An Introduction to Differentiable Programming

Damiano Mazza

CNRS, LIPN, Université Sorbonne Paris Nord
FoPSS, Bertinoro, 13-14 February 2023

Remember derivaitives?

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
f^{\prime}(x):=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{gathered}
$$

Thought of as an operator $(-)^{\prime}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
(\alpha f+\beta g)^{\prime}(x) & =\alpha f^{\prime}(x)+\beta g^{\prime}(x) \\
(f g)^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
(f \circ g)^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

Remember gradients?

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Gradient:

$$
\begin{gathered}
\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
\partial_{i} f\left(x_{1}, \ldots, x_{n}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h} \\
\nabla f=\left(\partial_{1} f, \ldots, \partial_{n} f\right)
\end{gathered}
$$

Why gradients?

Gradient descent!

Target function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, training set $X \subseteq_{\text {fin }} \mathbb{R}^{m}$.
Parametric approximation $g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{p}$.
Want to find $\vec{w}_{\text {opt }} \in \mathbb{R}^{n}$ such that $g\left(\vec{w}_{\text {opt }}\right) \approx f$.
Define

$$
e(\vec{w}):=\frac{1}{|X|} \sum_{\vec{x} \in X}\|g(\vec{w}, \vec{x})-f(\vec{x})\|^{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

For initial $\vec{w}_{0} \in \mathbb{R}^{n}$, step $\eta<0$, and $i \in \mathbb{N}$, set

$$
\vec{w}_{i+1}:=\vec{w}_{i}+\eta \nabla e\left(\vec{w}_{i}\right)
$$

When $e\left(\vec{w}_{i}\right)$ is close to zero, set $\vec{w}_{\text {opt }}:=\vec{w}_{i}$.
Guaranteed to happen under convexity assumptions on e.

Automatic Differentiation (AD)

- In machine learning (ML), g is computed by a neural network (NN).
- In their simplest form, these are layers of neurons

$$
\theta\left(x_{1}, \ldots, x_{k}\right):=\sigma\left(\sum_{i=1}^{k} w_{i} x_{i}\right): \mathbb{R}^{k} \rightarrow \mathbb{R}
$$

where σ is some activation function.

- $n=$ number of weights in the net. (These days it can easily be 10^{8} or 10^{9}).

AD = methods for automatically computing gradients of functions specified by a computer program (e.g. the loss function of a neural network).

Differentiable Programming

- In recent years (from 2015-2016), NN architectures used in ML started becoming more and more complex.
- I.e., g is computed by more and more sophisticated programs.
- Need programming languages with a built-in engine for efficiently computing derivatives/gradients/Jacobians.
differentiable programming = programming languages + AD

Two wrong ideas

- Approximate the definition:

$$
f_{\sim}^{\prime}(x):=\frac{f(x+h)-f(x)}{h}
$$

with h very small.

- How do we choose h ?
- Contains two "deadly sins" of numerical computation.
- Symbolic computation (like in Mathematica).
- Good idea, but needs to be extended to programs.
- Inefficient, needs sharing.

Dual numbers

- The commutative ring of dual numbers is defined as

$$
\widehat{\mathbb{R}}:=\mathbb{R}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle
$$

- Its elements are pairs $\left(a, a^{\prime}\right) \in \mathbb{R}^{2}$, with

$$
\begin{aligned}
0 & =(0,0) \\
\left(a, a^{\prime}\right)+\left(b, b^{\prime}\right) & =\left(a+b, a^{\prime}+b^{\prime}\right) \\
1 & =(1,0) \\
\left(a, a^{\prime}\right)\left(b, b^{\prime}\right) & =\left(a b, a^{\prime} b+a b^{\prime}\right)
\end{aligned}
$$

Dual numbers and derivatives

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, we extend it to $\widehat{f}: \widehat{\mathbb{R}} \rightarrow \widehat{\mathbb{R}}$ as follows:

$$
\widehat{f}\left(a, a^{\prime}\right):=\left(f(a), f^{\prime}(a) a^{\prime}\right)
$$

- Using the chain rule, we have

$$
\begin{aligned}
\widehat{f \circ g}\left(a, a^{\prime}\right) & =\left(f(g(a)), a^{\prime}(f \circ g)^{\prime}(a)\right)=\left(f(g(a)), f^{\prime}(g(a)) g^{\prime}(a) a^{\prime}\right) \\
& =\widehat{f}\left(g(a), g^{\prime}(a) a^{\prime}\right)=\widehat{f}\left(\widehat{g}\left(a, a^{\prime}\right)\right) \\
\widehat{\mathrm{id}}\left(a, a^{\prime}\right) & =\left(a, \operatorname{id}^{\prime}(a) a^{\prime}\right)=\left(a, 1 \cdot a^{\prime}\right)=\left(a, a^{\prime}\right)
\end{aligned}
$$

- Furthermore, notice that

$$
\widehat{f}(a, 1)=\left(f(a), f^{\prime}(a)\right)
$$

Dual numbers and AD for unary straight-line programs

- The above suggests the following program transformation:

```
def f(x):
    z1 = f1(x)
    z2 = f2(z1)
    return g(zn)
```

```
def df(x):
    dx = 1
    z1 = f1(x)
    dz1 = dx * df1(x)
    z2 = f2(z1)
    dz2 = dz1 * df2(z1)
    return dzn * dg(zn)
```

- Exact computation.
- Preserves the complexity (modulo a factor of 3).

