and U0 = U . The elements of Vn are sums of monomials, each
monomial accounting for a finite number of maximal regular n-paths. The fact
that these paths are regular is obvious (if they were not, their weight would not
appear as a monomial!), while their maximality is justified by considering that
the paths whose weight appears in Vn are those starting from α and ending into
the visible interface of ν, which is the interface, i.e., the free ports, of µ. The
fact that the correspondence monomial/path is one to many must be ascribed
to η-expansion: there may be two paths from α to a free port, one weighing cc∗

and the other weighing dd∗, whose sum is just the monomial 1.
Not all maximal regular n-paths are taken into account though: those ending

into ε cells in fact do not appear in Vn. These however are only a finite number:
in fact, a path ending into an ε cell must be the extension of an n-path for some
n; but Claim 3.45.1 states that there are only finitely many of these.

Therefore, there is a correspondence between the number of monomials ap-
pearing in Vn and the number of n-paths. If we denote by |Vn| the number of
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monomials appearing in Vn, and by pn the number of n-paths, we have in fact
that

pn ≤ kn|Vn|+ cn,

where kn and cn are suitable non-negative integers, the first accounting for the
one-to-many correspondence monomials/paths, and the second accounting for
those n-paths ending into ε cells. Notice that cn can be at most equal to the
number of non-maximal regular n − 1-paths, i.e., those ending into a port of
the hidden interface of ν. But these paths appear in Un−1; therefore, we can
further extend our inequality and write

pn ≤ kn|Vn|+ k′n|Un−1| ≤ Kn(|Vn|+ |Un−1|),
where k′n is another suitable non-negative integer, and Kn is the maximum
between kn and k′n; conventionally, we fix |V−1| = |U−1| = 0.

Now we can bound the total number of maximal regular paths starting from
α, which we denote by T , as follows:

T =
∞∑

i=0

pi ≤
∞∑

i=0

Ki(|Vi|+ |Ui−1|) ≤
∞∑

i=0

Ki(|(µ•σ)iυ|+ |(µ•σ)i−1υ|),

where we have used the obvious notation |(µ•σ)iυ| = |Vi|+ |Ui|. But by hypoth-
esis σµ• is nilpotent, which means that µ•σ is nilpotent too; then, the above
sum is finite.

We have thus shown that, under the hypothesis that σµ• is nilpotent, there
are only finitely many maximal regular paths starting from any cell α of µ. To
complete the proof, we need to show that there is at least one. This is easy if
we look at the contrapositive statement, i.e., we prove that the non-existence of
maximal regular paths for some cell α of µ implies that σµ• is not nilpotent.

So suppose that there is a cell α of µ having no maximal regular path starting
from it, and consider again the construction of n-paths described above. We
start from α, and build the 0-path φ, which is regular, of weight u. The port
into which φ ends cannot be in the visible interface of ν, otherwise φ would be
maximal; as a consequence, we can extend φ, and build several 1-paths. We
claim that at least one of these is regular:

Claim 3.45.2 For all n, there exists at least one regular n-path.

Proof. By induction on n. If n = 0, the claim holds since φ is regular. So
suppose we have built a regular n-path φ′, whose weight must be a monomial
of the form ab∗. φ′ must end into a port of the hidden interface of ν (otherwise
it would be maximal), so we can take a wire and keep going from the root of
some tree still rooted at the hidden interface of ν. Now we can use the weight
of φ′ to know where to go:

• suppose we are at the principal port of a δ cell. If the weight is cu′ (resp.
du′), we go up through its left (resp. right) auxiliary port, and keep going
with the weight u′. Otherwise, if the weight is ab∗ and a contains no c or
d, then we are free to choose any auxiliary port, and the weight becomes
ac∗b∗ or ad∗b∗, depending on our choice;

• suppose we are at the principal port of a ζ cell. We do the same as above,
with f ,g, f∗,g∗ replacing resp. c,d, c∗,d∗.
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After this, we cannot arrive to an ε cell, otherwise we would contradict our
hypothesis; therefore, we arrive at some leaf of some tree of of ν, connected to
some other tree (maybe the same). From here, we descend down a tree to its
root, thus obtaining a non-null weight v and arriving at a port of the hidden
interface of ν, where we can start over. ¤
Now the weight of the path whose existence is claimed above appears in (µ•σ)nυ,
which means that µ•σ is not nilpotent. ¤

3.3.3 Relationship between denotational semantics and
GoI

We have already seen (Corollary 3.38) that, given a net µ with n ≥ 1 free ports,
the denotational semantics of µ in an interaction monoid M is a submonoid of
Mn. In case µ is total, and if its GoI semantics in M is µ•, we shall see that
JµK is the submonoid of the fixpoints of Ex(µ•, σ).

We prove the result stated above for cut-free nets only; by the preservation
of both J·K and Ex(·, ·) under reduction, this is enough for the result to hold in
the more general case of total nets. In the following, we write fix(u) for the set
of fixpoints of a function u.

Theorem 3.46 Let ν be a cut-free net with n ≥ 1 free ports. Then

JνK = fix(ν•),

where the interpretations are taken in any interaction monoid M .

Proof. We prove both inclusions be induction on the number m of binary cells
of ν. If m = 0, then ν is an ε-wiring, containing n′ ε cells and k wires, with
n′ + 2k = n. We can assume without loss of generality that ν has the following
shape

. . .

k

ε ε

. . .

n′

hence ν• = σn′,k. Now, if x ∈ JνK, then

x = (0, . . . , 0︸ ︷︷ ︸
n′

, x1, x1, . . . , xk, xk),

so that we obviously have ν•(x) = x. Conversely, it is trivial to check that every
fixpoint of σn′,k is of this form.

Now let m > 0; then, since ν is cut-free, at least one of its free ports is the
principal port of a binary cell. Suppose it is a δ cell; we can assume without
loss of generality that ν has the following shape

δ

ν′

. . .
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where ν′ is also cut-free. Now, if we order from left to right the free ports of ν
and ν′, we have that their GoI interpretations are given by the following formal
matrices:

ν′• =



h u∗ A∗

u k B∗

A B C




ν• =
[

chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ +Bd∗ C

]
.

We have used the block notation to represent an arbitrary number (even zero)
of entries in the bottom-right part of the matrices, corresponding to the n − 1
ports that are free both in ν and ν′. Here, h, u, and k are endomorphisms
of R, with h∗ = h and k∗ = k, while A,B and C are resp. (n − 1) × 1 and
(n− 1)× (n− 1) matrices with entries in R, with C∗ = C.

Let us now take x ∈ JνK. We know that x is an element of Mn, so x = (y, z),
where y ∈ M and z ∈ Mn−1. Moreover, since y is associated to the free
ports of a δ cell, we have y = c(y′) + d(y′′) for some y′, y′′ ∈ M such that
x′ = (y′, y′′, z) ∈ Jν′K. If we apply ν′• to x′, we get



h u∗ A∗

u k B∗

A B C


 ·



y′

y′′

z


 =



h(y′) + u∗(y′′) +A∗(z)
u(y′) + k(y′′) +B∗(z)
A(y′) +B(y′′) + C(z)


 .

But by induction hypothesis, ν′•(x′) = x′, so the following equalities hold:

h(y′) + u∗(y′′) +A∗(z) = y′

u(y′) + k(y′′) +B∗(z) = y′′

A(y′) +B(y′′) + C(z) = z .

From this, if we compute ν•(x), we get
[

chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ +Bd∗ C

]
·
[

c(y′) + d(y′′)
z

]
=

=
[

c(h(y′) + u∗(y′′) +A∗(z)) + d(u(y′) + k(y′′) +B∗(z))
A(y′) +B(y′′) + C(z)

]
= x.

Consider now a fixpoint x of ν•. Again, this is an element of Mn, and can be
decomposed into (y, z) with y ∈ M and z ∈ Mn−1. Now, by surjectivity there
exist y′, y′′ ∈M such that y = c(y′)+d(y′′), so we can define x′ = (y′, y′′, z), for
which the same computations done above show that ν′•(x′) = x′. By induction
hypothesis, x′ ∈ Jν′K, which means that there is an experiment of ν′ with result
(y′, y′′, z); the “same” experiment then gives (y, z) on ν, which proves that
x ∈ JνK.

The proof in the case of a ζ combinator is identical: we just need to replace
c,d with f ,g. ¤

Theorem 3.46 tells us that, for any cut-free net ν with at least one free port,
if we know ν•, we also know JνK. Is the converse true? The rest of the section
is devoted to prove that it is actually the case.

Let M be an interaction monoid, and let ν be a cut-free net with n ≥ 1 free
ports. By Theorem 3.11, we know that the elements of JνK are described by a
balanced bracket expression B. From this expression, it is not hard to build an
endomorphism φ of Mn such that fix(φ) = JνK:
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• Suppose that var(B) = {x1, . . . , xm}. We make a new expression B′ (no
longer balanced) which is structurally identical to B, but such that, for
each variable xi of B, one occurrence of xi is replaced by x′i and one by
x′′i , with x′i, x

′′
i distinct and fresh, and each occurrence of 0 is replaced

by a distinct fresh variable zj ; this is always possible since B is balanced.
Notice that B′ contains every variable at most once.

• From the fact that 〈·, ·〉 and [·, ·] are bijections, we know that, for each
d ∈ Mn, there exist unique d′1, d

′′
1 , . . . , d

′
m, d

′′
m, e1, . . . , ek ∈ M such that

d = B′{. . . x′i := d′i, x
′′
i := d′′i . . . zj := ej . . .} (see Sect. 3.1.4, p. 113).

We then define φ as follows:

φ(d) = B′{. . . x′i := d′′i , x
′′
i := d′i . . . zj := 0 . . .},

i.e., we “swap” the elements assigned to x′i and x′′i , and we set each zj to
0.

• Clearly, φ(0) = 0, and because 〈·, ·〉, [·, ·] are isomorphisms, we also have
φ(x + y) = φ(x) + φ(y), so φ is indeed an endomorphism of Mn (not
an isomorphism though, since in general some non-zero elements may be
mapped to zero). It is not hard to check that φ verifies φ3 = φ, i.e., it is
a partial symmetry.

• By construction, the fixpoints of φ are those elements described by B, so
fix(φ) = Im(B).

Let us look at an example to clarify the construction above. The balanced
expression ([0, x], 〈x, 0〉), which generates the interpretation of

ε ε

ζ δ

is turned into ([z1, x′], 〈x′′, z2〉). Now, for each element x ∈M ⊕M , there exist
unique z1, x

′, x′′, z2 ∈ M such that x = ([z1, x′], 〈x′′, z2〉) (we have used the
same notations for the variables in the expression and the elements of M to
avoid writing the substitution explicitly). We then define φ so that

φ(x) = φ([z1, x′], 〈x′′, z2〉) = ([0, x′′], 〈x′, 0〉).
The zero of M ⊕ M is (0, 0) = ([0, 0], 〈0, 0〉), hence φ(0, 0) = (0, 0), and if
we take x, y ∈ M ⊕ M , we decompose them as x = ([x1, x2], 〈x3, x4〉) and
y = ([y1, y2], 〈y3, y4〉), and we have x+y = ([x1 +y1, x2 +y2], 〈x3 +y3, x4 +y4〉),
from which we obtain

φ(x+ y) = ([0, x3 + y3], 〈x2 + y2, 0〉) =
= ([0, x3], 〈x2, 0〉) + ([0, y3], 〈y2, 0〉) = φ(x) + φ(y),

so φ is an endomorphism of M ⊕M . We also have

fix(φ) = {([0, x], 〈x, 0〉) ∈M ⊕M ; x ∈M},
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which is exactly the interpretation of the above net.
All that is left to do is verifying that φ = ν•. This is proved by induction

on the number m of binary cells in ν. If m = 0, ν is an ε-wiring, and its
interpretation can be assumed without loss of generality to be generated by a
balanced expression of the form

(0, . . . , 0, x1, x1, . . . , xk, xk),

where the symbol 0 appears n′ times, with n′+2k = n (the number of free ports
of ν). Then, φ is the endomorphism such that

φ(x1, . . . , xn′ , y
′
1, y

′′
1 , . . . , y

′
k, y

′′
k ) = (0, . . . , 0, y′′1 , y

′
1, . . . , y

′′
k , y

′
k),

which is exactly the endomorphism we introduced at p. 145 under the name
σn′,k, and which is equal to ν•. If m > 0, calculations virtually identical to
those of the proof of Theorem 3.46 show that we have φ = ν• in this case as
well; the details are left to the reader.
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Part II

Multiport Interaction Nets
and Concurrency
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Chapter 4

Multiport Interaction Nets

In the first part of our work we have seen how Lafont’s interaction nets, and
in particular the (symmetric) interaction combinators, are a very rich and in-
teresting model of distributed computation. “Distributed” means that the com-
putation evolves at several different places in a net, in a completely parallel
fashion. This parallelism is in some sense “cooperative”: due to the strong
determinism of interaction nets, conflicts never arise during reduction, and the
computation is unique up to trivial permutations of reduction rules. Therefore,
no truly concurrent behavior can be expressed within interaction nets, where by
“concurrent” we mean a situation in which computational agents do not always
cooperate, but may be in competition, typically to gain access to a resource.

Multiport interaction nets are a simple concurrent extension of interaction
nets, obtained by allowing cells to have more than one principal port. Multiport
interaction nets have already been considered under the name of Interaction Nets
with Multiple Principal Ports by Vladimir Alexiev in his Ph.D. thesis [Ale99], as
one of several possible non-deterministic extensions of interaction nets. These
systems have also been the object of Lionel Khalil’s Ph.D. thesis [Kha03], in
which he proved that it is actually sufficient to add to interaction nets a single
cell with two principal ports and two auxiliary ports, called amb, to obtain the
full power of multiport interaction nets. In spite of Khalil’s result, it is still
useful from the point of view of conciseness to consider cells with an arbitrary
number of principal ports, as we shall do in our work.

4.1 Cells, nets

4.1.1 Multicells

In the case of multiport interaction nets, a cell is a symbol plus an arity and a
coarity, which is the number of its principal ports:

auxiliary ports︷ ︸︸ ︷
. . .

. . .

α

︸ ︷︷ ︸
principal ports
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The principal ports of a cell of coarity m are supposed to be numbered from 1
to m; in the above representation, the numbering is assumed to increase from
left to right. Cells whose co-arity is 1 will be called unicells; cells with greater
co-arities will instead be called multicells. As usual, an alphabet is a set of cells.

Nets are naturally extended to contain multicells. The set of all nets on
an alphabet Σ is still denoted by 〈Σ〉. The same conventions of Sect. 1.1.2 are
applied to nets containing multicells.

4.1.2 Multitrees

A multitree is the analogue of a tree in presence of multicells. A multitree has
a number of leaves (maybe zero), which is its arity, and also a number of roots,
which can be greater than or equal to 1 and which is called its coarity :

• a single zeroary cell is a multitree with zero leaves and one root;

• a single wire is a multitree with one leaf and one root;

• if α is a cell of arity n and coaritym, and if τ1, . . . , τk are multitrees of resp.
arities n1, . . . , nk and coarities m1, . . . ,mk, such that m1 + · · ·+mk ≥ n,
then the net

. . . . . . . . . . . .

