
Notes on Proof Theory
Master 1 “Informatique”, Univ. Paris 13

Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7

Damiano Mazza

November 2016

1Last edit: March 29, 2021

Contents

1 Propositional Classical Logic 5
1.1 Formulas and truth semantics . 5
1.2 Atomic negation . 8

2 Sequent Calculus 10
2.1 Two-sided formulation . 10
2.2 One-sided formulation . 13

3 First-order Quantification 16
3.1 Formulas and truth semantics . 16
3.2 Sequent calculus . 19
3.3 Ultrafilters . 21

4 Completeness 24
4.1 Exhaustive search . 25
4.2 The completeness proof . 30

5 Undecidability and Incompleteness 33
5.1 Informal computability . 33
5.2 Incompleteness: a road map . 35
5.3 Logical theories . 38
5.4 Arithmetical theories . 40
5.5 The incompleteness theorems . 44

6 Cut Elimination 47

7 Intuitionistic Logic 53
7.1 Sequent calculus . 55
7.2 The relationship between intuitionistic and classical logic . . . 60
7.3 Minimal logic . 65

8 Natural Deduction 67
8.1 Sequent presentation . 68
8.2 Natural deduction and sequent calculus 70
8.3 Proof tree presentation . 73

8.3.1 Minimal natural deduction 73
8.3.2 Intuitionistic natural deduction 75

1

8.3.3 Classical natural deduction 75
8.4 Normalization (cut-elimination in natural deduction) 76

9 The Curry-Howard Correspondence 80
9.1 The simply typed λ-calculus . 80
9.2 Product and sum types . 81

10 System F 83
10.1 Intuitionistic second-order propositional logic 83
10.2 Polymorphic types . 84
10.3 Programming in system F . 85

10.3.1 Free structures . 85
10.3.2 Representing free structures in system F 87
10.3.3 The case of integers: representable functions 90

11 Second-Order Arithmetic 93
11.1 Second-order Peano arithmetic 93
11.2 Second-order Heyting arithmetic 96
11.3 The hardness of proving normalization of system F 102

12 Normalization of System F 109
12.1 Towards normalization: the reducibility technique 109
12.2 Reducibility and polymorphism 111
12.3 The reducibility candidates technique 111

13 Denotational Semantics 115
13.1 The case of the simply typed λ-calculus 115
13.2 The pure λ-calculus . 116
13.3 Scott domains and continuous functions 120
13.4 Berry’s dI-domains and stable functions 123

2

Preliminaries

In the following we will make a heavy use of inductive definitions, in which
one introduces a set of objects by starting from a set of basic objects and giving
rules for building new objects from already defined objects.

For example, if one wants to define binary trees, one may proceed by
saying that:

• the empty tree, denoted by ◦, is a binary tree;

• if t and t′ are binary trees, then (t, t′) is also a binary tree;

• nothing else is a binary tree.

A typical way of presenting such definitions more compactly is the formal
grammar notation. For instance, in the case of binary trees, we write

t, t′ ::= ◦
∣∣ (t, t′).

Another typical form of inductive definition is a derivation system, in which
one manipulates expressions generically called judgments, let us denote them
by J, K . . ., and derives judgments from previously derived ones by means of
rules, presented as follows:

J1 J2 J3 . . .
K

J1, J2, J3 . . . are called the premises of the rule; their number is usually finite and
is called the arity of the rule. K is called the conclusion of the rule. A derivation
system usually comprises one or more nullary rules, i.e., rules of arity zero,
corresponding to the basic judgments.

For instance, the above definition of binary tree may be presented as
a derivation system manipulating judgments of the form t tree, intuitively
meaning “t is a binary tree”, with the following rules:

◦ tree
t tree t′ tree

(t, t′) tree

A derivation in a derivation system is a tree obtained by successively ap-
plying rules. For example, the following derivation says that, if t is a binary
tree, then ((◦, ◦), t) is also a binary tree:

◦ tree ◦ tree
(◦, ◦) tree t tree

((◦, ◦), t) tree

3

The judgment at the root of the derivation tree is the conclusion of the
derivation; the judgments labeling the leaves are the hypotheses of the deriva-
tion. For instance, the conclusion of the above derivation is ((◦, ◦), t) tree
and its only hypothesis is t tree. A derivation δ of hypotheses J1, . . . , Jn and
conclusion K is generically written

J1 . . . Jn.... δ

K

A proof is a derivation with no hypotheses, i.e., the leaves are all conclu-
sions of nullary rules. A judgment is provable if it is the conclusion of some
proof. For instance, a judgment t tree is provable in the above system iff t is
indeed a binary tree.