Dual numbers and partial derivatives

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, define $\widehat{f}: \widehat{\mathbb{R}}^{n} \rightarrow \widehat{\mathbb{R}}$ as

$$
\begin{aligned}
\widehat{f}\left(a_{1}, a_{1}^{\prime}, \ldots, a_{n}, a_{n}^{\prime}\right) & :=\left(f(\vec{a}), \nabla f(\vec{a}) \cdot \vec{a}^{\prime}\right) \\
& =\left(f\left(a_{1}, \ldots, a_{n}\right), \sum_{i=1}^{n} a_{i}^{\prime} \partial_{i} f\left(a_{1}, \ldots, a_{n}\right)\right)
\end{aligned}
$$

- We still have

$$
f \circ\left(\widehat{g_{1}, \ldots}, g_{n}\right)=\widehat{f} \circ\left(\widehat{g_{1}}, \ldots, \widehat{g_{n}}\right)
$$

- Furthermore, we have

$$
\widehat{f}\left(a_{1}, 0, \ldots, a_{i}, 1, \ldots, a_{n}, 0\right)=\left(f(\vec{a}), \partial_{i} f(\vec{a})\right)
$$

Dual numbers and AD for straight-line programs

The above transformation generalizes to

```
def f(x1,...,xn):
    z = g(w1,...,wk)
    return y
def df(i,x1,\ldots,.,xn):
    dx1,...,dxi,...,dxn = 0,...,1,...0
    z = g(w1,...,wk)
    dz = dw1 * dg(1,w1,...,wk) + ... + dwk * dg(k,w1,\ldots,.,wk)
    return dy
```

- Still exact computation, still complexity-preserving.
- Covers the case of loss functions of NNs.
- However, inefficient for gradients: requires n passes.

Dual numbers and AD for arbitrary programs

$$
\begin{aligned}
& \{z=g(w 1, w k)\} \quad z=g(w 1, \ldots, w k)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
\text { while } \mathrm{x}<=0: \\
<\text { code }\rangle
\end{array}\right\} \quad:=\quad \begin{array}{r}
\text { while } \mathrm{x}<=0 \\
\{\langle\text { code }\rangle
\end{array} \\
& \text { def } f(x 1, \ldots, x n): \\
& \text { <code> } \\
& \text { return } \mathrm{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { return } y \quad \text { dx1, .., dxi,..., dxn }=0, \ldots, 1, \ldots, 0 \\
& \text { \{<code>\} } \\
& \text { return dy }
\end{aligned}
$$

Theorem (Joss 1976). Taking a set of basic arithmetic functions as primitive, $\llbracket \mathrm{df}(i) \rrbracket=\partial_{i} \llbracket \mathrm{f} \rrbracket$ almost everywhere.

PCF with real numbers

Types: $\quad A, B \quad:=\mathrm{R}|A \times B| A \rightarrow B$
Programs:

$$
\begin{array}{rll}
M, N, P \quad::= & x|\lambda f(x) \cdot M| M N|\langle M, N\rangle| \pi_{i} M \\
& \mid \quad & \operatorname{if}(P \leq 0 ; M, N)|\underline{r}: \mathrm{R}| \mathrm{f}: \mathrm{R}^{k} \rightarrow \mathrm{R}
\end{array}
$$

Evaluation:

$$
\begin{array}{rll}
(\lambda f(x) \cdot M) N & \rightarrow & M[N / x][\lambda f(x) \cdot M / f] \\
\pi_{i}\left\langle M_{1}, M_{2}\right\rangle & \rightarrow & M_{i} \\
\text { if }(\underline{r} \leq 0 ; M, N) & \rightarrow \begin{cases}M & \text { if } r \leq 0 \\
N & \text { if } r>0\end{cases} \\
\mathrm{f}\left\langle\underline{r_{1}}, \ldots, \underline{r_{k}}\right\rangle & \rightarrow \underline{〔 f \rrbracket\left(r_{1}, \ldots, r_{n}\right)}
\end{array}
$$

Every program $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash M: \mathrm{R}$ has a natural semantics

$$
\llbracket M \rrbracket: \mathbb{R}^{n} \rightharpoonup \mathbb{R} .
$$

We write $\mathrm{d}(M)$ for the open subset of \mathbb{R}^{n} where $\llbracket M \rrbracket$ is differentiable.

