
An Introduction to
Differentiable Programming

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

FoPSS, Bertinoro, 13–14 February 2023

Remember derivatives?

f : R→ R

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

Thought of as an operator (−)′ : (R→ R)→ R→ R

(αf + βg)′(x) = αf ′(x) + βg′(x)

(fg)′(x) = f(x)g′(x) + g(x)f ′(x)

(f ◦ g)′(x) = f ′(g(x))g′(x)

Remember gradients?

f : Rn → R

Gradient :

∇f : Rn → Rn

∂if(x1, . . . , xn) := lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h

∇f = (∂1f, . . . , ∂nf)

Why gradients?

Gradient descent!
Target function f : Rm → Rp, training set X ⊆fin Rm.
Parametric approximation g : Rn+m → Rp.
Want to find w⃗opt ∈ Rn such that g(w⃗opt) ≈ f .
Define

e(w⃗) :=
1

|X|
∑
x⃗∈X

∥g(w⃗, x⃗)− f(x⃗)∥2 : Rn → R

For initial w⃗0 ∈ Rn, step η < 0, and i ∈ N, set

w⃗i+1 := w⃗i + η∇e(w⃗i)

When e(w⃗i) is close to zero, set w⃗opt := w⃗i.
Guaranteed to happen under convexity assumptions on e.

Automatic Differentiation (AD)

• In machine learning (ML), g is computed by a neural network
(NN).

• In their simplest form, these are layers of neurons

θ(x1, . . . , xk) := σ

(
k∑

i=1

wixi

)
: Rk → R

where σ is some activation function.

• n = number of weights in the net. (These days it can easily be 108 or 109).

AD =methods for automatically computing gradients of functions
specified by a computer program (e.g. the loss function of a neural network).

Differentiable Programming

• In recent years (from 2015-2016), NN architectures used in ML
started becoming more and more complex.

• I.e., g is computed by more and more sophisticated programs.

• Need programming languages with a built-in engine for
efficiently computing derivatives/gradients/Jacobians.

differentiable programming = programming languages + AD

Two wrong ideas

• Approximate the definition:

f ′∼(x) :=
f(x+ h)− f(x)

h

with h very small.
– How do we choose h?
– Contains two “deadly sins” of numerical computation.

• Symbolic computation (like in Mathematica).
– Good idea, but needs to be extended to programs.
– Inefficient, needs sharing.

Dual numbers

• The commutative ring of dual numbers is defined as

R̂ := R[ε]/⟨ε2⟩

• Its elements are pairs (a, a′) ∈ R2, with

0 = (0, 0)

(a, a′) + (b, b′) = (a+ b, a′ + b′)

1 = (1, 0)

(a, a′)(b, b′) = (ab, a′b+ ab′)

Dual numbers and derivatives

• If f : R→ R is differentiable, we extend it to f̂ : R̂→ R̂ as follows:

f̂(a, a′) := (f(a), f ′(a)a′)

• Using the chain rule, we have

f̂ ◦ g(a, a′) = (f(g(a)), a′(f ◦ g)′(a)) = (f(g(a)), f ′(g(a))g′(a)a′)

= f̂ (g(a), g′(a)a′) = f̂(ĝ(a, a′))

îd(a, a′) = (a, id′(a)a′) = (a, 1 · a′) = (a, a′)

• Furthermore, notice that

f̂(a, 1) = (f(a), f ′(a))

Dual numbers and AD for unary straight-line programs

• The above suggests the following program transformation:

def f(x):
z1 = f1(x)
z2 = f2(z1)
...
return g(zn)

⇝

def df(x):
dx = 1
z1 = f1(x)
dz1 = dx * df1(x)
z2 = f2(z1)
dz2 = dz1 * df2(z1)
...
return dzn * dg(zn)

• Exact computation.

• Preserves the complexity (modulo a factor of 3).