4

Chapter 1

Propositional Classical Logic

1.1 Formulas and truth semantics

Definition 1.1 (propositional formula) Propositional formulas are defined by
the following grammar:

A, B ::= P, Q, R . . . (propositional constants)∣∣ ¬A (negation)∣∣ > ∣∣ A ∧ B (truth and conjunction)∣∣ ⊥ ∣∣ A ∨ B (falsehood and disjunction)

Remark 1.1 For simplicity, in the context of classical logic we choose not to include
implication as a primitive connective but we define it as

A⇒ B := ¬A ∨ B.

Logical equivalence (the “if and only if” connective) is a double implication and is
defined by

A⇔ B := (A⇒ B) ∧ (B⇒ A).

When we will define intuitionistic logic we will re-introduce implication as a prim-
itive connective, at which point we will discard negation and define it as ¬A := A⇒
⊥.

Intuitively, a formula in classical logic is something that may be either true
or false. Whether it is true or false depends on the truth value we assign to its
constants, as specified in the following:

Definition 1.2 (valuation, model) A valuation is a function v from propositional
constants to {0, 1}. The relations v |= A (v is a model of A, meaning that A is true
under the valuation v) and v 6|= A (v is a countermodel of A, meaning that A is
false under the valuation v) are defined by means of the derivation system shown in
Fig. 1.1.

Proposition 1.1 For every valuation v and formula A, v 6|= A iff it is not the case
that v |= A. �

5

v |= P
v(P)=1

v 6|= A
v |= ¬A v 6|= P

v(P)=0
v |= A

v 6|= ¬A

v |= >
v |= A v |= B

v |= A ∧ B
v |= A

v |= A ∨ B
v |= B

v |= A ∨ B

v 6|= ⊥
v 6|= A v 6|= B

v 6|= A ∨ B
v 6|= A

v 6|= A ∧ B
v 6|= B

v 6|= A ∧ B

Figure 1.1: The truth semantics of propositional classical logic.

Some standard terminology:

• a formula is valid (also called a tautology) if v |= A for every valuation v;
in that case, we write |= A;

• a formula is satisfiable if v |= A for some valuation v;

• a formula is unsatisfiable (also called a contradiction) if it has no models;
in that case, we write 6|= A.

Obviously, if A is a tautology (resp. a contradiction) then ¬A is a contradiction
(resp. a tautology).

Example 1.1 Some examples of tautologies:

1. > (truth, the simplest tautology);

2. A ∨ ¬A (excluded middle);

3. (¬A⇒ ⊥)⇒ A (reduction to absurdity);

4. (¬A⇒ A)⇒ A (strong reduction to absurdity);

5. ((A⇒ B)⇒ A)⇒ A (Peirce’s law);

6. ¬¬A⇔ A (involutivity of negation);

7. ¬(A ∧ B)⇔ ¬A ∨ ¬B (one of De Morgan’s laws);

8. ¬(A ∨ B)⇔ ¬A ∧ ¬B (the other De Morgan’s law);

9. A⇒ B⇒ A (first intuitionistic axiom);

10. (A⇒ B⇒ C)⇒ (A⇒ B)⇒ A⇒ C (second intuitionistic axiom).

Example 1.2 Some examples of satisfiable formulas:

1. A⇒ ¬A;

2. (A⇒ ¬A)⇒ A.

6

Remark 1.2 Note that, although a valuation is defined as a function from all proposi-
tional constants to {0, 1}, to define v |= A it only suffices for v to be defined on those
constants appearing in A. Therefore, a valuation is in practice an object of essentially
the same size as A.

Indeed, checking whether a formula is satisfiable is the typical NP problem: given
a formula A of size1 n, a certificate of its satisfiability is given by a valuation v s.t.
|A|v = 1; now, the size of v is O(n) and, moreover, computing |A|v may be done
in O(n) time. In fact, satisfiability is NP-complete, i.e., it is “the hardest” problem
in NP. Dually, checking whether a formula is a tautology is in coNP, because the
negation of a tautology is a formula admitting a countermodel (again, the problem is
actually coNP-complete).