. . . . . . . . .

. . .

. . .

τ1 τk

α

. . . . . .

is a multitree with n1 + · · ·+ nk leaves and m roots.

Notice that, in particular, a tree is a multitree. Multitrees will be represented
just like multicells, as in the above picture.

4.1.3 Principal nets

The notion of principal net is adapted to the multiport framework in the most
natural way: a principal net is a multitree with some leaves connected together
by means of wires. In other words, a principal net of arity n and coarity m has
always the following shape:

. . .

. . .

. . . . . .

τ

σ

ω
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where τ is a multitree of arity n+2k and coarity m, σ a permutation on n+2k
elements, and ω a wiring containing k wires. As usual, principal nets can be
seen as “macro-cells”, and will be drawn just like ordinary cells. We shall denote
by ℘(Σ) the set of principal nets built upon an alphabet Σ. Principal nets with
one free port are called packages.

4.2 Interaction rules

4.2.1 Reduction

Just as in the single-port case, active pairs are pairs of distinct cells connected
through one of their principal ports. Interaction rules will then be of the form

α

σi

β

σj

. . .

. . . . . .

. . .

. . . . . . . . . . . . →

. . .

. . . . . .

. . .

R(αi, βj)

where, for graphical convenience, we have used two permutations σi and σj that
“isolate” resp. the i-th principal port of α and the j-th principal port of β, i.e.

= =

i j

σi σj

. . . . . .

. . .. . .. . .

. . . . . .

. . . . . . . . .

. . .. . .. . .. . .

. . . . . .

i j

Active pairs are denoted by αi ./ βj , i.e., not only the cell, but also the principal
ports are taken into account. As usual, the right member of an interaction rule
must be a net respecting the interface of the active pair, i.e., there must be a
bijection between the free ports of the right and left members of each rule; this
bijection will always be clear from the graphical representation.

Much like in the single-port case, the active pair under reduction can be
“disconnected” from the net and be replaced by its reduct. This is the basic
rewriting step, and it is written µ→ µ′ (µ reduces in one step to µ′). We denote
by →∗ the reflexive and transitive closure of →, and if µ→∗ µ′, we say that µ′

is a reduct of µ.
Notice that a multicell can in general be involved in several active pairs; the

choice of which one is reduced is non-deterministic. An immediate consequence
of this fact is that we lose the confluence property which characterizes interaction
nets; but of course this is precisely what we are aiming at.

There are some additional constraints on interaction rules: first of all, we
keep the requirement that there may be at most one rule for each pair of princi-
pal ports; allowing several rules, to be chosen non-deterministically, only compli-
cates the definition without adding expressive power. We also observe that, just
as in the single-port case, active pairs intrinsically lack an orientation, so the
reduct R(βj , αi) must be essentially the same as R(αi, βj), just “flipped over”,
i.e., R(βj , αi) = R(αi, βj), according to the notation introduced in Sect. 1.1.2.
Moreover, reducts cannot contain active pairs.
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4.2.2 Multiport interaction net systems

We are now ready to introduce the formal definition of a multiport Interaction
Net System (mINS):

Definition 4.1 (Multiport Interaction Net System (mINS)) A multi-
port Interaction Net System S is a couple (Σ,R), where:

• Σ is an alphabet, possibly denumerably infinite;

• R is a partial function taking an active pair and yielding a net without
active pairs having the same interface, such that, if R(αi, βj) is defined,
then R(βj , αi) = R(αi, βj);

A mINS is said to be finite or infinite according to the cardinality of its alphabet.

mINS’s will always be assumed to be finite; however, in Chapter 5 we shall also
use infinite systems (this is why they have been allowed in the definition), in
which case we shall always specify it. If the maximum coarity of the cells of a
system S is n, we say that S is a nINS; if n = 1, we omit it and we just say
that it is an INS, i.e., a “traditional” interaction net system.

4.2.3 Types

As done in Sect. 1.2.3, we can endow mINS’s with a type discipline: given a
system S, we consider a set of constant types, ranged over by T , and to each
port of the cells of S we assign an input type (T−) or an output type (T+). We
say that a net is well typed if inputs are connected to outputs of the same type;
a rule is well typed if both its left and right members are well typed, and the
typing of the interface is preserved. If all rules of S are well typed, and if every
well typed cut has a corresponding rule, we say that S is a typed mINS.

In a typed mINS, it is sometimes useful to have overloaded cells, i.e., cells
which admit more than one typing for their ports; the typical example is a du-
plicator cell, which can duplicate no matter what and must therefore be capable
of interacting with any cell of any type (see Fig. 5.7 and 5.8 in Sect. 5.3).

The type discipline will be used to guarantee certain correctness properties
of the system, mainly that “unreasonable” active pairs never arise through re-
duction, like, say, that a cell representing integer addition never interacts with
a string constructor.

4.3 Examples

As an example of the expressive power gained by allowing more than one prin-
cipal port, we show how a few simple parallel algorithms can be encoded using
multiport interaction nets.

First of all, consider the parallel or cell, with the following reduction rules:

→
por

ff

→
por

ff
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→
por

tt

→
por

tt

tt

ε

tt

ε

The cells ff and tt represent the Boolean truth values (resp. “false” and “true”),
while the cell ε is an eraser. Clearly, the por cell computes the disjunction of
two truth values in a parallel fashion: in case one of the two arguments is tt, it
returns tt without looking at the other.

The same “parallelization” can be applied to the + cell of the INS introduced
in Sect. 1.3.3:

→
+

→
+

00

S

+

S

+

+

S

→

+

S

→

It is clear that what this multiport version of the + cell really does is merging
two streams: in fact, we have just implemented the so-called bottom-avoiding
merge (see for example Andrew Moran’s Ph.D. thesis [Mor98] for an account of
the different forms of non-deterministic merging of infinite streams).

Bottom-avoiding merge is an algorithm taking two (possibly infinite) streams
of data x and y and returning a stream z which results from randomly merging
x and y, fullfilling the following condition: if one of x or y is finite, then every
element of the other stream appears in z. This stream-merging algorithm is
called “bottom-avoiding” because it is able to avoid non-termination caused by
partially defined streams. It is different from fair merge though, because, in case
both x and y are infinite, it may happen that the output contains only elements
of one of the two streams. In fact, it is impossible to implement fair merge
in multiport interaction nets: this follows from Khalil’s proof that multiport
interaction nets are equivalent to interaction nets plus McCarthy’s amb [Kha03],
composed with a well-known result of Panangaden and Shanbogue [PS88].

Since we are speaking of streams, we can show how a random stream gener-
ator can be implemented. Suppose we have the cells

S0 S1[]
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If we take [] to mean “empty list”, and S0,S1 to mean resp. “0” and “1”, we can
define binary lists much in the same way we defined unary integers in Sect. 1.3.3.
Now consider the cells X, G, and H, with the following interaction rules:

G

X
ε ε

[]
→

G

→

S0

H

X X X

εX

G

→

S1

H

X X X

εX

X

H
G→

where ε is the usual eraser cell.
Now if we put

X X X

G
=µ

we invite the reader to check that the net µ admits the following three reduc-
tions:
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µ µ

µ

→∗ S1
µ

µ

→∗ S0→∗ []

Therefore, µ is able to non-deterministically generate any (possibly infinite)
2-bit stream.
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Chapter 5

Encoding the π-calculus

In this chapter we show that multiport interaction nets are an expressive model
of concurrent computation by encoding the full π-calculus in them.

A considerable number of graphical representations of the π-calculus (or
other process calculi) can be found in the existing literature. Let us mention for
example Robin Milner’s π-nets [Mil94], Joachim Parrow’s Interaction Diagrams
[Par95], and Yuxi Fu’s Reaction Graphs [Fu98]. All these approaches succeed
in describing concurrent dynamics as graph rewriting, but the treatment of
prefixing is not very natural (in π-nets and Reaction Graphs, some form of
“guarded box” is used, while Interaction Diagrams use polyadicity to encode
causal dependency), and they all need boxes to represent replication, so that
duplication is seen as a synchronous, global operation. It must also be observed
that none of the existing graphical representations is ever shown to cover the
π-calculus in all of its features, including sums and match prefix.

More recently, Cosimo Laneve, Parrow, and Björn Victor proposed Solo Di-
agrams [LPV01] as a graphical presentation of the solos calculus [LV99]. They
too use replication boxes, but show that these can be limited to certain config-
urations which ensure constant-time reductions, and thus locality.

Much closer to the spirit of interaction nets, a nice graphical representation
of (an extension of) the fusion calculus has been given by Emmanuel Beffara
and François Maurel [BM05], in which nevertheless replication must be accom-
modated using boxes. In view of our results, it does not seem unlikely that
multiport interaction nets can provide both an alternative, “box-less” graphical
encoding for the solos calculus and a purely local version of Beffara and Maurel’s
Concurrent Nets.

It is worth mentioning the comparison between Interaction Nets and con-
current systems done by Nobuko Yoshida [Yos95], who found that, when seen
from the point of view of Interaction Nets, the graphical representation for her
concurrent combinators amounts more or less to allow hyperwires connecting
cells, i.e., wires that link together more than two ports. This is also explicitly
seen in Beffara and Maurel’s Concurrent Nets. As a matter of fact, our ap-
proach “internalizes” these hyperconnections, extending Lafont’s systems not
with respect to the topology of the connections between cells but to the nature
of the cells themselves.

As already recalled, multiport interaction nets have been considered by
Vladimir Alexiev in his Ph.D. thesis [Ale99]. One of his main results is that this
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extension of interaction nets is as expressive as the “hyperwire” extension men-
tioned above. Alexiev also gave a graphical encoding of the finite π-calculus in
(a variant of) multiport interaction nets, leaving open the problem of extending
it to replication.

Our encoding (quite different from Alexiev’s one, even in the finite case)
covers every single feature of the π-calculus, in particular replication, which is
crucial in terms of expressiveness. Compared to the aforementioned graphical
formalisms, ours has an exceptional advantage: no “box” or other global notion
is needed, i.e., the dynamics is fully local. In other words, our encoding may be
seen as the equivalent of sharing graphs for the λ-calculus. In perspective, this
opens the possibility for a new semantical study of concurrency, as the algebraic
semantics enjoyed by Lafont’s original systems (the geometry of interaction, cf.
Sect. 3.3) might be extended to multiport interaction nets (this is not developed
here though).

We also stress the fact that, unlike virtually any other graphical system
proposed for concurrency, multiport interaction nets are not built around the
π-calculus, or any other process calculus. On the contrary, they ought to be
seen as an independent, alternative model of concurrency, which is shown here
to be equivalent to the π-calculus; the results of this chapter should be read
more in this sense than as “yet-another-graphical-representation-of-π”.

5.1 The π-calculus

In this section we briefly recall the main definitions concerning the π-calculus.
Our main reference will be Sangiorgi and Walker’s book [SW01], even though
we choose a slightly different presentation.

5.1.1 Processes

Given a denumerable set of names, ranged over by x, y, z, . . ., the prefixes, ex-
tended prefixes, and processes of the π-calculus are resp. generated by the fol-
lowing grammars:

π ::= xy
∣∣ x(z) ∣∣ τ ∣∣ [x = y]

κ ::= x(z)
∣∣ π

P,Q ::=
∑

i∈I

πi.Pi

∣∣ P | Q
∣∣ ν(z)P

∣∣ κB P

Processes of the form
∑

i∈I πi.Pi, where I is a finite set of indexes, are called
summations; if I = ∅, the summation is denoted 0. Summations are ranged over
by M,N, . . .; if M =

∑
i∈I πi.Pi and there exists an i ∈ I such that π.P = πi.Pi,

we say that π.P is a summand of M , and write π.P ∈M .
Names must be seen as communication channels and, at the same time, as

the information which is transmitted on such channels. The (extended) prefixes
x(z), x(z), and the operator ν(z) are all binding constructors for the name z;
we can define the set fn(P ) of the free names of a process P as follows:

• fn(
∑

i∈I πi.Pi) =
⋃

i∈I fn(Pi) \Bi, where Bi = {z} if πi = x(z), or Bi = ∅
otherwise;
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• fn(P | Q) = fn(P ) ∪ fn(Q);

• fn(ν(z)P ) = fn(P ) \ {z};
• fn(κB P ) = fn(P ) \ B, where B = {z} if κ = x(z) or κ = x(z), or B = ∅

otherwise.

We shall always consider processes modulo α-equivalence, i.e., modulo capture-
free renaming of bound names. Whenever z ∈ fn(P ), we denote by P{y/z} the
process in which all occurrences of z in P have been replaced by y.

We now give a quick informal description of the meaning of the various
constructions used for building processes:

• Summations express the simultaneous availability of a finite number of
capabilities, at most one of which can be exerted. Upon exertion of a
capability, the other capabilities of the summation are lost. These capa-
bilities are expressed by the prefixes:

– xy is the output prefix : a summation containing a summand of the
form xy.P has the capability of sending the name y over the name
x, and then proceed as P ;

– x(z) is the input prefix : a summation containing a summand of the
form x(z).P has the capability of receiving a name y over the name
x, and then proceed as P{y/z};

– τ is the internal action prefix : a summation containing a summand
of the form τ.P has the capability of silently evolving to P ;

– [x = y] is the match prefix : a summation containing a summand of
the form [x = y].P has the capability of evolving to P in case x = y.

The empty summation 0 represent the inert process, i.e., a process that
can do nothing. Notice that, if we ignore the presence of a dummy free
name z, the internal action prefix can be seen as a shorthand notation for
the prefix [z = z].

• The parallel composition P | Q denotes a process in which the two sub-
processes P and Q are free to evolve in parallel, possibly interacting with
each other.

• The restriction operator ν(z) makes the name z private to a subprocess,
i.e., in ν(z)P , z is known only within P .

• The replicated prefix construction adds the possibility of infinite behavior,
depending on the extended prefix used:

– x(z) is called the bound output prefix : the process x(z)BP acts like a
“server” capable of indefinitely sending fresh names over the channel
x (i.e., names that will be private to the receiver) and then proceed
each time as a new instance of P ;

– the process π B P can indefinitely exert the capability expressed by
π, and then proceed each time as a new instance of P (modulo a
substitution in case π is an input prefix).
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P | (Q | R) ≡ (P | Q) | R
P | Q ≡ Q | P
P | 0 ≡ P

ν(z)ν(w)P ≡ ν(w)ν(z)P
ν(z)0 ≡ 0

ν(z)(P | Q) ≡ P | ν(z)Q, if z 6∈ fn(P )

Figure 5.1: The axioms defining structural congruence.

The above informal description will be formalized in the forthcoming sec-
tions. Before that, we stress for the reader already acquainted with the
π-calculus the key differences between our presentation and more standard ones
(like that of Sangiorgi and Walker [SW01]):

• Instead of using (the more general) plain replication (i.e., processes of the
form !P ), we have chosen replicated prefixes as done for example by Pierce
and Turner for Pict [PT97]. It is well known that the expressive power
of the calculus is not limited by such choice. In the more standard sintax
using full replication, our processes xyBP , x(z)BP , and x(z)BP would
be written resp. as !xy.P , !x(z).P , and !ν(z)xz.P .