Dual numbers and partial derivatives

• If f : Rn → R is differentiable, define f̂ : R̂n → R̂ as

f̂(a1, a
′
1, . . . , an, a

′
n) := (f (⃗a),∇f (⃗a) · a⃗′)

=

(
f(a1, . . . , an),

n∑
i=1

a′i ∂if(a1, . . . , an)

)

• We still have
̂f ◦ (g1, . . . , gn) = f̂ ◦ (ĝ1, . . . , ĝn)

• Furthermore, we have

f̂(a1, 0, . . . , ai, 1, . . . , an, 0) = (f (⃗a), ∂if (⃗a))

Dual numbers and AD for straight-line programs
The above transformation generalizes to
def f(x1 ,...,xn):

...
z = g(w1 ,...,wk)
...
return y

⇝
def df(i,x1 ,...,xn):

dx1 ,...,dxi ,...,dxn = 0,...,1,...0
...
z = g(w1 ,...,wk)
dz = dw1 * dg(1,w1 ,...,wk) + ... + dwk * dg(k,w1 ,...,wk)
...
return dy

• Still exact computation, still complexity-preserving.
• Covers the case of loss functions of NNs.
• However, inefficient for gradients: requires n passes.

Dual numbers and AD for arbitrary programs{
z = g(w1 ,...,wk)

}
:=

z = g(w1 ,...,wk)
dz = dw1 * dg(1,w1 ,...,wk) + ...\

+ dwk * dg(k,w1 ,...,wk)if x <= 0:
<code1 >

else:
<code2 >

 :=
if x <= 0:

{<code1 >}
else:

{<code2 >}{
while x <= 0:

<code >

}
:= while x <= 0:

{<code >}

def f(x1 ,...,xn):
<code >
return y

⇝

def f(x1 ,...,xn):
<code >
return y

def df(i,x1 ,...,xn):
dx1 ,...,dxi ,...,dxn = 0,...,1,...,0
{<code >}
return dy

Theorem (Joss 1976). Taking a set of basic arithmetic functions as primitive,
Jdf(i)K = ∂iJfK almost everywhere.

PCF with real numbers
Types: A,B ::= R | A×B | A→ B

Programs: M,N,P ::= x | λf(x).M |MN | ⟨M,N⟩ | πiM
| if(P ≤ 0;M,N) | r : R | f : Rk → R

Evaluation: (λf(x).M)N → M [N/x][λf(x).M/f]
πi ⟨M1,M2⟩ → Mi

if(r ≤ 0;M,N) →
{

M if r ≤ 0
N if r > 0

f⟨r1, . . . , rk⟩ → JfK(r1, . . . , rn)

Every program x1 : R, . . . , xn : R ⊢M : R has a natural semantics
JMK : Rn ⇀ R.

Wewrite d(M) for the open subset ofRnwhere JMK is differentiable.

AD in PCF
−→
D (R) := R× R

−→
D (A×B) :=

−→
D (A)×−→D (B)

−→
D (A→ B) :=

−→
D (A)→ −→D (B)

−→
D (x : A) := x :

−→
D (A)

−→
D (r) := ⟨r, 0⟩

−→
D (λf(x).M) := λf(x).

−→
D (M)

−→
D (MN) :=

−→
D (M)

−→
D (N)

−→
D (⟨M,N⟩) :=

〈−→
D (M),

−→
D (N)

〉 −→
D (πiM) := πi

−→
D (M)

−→
D (if(P ≤ 0;M,N)) := if(π1

−→
D (P) ≤ 0;

−→
D (M),

−→
D (N))

−→
D (f) := λz.

〈
f⟨π1z⟩,

k∑
i=1

(π2zi) · ∂if⟨π1z⟩
〉

Lemma. M → N implies −→D(M)→∗
−→
D(N)

Soundness for simple programs

Basic assumption: for every primitive f : Rk → Rand for all 1 ≤ i ≤ k,
we have J∂ifK = ∂iJfK on d(f).

Let x1 : R, . . . , xn : R ⊢M : R and let
−→
Di(M) := π2

−→
D(M)[⟨x1, 0⟩ /x1] · · · [⟨xi, 1⟩ /xi] · · · [⟨xn, 0⟩ /xn]

We still have x1 : R, . . . , xn : R ⊢
−→
Di(M) : R.

Definition. −→D is sound on S ⊆ d(M) if J
−→
Di(M)K = ∂iJMK in S.

Ideally, we would like −→D to be sound on d(M) for every M !

Definition. A PCF program is simple if it contains no if and no
recursive def.
Theorem. For every simple program t, −→D is sound on d(t).