AD in PCF

$$
\overrightarrow{\mathrm{D}}(\mathrm{R}):=\mathrm{R} \times \mathrm{R} \quad \overrightarrow{\mathrm{D}}(A \times B):=\overrightarrow{\mathrm{D}}(A) \times \overrightarrow{\mathrm{D}}(B) \quad \overrightarrow{\mathrm{D}}(A \rightarrow B):=\overrightarrow{\mathrm{D}}(A) \rightarrow \overrightarrow{\mathrm{D}}(B)
$$

$$
\begin{array}{rlrl}
\overrightarrow{\mathrm{D}}(x: A) & :=x: \overrightarrow{\mathrm{D}}(A) & \overrightarrow{\mathrm{D}}(\underline{r}): & :=\langle\underline{r}, 0\rangle \\
\overrightarrow{\mathrm{D}}(\lambda f(x) \cdot M) & :=\lambda f(x) \cdot \overrightarrow{\mathrm{D}}(M) & \overrightarrow{\mathrm{D}}(M N):=\overrightarrow{\mathrm{D}}(M) \overrightarrow{\mathrm{D}}(N) \\
\overrightarrow{\mathrm{D}}(\langle M, N\rangle) & :=\langle\overrightarrow{\mathrm{D}}(M), \overrightarrow{\mathrm{D}}(N)\rangle & \overrightarrow{\mathrm{D}}\left(\pi_{i} M\right):=\pi_{i} \overrightarrow{\mathrm{D}}(M) \\
\overrightarrow{\mathrm{D}}(\mathrm{if}(P \leq 0 ; M, N)):=\operatorname{if}\left(\pi_{1} \overrightarrow{\mathrm{D}}(P) \leq 0 ; \overrightarrow{\mathrm{D}}(M), \overrightarrow{\mathrm{D}}(N)\right) \\
\overrightarrow{\mathrm{D}}(\mathrm{f}) & :=\lambda \mathbf{z} \cdot\left\langle\mathrm{f}\left\langle\pi_{1} \mathbf{z}\right\rangle, \sum_{i=1}^{k}\left(\pi_{2} z_{i}\right) \cdot \partial_{i} f\left\langle\pi_{1} \mathbf{z}\right\rangle\right\rangle
\end{array}
$$

Lemma. $M \rightarrow N$ implies $\overrightarrow{\mathbf{D}}(M) \rightarrow^{*} \overrightarrow{\mathbf{D}}(N)$

Soundness for simple programs

Basic assumption: for every primitive $\mathrm{f}: \mathrm{R}^{k} \rightarrow \mathrm{R}$ and for all $1 \leq i \leq k$, we have $\llbracket \partial_{i} \rrbracket \rrbracket=\partial_{i} \llbracket f \rrbracket$ on $\mathrm{d}(\mathrm{f})$.

Let $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash M: \mathrm{R}$ and let

$$
\overrightarrow{\mathbf{D}}_{i}(M):=\pi_{2} \overrightarrow{\mathbf{D}}(M)\left[\left\langle x_{1}, 0\right\rangle / x_{1}\right] \cdots\left[\left\langle x_{i}, 1\right\rangle / x_{i}\right] \cdots\left[\left\langle x_{n}, 0\right\rangle / x_{n}\right]
$$

We still have $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash \overrightarrow{\mathrm{D}}_{i}(M): \mathrm{R}$.
Definition. $\overrightarrow{\mathrm{D}}$ is sound on $S \subseteq \mathrm{~d}(M)$ if $\llbracket \overrightarrow{\mathbf{D}}_{i}(M) \rrbracket=\partial_{i}[M \rrbracket$ in S.
Ideally, we would like $\overrightarrow{\mathrm{D}}$ to be sound on $\mathrm{d}(M)$ for every M !
Definition. A PCF program is simple if it contains no if and no recursive def.
Theorem. For every simple program $t, \overrightarrow{\mathrm{D}}$ is sound on $\mathrm{d}(t)$.

Soundness for simple programs: proof idea

Two possibilities:

- Reduce to correctness for straight-line progs (direct):

- Logical relations.

Unsoundness

Let

$$
\text { sillyId }:=\operatorname{if}(x \leq 0 ; \text { if }(-x \leq 0 ; 0, x), x)
$$

We obviously have $\llbracket s i l l y I d \rrbracket=$ id. However

$$
\begin{aligned}
\overrightarrow{\mathrm{D}}_{1}(\text { sillyId }) & =\pi_{2}\left(\mathrm{if}\left(\pi_{1}\langle x, 1\rangle \leq 0 ; \operatorname{if}\left(\pi_{1}\langle-x,-1\rangle \leq 0 ;\langle 0,0\rangle,\langle x, 1\rangle\right),\langle x, 1\rangle\right)\right) \\
& \sim \operatorname{if}(x \leq 0 ; \operatorname{if}(-x \leq 0 ; 0,1), 1)
\end{aligned}
$$

hence

$$
\llbracket \overrightarrow{\mathbf{D}}_{1}(\text { sillyId }) \rrbracket(0) \neq \partial_{1} \llbracket \operatorname{sillyId} \rrbracket(0)
$$

NB: may happen in practice! If $\operatorname{ReLU}(x):=\operatorname{if}(x \leq 0 ; 0, x)$, then

$$
\llbracket \operatorname{ReLU}(x)-\operatorname{ReLU}(-x)) \rrbracket=\mathrm{id}
$$

has the same behavior as above.