• Our match prefixes are “real” prefixes, as opposed to the tradition in which
matching is usually added by including the production π ::= [x = y]π
in the grammar generating prefixes, with the intended meaning that in
[x = y]π.P , π is not activated until x and y match. This is normally
rendered by adding to the definition of structural congruence the axiom
[x = x]π.P ≡ π.P . In this syntax, our presentation is equivalent to
allowing matchings only before internal action prefixes, like [x = y]τ.P ;
by the way, [x = y]τ.π.P and [x = y]π.P are full bisimilar (though not
strongly), so our choice does not alter the expressiveness of the calculus
in a sensitive way.

Both of the above differences are technically motivated by the good properties
we want our encoding to enjoy with respect to structural congruence: without
them, Proposition 5.3 would not hold.

5.1.2 Reduction

A first understanding of the meaning of π-calculus processes comes by looking
at their dynamics. The π-calculus can in fact be seen as a rewriting system, in
which processes evolve by exchanging names along. . . names, i.e., channels.

We start by introducing structural congruence, denoted by ≡, which is the
reflexive, symmetric, transitive, and contextual closure of the relation generated
by the axioms of Fig. 5.1. Structurally congruent processes must be considered
completely equivalent, i.e., if P ≡ Q, then P and Q are morally two notations
for the same process. The first three axioms state that the set of processes is a
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monoid with respect to parallel composition, with neutral element 0; thanks to
this, we shall always omit useless parentheses when writing parallel compositions
of three or more processes. The other three axioms concern name restriction,
and state resp. that

• the order in which one restricts names is irrelevant; because of this, we
shall use the notation ν(z1, . . . , zn)P for ν(z1) . . .ν(zn)P , or more com-
pactly ν(z̃)P , where z̃ denotes a set of names;

• restricting a name on the empty summation has no effect;

• restriction commutes to parallel composition, as long as we use
α-equivalence to avoid name-capturing. This axiom, called scope extru-
sion, is of fundamental importance in the π-calculus, since it allows the
scope of a restriction to be enlarged through communication, as we shall
see in a moment.

As an example, consider a process Q such that z 6∈ fn(Q), and consider the
process P = ν(z)Q. By neutrality of 0, we have P ≡ P | 0; by scope extrusion,
we have P | 0 ≡ Q | ν(z)0, and by the second axiom concerning restriction we
obtain that ν(z)Q ≡ Q, i.e., restricting a name on a process not containing it
(or in which the name is already bound) has no effect.

We invite the reader to check the following result, which gives a sort of
“canonical form” for π-calculus processes:

Proposition 5.1 Any process is structurally congruent to a process of the form

ν(z̃)(M1 | . . . |Mm | R1 | . . . | Rn),

where the Mi are summations, and the Ri are of the form κBQi.

The reduction relation −→ is defined by the inference rules of Fig. 5.2.
These rules agree with the informal description given above: processes exchange
names by synchronizing on a channel, and replicated processes “stay there” after
interacting. The last three rules simply say that reduction can be performed in
the context of a parallel composition or of a restriction, and that the reduction
relation is defined modulo structural equivalence.

Let us give a few examples illustrating the reduction relation just introduced.
Set P = xy.0 and Q = x(z).(z(w).Q1 | za.0), where y 6∈ fn(Q1), and consider
the process R = P | Q | yb.0. The rules of Fig. 5.2 allow us to derive that

R −→ y(w).Q1 | ya.0 | yb.0 = R1.

At this point, both the reduction

R1 −→ Q1{a/w} | yb.0

and the reduction
R1 −→ Q1{b/w} | ya.0

are possible, which shows that reduction is not confluent in general, as Q1 may
be for example structurally congruent to 0, while the processes ya.0 and yb.0
are not structurally congruent and do not admit further reductions.
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xy.P ∈M x(z) ∈ N
M | N −→ P | Q{y/z}

τ.P ∈M
M −→ P

[x = x].P ∈M
M −→ P

xy.P ∈M R = x(z) BQ

M | R −→ P | Q{y/z} | R
R = xy B P x(z).Q ∈M
R |M | −→ R | P | Q{y/z}

R = x(z) B P x(z).Q ∈M
R |M −→ R | ν(z)(P | Q)

R = xy B P S = x(z) BQ

R | S −→ P | Q{y/z} | R | S
R = x(z) B P S = x(z) BQ

R | S −→ ν(z)(P | Q) | R | S

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

ν(z)P −→ ν(z)P ′

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Figure 5.2: Rules defining reduction in the π-calculus.
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Suppose now that instead of using P we use the process P ′ = ν(y)P , forming
R′ = P ′ | Q | yb.0. Since y 6∈ fn(Q) we can write R′ ≡ ν(y)(P | Q) | yb.0, or,
using α-convertion and more scope extrusion, R′ ≡ ν(t)(P{t/y} | Q | yb.0).
Now P and Q can interact as before, but this time we obtain

R′ −→ ν(t)(t(w).Q1 | ta.0 | yb.0) = R′1.

Here the situation has completely changed: the process yb.0 can no longer
interfere with the two subprocesses of Q, which are now free to communicate
on the private channel t. The only reduction possible is therefore

R′1 −→ Q1{a/w} | yb.0,
where the restriction on t has disappeared because the above process does not
contain any free occurrence of it.

This is an example of the power of scope extrusion: at first, the restriction
on y is effective only on P , but because this name is sent to Q, the scope of the
restriction is enlarged to cover the subprocesses of Q. More generally, before
two processes of the form ν(y)xy.P and x(z).Q interact, the name y is known
only within xy.P ; by α-conversion, we can always suppose that y 6∈ fn(Q), so
after the interaction, the result is ν(y)(P | Q{y/z}), in which y is now known
to Q as well, and can be used to communicate privately with P .

Set now P = xa.0 + xb.0, and Q = x(z).Q1. The process P has simultane-
ously the capability of sending a or b over the channel x, but only one of these
two capabilities can be exerted, at the expense of the other. As a consequence,
the process P | Q has two reductions, depending on which component of the
summation is chosen to synchronize with Q:

P | Q −→ Q1{a/z},
and

P | Q −→ Q1{b/z}.
In both cases, the component of the summation not used in the interaction
simply disappears.

One last example to illustrate the use of replicated prefixes. Put R = xyB0,
and consider the process

P = x(z).Q1 | x(w).Q2 | R.
P represents a situation in which two processes are listening on channel x for a
name to be sent. If R were of the form xy.0, only the request of one of them
could be satisfied; fortunately for them, R has a replicated prefix, which means
that it can send as many names as there are processes requiring them:

P −→ Q1{y/z} | x(w).Q2 | R −→ Q1{y/z} | Q2{y/w} | R.
Notice that y is shared by Q1 and Q2, and therefore these two processes may
communicate with each other through it. This could be unwanted, i.e., there are
cases in which a communication between Q1 and Q2 would be regarded as an
interference. The bound output prefix is used to make sure that no interference
is produced, i.e., that the names sent remain private within Q1 and Q2. In fact,
if we set R′ = x(y) B 0, we have

x(z).Q1 | x(w).Q2 | R′ −→ ν(y1)(Q1{y1/z} | x(w).Q2 | R′) −→
−→ ν(y1, y2)(Q1{y1/z} | Q2{y2/w} | R′).
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xy.P ∈M

M
xy→ P

x(z).P ∈M
M

xy→ P{y/z}
P

xz→ P ′
z 6= x

ν(z)P
x(z)→ P ′

R = xy B P

R
xy→ P | R

R = x(z) B P

R
xy→ P{y/z} | R

R = x(z) B P
z 6= x

R
x(z)→ P | R

τ.P ∈M
M

τ→ P

[x = x].P ∈M
M

τ→ P

P
xy→ P ′ Q

xy→ Q′
∗

P | Q τ→ P ′ | Q′
P

x(z)→ P ′ Q
xz→ Q′

∗ z 6∈ fn(Q)
P | Q τ→ ν(z)(P ′ | Q′)

P
α→ P ′

∗ bn(α) ∩ fn(Q) = ∅
P | Q α→ P ′ | Q

P
α→ P ′

z 6∈ n(α)
ν(z)P α→ ν(z)P ′

Figure 5.3: The inference rules defining the transitions of the π-calculus. Three
rules are omitted, corresponding to the symmetric versions of the rules marked
with a ∗, in which the order of P and Q is exchanged in the parallel composition.

5.1.3 Transitions and behavioral equivalence

In contrast to deterministic systems like the λ-calculus, what is more interesting
about the π-calculus is not the reduction relation defined above, but rather the
notion of transition. The π-calculus can in fact be seen as a labelled transition
system, according to the following definition:

Definition 5.1 (Actions, transitions) The actions of the π-calculus are gen-
erated by the following grammar:

α ::= xy
∣∣ xy

∣∣ x(z)
∣∣ τ.

The four actions are called respectively output action, input action, bound out-
put action, and invisible action.

The set of names appearing in an action α is denoted by n(α); the set of
bound names of an action α, denoted by bn(α), is defined to be equal to {z} in
case α = x(z), and empty otherwise. The name x in the actions xy, xy, and
x(y) is called the subject of the action.

The labelled transitions of the π-calculus are generated by the inference rules
given in Fig. 5.3.

Seeing the π-calculus as a labelled transition system is much more convenient
than seeing it as a rewriting system. The following result tells us that nothing is
lost in this change of viewpoint, since reduction is exactly captured by invisible
transitions modulo structural congruence:

Lemma 5.2 (Harmony Lemma) P −→ P ′ iff P
τ→≡ P ′.
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Proof. See Sangiorgi and Walker’s Lemma 1.4.15, p. 51 [SW01]. ¤
In particular, the Harmony Lemma justifies why reduction is rarely considered
when dealing with the π-calculus. As a matter of fact, only little mention of it
will be made in the rest of our work.

In our encoding of the π-calculus into multiport interaction nets, a special
rôle will be played by what we call fully invisible transitions:

Definition 5.2 (Fully invisible actions) We say that a process P is capable
of evolving to Q through a fully invisible action, P τ̃→ Q, if P τ→ Q and the
subject name used in the transition (if there is one) is under the scope of a
restriction.

For example, any process of the form τ.P has a fully invisible transition to P .
Instead, if we put P = za.Q1 | z(w).Q2 and P ′ = Q1 | Q2{a/w}, while having
P

τ→ P ′, we do not have P τ̃→ P ′; on the contrary, ν(z)P τ̃→ ν(z)P ′.
Actions and transitions are fundamental to define the behavioral equiva-

lences which are of most interest for the study of the π-calculus. In particular,
we recall here the definition of strong barbed congruence, which, even though
considered to be too discriminative to be a satisfying behavioral equivalence,
is the basis for the definition of (weak) barbed congruence, arguably the most
natural behavioral equivalence for the π-calculus.

In the following, we use the term coname to denote an object of the form x,
where x is a name; we use the symbol x to range over names and conames.

Definition 5.3 (Observability predicates) Let P be a process. We say that
a name x is observable in P , notation P↓x, iff P

xy→ P ′ for some y and some
P ′. Similarly, we say that a coname x is observable in P , notation P ↓x, iff

P
xy→ P ′ or P

x(z)→ P ′ for some y, z, P ′.

Definition 5.4 (Strong barbed bisimilarity) Strong barbed bisimilarity,
denoted ¦∼, is the greatest symmetric relation on π-calculus process such that,
whenever P ¦∼ Q,

1. P↓x implies Q↓x;

2. if P τ→ P ′, then Q
τ→ ¦∼ P ′.

Strong barbed congruence is the context closure of strong barbed bisimilarity.
We shall not formally define what a π-calculus context is; we leave the meaning
to the intuition of the reader.

Definition 5.5 (Strong barbed congruence) Two processes P,Q are said
to be strong barbed congruent, notation P 'c Q, iff, for any context C,
C[P ] ¦∼ C[Q].

The faithfulness of our encoding of the π-calculus into multiport interaction
nets will be proved by establishing a sort of strong barbed bisimilarity between
processes and their translation, after having introduced the notions correspond-
ing to observability and (fully) invisible transitions for the nets representing
such translations.
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5.1.4 Subcalculi

In the forthcoming sections we shall consider two subcalculi of the full π-calculus,
which will be useful to “modularize” our encoding and present it step by step,
in a complexity-increasing fashion.

The simplest subcalculus is what we call the finite π-calculus, or Fπ. It
only models name-passing and name-restriction, without any other construct
(notably without either replication or “true” summations). The prefixes and
processes of Fπ are resp. generated by the following grammars:

π ::= xy
∣∣ x(z)

P,Q ::= 0
∣∣ π.P

∣∣ P | Q
∣∣ ν(z)P .

With respect to the full calculus, apart from the exclusion of internal action and
match prefixes, the biggest restriction made on Fπ is the exclusion of replicated
prefixes, which implies the elimination of extended prefixes as well. Moreover,
summations are restricted to the case in which the set I on which the sum ranges
over is either empty or a singleton. The lack of replication makes Fπ “finite” in
the sense that only finite dynamics can be modelled in it.

A more complex subcalculus, in which Fπ is strictly included, is what we
call the “core” π-calculus, or Cπ, which is obtained from the full calculus by
ignoring internal action and match prefixes, and by restricting again summations
to range over the empty set or a singleton. The prefixes, extended prefixes, and
processes of Cπ are resp. generated by

π ::= xy
∣∣ x(z)

κ ::= x(z)
∣∣ π

P,Q ::= 0
∣∣ π.P

∣∣ P | Q
∣∣ ν(z)P

∣∣ κB P

Cπ can be seen as an extended, synchronous version of Pierce and Turner’s
Pict [PT97]; as such, not only is it Turing-complete, but is also expressive
enough to be able to model virtually any concurrent system arising in practice.
Exhibiting a faithful encoding of Cπ into a concurrent formalism is thus a fairly
strong proof of its expressive power.

5.2 Encoding the finite π-calculus

Our first step will be to find a mINS which implements Fπ, as introduced in
Sect. 5.1.4. Consider the (infinite) typed mINS F∞ whose alphabet and rules
are given resp. in Fig. 5.4 and Fig. 5.5. Types have been omitted in the rules,
but the reader can check that they are all well typed. The first rule of Fig. 5.5 is
an example of “template rule”: for a fixed m ≥ 0, it actually condenses 2(m+1)
rules. Template rules, the fact that ε ranges over {+,−}, and the permutations
σε will be notational conventions constantly adopted throughout the rest of the
chapter.

We now give a brief description of the rôle played by the various components
of the system:

• Types N, C, and Q represent resp. names, continuations, and queues.
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ρ−

Q−

Q+

ρ+

C−

Q+

N− C+N+ Q−

π−

N−

N+

C+

π+

C−

N+

N+ N− N−
. . .

Bn

N+

Q+

Xm

N− N−

Q−

. . .

N+

C+

Λ+
n

N+ N−N−
. . .

N+

C−

Λ−n

. . .
N+ N−N−

Figure 5.4: The alphabet of F∞

• π+ and π− cells will implement resp. output and input prefixes; each of
them is ready to make a request on a name, and bears a continuation
and another name (either the name being sent or the place-holder for
substitution).