Soundness for simple programs: proof idea

Two possibilities:

• Reduce to correctness for straight-line progs (direct):

simple progs
−→
D

//

nf

��

simple progs

nf

��

straight-line progs
{−}

// straight-line progs

• Logical relations.

Unsoundness
Let

sillyId := if(x ≤ 0; if(−x ≤ 0; 0, x), x).

We obviously have JsillyIdK = id. However
−→
D1(sillyId) = π2(if(π1 ⟨x, 1⟩ ≤ 0; if(π1 ⟨−x,−1⟩ ≤ 0; ⟨0, 0⟩ , ⟨x, 1⟩), ⟨x, 1⟩))

∼ if(x ≤ 0; if(−x ≤ 0; 0, 1), 1)

hence
J
−→
D1(sillyId)K(0) ̸= ∂1JsillyIdK(0)

NB: may happen in practice! If ReLU(x) := if(x ≤ 0; 0, x), then
JReLU(x)− ReLU(−x))K = id

has the same behavior as above.

Approximations and traces
On types:

R ⊏ R
A′ ⊏ A B′ ⊏ B
A′ × B′ ⊏ A× B

A′1 ⊏ A . . . A′n ⊏ A B′ ⊏ B

A′1 × · · · × A′n → B′ ⊏ A→ B

On terms:
A1 ⊏ A, . . . , An ⊏ A p : A1 × · · · × An x : A

Ξ, p ⊏ x ⊢ πip ⊏ x Ξ ⊢ r ⊏ r Ξ ⊢ f ⊏ f

Ξ, p ⊏ x ⊢ t ⊏M
Ξ ⊢ λp.t ⊏ λx.M

Ξ ⊢ t ⊏M Ξ ⊢ u1 ⊏ N . . . Ξ ⊢ un ⊏ N
Ξ ⊢ t⟨u1, . . . , un⟩ ⊏MN

Ξ ⊢ ti ⊏Mi

Ξ ⊢ πi⟨ti, ti⟩ ⊏ if(P ≤ 0;M1,M2)
i∈{1,2}

Ξ ⊢ t ⊏ λnf(x).M

Ξ ⊢ t ⊏ λf(x).M

where λ0f(x).M := λf(x).M and λn+1f(x).M := (λf.λx.M)(λnf(x).M)

On reductions: (t→∗ u) ⊏ (M → N) if t ⊏M , u ⊏ N and t “simulates” M .
t ⊏∼M if (reduction of t) ⊏ (reduction of M to normal form).

Soundness on stable points

Let x1 : R, . . . , xn : R ⊢M : R.

Definition. A point r ∈ Rn is stable for M if
there exist t ⊏M and ε > 0 such that
∀ r′ ∈ Rn, ∥r′ − r∥ < ε implies t[r′/x] ⊏∼ M [r′/x].

Theorem. For every M , −→D is sound on the stable points of d(M).

The proof is based on

Lemma. r stable for M implies that there exists t ⊏ M such that
JMK = JtK on a neighborhood of r.

Lemma. If t[r/x] ⊏∼ M [r/x] and u is the normal form of −→Di(t)[r/x],
then −→Di(M)[r/x] has a normal form N and u ⊏ N .

Quasivarieties and unsoundness
h : Rk ⇀ R is basic if it is in the clone generated by {JfK}f primitive.
Additional assumption: for every basic function h:
1. h is continuous on its domain;
2. if h ̸= 0, then h−1(0) is of Lebesgue measure zero in Rk.
For example, me may restrict to f’s such that JfK is analytic on its domain.

Definition. Quasivariety Z ⊆ Rk if ∃{hi : Rk → R}i<ω basic non-zero
Z ⊆

⋃
i<ω

h−1i (0)

Quasivarieties are negligible: they are of measure zero and are
stable under subsets and countable unions.

Theorem. The unstable points of a program form a quasivariety.
Corollary. For every M , the set {r ∈ d(M) | J

−→
Di(M)K(r) ̸= ∂iJMK(r)}

is a quasivariety. In particular, −→D is sound on almost all of d(M).