Approximations and traces

On types:

$$
\begin{array}{lll}
& \frac{A^{\prime} \sqsubset A \quad B^{\prime} \sqsubset B}{\mathrm{R} \sqsubset \mathrm{R}} & \frac{A_{1}^{\prime} \sqsubset A \ldots A_{n}^{\prime} \sqsubset A \quad B^{\prime} \sqsubset B}{A^{\prime} \times B^{\prime} \sqsubset A \times B}
\end{array}
$$

On terms:

$$
\begin{aligned}
& \frac{A_{1} \sqsubset A, \ldots, A_{n} \sqsubset A \quad p: A_{1} \times \cdots \times A_{n} \quad x: A}{\Xi, p \sqsubset x \vdash \pi_{i} p \sqsubset x} \quad \Xi \vdash \underline{r} \sqsubset \underline{r} \quad \Xi \vdash \mathrm{f} \sqsubset \mathrm{f} \\
& \begin{array}{cc}
\Xi, p \sqsubset x \vdash t \sqsubset M \\
\Xi \vdash \lambda p . t \sqsubset \lambda x . M & \Xi \vdash t \sqsubset M \quad \Xi \vdash u_{1} \sqsubset N \ldots \Xi \vdash u_{n} \sqsubset N \\
\Xi \vdash t\left\langle u_{1}, \ldots, u_{n}\right\rangle \sqsubset M N
\end{array} \\
& \frac{\Xi \vdash t_{i} \sqsubset M_{i}}{\Xi \vdash \pi_{i}\left\langle t_{i}, t_{i}\right\rangle \sqsubset \operatorname{if}\left(P \leq 0 ; M_{1}, M_{2}\right)} i \in\{1,2\} \quad \frac{\Xi \vdash t \sqsubset \lambda_{n} f(x) \cdot M}{\Xi \vdash t \sqsubset \lambda f(x) \cdot M} \\
& \text { where } \lambda_{0} f(x) \cdot M:=\lambda f(x) \cdot M \text { and } \lambda_{n+1} f(x) \cdot M:=(\lambda f \cdot \lambda x \cdot M)\left(\lambda_{n} f(x) \cdot M\right) \\
& \text { On reductions: }\left(t \rightarrow^{*} u\right) \sqsubset(M \rightarrow N) \text { if } t \sqsubset M, u \sqsubset N \text { and } t \text { "simulates" } M \text {. } \\
& t \sqsubset M \text { if (reduction of } t) \sqsubset \text { (reduction of } M \text { to normal form). }
\end{aligned}
$$

Soundness on stable points

Let $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash M: \mathrm{R}$.
Definition. A point $\mathbf{r} \in \mathbb{R}^{n}$ is stable for M if
there exist $t[M$ and $\varepsilon>0$ such that
$\forall \mathbf{r}^{\prime} \in \mathbb{R}^{n},\left\|\mathbf{r}^{\prime}-\mathbf{r}\right\|<\varepsilon$ implies $t\left[\mathbf{r}^{\prime} / \mathbf{x}\right] \check{\sim} M\left[\mathbf{r}^{\prime} / \mathbf{x}\right]$.
Theorem. For every $M, \overrightarrow{\mathrm{D}}$ is sound on the stable points of $\mathrm{d}(M)$.
The proof is based on
Lemma. r stable for M implies that there exists $t \sqsubset M$ such that $\llbracket M \rrbracket=\llbracket t \rrbracket$ on a neighborhood of \mathbf{r}.
Lemma. If $t[\mathbf{r} / \mathbf{x}] \sqsubset M[\mathrm{r} / \mathbf{x}]$ and u is the normal form of $\overrightarrow{\mathrm{D}}_{i}(t)[\mathrm{r} / \mathbf{x}]$, then $\overrightarrow{\mathbf{D}}_{i}(M)[\mathrm{r} / \mathbf{x}]$ has a normal form N and $u \sqsubset N$.

Quasivarieties and unsoundness

$h: \mathbb{R}^{k} \rightharpoonup \mathbb{R}$ is basic if it is in the clone generated by $\{\llbracket f \rrbracket\}_{f}$ primitive. Addifional assumption: for every basic function h :

1. h is continuous on its domain;
2. if $h \neq 0$, then $h^{-1}(0)$ is of Lebesgue measure zero in \mathbb{R}^{k}.

For example, me may restrict to $f^{\prime} s$ such that $\llbracket f \rrbracket$ is analytic on its domain.
Definition. Quasivariety $Z \subseteq \mathbb{R}^{k}$ if $\exists\left\{h_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}\right\}_{i<\omega}$ basic non-zero

$$
Z \subseteq \bigcup_{i<\omega} h_{i}^{-1}(0)
$$

Quasivarieties are negligible: they are of measure zero and are stable under subsets and countable unions.