• Bn is a monocell with n auxiliary ports, with n ≥ 0; this family of cells will
be needed to bind the occurrences of the name used by an input prefix.

• Xm is a cell with m principal ports (m ≥ 1) and 2 auxiliary ports. We
stipulate that X0 is just a wire of type Q. The cells belonging to this
family will implement names: they are capable of concurrently handling
several requests coming from π+ and π− cells, and they have two FIFO
queues (one for inputs, the other for outputs) that will be used to store
prefixes waiting for interaction. They also handle requests from Bn cells;
the interaction with these cells models name-passing and the associated
substitution.

• Λ+
n and Λ−n are monocells of arity 2n, n ≥ 0. These two families will

implement the blocking function of prefixes: they “suspend” a connection
until they interact.

• ρ+ and ρ− cells will be needed to represent resp. output and input queues
on channels; they bear the same information as πε cells, plus a pointer
to the rest of the queue. Their interaction synchronizes two prefixes: the
name being sent is connected to the place-holder for substitution, and
their two continuations are connected, so that they can be unblocked.

We shall now define a translation 〈·〉 of Fπ processes into F∞ nets. This en-
coding enjoys a clear correspondence with the interactive structure of processes,
but accounts only for certain kinds of transitions. The free ports of 〈P 〉 will be
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→. . . . . .

. . .

πε

ωi

Xm+1 ρε

σε

σε

σε

=

=σ+

σ−

ε ∈ {+,−}

. . .

Xm

σε

Bn

→

. . . . . .

. . . . . .

. . .

σi

Xm+1 Xm+n

. . . . . .

2n−122k−11 2 1 2n2k

Λ+
k Λ−n

→

. . . . . . . . . . . .

2n−122k−11 2 1 2n2k

→
ρ−ρ+

Figure 5.5: The rules of F∞

labelled with names: there will be one free port labelled x for each free occur-
rence of x in P . In particular, the presence of a free principal port labelled by
x will mean that x is the subject of a prefix, i.e., P↓x or P↓x. In our graphical
representations, we will always collect principal and auxiliary free ports resp. to
the bottom and to the top of the net, so if P is a process with k observables,
〈P 〉 will be pictured as a net with k free ports on the bottom.

〈P 〉 might as well contain active pairs; if we need to translate π.P , we must
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. . .

µ

. . .. . .

x1 xk

c active pairs
contained in 〈P 〉

. . .x1 xk

µ

. . .

. . .

. . .

Λε
k+c

=⇒ .P ε ==〈P 〉

Figure 5.6: The construction of .P ε from a net of the form 〈P 〉.

“inhibit” such active pairs to correctly represent prefixing. To this purpose we
define the nets .P ε as in Fig. 5.6. An important case is .0ε, which is just a single
0-ary Λε

0 cell.

Definition 5.6 (Translation 〈·〉 for Fπ) We define 〈P 〉 by induction on P :

• 〈0〉 is the empty net.

• 〈π.P 〉 is the following net, depending on the nature of π:

x

π+

.P+

. . . y

〈xy.P 〉

. . .. . .

Bn .P−

π−

x

. . .

〈x(z).P 〉

In the encoding of the input prefix, the n free ports of .P− labelled by z
are connected to the Bn cell.

• 〈P | Q〉 is the net obtained by juxtaposing 〈P 〉 and 〈Q〉.
• If 〈P 〉 has m free ports labelled by z, then 〈ν(z)P 〉 is the net obtained from
〈P 〉 by connecting all such free ports to the free ports of the following net:

. . .

Xm

Notice that this is the only case in which active pairs may be introduced.
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If 〈P 〉 has a free port labelled by x which is the principal port of a π+ (resp. π−)
cell, we write 〈P 〉x (resp. 〈P 〉x).
We have not mentioned types, but the reader can check that all the nets of
Definition 5.6 are well typed. Also, the encoding is defined modulo the ordering
of the connections to the ports of Bn, Λε

n, and Xm cells, which is irrelevant.
As expected, structural congruence is captured by the encoding:

Proposition 5.3 If P ≡ Q, then 〈P 〉 = 〈Q〉.
Proof. The axioms concerning parallel composition and 0 are obvious, the
ones concerning restriction are also easily checked. The details are left to the
reader. ¤
We remark that the converse of Proposition 5.3 is false; in fact, whenever z
does not appear in the prefix π, 〈ν(z)π.P 〉 = 〈π.ν(z)P 〉, but the two processes
are not structurally congruent; they are strong barbed congruent though. We
do not known how much more of strong barbed congruence is captured by the
translation, although we suspect that the one pointed out here is actually the
only relevant example.

A single reduction step in the π-calculus is simulated by several interaction
steps. Therefore, if µ is reduct of the translation of a process, there may be no
process P such that 〈P 〉 = µ. As a matter of fact, reduction commutes with the
translation only modulo a readback procedure.

Definition 5.7 (Bureaucratic cuts) Active pairs formed by Bn and Xm cells
and by Λε

n cells are called bureaucratic, and so are their respective reductions
(which are resp. the second and third from the top in Fig. 5.5). We call bureau-
free a net which contains no bureaucratic active pair.

The following is immediate:

Lemma 5.4 Bureaucratic reduction is terminating and (strongly) confluent;
hence, any net µ has a unique associated bureau-free form µb.

Definition 5.8 (Readback) Let µ be a net of F∞. The readback of µ, noted
µ̂, is the net obtained by taking µb and applying, until no longer possible, the
following replacement:

. . .

Q−n

. . .

Xm

Q+
p

. . .
Ã

Xm+n+p

π+π− π− π+

. . . . . .. . .

where Qε
k, for k ≥ 1, is a tree of k ρε cells (built in the only possible way induced

by the typing).

Basically, the readback procedure “undoes” the choices made in queuing up
prefixes. Observe that, clearly, 〈̂P 〉 = 〈P 〉 for all P .
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Definition 5.9 (Synchronization step) The ρ+ρ− interaction rule (the last
shown in Fig. 5.5) is called the synchronization rule, and so are rewriting steps
using it. If µ, µ′ are two nets of F∞, we write µ ³ µ′ iff µ →∗ µ′ and the
reduction sequence leading from µ to µ′ contains exactly one synchronization
step.

The following result is a trivial consequence of the above definitions:

Lemma 5.5 Let P be a process, and µ a reduct of 〈P 〉. If µ contains an active
pair formed by a ρ+ and a ρ− cell, then the principal ports of the corresponding
π+ and π− cells in µ̂ are connected to two principal ports of the same Xm

multicell.

Of course synchronizations steps do not alter the confluence of bureaucratic
reductions, because they involve only unicells. In other words, the real choice
is done before the synchronization step.

Lemma 5.6 The reduction relation consisting of bureaucratic reductions and
synchronization steps is (strongly) confluent.

We shall now prove the faithfulness of our encoding with respect to Fπ, by
establishing a sort of strong barbed bisimulation between P and its translation
〈P 〉. We deem this faithfulness “partial” because it is formulated in terms of
fully invisible transitions (cf. Definition 5.2), contrarily to how strong barbed
bisimilarity is usually formulated (cf. Definition 5.4).

Theorem 5.7 (Partial faithfulness of 〈·〉) Let P be an Fπ process.

1. Completeness:

(a) If P↓x, then 〈P 〉x.
(b) If P τ̃→ Q, then 〈P 〉 ³ 〈Q〉.

2. Soundness:

(a) If 〈P 〉x, then P↓x.

(b) If 〈P 〉 ³ µ, then P
τ̃→ Q and µ̂ = 〈Q〉.

Proof. The fact that P ↓x iff 〈P 〉x for any name or coname x is trivial. To
prove part 1b, one just observes that P τ̃→ Q means that

P ≡ ν(z, w̃)(zx.R1 | z(y).R2 | S)

and
Q ≡ ν(z, w̃)(R1 | R2{x/y} | S)

(this is the Harmony Lemma 5.2, together with Proposition 5.1), so, using
Proposition 5.3, 〈P 〉 contains a π+ and a π− cell whose principal ports are con-
nected to two principal ports of the same Xm cell; knowing this, one easily finds
a chain of 5 reductions leading to 〈Q〉, exactly one of which is a synchronization
step.

Part 2b requires some more work. We need two intermediate results:
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Claim 5.7.1 Let µ1 be a reduct of the encoding of a process, such that µ̂1 = 〈P 〉
for some process P , and such that µ1 → µ2 through a synchronization step.
Then, there exists a process Q such that P τ→ Q and µ̂2 = 〈Q〉.
Proof. By hypothesis, µ1 contains an active pair containing ρε cells, so
Lemma 5.5 applies; as a consequence, P contains an output and an input prefix
acting on the same channel, and this channel is private (otherwise no Xm cell
would appear in the encoding). Therefore, we can write

P ≡ ν(x, w̃)(xy.R1 | x(z).R2 | S).

The synchronization step leading to µ2 introduces (at most) two bureaucratic
cuts; we can assume these to be the only bureaucratic cuts in µ2, because,
thanks to Lemma 5.6, if µ1 was not bureau-free, reducing its cuts before or
after the application of the synchronization step has no effect on µb

2 (and thus
on µ̂2). It is then just a matter of applying a few rewriting rules to check that

µ̂2 = 〈ν(x, w̃)(R1 | R2{y/z} | S)〉,
as needed to prove our statement. ¤

Claim 5.7.2 Let µ → ν through a step different from a synchronization step.
Then, µ̂ = ν̂.

Proof. If the reduction results from applying a bureaucratic rule, then µ is
not bureau-free, and by Lemma 5.4 νb = µb, hence ν̂ = µ̂. If the step is
an application of a πε/Xm rule (top of Fig. 5.5), the readback “undoes” the
reduction and we have again ν̂ = µ̂ ¤
Now, by definition, 〈P 〉 ³ µ means that there exist µ1, µ2 such that 〈P 〉 →∗ µ1

through non-synchronization steps, µ1 → µ2 through a synchronization step,
and µ2 →∗ µ again through a number of non-synchronization steps. Following
the remark made just after the definition of readback, 〈̂P 〉 = 〈P 〉, which by
Claim 5.2 implies that µ̂1 = 〈P 〉. Now Claim 5.7.1 applies, giving us a process
Q such that P τ→ Q and µ̂2 = 〈Q〉; using again Claim 5.2, we obtain µ̂ = 〈Q〉
as well. Notice that the typing discipline followed by F∞ is fundamental here,
because it assures us that no active pair other than those considered can arise
through reduction. ¤

Another translation, noted [·], is needed if we want to account for τ tran-
sitions which are not fully invisible, i.e., which are due to synchronization on
free channels. Basically, [P ] is a sort of “closure” of 〈P 〉, i.e., [P ] is practically
identical to 〈ν(x̃)P 〉, where x̃ are the free names of P , the only difference being
that we want to remember the names we artificially bound:

Definition 5.10 (Translation [·] for Fπ) Let x range over fn(P ); if in 〈P 〉
there are m free ports labelled by x, we define [P ] as the net obtained from 〈P 〉
by connecting all such ports to a Xm+1 cell, which will be left with one free port
labelled by x:

Xm+1

. . .
x
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Hence, in general, [P ] has as many free ports as the number of free names in P .
Notice that Proposition 5.3 transfers to [·] without any problem.

Now, the number of free ports is stable under reduction, while free names
are not (some may disappear). This is why we need the following extension to
the readback operation:

Definition 5.11 (Readback, extended) Let µ be a net of F∞. The ex-
tended readback of µ, noted µ̃, is the net obtained by taking µ̂ and removing all
isolated X1 cells, i.e., applying, until no longer possible, the following replace-
ment:

x

ÃX1

The following is an almost obvious consequence of Theorem 5.7, considering the
above remark that [P ] is virtually identical to 〈ν(x̃)P 〉, where x̃ = fn(P ).

Theorem 5.8 (Full faithfullness of [·]) Let P be an Fπ process.

1. Completeness: If P τ→ Q, then [P ] ³ µ such that µ̃ = [Q].

2. Soundness: If [P ] ³ µ, then P
τ→ Q such that [Q] = µ̃.

Of course, any net of the form [P ] can be brought to the form 〈P 〉 by simply
applying a further readback operation, consisting in the removal of the artificial
name restrictions:

Xm+1

. . .
x

Ã

m m

x x

5.3 Adding replication

The fact that mINS’s are able to faithfully encode Fπ is already meaningful
from the point of view of concurrent computation, but is extremely poor in
terms of expressive power. In this section we shall give a stronger result by
showing that the system F∞ can be extended into a system C∞ that encodes
Cπ (cf. Sect. 5.1.4), which is Fπ augmented with replication.

The alphabet of the (infinite) typed mINS C∞ is defined by adding to the
alphabet of F∞ the cells of Fig. 5.7, whose interactions are given by the rules
of Fig. 5.8:

• There is an additional type, R, which represents name restrictions.
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. . .
R+

Nn

R−

R+N−
. . .

R−

!Xm

N−

!π−

N+

R+

N− R+

Q−

!ρ−

N+ N+

N+

!π+

!ρ+

Q+

R+

T− T−

T+

δ+

T+ T+

T−

δ−

R+

ϕ

R+ C− C+ N+

N−

N+N+ Q−C− Q+ C+ N+

Figure 5.7: Additional cells for C∞.

• !πε and !ρε cells play the same role resp. as πε and ρε cells: the first rep-
resent replicated prefixes, the second enqueued replicated prefixes. They
carry two additional pieces of information: another name, and a restric-
tion. The first is a potential occurrence of the subject of the prefix, which
is needed since a replicated prefix whose subject is x potentially generates
a new occurrence of x after replication. The second is a sort of pointer to
the restricted names which are under the scope of the replication; these
names are not usable until replication takes place.

• A cell belonging to the !Xm family (m auxiliary ports, m ≥ 1) represents
a restricted name with m occurrences blocked under a replicated prefix.

• Cells belonging to the Nn family (n auxiliary ports, n ≥ 0) “collect” !Xm

cells and pass them to !πε cells.

• The ϕ cell “unblocks” restricted names whenever a copy of a replicated
process is activated.

• δε cells are duplicators: they implement (local) replication of processes.
They are overloaded cells, i.e., their ports can be typed with any type T ,
provided the typing respects the input/output specifications of Fig. 5.7.

Definition 5.12 (Translations 〈·〉 and [·] for Cπ) We extend the transla-
tion 〈·〉 of Definition 5.6 to Cπ processes in the following way. Suppose that
.P ε (as always, ε ∈ {+,−}) is a net containing n X-cells and (among others) k
free ports labelled with the name z:
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σε

σε

σε

σε

. . .

Xm

σε

→. . . . . .

. . .
ωi

Xm+1

=

=σ+

σ−

ε ∈ {+,−}

σε

!ρε

!πε

!ρ+ !ρ−

→
ϕ

δ+ δ+ δ− δ+

ϕ

δ+δ+δ+δ−

!π+ !π−

→

ϕ

Nn

. . . . . .