Proof: logical predicates

U(M) := unstable converging points of M . Γ := x1 : R, . . . , xn : R.
PΓ(R) := {Γ ⊢M : R | U(M) is a quasivariety}

PΓ(A→ B) := {Γ ⊢M : A→ B | ∀N ∈ PΓ(A), MN ∈ PΓ(B)}
PΓ(A1 ×A2) := {Γ ⊢M : A×B | ∀i ∈ {1, 2}, πiM ∈ PΓ(Ai)}

Proof: logical predicates with quasicontinuity
U(M) := unstable converging points of M . Γ := x1 : R, . . . , xn : R.

PΓ(R) := {Γ ⊢M : R | U(M) is a quasivariety and JMK is cqc}
PΓ(A→ B) := {Γ ⊢M : A→ B | ∀N ∈ PΓ(A), MN ∈ PΓ(B)}
PΓ(A1 ×A2) := {Γ ⊢M : A×B | ∀i ∈ {1, 2}, πiM ∈ PΓ(Ai)}

Definition. Quasiopen set of Rn (U open and h basic):
Q,Q′ ::= U | h−1(0) |

⋃
i<ω

Qi | Q ∩Q′

Definition. f : Rn ⇀ Rm quasicontinuous if Q ⊆ Rm quasiopen
implies f−1(Q) quasiopen. It is completely quasicontinuous (cqc)
if idRk × f is quasicontinuous for all k ∈ N.
Lemma. Γ, y1 : A1, . . . , ym : Am ⊢ M : A and Ni ∈ PΓ(Ai) for all
1 ≤ i ≤ m implies M [N1/y1] · · · [Nm/ym] ∈ PΓ(A).

Back to derivatives
If f : A→ B, its derivative (if it exists), is a function

Df : A→ (A⊸ B)

where A⊸ B is the space of linear functions from A to B.
Given x ∈ A, one often writes Dxf for the function Df(x) : A⊸ B.
With this notation, the chain rule becomes

Dx(f ◦ g) = Dg(x)f ◦Dxg

If A = Rn, B = Rm and x ∈ Rn, Jxf := Dxf is the Jacobian matrix
(m× n), or gradient ∇xf if m = 1. Composition is matrix product:

Rn0
f1

// Rn2
f2

// · · ·
fp−1

// Rnp−1
fp

// Rnp

Jx(fp ◦ · · · ◦ f1) = Jfp−1(...f1(x))fp · · · Jxf1
NB: when A = B = R, the Jacobian matrix is just a scalar, hence the high school definition.

Computing gradients: from forward to reverse mode
Consider a straight-line programs P with p lines. The i-th line

zi = gi(y1 ,...,yk)

induces a function fi : Rni−1 → Rni, with ni−1 ≥ k and ni equal to
the number of variables (including zi) used by the lines > i.
Hence, JP K = fp ◦ · · · ◦ f1 as above, and computing ∇JP K means:
• computing each matrix Jfi−1(...f1(x))fi
• multiply them together.
−→
D may be adapted to compute ∇JP K, starting from the right.
But matrix product is associative, so wemay also start from the left!
• Say that n0 ≈ n1 ≈ · · · ≈ np−1 ≈ n, whereas np = 1.
• Jxf1, Jf1(x)f2, . . . , Jfp−2(...f1(x))fp−1 are n× n.
• Jfp−1(...f1(x))fp is a row vector of size n!
We go from O(n2) scalar products to O(n)!

Reverse mode AD as transposition

Remember: if f : Rn → Rm and x ∈ Rn

Jxf : Rn⊸ Rm

Linear maps may be transposed:

J t
xf : Rm⊸ Rn

Technically, this uses (−)⊥, but R⊥ ∼= R.

The chain rule becomes

Rn0
f1

// Rn2
f2

// · · ·
fp−1

// Rnp−1
fp

// Rnp

J t
x(fp ◦ · · · ◦ f1) = J t

xf1 ◦ . . . ◦ J t
fp−1(...f1(x))

fp

Reverse mode AD for straight-line programs
def f(x1 ,...,xn):

z1 = g1(v1 ,...,vk)
...
zp = gp(w1 ,...,wh)
return zp

⇝
def grad_f(x1 ,...,xn):

z1 = g1(v1 ,...,vk)
...
zp = gp(w1 ,...,wh)
reverse pass starts here
dx1 ,...,dxn ,dz1 ,...,dz{p-1},dzp = 0,...,0,0,...,0,1
dw1 += dgp(1,w1 ,...,wh) * dzp
...
dwh += dgp(h,w1 ,...,wh) * dzp
...
dv1 += dg1(1,v1 ,...,vk) * dz1
...
dvk += dg1(k,v1 ,...,vk) * dz1
return dx1 ,...,dxn

Backpropagators and derivatives

• For an arbitrary space E, let R⊥ := R⊸ E and R• := R× R⊥.