In the following chapters, we will study proof systems which are sound
and complete with respect to valid formulas, i.e., a formula is provable in the
system iff it is valid. Combined with the above remark, this gives a proof-
theoretic perspective on the NP vs. coNP problem, as follows. First of all, we
observe that any proof system must provide finite proofs, otherwise it would
be impossible to check their validity. Therefore, proofs may be encoded as
finite strings on some finite alphabet Σ (indeed, we may always take Σ =
{0, 1}). In this context, we call a finite string on Σ a putative proof.

Proposition 1.2 NP = coNP iff there exists a sound and complete proof system S
for classical propositional logic and two polynomials p, q such that:

1. for every putative proof π of size n, it is possible to check whether π is indeed a
proof of S in time O(p(n));

2. for every tautology A of size n, there exists a proof of A in S of size O(q(n)).

Proof. Suppose NP = coNP. In particular, the tautology problem is in NP,
which means that there exist two polynomials p′, q′ such that each tautology
A of size n has a certificate cA (a binary string) of size O(q′(n)) and which
is verifiable in time O(p′(n)). Define S to be the proof system consisting of
exactly one proof for each tautology A, of the form (A, cA). S is trivially
sound and complete and obviously satisfies property 1 (take p := p′) and
property 2 (take q := q′).

Suppose that a sound and complete proof system S satisfying properties
1 and 2 exists. Then, the tautology problem is in NP: given a tautology A, a
proof of A in S (which exists because S is complete) is, by definition, a suc-
cinct certificate (property 2) verifiable in polynomial time (property 1) of the
fact that A is a tautology (because S is sound). Since the tautology problem is
coNP-complete, NP = coNP follows. �

The above observation spurred the birth of proof complexity, a subfield of
structural proof theory focusing on the size of proofs of families of tautolo-
gies in various proof systems. In particular, since it is widely believed that

1In the context of satisfiability, the size of A is usually taken to be the number of constants
appearing in A. However, the number of total symbols appearing in A is an equally suitable
notion of size.

7

NP 6= coNP, the effort has been directed towards finding “hard” families of
tautologies for each given sound and complete proof system, i.e., families of
formulas (An)n∈N such that the size of An is Θ(n) but the size of the shortest
proof of An in the system is asymptotically super-polynomial in n.

1.2 Atomic negation

In classical logic, it is convenient to dispense also with negation as a primitive
connective. This is possible by observing the following equivalences (which
are tautologies, see Example 1.1, points 6, 7 and 8):

¬¬A⇔ A ¬(A ∧ B)⇔ ¬A ∨ ¬B ¬(A ∨ B)⇔ ¬A ∧ ¬B.

The latter two, called De Morgan’s laws, allow us to “push” negation inside
formulas, up to the atoms. The first one, which states that negation is an invo-
lution, allows us to remove superfluous negations, replacing an odd number
of negations with just one negation and an even number of negations with no
negation at all. This suggests the following definition.

Definition 1.3 (propositional formula, atomic negation) We define proposi-
tional formulas with atomic negation by means of the following grammar:

A, B ::= P, Q, R . . .
∣∣ P, Q, R . . .

∣∣ > ∣∣ A ∧ B
∣∣ ⊥ ∣∣ A ∨ B.

The negation of a formula A, denoted by ¬A, is defined by induction as follows:

¬P := P ¬P := P

¬> := ⊥ ¬⊥ := >
¬(A ∧ B) := ¬A ∨ ¬B ¬(A ∨ B) := ¬A ∧ ¬B

Remark 1.3 It is important to understand the difference between Definition 1.1 and
Definition 1.3. In Definition 1.1, negation is a primitive connective, it is a constructor
building a formula ¬A from a previously defined formula A. One consequence is that,
if we define the size of a formula to be the number of nodes in its syntactic tree, and
if the size of A is n, then the size of ¬A is n + 1. In particular, A and ¬¬A are
different formulas according to Definition 1.1, otherwise it would not even make
sense to state the equivalence ¬¬A⇔ A.

Definition 1.3 incorporates the involutivity of negation and De Morgan’s laws.
This is done by adding a negated constant P beside each constant P and by defining
negation as a function acting on formulas as prescribed by De Morgan’s laws and the
involutivity of negation: it exchanges ∧ and ∨ and each atom with its negated form.