ϕ ϕ!ρε ρ−ε

s.t. ∀i ∈ {1, . . . , n}
∀n, ι+n , ι

−
n are permutations

ι−n (i) = i
ι+n (i) = n− i+ 1

ιε2

ιε5

ιε4

ϕ

δε δ−ε δ+ δ+

!πε
→

ιε3ιε2 ιε2 ιε2

ωi

Xm+1

. . . . . . →
Xm+2

. . .
. . .

δ+

. . .

Xm

. . .

ϕ

→
!Xm

→ δεnδε1 α αα δε

. . . . . .

. . . . . .
δ+ δ− →

α is any cell except
Xm and δ−ε

Figure 5.8: Rules for the additional cells of C∞.
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µ

. . . . . .

Xm1

. . .

Xmn

. . . . . .

z z

.P ε =

Then, we define BP ε and BP z as follows:

µ

. . . . . .. . .. . .
!Xm1

!Xk+1

µ

. . .

σε

. . .

Nn

. . .. . .
!Xmn!Xm1

Nn+1

. . .. . .

!Xmn . . .

BP ε BP z

. . .

z z

where, as usual, σ− is the identity permutation and σ+ is the “twist” permuta-
tion. We can now define 〈κB P 〉:

!π+

x

x y

BP+

. . .

Bn

. . .. . . . . .

BP−

x

!π−

x

. . .
x

BP z

x

!π+

〈x(z) B P 〉 〈x(z) B P 〉〈xy B P 〉

If 〈P 〉 has a free port labelled by x which is the principal port of a π+ or !π+

(resp. π− or !π−) cell, we write 〈P 〉↓x (resp. 〈P 〉↓x).
The translation [P ] is obtained from 〈P 〉 exactly as in Definition 5.10.

Notice that it is no longer the case that each free occurrence of x in P cor-
responds to a free port labelled by x in 〈P 〉; here, a free occurrence of x as
subject of a replicated prefix generates two free ports. It is still the case though
that the free principal ports of 〈P 〉 are in bijection with the observables of P .
We also remark that Proposition 5.3 holds trivially for both of the extended
translations; this would of course be impossible if we had chosen a syntax with
full replication and the the axiom !P ≡ P | !P .

Definition 5.7 can be extended to C∞ by considering as bureaucratic the last
5 cuts of Fig. 5.8, i.e., all cuts involving ϕ and δε cells; it is immediate to verify
that Lemma 5.4 still holds. We can then define the readback µ̂ of a C∞ net µ:
simply take its bureau-free form µb, and apply the substitution of Definition 5.8,
where this time the queues might contain !ρε cells, which need to be replaced
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by the corresponding !πε cells. The extended readback ·̃ is then defined just as
in Definition 5.11.

With all the definitions extended to C∞, it is not hard to prove the following:

Theorem 5.9 (Full faithfullness of the encoding [·] of Cπ) Let P be a
Cπ process.

1. P↓x iff 〈P 〉x.
2. If P τ→ Q, then [P ] ³ µ and µ̃ = [Q].

3. If [P ] ³ µ, then P
τ→ Q and [Q] = µ̃.

Proof. The proof follows a similar argument to that given for Theorem 5.7.
The fundamental issue concerning replication is that neither active pairs, nor
Xm or δε cells can be duplicated by δε cells. This is why BP ε and BP z are
introduced: such nets are cut-free, and do not contain either Xm or δε cells, so
they can be safely duplicated. Then, ϕ cells extract P from BP ε or BP z. In
other words, the reader can check that the following property holds:

σε

BP ε

. . .

ϕ

δ−ε δ+ .P ε

. . .

σε

BP ε

. . .

δε1 δεn

→∗

. . .

and similarly for BP z nets. The other two important points are that duplication
is completely bureaucratic (therefore strongly confluent), and that it stops on
free channels; this assures us that the replication process does not interfere with
prefix synchronization. ¤
Of course, the same result holds for the translation 〈·〉 replacing invisible tran-
sitions with fully invisible ones.

5.4 Using finite mINS’s

We have shown in Sect. 5.3 that a very expressive fragment of the π-calculus
can be faithfully represented by the mINS C∞. This system has an unpleasant
feature though: its alphabet is infinite, which is a little against the idea that
mINS’s ought to be seen as programming languages with a finite number of
primitives. Moreover, even though reductions are local, their execution time
depends on the arity and co-arity of cells, and is thus not constant. In what
follows, we solve both problems by showing that all of the families of cells used
in C∞ can be replaced by one or more cells which, when suitably composed, do
the same job.
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C− C+N−

N+ N+

χ

N+ N+

N− N−

N−

βπ̂+ π̂− β0

N+

Q− Q+

N− Cε Cε

T+ T−

T ∈ {N,C}
ε ∈ {+,−}

κ ζε λε

N+ N−N−

N−

σi

χ

σi

χ

χ
→

β0
β

→

χ

β0
κ

→ β κ
→

κ

χ

σε

σε

σi σi

χ
π̂ε

→ σε

σε

π̂ε

χ

σε

σε

χ
πε

→

π̂ε

π̂ε κ
πε κ

→

σε

σε

ρε

σε
σε

σε

σε

ρε

σε

σε
→

κ

σε

→→→
ζ+

ζ−

ζε λ−ε λ+ λ−

Figure 5.9: The additional cells and rules for F .
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We define F as the finite typed mINS whose alphabet is composed by the
cells πε and ρε of F∞ plus the cells (and rules) of Fig. 5.9. The families Bn and
Λε

n of F∞ can be inductively defined as follows:

B0
=

β0

N+ N+

B1

N+

=

N− N−

N+

. . .
N− N− N−

N+

Bn+1

. . .
N−N−

N+

Bn

β

N−

=

ζε

Cε

Λε
0

Cε

= =

Cε

λε

N+ N−

Λε
1

N+ N−

Λε
n+1

=

Cε

N+

Cε

. . .
Λε

n

. . .

λ−ε

C C

N+ N− N+ N−

Cε

λε

σε

N+ N−
N−N−N+N−N+

For what concerns the Xm family, we take any “tree” of m− 1 χ cells with a κ
cell “on top” to represent Xm; for example, the two configurations

χ

κ

χ

κ

χ χ

χ

χ

both represent the cell X4, while X1 is represented by a single κ cell.
We invite the reader to check that, up to this redundancy, each of the above

nets faithfully simulates its corresponding F∞ cell. The delicate point is obvi-
ously to verify that trees of χ cells plus a κ cell behave exactly likeXm cells. This
is done by checking all possible critical pairs involving Xm cells, which are of
course infinite in principle but which can be reduced to the single configuration

Bn1 Bnm πε1 πεk

. . . . . .

. . . . . .

Xm+k
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The above configuration admits as cut-free forms a Xn1+···+nm cell with its
input and output queues filled by two trees of ρε cells depending on the cells
πε and on their order of interaction. We therefore need to check that all of the
corresponding nets in F yield the same result. This can be done by defining
“stairs” of χ cells as

χ

χ

...

. . .

Sm =

where Sm contains m − 1 χ cells. The result can be proved (by induction) on
Xm cells represented using only Sm stairs; then, the result can be extended to
all configurations representing Xm cells just by observing that, in general, such
configurations are “stairs of stairs”.

Notice that in order to correctly represent the Xm family we had to add two
auxiliary cells, π̂+ and π̂−, which can be seen in practice as nothing but π+ and
π− cells “navigating” through the channel until arriving to the “queuing cell”
κ.

This encoding of Xm cells perfectly works in the case of C∞ as well; it is
sufficient to add two other auxiliary cells !π̂+ and !π̂−, whose interaction rules
with the χ and κ cells are virtually identical to the rules π̂ε/χ and π̂ε/κ given
in Fig. 5.9, only featuring a few more wires since the cells encoding replicated
prefixes have a greater arity. So one can take F , add the cells !πε, !ρε, ϕ, δε of
C∞ and the cells of Fig. 5.10 (an auxiliary type A needs to be added as well) and
define a finite typed mINS C, in which the cell families of C∞ can be inductively
built as in the case of F∞:

A1

A−

=

A+ A+

A−

. . .
A+

A−

Am+1

. . .
A+A+

A−

Am

!χ

A+

=

A+A+

!Xm

. . .

R−

N− N−

R−

N− N−

. . .
θ−

Am
=

ι

θ−
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ν0 ν θ+ θ−

R−R−

R+ R+

A+

N+

A−

N−

!π̂+ !π̂−

N+ N+

!χ ι

N+ R+ C− N+ N− N− N− C+ R+ N+

A−

A+ A+ A+

R−

ϕ
ϕ

ϕ ϕ
ϕ

ν0

→ →
ν ι

→
κ

θ+

θ+

!χ

→

χ

θ+ θ+

→

θ+

θ−

δ+
χ

ωi

χ

χ

δ+ κ→ →

κ

χ

Figure 5.10: Additional cells and rules for C (the rules for !πε and !π̂ε interacting
with χ and κ have been omitted, as they are nearly identical to those for πε and
π̂ε given in Fig. 5.9).
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. . .

Nn+1

. . .

Nn

ν

R+

=N0
=

ν0 N1
=

R+R+

R+R+R+
R+R+

R− R− R−
R−

R−

The duplicators δε keep. . . duplicating every cell as usual (see the α/δε rule of
Fig. 5.5), except for χ and κ.

So, in the end, we are left with a mINS C which has 5 types, 29 cells, and
48 rules (but the number of rules descends to 27 if we use templates, like we
did here) which is capable of faithfully encoding the “core” π-calculus, i.e., a
synchronous and extended version of Pict [PT97]. This is crucial with respect
to the expressive power of the multiport combinators, because we shall see that
they are only able to encode finite mINS’s (cf. Sect. 6.4).

5.5 Encoding the full π-calculus

In this section we address those feature of the π-calculus which are most of the
time considered “optional”, i.e., that may be very useful but are not of crucial
importance when modeling concurrent systems. Because of this, the exposition
will be less rigorous, and only the basic ideas will be given, without detailed
proofs.

5.5.1 Representing arbitrary summations

The first “optional” feature we deal with is the addition of arbitrary (finite)
summations to Fπ or Cπ.

Remember from Sect. 5.1 that, when a summation interacts, all of its sum-
mands are lost, except the one which is interacting. It is quite tricky to represent
this highly non-local operation within multiport interaction nets; in fact, in the
presence of arbitrary summations, the encoding becomes extremely heavy and
full of ad hoc technicalities. Here we shall only give the idea behind it, ignoring
all the gory details. We shall also drop the typing, not because the systems
we define cannot be typed, but because graphical notations become lighter by
omitting it.

We start by remarking that the interaction between πε and Xm cells could
have been defined in the following alternative way, with modified ρε cells and
two additional γε cells:

. . .

Xm

σε

→. . . . . .

. . .

πε

σi

Xm+1 ρε

σε

γε

σε

α−

α+

→

α ∈ {γ, ρ}

As a matter of fact, one can easily see that our “old” ρε cells are a combination
of the γε and the “new” ρε cells.

187



The basic idea to encode summations is the use of a family of multicells
which somehow represent “clusters” of πε and γε cells:

Σq,r
p,n(s)

π+ π+ π− π− γ+ γ+ γ− γ−

. . . . . . . . . . . .

. . . . . . . . . . . .

p n q r

A multicell Σq,r
p,n(s), where p, n, q, r, s are all non-negative integers, with p, n, q, r

not all null at the same time, has q+r+p+n principal ports and 3(q+r+p+n)
auxiliary ports; the parameters p, n, r, q represent the number of principal ports
behaving resp. like π+, π−, γ+, and γ− cells. The parameter s is the summation
identifier (or sid) of the cell; its purpose will be explained shortly.

The interaction of a summation with a channel is defined as follows (the
case of an input prefix is shown, that of an output prefix being symmetrical as
always):

. . .

. . . . . .

. . .

σ

π−

Σq,r
p,n+1(s)

. . . . . .

. . . . . .

σi

Xm+1 →

Xm

Σq,r+1
p,n (s)

γ− ρ−s

. . .

. . .

. . .

Notice that each principal port of a Σq,r
p,n(s) cell has three associated auxiliary

ports, and not two, as we would expect by looking at πε and γε cells. This extra
port is a “backup pointer” to the subject channel of the prefix belonging to the
summation. To understand why such a backup pointer is needed, consider the
following process:

xy.P + x(z).Q | xa.R | x(w).S .

In our implementation, it might perfectly happen that all four prefixes enter
the i/o queues of x before any other interaction. As a consequence, we may
suppose that at some point the queuing is such that the pairs xa.R/x(z).Q and
xy.P/x(w).S are bound to interact, the first with priority upon the second. But
when x(z).Q interacts, its companion xy.P is lost, and x(w).S gets stuck. To
correctly handle the situation, we can think of sending an “abort signal” to
x(w).S; this latter prefix would then know that it has to go back to its original
state, i.e., request to be re-lined up on channel x. This is the reason of the extra
pointer: each prefix must remember its subject in case it receives an abort
signal.

The same example brings to light another possible source of incorrectness:
in fact, nobody forbids xy.P and x(z).Q to enter resp. the output and input
queues first, in which case we would be forcing two prefixes belonging to the
same summation to interact, which is absolutely illegal (such a situation would
generate the presence of a connection between two principal ports of the same
multicell, a configuration which would be irreducible). This is why the sid is
needed: this identifier, which is unique to each summation, is passed on to the
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ρε cells (which then become ρε
s cells, i.e., they too form an infinite family), and

if two cells bearing the same sid happen to interact, they just ignore each other.
Let us see how we can implement the mechanism described through the

interaction rules. The following rule is a generalization of the γ+/γ− rule; we
have grouped triples of auxiliary ports for reasons of space:

. . . . . .

ω

γ+

Σq+1,r
p,n (s)

. . .

. . . . . .

ω′

γ−

Σq′,r′+1
p′,n′ (s′)

. . .

. . . . . . . . . . . .

→

ε ψ

ε ε ε

ψε

. . .

. . . . . . . . . . . .

. . .

ε ε ε

The cells ε are erasers; they erase any cell they encounter, except for Xm+1

cells, which upon interaction with an ε cell just become Xm cells. The cells
ψ are abort cells; they are dispatched to all principal ports marked by a γε.
When they arrive to the principal port of a summation cell, they produce the
interaction below, which implements the “reset” operation:

γε

γε

δ

ψ

→
. . . . . .

. . .. . .

. . . . . .

Σq,r
p,n(s)

Σq,r
p,n(s)

δ is the usual duplicator cell; it is not polarized because we are not considering
types. Finally, ρε

s cells interact as follows:

→s 6= t →

ρ+
s

ρ−t

ρ+
s

ρ−s

ρ−s

ρ+
s

We can show at last the encoding of an arbitrary summation. For notational
convenience, we suppose that the summation we want to encode is split into
an output and an input component, i.e., M =

∑p
i=1 xiyi.Pi +

∑n
j=1 wj(zj).Qj .

Then, taken a fresh sid s, 〈M〉 is

. . .
xp yp

.P+
p

Bkn .Q−n

wn
. . .. . . . . .

Bk1 .Q−1

w1
. . .. . . . . .. . .

x1 y1

.P+
1

x1 xp w1 wn

. . .. . .

. . . . . .

Σ0,0
p,n(s)

π+ π+ π− π−

All of the fundamental properties of the translations 〈·〉 and [·] (basically Propo-
sition 5.3 and Theorem 5.9) hold for this extension too.