Theorem. The unstable points of a program form a quasivariety. Corollary. For every M, the set $\left\{\mathbf{r} \in \mathrm{d}(M) \mid \llbracket \overrightarrow{\mathbf{D}}_{i}(M) \rrbracket(\mathbf{r}) \neq \partial_{i} \llbracket M \rrbracket(\mathbf{r})\right\}$ is a quasivariety. In particular, $\overrightarrow{\mathrm{D}}$ is sound on almost all of $\mathrm{d}(M)$.

Proof: logical predicates

$\mathrm{U}(M):=$ unstable converging points of $M . \Gamma:=x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R}$.

$$
\begin{aligned}
\mathrm{P}_{\Gamma}(\mathrm{R}) & :=\{\Gamma \vdash M: \mathrm{R} \mid \mathrm{U}(M) \text { is a quasivariety }\} \\
\mathrm{P}_{\Gamma}(A \rightarrow B) & :=\left\{\Gamma \vdash M: A \rightarrow B \mid \forall N \in \mathrm{P}_{\Gamma}(A), M N \in \mathrm{P}_{\Gamma}(B)\right\} \\
\mathrm{P}_{\Gamma}\left(A_{1} \times A_{2}\right) & :=\left\{\Gamma \vdash M: A \times B \mid \forall i \in\{1,2\}, \pi_{i} M \in \mathrm{P}_{\Gamma}\left(A_{i}\right)\right\}
\end{aligned}
$$

Proof: logical predicates with quasicontinuity

$\mathrm{U}(M):=$ unstable converging points of $M . \Gamma:=x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R}$.
$\mathrm{P}_{\Gamma}(\mathrm{R}):=\{\Gamma \vdash M: \mathrm{R} \mid \mathrm{U}(M)$ is a quasivariety and $\llbracket M \rrbracket$ is cqc $\}$
$\mathrm{P}_{\Gamma}(A \rightarrow B):=\left\{\Gamma \vdash M: A \rightarrow B \mid \forall N \in \mathrm{P}_{\Gamma}(A), M N \in \mathrm{P}_{\Gamma}(B)\right\}$
$\mathrm{P}_{\Gamma}\left(A_{1} \times A_{2}\right):=\left\{\Gamma \vdash M: A \times B \mid \forall i \in\{1,2\}, \pi_{i} M \in \mathrm{P}_{\Gamma}\left(A_{i}\right)\right\}$
Definition. Quasiopen set of \mathbb{R}^{n} (U open and h basic):

$$
Q, Q^{\prime}::=U\left|h^{-1}(0)\right| \bigcup_{i<\omega} Q_{i} \mid Q \cap Q^{\prime}
$$

Definition. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ quasicontinuous if $Q \subseteq \mathbb{R}^{m}$ quasiopen implies $f^{-1}(Q)$ quasiopen. It is completely quasicontinuous (cqc) if $\operatorname{id}_{\mathbb{R}^{k}} \times f$ is quasicontinuous for all $k \in \mathbb{N}$.
Lemma. $\Gamma, y_{1}: A_{1}, \ldots, y_{m}: A_{m} \vdash M: A$ and $N_{i} \in \mathrm{P}_{\Gamma}\left(A_{i}\right)$ for all $1 \leq i \leq m$ implies $M\left[N_{1} / y_{1}\right] \cdots\left[N_{m} / y_{m}\right] \in \mathrm{P}_{\Gamma}(A)$.

Back to derivatives

If $f: A \rightarrow B$, its derivative (if it exists), is a function

$$
\mathrm{D} f: A \rightarrow(A \multimap B)
$$

where $A \multimap B$ is the space of linear functions from A to B. Given $x \in A$, one often writes $\mathrm{D}_{x} f$ for the function $\mathrm{D} f(x): A \multimap B$. With this notation, the chain rule becomes

$$
\mathrm{D}_{x}(f \circ g)=\mathrm{D}_{g(x)} f \circ \mathrm{D}_{x} g
$$

If $A=\mathbb{R}^{n}, B=\mathbb{R}^{m}$ and $\mathrm{x} \in \mathbb{R}^{n}, J_{\mathrm{x}} f:=\mathrm{D}_{\mathrm{x}} f$ is the Jacobian matrix ($m \times n$), or gradient $\nabla_{\mathbf{x}} f$ if $m=1$. Composition is matrix product:

$$
\begin{gathered}
\mathbb{R}^{n_{0}} \xrightarrow{f_{1}} \mathbb{R}^{n_{2}} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{p-1}} \mathbb{R}^{n_{p-1}} \xrightarrow{f_{p}} \mathbb{R}^{n_{p}} \\
J_{\mathbf{x}}\left(f_{p} \circ \cdots \circ f_{1}\right)=J_{f_{p-1}\left(\ldots f_{1}(\mathrm{x})\right)} f_{p} \cdots J_{\mathrm{x}} f_{1}
\end{gathered}
$$

NB: when $A=B=\mathbb{R}$, the Jacobian matrix is just a scalar, hence the high school definition.