• An element of R⊥ is called backpropagator.

• If f : R→ R is differentiable, we define f• : R• → R• as follows:

f•(x, x∗) := (f(x), λa.x∗(a f ′(x)))

• We have
(f ◦ g)• = f• ◦ g• id• = id

• Furthermore, notice that, taking E = R,

f•(x, λa.a) = (f(x), λa.a f ′(x))

Backpropagators and gradients

• If f : Rn → R is differentiable, we define f• : R•n → R• as follows:

f•(x1, x
∗
1, . . . , xn, x

∗
n) :=

(
f(x⃗), λa.

n∑
i=1

x∗i (a ∂if(x⃗))

)

• We still have
(f ◦ (g1, . . . , gn))• = f• ◦ (g•1, . . . , g•n)

• Furthermore, notice that, taking E = Rn,
f•(x1, ι1, . . . , xn, ιn) = (f(x⃗), λa.a∇f(x⃗))

where ιi : R⊸ Rn is the i-th injection.

Reverse mode AD in PCF with linear negation

• Types: A,B ::= R | A× B | A→ B | R⊸ A

• Same programs. Typing judgments Γnon-lin; ∆lin ⊢M : A to track linearity.
• Linear factoring rule: if x∗ : R⊸ A,

x
∗
M + x

∗
N → x

∗
(M + N)

• Reverse mode AD has source PCF and target PCF with linear negation.
• For any type E, we let←−DE(R) := R× (R⊸ E). Homomorphic on the rest.
• On programs, homomorphic everywhere except

←−
DE(r) := ⟨r, λa.0⟩ ←−

DE(f) := λz.

〈
f⟨π1z⟩, λa.

k∑
i=1

(π2zi)(a ∂if⟨π1z⟩)
〉

Lemma. M → N implies←−D (M)→∗ ←−D (N)

Soundness for reverse mode AD

We work under the same assumptions about the f’s as above.

Let x1 : R, . . . , xn : R ⊢M : R and let (using R⊥ = R⊸ Rn)

grad(M) := (π2
−→
D(M)[⟨x1, ι1⟩ /x1] · · · [⟨xn, ιn⟩ /xn])1

We have x1 : R, . . . , xn : R ⊢ grad(M) : Rn.

Definition. ←−D is sound on S ⊆ d(M) if Jgrad(M)K = ∇JMK in S.

The soundness proof may be adapted to reverse mode:

Theorem. For every M ,←−D is sound on the stable points of d(M).

Corollary. For all M , the set {r ∈ d(M) | Jgrad(M)K(r) ̸= ∇JMK(r)} is
a quasivariety. In particular,←−D is sound on almost all of d(M).

Soundness and efficiency for simple programs

simple progs
←−
D

//

m

��

simple progs
O(m) (by 2-functoriality)

��

simple progs
linear factoring

��

straight-line progs
(−)•

// straight-line progs ∼ straight-line progs

Without linear factoring, execution is inefficient. Consider
M := (λz.z sin z)N

←−
D(M)→∗ (λ⟨z, z∗⟩.⟨z sin z, λa.z∗(a sin z) + z∗(az cos z)⟩) ⟨r, λb.B⟩

Duplicating λb.B is inefficient, need to apply factoring before.
This brings up the question of how to implementat all this.