So far we have considered the addition of arbitrary summations to Fπ. The
presence of replicated prefixes in Cπ needs a technical adjustment: sids must
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become pairs, with one component set for example to zero at beginning. Then,
each interaction of a summation cell with a duplicator increments this compo-
nent in one of the two copies, so that a new sid is generated at each replication;
we prefer to omit the details.

5.5.2 The internal action and match prefixes

In this section we consider other two “optional” features of the π-calculus, i.e.,
internal action and match prefixes. Actually, we shall only show how to encode
the latter, since, as already noticed in Sect. 5.1.1, τ.P can be seen as a short-
hand notation for ν(z)[z = z].P (the two processes are in fact strong barbed
congruent).

The basic idea is to use match identifiers (mids) like we did for summations.
So, given a fresh mid i, we pose

.P+

. . .

Λ−0

µ−iµ+
i

x y

〈[x = y].P 〉 =

where the µε
i are two new families of monocells, added together with two more

families µ̂ε
i , which interact as follows:

Xm+1µε
i

−→
−→ −→

µ̂+
i

µ̂−i

µ̂+
i

µ̂+
iµ̂−j

µ̂−j

i 6= j

. . . . . .

. . .

Xm

µ̂ε
i

σε

σε

σε

The cells µ̂ε
i also commute with any other queue cell (like ρε), so they do not

interfere with process synchronization. Replication poses no problem; it must
be said however that we have lost the nice property that the free principal ports
of 〈P 〉 are in bijection with the observables of P .
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Chapter 6

The Multiport Combinators

6.1 Translations up to

We now introduce a notion of translation from a mINS to another mINS. Our
translations will be defined “up to” an equivalence relation (actually a congru-
ence), which can be seen as a measure of its correctness:

Definition 6.1 (Translation up to) Let S = (Σ,R) and S ′ = (Σ′,R′) be
two mINS’s, ∼ a congruence on nets of S ′, and let Φ be an arity- and coarity-
preserving function from Σ to ℘(Σ′), i.e., a function such that, for all α ∈ Σ, α
and Φ(α) have the same arity and coarity; of course Φ can be trivially extended
into an interface-preserving function from 〈Σ〉 to 〈Σ′〉, still denoted by Φ. We
say that Φ is a translation from S to S ′ up to ∼ iff, for any α, β ∈ Σ, and for
any principal port i, j of resp. α and β such that R(αi, βj) is defined, we have
that Φ(αi ./ βj) → µ′ implies µ′ ∼ Φ(R(αi, βj)).

Notice that INS translations introduced in Definition 1.5 are translations up
to 'β . If precongruences were allowed (which is possible), then they would
actually be translations up to →∗. A translation which Lafont calls invertible
is a translation up to =.

The introduction of this “up to” notion of translation is necessary because
of the non-deterministic nature of mINS’s. In fact, the existence of a function Φ
as in Definition 6.1 satisfying Φ(αi ./ βj) →∗ Φ(R(αi, βj)) does not tell us that
the system S ′ is able to faithfully simulate S: a correct reduction “in isolation”
does not guarantee us that, within a larger context, the encoding still behaves
in a sound manner.

On the contrary, the condition of Definition 6.1 assures us that the net
obtained after exactly one reduction step behaves correctly in any context, up
to ∼. Typically, ∼ will be a behavioral equivalence; therefore, the stronger this
equivalence, the more “convincing” the encoding will be.

The presence of the reduction step is necessary because of non-determinism:
αi ./ βj in general does not behave like R(αi, βj) in all contexts, so there is
no reason for an equivalence like Φ(αi ./ βj) ∼ Φ(R(αi, βj)) to hold. Instead,
αi ./ βj does behave like (or rather is equal to!) R(αi, βj) after reducing it,
hence the condition required above.

One may imagine to allow more than one reduction step; for example, we
might require the existence of a positive integer n such that, for all µ′ verify-
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ing Φ(αi ./ βj) →∗ µ′ in less than n steps, we still have µ′ ∼ Φ(αi ./ βj),
whereas for any µ′′ such that Φ(αi ./ βj) →∗ µ′′ in n or more steps, we have
µ′′ ∼ Φ(R(αi, βj)). This would yield a looser, more general notion of trans-
lation; we shall not consider it on the grounds that Definition 6.1 is already
enough for our purposes.

The above considerations are actually connected to the nature of choice in a
non-deterministic setting. Since mINS’s are not confluent, whenever we choose
to reduce an active pair instead of another, we are potentially making an irre-
versible choice, i.e., we may be taking one of two non-confluent computational
branches. When we encode a mINS S into a mINS S ′, the question is then how
S ′ simulates the choices of S. Definition 6.1 imposes that this simulation be
“instantaneous”: as soon as we take the first step in reducing the encoding of an
active pair of S in S ′, we commit ourselves to the corresponding one-step choice
in S. The definition given in the paragraph above loosens this requirement,
and allows the encoding a few steps of “indecision” before the commitment to
a definitive choice.

6.2 The multiport combinators

The system of the multiport combinators is an infinite mINS composed by the
two unicells γ and ε, of resp. arity 2 and 0, and by a family of multicells δm, of
arity 2m and coarity m, for all m > 0.

If we number from 1 to m the principal ports of δm, its auxiliary ports can
be divided into two groups of m ports each: the first group, whose ports are also
numbered from 1 to m, has one port i associated to each principal port i; the
second group, has a special port c0 and m− 1 ports c1, . . . , cm−1. Graphically,
the situation can be pictured as follows:

1 m

1

. . .
cm−1

. . .
c1c0

m
δm

. . .

When a δm cell interacts with a δm′ , i.e., the principal port i of a δm cell is
connected to the principal port j of a δm′ cell, each of the two cells can be seen
as “selecting” an auxiliary port of the first group of the other cell; moreover,
each cell has access to the special port of the other. “Selecting” means that the
auxiliary port i of δm is connected to the auxiliary port j of δm′ , while all other
auxiliary ports of the first group of both cells receive ε cells. Then, the special
port c0 of δm is connected to the special port c0 of δm′ .

It remains to see what becomes of the principal ports which have not inter-
acted. This is the purpose of the ports c1, . . . , cm−1. In fact, in δm there are
exactly m−1 principal ports that have not interacted, numbered from 1 to i−1
and from i + 1 to m. Each of these ports is connected to a ck port: if k < i,
then k is connected to ck; if k > i, then k is connected to ck−1.

The interaction rule corresponding to the above description is the following:
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δm

δm′

i

j

i c0

c0

. . . . . .. . .

. . . . . . . . . . . .

. . .

. . . . . .

. . . . . .

j

c0

c0i

j

ε

ε ε

ε

. . . . . . . . .. . .

. . . . . . . . . . . .

→

For what concerns the interaction with a γ cell, δm cells simply commute
with it:

γ γ

γ γ

δm δm

. . . . . .

. . .

. . . . . . . . .. . .

. . . . . .

δm

γ

. . .

. . . . . .
→

There is also a commutation rule for δm with the ε cell: if the ε cell is
interacting with the principal port i of δm, then this cell is “passed” to the
auxiliary port i of the first group, plus the “last” port of the second group, i.e.,
cm−1. All the remaining ports are connected to a δm−1 cell. The interaction
just described corresponds to the the following rule:

. . . . . .

. . . . . . . . .

. . .. . .

. . .

δm−1

δm

ε

ε ε

→

i
i

i

cm−1

cm−1

Notice that, in case the active pair is composed of a δ1 and an ε cell, the above
rule reduces to

δ1

ε

εε→
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The rules for the γγ, γε, and εε interactions are defined exactly as in the
interaction combinators. Therefore, the multiport combinators respect the prin-
ciple which sees the interaction rules divided into two groups: the annihilations
γγ, δmδm′ , and εε, describing what happens when two cells carrying the same
symbol interact, and the commutations γδm, γε, and δmε, describing what hap-
pens when two cells carrying different symbols interact. The rules other than
δmδm′ , for one of m,m′ ≥ 2, are called deterministic.

Moreover, notice that the rules δ1δ1, γδ1, and δ1ε are exactly the rules δδ,
γδ, and δε of the interaction combinators. The multiport combinators are thus a
conservative extension of the interaction combinators, i.e., the δ1 cell is nothing
but the “old” δ cell.

If m is a positive integer, we call m-port combinators the subsystem of the
multiport combinators which has its alphabet restricted to γ, δ1, . . . , δm, ε. Each
of these subsystems is finite; by the above remark, the 1-port combinators are
nothing but the interaction combinators.

6.3 Behavioral equivalence for the 2-port com-
binators

We shall now define a notion of behavioral equivalence for the 2-port combina-
tors. The universality of this system will in fact be proved up to this equivalence.

In what follows, the terms “cell”, “net”, and “rule” are restricted to the
2-port combinators.

Definition 6.2 (Straight path, multiport case) Straight paths are exten-
ded to multiport nets in a natural way: a path is straight iff whenever it enters
a cell through one of its principal ports, it exits trough one of its auxiliary ports,
and whenever it enters through one of its auxiliary ports, it exists through one
of its principal ports.

What we would like to do now is define observable paths, and base our
equivalence on them, as we did in the deterministic case. To do this, we shall
be guided by the following intuition.

The fundamental property of observable paths, pointed out for example by
the Separation Theorem 2.19, is that they can be “turned into wires”: more
precisely, whenever there exists an observable path between two free ports of a
net µ with n free ports, then there exists a context C with n+2 free ports such
that C[µ] reduces to a net having a wire connecting its two free ports. In other
words, C “extracts” a wire from the observable path.

Now call µ the following net:

δ2

δ1
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Consider the straight path starting from the free port connected to the c1 port
of the δ2 cell and arriving to the free port connected to the second principal
port of the same cell. This path does not cross any active pair, and thus would
seem observable according to the definition given in the deterministic case. And
yet, no context will ever be able to extract a wire from it. In fact, the only way
of interacting with µ is through the principal port 2 of its δ2 cell. If we interact
with a γ cell, we only obtain, more or less, two copies of µ, so in practice we
get back where we started; if we use a δ1 cell, we end up connecting the c1 free
port to the deadlocked cell; if we use a δ2 cell, we may in principle be able to
obtain a wire, but this wire would come from the context, not from µ; if we use
an ε cell, we send an ε to the c1 free port.

In all cases, it does not seem fair to say that the free port of µ connected
to the auxiliary port c1 of the δ2 cell is observable. On the contrary, if both
principal ports of the δ2 cell were available for interaction, we could obtain a
wire from the straight path under consideration, namely by making a δk cell
interact with the principal port number 1. Therefore, a straight path crossing
no active pair and crossing a δ2 cell using its c1 auxiliary port may be deemed
observable only when such δ2 cell is free to interact on both of its ports.

Considering again the above net, we have seen that a wire could indeed
be extracted from it using a δ2 cell, but we also complained that this wire
came from the context rather than from µ. This phenomenon points out to us
the possibility that, in the multiport combinators, δk cells must be bouncing,
contrarily to what happens in the deterministic combinators. In fact, it would
be possible to say that that the wire did come from µ, only not from the straight
path we were considering, but from a path “bouncing off” of the second principal
port of the δ2 cell.

In order to confirm our suspects, let us consider the following two nets:

εδ1

ε ε

=ν =ν′

If δ1 cells were not to be considered bouncing, then these two nets would ob-
viously be equivalent, since they would both be blind. Yet, surprisingly, there
is a context separating ν and ν′ in the sense of Theorem 2.19. This context
C is such that there exists a reduction of C[ν] leading to a wire, whereas all
reductions starting from C[ν′] converge to two ε cells (the net we called E in
Theorem 2.19). The reader can check that one such context is

δ2

δ1 δ1
ε ε ε

εε
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Therefore, δk cells must be considered as bouncing cells. Notice that the context
used to separate ν from ν′ contains an active pair. Non-determinism seems to
be fundamental for discriminating between the two nets; this hints to that fact
that, most probably, if a Separation Theorem holds for multiport combinators,
it does not use simple tests as contexts.

The above discussion motivates the following definitions:

Definition 6.3 (Stable cell) Let µ be a net, and α a cell of µ.

• We say that α is 0-stable iff all principal ports of α are free in µ.

• Let n ≥ 0. We say that α is n+ 1-stable iff for any principal port i of α,
either i is free or it is connected to an n-stable cell.

We say that a cell α of µ is stable iff it is n-stable for some n.

Definition 6.4 (Residue) Let µ→ µ′ through the reduction of an active pair
βi

1 ./ β
j
2. Since interaction rules are completely local, each cell α′ of µ′, with the

exception of those of R(βi
1, β

j
2), “comes from” a unique (“the same”) cell α of

µ. We then say that α′ is the immediate residue of α in µ′.
If we have µ → µ1 → · · · → µn → µ′, and if α, α1, . . . , αn, α

′ are cells
of resp. µ, µ1, . . . , µn, µ

′ such that, α1 is the immediate residue of α, α′ is the
immediate residue of αn, and for all 2 ≤ i ≤ n, αi is the immediate residue of
αi−1, then we say that α′ is the residue of α in µ′.

Definition 6.5 (Persistent cell) Let µ be a net, and α a cell of µ. We say
that α is persistent iff, for all µ′ such that µ→∗ µ′, α has a residue in µ′.

We observe that stability implies persistence, while the opposite is not true.
The typical case is that of a configuration like the net µ above, in which both
cells are persistent (µ admits no reduction), but none is stable.

Definition 6.6 (δ-final paths, observable δ-crossings) A straight path is
δ-final iff it ends into a principal port of a δk cell, and the port it previously
crosses is not an auxiliary port of the same δk cell.

If a straight path φ crosses a δk cell, we say that it contains a δ-crossing.
Let α be the δk cell crossed by a δ-crossing of φ; we say that such a δ-crossing
is observable iff one of the following holds:

• φ crosses α (in any direction) using one of its principal ports and the c0
auxiliary port;

• α is persistent, and φ crosses it (in any direction) using principal port i
and the corresponding auxiliary port i;

• α is a stable δ2 cell, and φ crosses it (in any direction) using one of its
principal ports and the c1 auxiliary port.

In the following, we assume that the free ports of all nets are numbered by
positive integers, so that whenever two nets have the same number of free ports,
it makes sense to speak of port i for both nets (of course as long as i ≤ n, where
n is the number of free ports of the two nets).
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Definition 6.7 (Observable path) Let µ be a net, and i, j two (not neces-
sarily distinct) free ports of µ. We say that there is an observable path from i
to j iff one of the following holds:

1. i = j, and there is a δ-final straight path starting from i which crosses no
active pair;

2. there is a (non-empty) straight path φ from i to j crossing no active pair
and such that all δ-crossings of φ are observable.

Definition 6.8 (Observability predicates) Let µ be a net, and i a free port
of µ. We say that i is immediately observable in µ, and we write µ↓i, iff there
is an observable path starting from i in µ. We say that i is observable in µ, and
we write µ⇓i, iff µ→∗ µ′↓i. If for all µ′ such that µ→∗ µ′ the free port i is not
immediately observable in µ′, then we say that i is blind, and we write µ⇑i.