Computing gradients: from forward to reverse mode

Consider a straight-line programs P with p lines. The i-th line

$$
z i=g i(y 1, \ldots, y k)
$$

induces a function $f_{i}: \mathbb{R}^{n_{i-1}} \rightarrow \mathbb{R}^{n_{i}}$, with $n_{i-1} \geq k$ and n_{i} equal to the number of variables (including zi) used by the lines $>i$. Hence, $\llbracket P \rrbracket=f_{p} \circ \cdots \circ f_{1}$ as above, and computing $\nabla \llbracket P \rrbracket$ means:

- computing each matrix $J_{f_{i-1}\left(\ldots f_{1}(\mathrm{x})\right)} f_{i}$
- multiply them together.
$\overrightarrow{\mathrm{D}}$ may be adapted to compute $\nabla \llbracket P \rrbracket$, starting from the right.
But matrix product is associative, so we may also start from the left!
- Say that $n_{0} \approx n_{1} \approx \cdots \approx n_{p-1} \approx n$, whereas $n_{p}=1$.
- $J_{\mathbf{x}} f_{1}, J_{f_{1}(\mathrm{x})} f_{2}, \ldots, J_{f_{p-2}\left(\ldots f_{1}(\mathrm{x})\right)} f_{p-1}$ are $n \times n$.
- $J_{f_{p-1}\left(\ldots f_{1}(\mathrm{x})\right)} f_{p}$ is a row vector of size n !

We go from $O\left(n^{2}\right)$ scalar products to $O(n)$!

Reverse mode AD as transposition

Remember: if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$

$$
J_{\mathbf{x}} f: \mathbb{R}^{n} \multimap \mathbb{R}^{m}
$$

Linear maps may be transposed:

$$
J_{\mathbf{x}}^{t} f: \mathbb{R}^{m} \multimap \mathbb{R}^{n}
$$

Technically, this uses $(-)^{\perp}$, but $\mathbb{R}^{\perp} \cong \mathbb{R}$.
The chain rule becomes

$$
\begin{gathered}
\mathbb{R}^{n_{0}} \xrightarrow{f_{1}} \mathbb{R}^{n_{2}} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{p-1}} \mathbb{R}^{n_{p-1}} \xrightarrow{f_{p}} \mathbb{R}^{n_{p}} \\
J_{\mathrm{x}}^{t}\left(f_{p} \circ \cdots \circ f_{1}\right)=J_{\mathbf{x}}^{t} f_{1} \circ \ldots \circ J_{f_{p-1}^{t}\left(\ldots f_{1}(\mathrm{x})\right) f_{p}}^{t}
\end{gathered}
$$

Reverse mode AD for straight-line programs

```
def \(f(x 1, \ldots, x n):\)
    z1 = g1 (v1,..., vk)
    zp \(=\) gp (w1,...,wh)
    return zp
def grad_f(x1,..., xn):
    z1 = g1 (v1,..., vk)
    \(z p=g p(w 1, \ldots, w h)\)
    \# reverse pass starts here
    \(d x 1, \ldots, d x n, d z 1, \ldots, d z\{p-1\}, d z p=0, \ldots, 0,0, \ldots, 0,1\)
    dw1 += dgp(1,w1,...,wh) * dzp
    dwh += dgp(h,w1,...,wh) * dzp
    dv1 += dg1(1, v1,..., vk) * dz1
    dvk += dg1(k,v1,..., vk) * dz1
    return dx1,..., dxn
```


Backpropagators and derivatives

- For an arbitrary space E, let $\mathbb{R}^{\perp}:=\mathbb{R} \multimap E$ and $\mathbb{R}^{\bullet}:=\mathbb{R} \times \mathbb{R}^{\perp}$.
- An element of \mathbb{R}^{\perp} is called backpropagator.
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, we define $f^{\bullet}: \mathbb{R}^{\bullet} \rightarrow \mathbb{R}^{\bullet}$ as follows:

$$
f^{\bullet}\left(x, x^{*}\right):=\left(f(x), \lambda a \cdot x^{*}\left(a f^{\prime}(x)\right)\right)
$$

- We have

$$
(f \circ g)^{\bullet}=f^{\bullet} \circ g^{\bullet} \quad \quad \mathrm{id}{ }^{\bullet}=\mathrm{id}
$$

- Furthermore, notice that, taking $E=\mathbb{R}$,

$$
f^{\bullet}(x, \lambda a \cdot a)=\left(f(x), \lambda a \cdot a f^{\prime}(x)\right)
$$

Backpropagators and gradients

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, we define $f^{\bullet}: \mathbb{R}^{\bullet n} \rightarrow \mathbb{R}^{\bullet}$ as follows:

$$
f^{\bullet}\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right):=\left(f(\vec{x}), \lambda a \cdot \sum_{i=1}^{n} x_{i}^{*}\left(a \partial_{i} f(\vec{x})\right)\right)
$$

- We still have

$$
\left(f \circ\left(g_{1}, \ldots, g_{n}\right)\right)^{\bullet}=f^{\bullet} \circ\left(g_{1}^{\bullet}, \ldots, g_{n}^{\bullet}\right)
$$

- Furthermore, notice that, taking $E=\mathbb{R}^{n}$,

$$
f^{\bullet}\left(x_{1}, \iota_{1}, \ldots, x_{n}, \iota_{n}\right)=(f(\vec{x}), \lambda a \cdot a \nabla f(\vec{x}))
$$

where $\iota_{i}: \mathbb{R} \multimap \mathbb{R}^{n}$ is the i-th injection.