A personal, partial bibliography
1964 Wengert: reverse mode AD
1976 Joss (PhD Thesis): forward mode AD as a transformation on (Turing-complete) straight-line programs
1980 Speelpenning (PhD Thesis): backprop on straight-line programs
2008 Pearlmutter and Siskind: backprop is higher order! Differentiable programming ante litteram
2016 Abadi et al.: TensorFlow
2017 Paszke et al.: PyTorch
2018 Elliott (ICFP): AD is functorial!
2019 Wang, Zheng, Decker, Wu, Essertel, Rompf (ICFP): backprop as typed transformation, fully general, HO
2020 Abadi and Plotkin (POPL): first-order, “internal” AD

Barthe, Crubillé, Dal Lago, Gavazzo (ESOP): correctness by logical relations
Brunel, Mazza, Pagani (POPL): reverse mode AD with linear negation, simply-typed λ-calculus
Huot, Staton, Vákár (FoSSaCS): correctness proofs by logical relations with diffeologies
Mak, Ong (Arxiv): reverse mode AD base on differential forms

2021 Kerjean and Pédrot (unpublished): AD and Dialectica (related to Pearlmutter and Siskind?)
Mazza and Pagani (POPL): (un)soundness of AD in PCF
Sherman, Michel, Carbin (POPL): semantics for AD
Vákár (ESOP): homomorphic AD

2022 Krawiec, Jones, Krishnaswami, Ellis, Eisenberg, Fitzgibbon (POPL): reverse mode AD in Haskell
Vákár, Smeding (ToPLAS): categorically-grounded AD (related to Pearlmutter and Siskind?)

2023 Alvarez-Picallo, Ghica, Sprunger, Zanasi (CSL): reverse mode AD in string diagrams
Lew, Huot, Mansinghka, ??? (unpublished): semantic proof of our POPL 2021 results, via ωPAP functions
Radul, Paszke, Frostig, Johnson, Maclaurin (POPL): how JAX works
Smeding, Vákár (POPL): implementation of our POPL 2020 paper

Challenge: “internal” AD

Differentiation as a programming primitive, not a transformation
(like [Pearlmutter and Siskind 2008], [Abadi and Plotkin 2020], or the differential λ-calculus):

M,N ::= x | λx.M |MN | . . . | ←−DΓ M

x1 : C1, . . . , xn : Cn ⊢M : A

x1 :
←−
DΓ(C1), . . . , xn :

←−
DΓ(Cn) ⊢

←−
DΓ M :

←−
DΓ(A)

• “True” differentiable programming (with higher-order derivatives).
• Naive idea: turn the transformation defn into rewriting rules.
• But the target language must be the same as the source. . .
• NB: with if-then-else, internal AD breaks the std semantics:

Jλx.xK = Jλx.ReLU(x)− ReLU(−x)K

J
←−
DΓ(λx.x)K ̸= J

←−
DΓ(λx.ReLU(x)− ReLU(−x))K

Question: the benefit of compositionality?
Remember the two routes:

[Rn → R]
arbitrary progs

compositional backprop
//

exec

��

[D(R)n → D(R)]

exec

��
[Rn → R]

straight-line progs backprop
//
[
Rn+1 → R1+n

]
[D(R)n → D(R)]

Question:
are there examples (NN architectures. . .) where the HO route is

substantially better (faster, more convenient. . .) than the FO route?
Current implementations do not seem to provide an answer.

Challenge: almost-everywhere correctness?

• The set of inputs on which AD is incorrect has measure zero.

• The set of representable reals has measure zero (it’s actually finite).

• Smartass. Ok, look, in PCF+,× it’s actually of this form:

Fail ⊆
⋃
i<ω

P−1i (0)

where the Pi are polynomials (not identically zero, not necessarily distinct).

• In fact, the Pi come from “cusps” of if-then-else statements.

• Is it possible to automatically infer an upper bound on Fail?

Question: AD in the differential λ-calculus?
The diff λ-calculus computes derivatives with respect to numbers
which are not the ones that programs have direct access to.

• In the differential λ-calculus:
– type = topological R-vector space
– program A→ B = smooth function A→ B
– derivative = smooth function of type A→ (A⊸ B)
– unit type = R, Booleans = R2, reals = R⟨uncountable basis⟩.
– 0.5 · 2 + 0.5 · 4 = 3 ̸= 0.5 · 2 + 0.5 · 4.

• Different behavior at higher types. Below, f : R→ R:
D(λxR.f(fx)) = λxR.α(fx) + f ′(fx) · (αx) with α : R→ R

−→
D(λxR.f(fx)) = λXR2.F (FX) with F : R2 → R2

• There is no differential PCF! (Recently fixedby Ehrhard’scoherent differentiation).