Definition 6.9 (Barbed bisimulation) Let B be a relation on nets, such that
if (µ, ν) ∈ B, then µ and ν have the same number of free ports. We say that B
is a barbed bisimulation iff, whenever (µ, ν) ∈ B, we have

1. if µ↓i, then ν⇓i;

2. if µ→ µ′, then ν →∗ ν′ such that (µ′, ν′) ∈ B;

3. if ν↓i, then µ⇓i;

4. if ν → ν′, then µ→∗ µ′ such that (µ′, ν′) ∈ B.

The usual properties of bisimulations, together with all of the results proved
in Sect. 2.2, hold for barbed bisimulations too. In particular, the technique
of bisimulations up to reflexive-transitivity (Sect. 2.2.2) can also be applied to
barbed bisimulations.

We now define a notion of multi-hole context, which trivially extends (and
includes) the usual notion of context (cf. Definition 2.6).

Definition 6.10 (Multi-hole context) A k-hole context for nets with n free
ports is a net C with at least kn + 1 free ports, such that kn free ports are
distinguished, and partitioned into k groups of size n each. Groups are numbered
from 1 to k, and each member of a group is labelled with a couple (p, q), where
p is the number of the group of membership and q is an integer from 1 to n.
If µ1, . . . , µk are k nets with n free ports, we denote by C[µ1, . . . , µk] the net
obtained by plugging each free port q of each µp to the free port of C labelled by
(p, q). Graphically, we have

µ1 µk. . .

C

. . . . . .

. . .

where we have left the labelling implicit in the picture.

Definition 6.11 (Barbed congruence) Let µ, ν be two nets with the same
number of free ports. We say that µ and ν are barbed congruent, and we write
µ ∼= ν, iff, for any 1-hole context C, C[µ]

¦≈ C[ν].
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Barbed congruence is the multiport analogue of the congruence generated by the
portwise bisimilarity briefly introduced in Sect. 2.2.3. In the interaction combi-
nators (symmetric or not), one can prove that portwise observational equivalence
coincides with '; in the multiport combinators we are not able to prove this,
so we chose to work with the stronger equivalence.

Let us show a first result concerning barbed congruence.

Lemma 6.1 (Interaction combinator reductions) Let µ→ ν by means of
an interaction combinator reduction, i.e., a deterministic reduction using a rule
among γγ, γδ1, γε, δ1δ1, δ1ε, and εε. Then, µ ∼= ν.

Proof. Let α, β range over the set {γ, δ1, ε}. It is enough to show that the set

B = {(C[α ./ β], C[R(α, β)]); ∀C 1-hole context} ∪ =

is a barbed bisimulation. To prove this, take (µ, ν) ∈ B. The identity relation is
a barbed bisimulation, so if µ = ν we have nothing to check. If µ 6= ν, it means
that µ = C[α ./ β] and ν = C[R(α, β)] for some context C. The fact that
µ⇓i iff ν⇓i for all i is an immediate consequence of the form of the reduction
rules under consideration. Suppose then that µ → µ′. If the reduction takes
place inside C, then µ′ = C ′[α ./ β] for a C ′ such that C → C ′. But then
ν → C ′[R(α, β)] = ν′, and by definition (µ′, ν′) ∈ B. The only other possibility
in case µ→ µ′ is that the active pair α ./ β is reduced; but then µ′ = ν, and we
are done since B contains equality. The case in which ν → ν′ is even simpler: by
definition µ→ ν → ν′, so once again we use the fact that equality is contained
in B. ¤
We remark that the key reason for the above statement to hold is that an active
pair composed only by unicells cannot interact with any context, and the only
way of observing it is reducing it.

Definition 6.12 (η-equivalence) η-equivalence, denoted by 'η, is the rela-
tion generated by the reflexive, symmetric, transitive, and contextual closure of
the following equations:

γ

γ

'η

ε ε

γ
ε'η
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'η

δk δk δk

γ γ γ γ

γ γ

In the last equation, k ∈ {1, 2}.
The following lemma assures us that the remaining deterministic reductions

also yield barbed congruent nets:

Lemma 6.2 (Deterministic reduction) Let µ→ ν by means of a determin-
istic reduction step. Then, µ ∼= ν.

Proof. Let µ0 range over deterministic active pairs, and ν0 range over their
respective reducts. Set

B0 = {(C[µ0, . . . , µ0]], C[ν0, . . . , ν0]); ∀µ0, ν0, ∀C multi-hole context}.

Now pose B = B0∪ 'η ∪ ¦≈. We claim that B is a barbed bisimulation up to
reflexive-transitivity, which is enough to prove the lemma.

The proof is extremely long, as it is made up of a rather conspicuous number
of cases to be checked. We only examine a few of them, leaving the others to
the interested reader.

By definition, we need to take a generic (µ, ν) ∈ B and prove:

(1) µ↓i implies ν⇓i;

(2) µ→ µ′ implies ν →∗ ν′ such that (µ′, ν′) ∈ B∗,
plus the symmetrical statements (3) and (4) where the rôles of µ and ν are
exchanged.

Now, if (µ, ν) ∈ B, then we can assume that either (µ, ν) ∈ B0 or µ 'η ν; in

fact, in case µ
¦≈ ν, there is nothing to prove. Let us start with the former case.

Thanks to Lemma 6.1, we only need to bother with the cases in which µ → ν

through a γδ2 or εδ2 rule, since otherwise µ
¦≈ ν, and there is nothing to prove.

We shall analyze to some depth the latter rule, leaving the other to the reader.
The rule under examination is

δ2 δ1

ε

ε ε

→
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so µ0 and ν0 denote resp. the left and right members of the above rule, and
µ = C[µ0, . . . , µ0], ν = C[ν0, . . . , ν0] for some multi-hole context C. Actually,
there is also the case in which the ε cell is connected to the second principal
port of the δ2 cell; but this case is perfectly symmetrical, and the arguments
we shall go through in the sequel can be used without problems to handle it as
well (this is true also for the γδ2 rule).

Let us first check that µ0 and ν0 (surrounded by any context) are equivalent
with respect to observability, i.e., points (1) and (3) hold. Observe that the
δ2 cell in µ0 is not persistent; therefore, the only case to be checked is that in
which µ↓i because of a δ-final straight path ending into the second principal
port of δ2. This path is present in ν as well, so no problem. Conversely, there is
nothing to check since whenever ν↓i, we always have a reduction (the one under
study!) such that µ→ ν↓i, so µ⇓i by definition.

We now turn to showing point (2). Let µ → µ′. If the reduction does not
touch any copy of µ0, ν can obviously simulate it. Otherwise, one of the cells
of one of the copies of µ0 has interacted. The first possibility is that one of the
copies of µ0 becomes ν0 in µ′, i.e.,

µ = C[µ0, . . . , µ0, . . . , µ0] → C[µ0, . . . , ν0, . . . , µ0] = µ′.

By taking the occurrence of ν0 in µ′ as part of the context, we can always say
that µ′ = C ′[µ0, . . . , µ0]; but then ν = C ′[ν0, . . . , ν0], so either µ′ = ν (in case

C is a 1-hole context), and we are done since equality is contained in
¦≈ (and

thus in B∗), or (µ′, ν) ∈ B0 by definition. The second possibility is that a δ2 cell
in one of the copies of µ0 interacts through its second principal port with a cell
of C, or with another δ2 of another copy of µ0. Let us first analyze this latter
case; we have

ε ε ε ε

µ0
. . .

µ0
. . .

µ0
. . .

µ0
. . .

=µ →

. . .
C0

=µ′

. . .

ε ε

δ2 δ2

C0

. . . . . .

and

ε ε ε ε

. . .
ν0

. . .
ν0

. . .
ν0

. . .
ν0

=ν →

. . .
C0

. . .

δ1 δ1

C0

εε ε ε

= ν′

. . . . . .
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Now, as before, we can take the common part of µ′ and ν′, i.e., everything
except the copies of µ0 and ν0 still remaining in resp. µ′ and ν′, and consider
it as a context: µ′ = C ′[µ0, . . . , µ0] and ν′ = C ′[ν0, . . . , ν0]. Once again, either
µ′ = ν′, or (µ′, ν′) ∈ B by definition.

We can now look at the cases in which a δ2 cell in one of the copies of µ0

interacts with a cell α in C. If α = δk, arguments completely analogous to the
ones above work just fine. If α = ε, we have

ε ε

ε

=µ → = µ′

. . .
C0

δ2

ε ε

. . .
C0

δ1

. . .
. . .

. . .
. . .

. . .
. . .µ0 µ0

µ0 µ0

If we take ν, we can reduce it as follows:

ε

ε ε
εεε ε

=ν

. . .
C0

δ1

→

C0
. . .

= ν′

. . .
. . . . . .

. . .. . . . . .
ν0 ν0 ν0 ν0

Now call C ′ the context made up of everything in µ′ except the copies of µ0

still left after the reduction, i.e., µ′ = C ′[µ0, . . . , µ0]. By Lemma 6.1, the first
and third ε cells from the left shown in the picture of ν′ can be transformed,
modulo barbed bisimilarity, into an active pair δ1 ./ ε; in other words, we
have ν′

¦≈ C ′[ν0, . . . , ν0] = ν′′. But barbed bisimilarity is included in B, and

(µ′, ν′′) ∈ B by definition; therefore, we can conclude by symmetry of
¦≈ and by

transitivity of B∗ that (µ′, ν′) ∈ B∗, as desired.
It remains the case α = γ. We have
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µ0
. . .

µ0
. . .

δ2

µ0
. . .

µ0
. . .

. . .

. . .

γ

ε

C0

δ2 δ2

γ γ γ γ

γ

ε

. . .
C0

. . .

→=µ = µ′

ν admits the following reduction:

. . .
ν0

. . .
ν0

. . .
ν0

. . .
ν0

γ γ

δ1 δ1

ε ε

. . .
C0. . .

C0

ε ε

γ

. . .

δ1

→=ν = ν′

By Lemma 6.1, µ′
¦≈ µ′′, where

µ0
. . .

µ0
. . .

ε ε

µ0 µ0

µ0
. . .

µ0
. . .

. . .

. . .
C ′

δ2 δ2

γ γ γ γ

. . .

C0
. . .

µ′′ = =

On the other hand, we have ν′ 'η ν
′′, where
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. . .
ν0

. . .
ν0

ν0 ν0

. . .
ν0

. . .
ν0

=ν′′

γ γ

δ1 δ1

. . .
C0

ε ε ε ε

γ γ

=

. . .

. . .

. . .
C ′

Now, by definition, (µ′′, ν′′) ∈ B; additionally, since
¦≈ and 'η are both included

in B, and since η-equivalence is symmetric, we also have (µ′, µ′′), (ν′′, ν′) ∈ B.
Then, by transitivity, (µ′, ν′) ∈ B∗.

This shows that property (2) holds if (µ, ν) ∈ B0; property (4) is shown by
similar arguments. We omit the details, and pass directly to the analysis of a
few cases in which µ 'η ν. We shall start by verifying in some depth the case
of the equation

ε ε

γ
ε'η

As above, we call µ0 the left member and ν0 the right member, so that µ =
C[µ0, . . . , µ0] and ν = C[ν0, . . . ν0] for some multi-hole context C. We remark
that there can be no observable path using any of the two configurations, so there
is nothing to check as far as points (1) and (3) are concerned. Then, suppose
µ → µ′ (or ν → ν′ to check property (4)). As before, if µ = C[µ0, . . . , µ0] →
C ′[µ0, . . . , µ0], then ν has no problem simulating µ, and vice versa. So we
need to take care of the cases in which one of the copies of µ0 interacts with
the context, or with one of the other copies (and similarly, for property (4),
replacing µ0 with ν0). The case of the interaction between two copies of µ0

or ν0 is easy. If one of the copies of µ0 interacts with a cell α of C, the only
interesting cases are those in which α = δ1 and α = δ2. In the first case, we
have
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ε ε

γ

δ1

µ0 µ0

. . .
C0

. . .

=µ

µ0 . . . µ0

ε ε

γ γ

δ1 δ1

C0
. . .

→ = µ′

Now, we take ν and we observe that, using Lemma 6.1, we can write

ν0 ν0

ε

γ

γ γ

δ1 δ1

C0
. . .

. . .

ε ε

ν0 ν0. . .

γ γ

δ1 δ1

C0
. . .

ν
¦≈'η = ν′

By the fact that both 'η and
¦≈ are symmetric and included in B∗, and by tran-

sitivity, we obtain (ν′, ν) ∈ B∗. But µ′ = C ′[µ0, . . . , ν0] and ν′ = C ′[ν0, . . . , ν0],
so by definition (µ′, ν′) ∈ B0 ⊆ B. Using again transitivity, we conclude that
(µ′, ν) ∈ B∗, which is enough for our purposes, since ν →∗ ν. This settles the
matter as far point (2) is concerned; for point (4), we have
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. . .
C0

ν0 ν0. . .

ε ε

. . .
C0

ν0 ν0. . .

ν0 ν0→ =ν

We already know that µ → µ′ as above; it is not hard to see that µ′ →∗

C0[µ0, . . . , µ0]. Now (C0[µ0, . . . , µ0], C0[ν0, . . . , ν0]) is in B0 by definition, so we
are done.

We get to the case α = δ2. The reduction µ→ µ′ looks as follows:

. . .
C0

µ0 µ0

γ

γ γ γ γ

ε ε

δ2 δ2→µ = µ′

. . .

Notice that, if we take all of µ′ except the copies of µ0 which have not inter-
acted, we can form a multi-hole context and write µ′ = C ′[µ0, . . . , µ0]. Now we
take ν, and observe that, with the help of Lemma 6.1, we have just as above
ν 'η

¦≈ C ′[ν0, . . . , n0]; then we conclude by inclusion of η-equivalence and barbed
bisimulation in B, and by transitivity. The case in which ν → ν′ is also handled
just as above. This takes care of the situation in which the cell δ2 interacts
with µ0 or ν0 through its first principal port; the case of the second principal
port is perfectly analogous, so there is nothing else to check as far as the above
equation is concerned.

There are two more η-equations to verify, each verification consisting of the
analysis of several subcases. However, there is nothing essentially new with
respect to what we have shown so far; the techniques employed above are used
over and over, with our definition of B (including 'η and

¦≈) and transitivity of
B∗ playing fundamental rôles. Therefore, we shall stop here, inviting the curious
(and well motivated) reader to check a few of the remaining cases. ¤
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We immediately show an application of Lemma 6.2, which will be useful in
the encoding of generic 2INS’s into the 2-port combinators:

Lemma 6.3 Define δd
m to be the following net:

δm+d

ε ε ε ε

ε ε

. . .

. . . . . . . . . . . .

1 m c0 c1 cm−1

1 m . . .

d︷ ︸︸ ︷ d︷ ︸︸ ︷

︸ ︷︷ ︸
dThen, δ11 ∼= δ1.

Proof. Simply observe that δ11 reduces to δ1 by means of deterministic steps
only, so the result follows from Lemma 6.2. ¤

6.4 Universality

In the following, we fix a generic multiport interaction net system S = (Σ,R)
such that Σ = {α1, . . . , αc}. We let ni and mi denote resp. the arity and coarity
of αi, and we pose m = max{m1, . . . ,mc}.