Reverse mode AD in PCF with linear negation

- Types: $A, B::=\mathrm{R}|A \times B| A \rightarrow B \mid \mathrm{R} \rightarrow A$
- Same programs. Typing judgments $\Gamma_{\text {non-lin }} ; \Delta_{\operatorname{lin}} \vdash M: A$ to track linearity.
- Linear factoring rule: if $x^{*}: \mathrm{R} \multimap A$,

$$
x^{*} M+x^{*} N \rightarrow x^{*}(M+N)
$$

- Reverse mode AD has source PCF and target PCF with linear negation.
- For any type E, we let $\overleftarrow{\mathbf{D}}_{E}(\mathrm{R}):=\mathrm{R} \times(\mathrm{R} \multimap E)$. Homomorphic on the rest.
- On programs, homomorphic everywhere except

$$
\overleftarrow{\mathbf{D}}_{E}(\underline{r}):=\langle\underline{r}, \lambda a .0\rangle \quad \overleftarrow{\mathbf{D}}_{E}(\mathrm{f}):=\lambda \mathbf{z} .\left\langle\mathrm{f}\left\langle\pi_{1} \mathbf{z}\right\rangle, \lambda a . \sum_{i=1}^{k}\left(\pi_{2} z_{i}\right)\left(a \partial_{i} \mathrm{f}\left\langle\pi_{1} \mathbf{z}\right\rangle\right)\right\rangle
$$

Lemma. $M \rightarrow N$ implies $\overleftarrow{\mathbf{D}}(M) \rightarrow^{*} \overleftarrow{\mathbf{D}}(N)$

Soundness for reverse mode AD

We work under the same assumptions about the $\mathrm{f}^{\prime} \mathrm{s}$ as above.
Let $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash M: \mathrm{R}$ and let (using $\mathrm{R}^{\perp}=\mathrm{R} \multimap \mathrm{R}^{n}$)

$$
\operatorname{grad}(M):=\left(\pi_{2} \overrightarrow{\mathbf{D}}(M)\left[\left\langle x_{1}, \iota_{1}\right\rangle / x_{1}\right] \cdots\left[\left\langle x_{n}, \iota_{n}\right\rangle / x_{n}\right]\right) 1
$$

We have $x_{1}: \mathrm{R}, \ldots, x_{n}: \mathrm{R} \vdash \operatorname{grad}(M): \mathrm{R}^{n}$.
Definition. $\overleftarrow{\mathrm{D}}$ is sound on $S \subseteq \mathrm{~d}(M)$ if $\llbracket \operatorname{grad}(M) \rrbracket=\nabla \llbracket M \rrbracket$ in S.
The soundness proof may be adapted to reverse mode:
Theorem. For every $M, \overleftarrow{\mathrm{D}}$ is sound on the stable points of $\mathrm{d}(M)$.
Corollary. For all M, the $\operatorname{set}\{\mathbf{r} \in \mathrm{d}(M) \mid \llbracket \operatorname{grad}(M) \rrbracket(\mathbf{r}) \neq \nabla \llbracket M \rrbracket(\mathbf{r})\}$ is a quasivariety. In particular, $\overline{\mathrm{D}}$ is sound on almost all of $\mathrm{d}(M)$.

Soundness and efficiency for simple programs

simple progs $\quad \overleftarrow{\text { D }}$
simple progs \longrightarrow simple progs

Without linear factoring, execution is inefficient. Consider

$$
\begin{aligned}
M & :=(\lambda z . z \sin z) N \\
\overleftarrow{\mathrm{D}}(M) & \rightarrow^{*}\left(\lambda\left\langle z, z^{*}\right\rangle \cdot\left\langle z \sin z, \lambda a . z^{*}(a \sin z)+z^{*}(a z \cos z)\right\rangle\right)\langle r, \lambda b \cdot B\rangle
\end{aligned}
$$

Duplicating $\lambda b . B$ is inefficient, need to apply factoring before. This brings up the question of how to implementat all this.