We shall define a function [·] mapping nets of S to nets of m-port combina-
tors, for all m ≥ 1. Since we have defined a behavioral equivalence only for the
2-port combinators, we shall be able to prove that [·] is a translation (up to ∼=)
only in the 2-port case. This is already quite satisfying in the light of the results
of Sect. 5.4: we know that there exists a 2INS capable of faithfully encoding the
“core” π-calculus, so the 2-port combinators have at least the same expressive
power as this subcalculus of π, which is not bad. By the way, we strongly believe
our translation to be sound for any number of principal ports; what is missing is
just a good notion of behavioral equivalence for generic multiport combinators,
which would allow us to prove it.

6.4.1 Projections and decomposition of rules

To each cell αk we can associate mk unicells α1
k, . . . , α

mk

k , each of arity nk +
mk − 1, representing the different behaviors of αk according to the principal
port chosen for interaction. The αi

k are called the projections of αk. Multiport
interaction rules can be decomposed in terms of projections; we first select the
suitable projections, then we apply the rule:

Ã

αk

αl

i

. . .

. . .

. . . . . .

. . . . . .

j

. . .

. . .

αi
k

αj
l

→

. . . . . .

. . . . . .

. . . . . .

. . . . . .

R(αi
k, α

j
l )
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Of course the rewriting step denoted by Ã is not an interaction rule (the right
hand member is not cut-free); the interest of the above decomposition is that
we can see multiport reduction as a non-deterministic choice plus a normal
interaction net reduction.

The right member of interaction rules can be canonically decomposed, as
done by Lafont [Laf97]:

ϕi,j
k,l

σi,j
k,l

ψi,j
k,l

=R(αi
k, α

j
l )

. . .

. . .

. . .

. . .

where ϕi,j
k,l and ψi,j

k,l do not contain active pairs, and σi,j
k,l is a permutation. From

this, and by the symmetry condition on right members of rules, we obtain that
ϕj,i

l,k = ψi,j
k,l, and σj,i

l,k = σi,j
k,l. In particular, σi,i

k,k = σi,i
k,k. Now, in case i 6= j,

we can always include the permutation σi,j
k,l into ϕi,j

k,l, so that the decomposition
is no longer canonical, but we have that the permutation “between” the two
components of the decomposition of R(αi

k, α
j
l ) is the identity.

Therefore, we can in general associate to the rule involving αi
k and αj

l two

cut-free nets ϕi,j
k,l, ϕ

j,i
l,k and one permutation σi,j

k,l satisfying σi,j
k,l = σi,j

k,l, such that

R(αj
l , α

i
k)

ϕj,i
l,k

σi,j
k,l

ϕi,j
k,l

=

. . .

. . .

. . .

. . .

R(αi
k, α

j
l )

ϕi,j
k,l

σi,j
k,l

ϕj,i
l,k

=

. . .

. . .

. . .

. . .

6.4.2 Multiplexors

For each n ≥ 0, we define the principal nets (they are actually trees) Mn and
M∗

n as follows:

ε

Mn

γ

= = =M0 M1 Mn+1

. . .
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ε

γ

M∗
n

= = =M∗
0 M∗

1 M∗
n+1

. . .

We invite the reader to check that following property holds, for all n ≥ 0:

. . .

. . .

Mn

M∗
n

→∗ . . .

Using δ1 cells instead of γ cells for any one of the above constructions, for
example the one defining the Mn family, yields a family of trees Tn for all n ≥ 0,
having the following property:

Tn

→∗

. . .

. . .

. . .

. . .

Tn

6.4.3 Rotation-invariant wirings

We define, for all n ≥ 1, the permutation on n elements χn such that

χn(i) = n− i+ 1, i ∈ {1, . . . , n}.

As a wiring, χn is a made of n wires arranged as follows:

=

. . .

. . .

χn

Clearly χn is involutive, i.e., χ2
n = I, where I is the identity permutation.

We also define, for all non-negative p, q such that 2p+q ≥ 1, the permutation
ιp,q on 2p + q elements exchanging 1 with 2, 3 with 4, and so on until 2p − 1
with 2p, and behaving as the identity on 2p+1, . . . , 2p+ q. In terms of wirings,
we have
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1

=ιp,q

2 2p2p− 1 2p+ q

. . .. . .

2p+ 1

Notice that any involutive permutation σ on n elements is a composition of
disjoint transpositions, therefore σ = ρ−1ιp,qρ for some permutation ρ and some
p, q such that 2p+ q = n.

For all non-negative p, q such that 2p+ q ≥ 1, we define a tree Tp,q (called
transpositor) of arity 2p+ q as follows:

γ γ

Tp+q

. . .. . .

=Tp,q

2p︷ ︸︸ ︷ q︷ ︸︸ ︷

The reader can check that transpositors enjoy the following property:

→∗

Tp,q

Tp,q

. . .

. . . . . .

. . .

. . .

ιp,q

χ2p+q

This is possible because, if we pose n = 2p + q, χnιp,q is rotation-invariant,
i.e., χnιp,q = χnιp,q (we recall that, for any net µ, µ is the same net rotated
180 degrees, cf. Sect. 1.1.2). In fact, given a permutation σ on n elements, the
permutation represented by the wiring σ can be defined as σ = χnσ

−1χn. Since
χn and ιp,q are both involutive, we have (χnιp,q)−1 = ιp,qχn, so that

χnιp,q = χn(χnιp,q)−1χn = χnιp,qχ
2
n = χnιp,q.

Now let σ be a rotation-invariant wiring/permutation on n elements. By the
above discussion, and by the involutivity of χn, we have χnσ = σ−1χn, which
means that χnσ is involutive. But then there exist p, q such that 2p + q = n
and a permutation on n elements ρ such that χnσ = ρ−1ιp,qρ. Using again the
involutivity of χn, we have

σ = χnρ
−1ιp,qρ = (χnρ

−1χn)(χnιp,q)ρ = ρ(χnιp,q)ρ.

Therefore, if we pose
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ρ

Tp,q

. . .

. . .

=Tσ

by the property of transpositors we obtain a principal net capable of generating
σ:

. . .

. . .

σ→∗

Tσ

Tσ

. . .

. . . . . .

. . .

=

ρ

ρ

χnιp,q

6.4.4 Menus and selectors

If we have n packages π1, . . . , πn, we can build another package π1 & · · · & πn,
called menu, defined as follows:

π1 πn

Mn=π1 & · · ·& πn

Then, for all n ≥ 1 and 1 ≤ i ≤ n, we define the selector

M∗
n=

ε ε ε ε

︸ ︷︷ ︸
n−i

︸ ︷︷ ︸
i−1

. . . . . .Si
n

We invite the reader to check that the following holds:

π1 & · · ·& πn

Si
n

→∗ πi

6.4.5 Codes, decoders, and copiers

The following is the fundamental construction for encoding arbitrary mINS’s
into the multiport combinators, and is an adaptation of Lafont’s “bang” con-
struction [Laf97].
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Consider a generic package π built with m-port combinators. Suppose that
π contains d δk cells (with 1 ≤ k ≤ m); then we can write

δk1 δkd

=π

µ

. . . . . .

. . .. . .
. . .

Using the nets defined in Lemma 6.3, we modify π as follows:

δm−k1
k1

δm−kd

kd=π′

µ

. . . . . .

. . .. . .
. . .

Now all δk cells contained in π′ are such that k = m, i.e., we have

δm δm
=π′

µ′

. . . . . .

. . .. . .
. . .

Then, we define the code of π to be the following package:

211



. . .. . .

. . .

. . .

. . . . . .

. . .. . .

Md Md

M∗
d M∗

d

µ′

M3m+1

. . .. . .

. . . . . .

!π =

Now we define the decoder net as follows:

M∗
3m+1

δm

. . . . . .

. . .

=Dm

It can be proved (by induction) that the following holds, for all m,n:

M∗
n M∗

n

Mn

M∗
n

δm δm δm
. . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

. . . . . .

→∗

Using this, it is not hard to check that
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→∗
!π

π′ π
→∗

Dm

Packages made up of γ and ε cells can be duplicated by δ1 cells (this is easily
proved by induction). If we put Cn = Tn for all n ≥ 0, we have

→∗
!π

!π

Cn

!π

. . .

. . .

The nets Cn will be called copiers.

6.4.6 Arbiters and claimers

The one we introduced here is the only construction which is not already present
(at least in a deterministic form) in Lafont’s work. We want to build, for all
k ≥ 1, an arbiter net Ak, which listens on k channels for concurrent requests
coming from claimers R. The arbiter non-deterministically chooses a claimer,
and assigns to it the resource it is handling; the other claimers receive a stop
signal X. Stop signals may also be sent to the arbiter, in order to disable one
of its channels.

The above description corresponds to the following reductions:

→∗
X X

Ak

R

. . . . . .

. . . . . .

→∗

Ak

. . . . . .

X

. . .

Ak−1

We invite the reader to check that a possible (particularly economic) imple-
mentation of the above nets is the following:

Ak
=

. . . . . .

δk

k︷ ︸︸ ︷ k−1︷ ︸︸ ︷
ε ε ε ε

c0

. . . . . .
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δ1

ε

R A1

= =

=X ε

6.4.7 The translation

We now define our translation from S to the m-port combinators. First of all,
set

S1
mk

Smk
mk

Mnk+mk+1

Amk

Sk
c Sk

c

Cmk+1

DmDm

. . .

. . .

. . .

. . .

=〈αk〉

. . .

γ . . . γ

S1
mk

Sk
c

Smk
mk

Sk
c

δmk

. . .

. . .

The function 〈·〉 cannot be a translation because it is not arity-preserving: cells
are mapped to nets having an extra free port. Nevertheless, 〈·〉 can be extended
without problems to all nets of S; given a net µ with n free ports containing p
cells, 〈µ〉 has n+ p free ports.
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So let pi,j
k,l be the number of cells contained in the net ϕi,j

k,l. For all
k, l ∈ {1, . . . , c} and for all i ∈ {1, . . . ,mk}, j ∈ {1, . . . ,ml}, we define the
package Γi,j

k,l as follows:

〈ϕi,j
k,l〉

. . . . . .

. . .

. . .

Tσi,j
k,l

Cpi,j
k,l

M∗
nk+mk+1

R

=Γi,j
k,l

where the copier Cpi,j
k,l

collects all the extra free ports of 〈ϕi,j
k,l〉 introduced by the

application of 〈·〉. Using the Γi,j
k,l packages just defined, we build the following

packages:

Γi
k,l = Γ1,i

k,l & · · ·& Γmk,i
k,l

Γi
k = Γi

1,k & · · ·& Γi
c,k

Γk = Γ1
k & · · ·& Γmk

k

Γ = Γ1 & · · ·& Γc

For all k ∈ {1, · · · , c} and i ∈ {1, . . . ,mk}, we pose

γ

Sk
c

Si
mk

Γi
k

=αi
k

We are now ready to define the translation [·] from S to the m-port combi-
nators:
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Mnk+mk+1

. . .

. . .

!Γ

α1
k αmk

k

Amk

. . .

. . .

. . .

δmk

. . .

=[αk]

The function 〈·〉 is related to the translation by the following property, which
we invite the reader to verify:

〈αk〉

. . .

. . .

!Γ

→∗ [αk]
. . .

. . .

We remark that, if S is an INS, then the translation has the interaction
combinators as target system; indeed, in that case if one replaces A1 and R cells
by simple wires (a logical optimization, since they are not needed anymore), [·]
becomes exactly Lafont’s translation.

Using the above constructions, one can prove the following:

Theorem 6.4 (Universality) Any 2INS can be translated up to ∼= into the
2-port combinators.

Proof. Take a generic active pair αi
k ./ α

j
l of S. Its translation, which we call

µ, is
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. . .

Mnk+3

!Γ

A2

α1
k α2

k

. . .

δ2

σi

σj

δ2

α2
l α1

l

A2

Mnl+3

!Γ

where σi is the identity if i = 1, or the “twist” if i = 2, and similarly for σj .
After one interaction step, µ reduces to a net which we call µ′, and which is
equal to
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Mnk+3

!Γ

A2

α1
k α2

k

. . .

σi

. . .

α2
l α1

l

A2

Mnl+3

!Γ

σj

ε

ε

Now the selectors in [αk] extract first Γj
k,l from Γj

l and then Γi,j
k,l from this

latter, while the selectors in [αl] progressively extract Γj,i
l,k from Γi

k. Meanwhile,
the ε combinators delete the αp

k and αq
l which have not been chosen by the

interaction. Notice that selectors use only γ and ε interaction to extract the
desired packages, while ε combinators erase cells by means of deterministic
reductions only; therefore, by Lemma 6.2, the above net is barbed congruent to
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. . .

A2

Mnl+3

!Γ

σj

ε Γj,i
l,k

Mnk+3

!Γ

A2

. . .

σi

Γi,j
k,l

ε

The Γi,j
k,l and Γj,i

l,k packages “start” with an R net, and hence with a δ1 cell.
This means that at this moment we may choose to perform a non-deterministic
reduction. But this is not harmful, as there is a deterministic reduction sequence
having the same result:

Claim 6.4.1 The following holds:
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ε
R

A2

σ ∼=

where σ is either the identity or the “twist” permutation.

Proof. Simply consider that the wire can be obtained by first making the ε
cell interact with the δ2 cell in A2, which yields a δ1 that can at this point
interact with the δ1 cell in the R net; the wire is then obtained after a few εε
interactions. This reduction sequence is composed of deterministic steps only,
hence the claim (by Lemma 6.2). Of course making the δ1 cell in R directly
interact with the δ2 cell in A2 also yields a wire (after a few εε steps); we have
simply shown that this non-deterministic interaction does not actually make
any choice, as the net is in some sense “destined” to converge to a wire. ¤
Using Claim 6.4.1, we know that µ′ is barbed congruent to the following net:
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Mnk+3

!Γ . . .

. . .

. . .

Tσi,j
k,l

Cpi,j
k,l

M∗
nk+3

. . .

〈ϕi,j
k,l〉

. . .

Mnl+3

!Γ

. . .

. . .

. . .

M∗
nl+3

Cpj,i
l,k

〈ϕj,i
l,k〉

Tσi,j
k,l

which, by the properties of the constructions shown above, reduces to
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. . .

. . .

〈ϕj,i
l,k〉

Tσi,j
k,l

!Γ !Γ. . .

. . .

. . .

Tσi,j
k,l

. . .

〈ϕi,j
k,l〉

!Γ !Γ

→∗

. . .

. . .

σi,j
k,l

[ϕi,j
k,l]

[ϕj,i
l,k]

which is equal to [R(αi
k, α

j
l )]. The reader can check that copying a !π package

and decoding it is done by means of deterministic reductions only, so we obtain
[αi

k ./ α
j
l ] = µ → µ′ ∼= [R(αi

k, α
j
l )] by applying Lemma 6.2 and the transitivity

of ∼=. ¤
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Normale Supérieure de Paris, 2003.

[Kri90] Jean-Louis Krivine. Lambda-calcul, types et modèles. Masson, Paris,
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