A personal, partial bibliography

2019 Wang, Zheng, Decker, Wu, Essertel, Rompf (ICFP): backprop as typed transformation, fully general, HO
2020 Abadi and Plotkin (POPL): first-order, "internal" AD
Barthe, Crubillé, Dal Lago, Gavazzo (ESOP): correctness by logical relations
Brunel, Mazza, Pagani (POPL): reverse mode AD with linear negation, simply-typed λ-calculus
Huot, Staton, Vákár (FoSSaCS): correctness proofs by logical relations with diffeologies
Mak, Ong (Arxiv): reverse mode AD base on differential forms
2021 Kerjean and Pédrot (unpublished): AD and Dialectica (related to Pearlmutter and Siskind?)
Mazza and Pagani (POPL): (un)soundness of AD in PCF
Sherman, Michel, Carbin (POPL): semantics for AD
Vákár (ESOP): homomorphic AD
2022 Krawiec, Jones, Krishnaswami, Ellis, Eisenberg, Fitzgibbon (POPL): reverse mode AD in Haskell
Vákár, Smeding (ToPLAS): categorically-grounded AD (related to Pearlmutter and Siskind?)
2023 Alvarez-Picallo, Ghica, Sprunger, Zanasi (CSL): reverse mode AD in string diagrams
Lew, Huot, Mansinghka, ??? (unpublished): semantic proof of our POPL 2021 results, via ω PAP functions
Radul, Paszke, Frostig, Johnson, Maclaurin (POPL): how JAX works
Smeding, Vákár (POPL): implementation of our POPL 2020 paper

Challenge: "internal" AD

Differentiation as a programming primitive, not a transformation (like [Pearlmutter and Siskind 2008], [Abadi and Plotkin 2020], or the differential λ-calculus).'

$$
M, N::=x|\lambda x . M| M N|\ldots| \overleftarrow{\mathbf{D}}_{\Gamma} M
$$

$$
\frac{x_{1}: C_{1}, \ldots, x_{n}: C_{n} \vdash M: A}{x_{1}: \overleftarrow{\mathrm{D}}_{\Gamma}\left(C_{1}\right), \ldots, x_{n}: \overleftarrow{\mathrm{D}}_{\Gamma}\left(C_{n}\right) \vdash \overleftarrow{\mathrm{D}}_{\Gamma} M: \overleftarrow{\mathrm{D}}_{\Gamma}(A)}
$$

- "True" differentiable programming (with higher-order derivatives).
- Naive idea: turn the transformation defn into rewriting rules.
- But the target language must be the same as the source...
- NB: with if-then-else, internal AD breaks the std semantics:

$$
\begin{aligned}
\llbracket \lambda x \cdot x \rrbracket & =\llbracket \lambda x \cdot \operatorname{ReLU}(x)-\operatorname{ReLU}(-x) \rrbracket \\
\llbracket \overleftarrow{\mathbf{D}}_{\Gamma}(\lambda x \cdot x) \rrbracket & \neq \llbracket \overleftarrow{\mathbf{D}}_{\Gamma}(\lambda x \cdot \operatorname{ReLU}(x)-\operatorname{ReLU}(-x)) \rrbracket
\end{aligned}
$$

Question: the benefit of compositionality?

Remember the two routes:

Question:
are there examples (NN architectures. ..) where the HO route is substantially better (faster, more convenient...) than the FO route?
Current implementations do not seem to provide an answer.

Challenge: almost-everywhere correctness?

- The set of inputs on which AD is incorrect has measure zero.
- The set of representable reals has measure zero (t'ts actually finite).
- Smartass. Ok, look, in $\mathrm{PCF}_{+, x}$ it's actually of this form:

$$
\text { Fail } \subseteq \bigcup_{i<\omega} P_{i}^{-1}(0)
$$

where the P_{i} are polynomials (not identically zero, not necessarily distinct).

- In fact, the P_{i} come from "cusps" of if-then-else statements.
- Is it possible to automatically infer an upper bound on Fail?

Question: AD in the dififerential λ-calculus?

The diff λ-calculus computes derivatives with respect to numbers which are not the ones that programs have direct access to.

- In the differential λ-calculus:
- type = topological \mathbb{R}-vector space
- program $A \rightarrow B=$ smooth function $A \rightarrow B$
- derivative $=$ smooth function of type $A \rightarrow(A \multimap B)$
- unit type $=\mathbb{R}$, Booleans $=\mathbb{R}^{2}$, reals $=\mathbb{R}\langle$ uncountable basis \rangle.
- $0.5 \cdot 2+0.5 \cdot 4=3 \neq 0.5 \cdot 2+0.5 \cdot 4$.
- Different behavior at higher types. Below, $f: \mathrm{R} \rightarrow \mathrm{R}$:

$$
\begin{array}{ll}
D\left(\lambda x^{\mathrm{R}} \cdot f(f x)\right)=\lambda x^{\mathrm{R}} \cdot \alpha(f x)+f^{\prime}(f x) \cdot(\alpha x) & \\
\text { with } \alpha: \mathrm{R} \rightarrow \mathrm{R} \\
\overrightarrow{\mathrm{D}}\left(\lambda x^{\mathrm{R}} \cdot f(f x)\right)=\lambda X^{\mathrm{R}^{2}} \cdot F(F X) & \text { with } F: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}
\end{array}
$$

- There is no differential PCF! (Recentiy fixed by Ehnhard's coherent dififerentiation).