Please observe that negated constants are atoms: · is not a connective, it makes no
sense to write A for an arbitrary formula A. In particular, ¬A and A have the same
size according to Definition 1.3. Also, the involutivity of negation and De Morgan’s
laws become trivialities in Definition 1.3, because ¬¬A and A are literally the same
formula, as are ¬(A ∧ B) and ¬A ∨ ¬B, etc. This makes Definition 1.3 only suitable
for classical logic, because it is incapable of dealing with systems in which negation is
not involutive and De Morgan’s laws do not hold (such as intuitionistic logic).

8

v |= P
v(P)=1

v |= P
v(P)=0

v |= A v |= B
v |= A ∧ B

v |= A
v |= A ∨ B

v |= B
v |= A ∨ B

Figure 1.2: The truth semantics of propositional classical logic, with atomic
negation

The truth semantics of formulas with atomic negation is defined as follows:

Definition 1.4 (valuation, atomic negation) A valuation is a function from non-
negated propositional atoms to {0, 1}. The relation v |= A is defined in Fig. 1.2. The
relation 6|= is defined as the negation of |=.

Remark 1.4 We see here a first example of how atomic negation simplifies definitions
(and proofs): with the formulation of Definition 1.3, the truth semantics of proposi-
tional logic only requires 5 rules instead of 12, because negation is not a primitive
connective (hence there is one inductive case less) and because the relation |= does not
require the simultaneous definition (by mutual induction) of the relation 6|=, as is the
case with Definition 1.1 (see Fig. 1.1). Instead, 6|= is defined simply as the comple-
ment of |=, i.e., v 6|= A iff it is not the case that v |= A. In particular, Proposition 1.1
becomes trivial, i.e., it holds by definition.

9

Chapter 2

Sequent Calculus

2.1 Two-sided formulation

Definition 2.1 (sequent) A sequent is an expression of the form Γ ` ∆, where Γ
and ∆ are lists of formulas, as defined in Definition 1.1.

Remark 2.1 In a sequent Γ ` ∆, one or both of Γ and ∆ may be empty.

The intuition behind a sequent Γ ` ∆ is “from the conjunction of all for-
mulas in Γ, it is possible to prove at least one of the formulas in ∆”. Therefore,
` A intuitively means “A is provable”.

Introduced by Gerhard Gentzen in 1934, sequent calculus is a collection of
rules allowing to infer the validity of a sequent from the the validity of other
sequents. Some sequents are considered to be always valid and therefore
constitute the “starting point” of the calculus. The rules of sequent calculus for
classical propositional logic, which is abbreviated as LK, are given in Fig. 2.1.
The sequents above a rule are called its premises and the sequent below is
called its conclusion.

Rules are divided in three groups:

identity rules: essentially, they state the equivalence between an occurrence
of formula on the left and on the right of `;

structural rules: they concern the structure of sequents, not the logical con-
nectives; in particular, they state that the order in which formulas appear
is irrelevant and they allow changing the number of repetitions of a for-
mula in a sequent;

logical rules: they introduce the logical connectives. In fact, one may say that
the meaning of a logical connective is given by its rules. Each connective
has two rules, introducing it on the left or on the right of `.

Let us discuss the individual rules more thoroughly and check their valid-
ity at an intuitive level:

10

Identity rules:

A ` A
id

Γ ` ∆, A Γ′, A ` ∆′

Γ, Γ′ ` ∆, ∆′
cut

Structural rules:

Γ, A, B, Γ′ ` ∆
Γ, B, A, Γ′ ` ∆

x`
Γ ` ∆, A, B, ∆′

Γ ` ∆, B, A, ∆′
`x

Γ ` ∆
Γ, A ` ∆

w` Γ ` ∆
Γ ` ∆, A

`w

Γ, A, A ` ∆
Γ, A ` ∆

c`
Γ ` ∆, A, A

Γ ` ∆, A
`c

Logical rules:

Γ ` ∆, A
Γ,¬A ` ∆

¬`
Γ, A ` ∆

Γ ` ∆,¬A
`¬

Γ ` ∆
Γ,> ` ∆

>` ` > `>

Γ, A, B ` ∆
Γ, A ∧ B ` ∆

∧`
Γ ` ∆, A Γ′ ` ∆′, B
Γ, Γ′ ` ∆, ∆′, A ∧ B

`∧

⊥ ` ⊥`
Γ ` ∆

Γ ` ∆,⊥ `⊥

Γ, A ` ∆ Γ′, B ` ∆′

Γ, Γ′, A ∨ B ` ∆, ∆′
∨`

Γ ` ∆, A, B
Γ ` ∆, A ∨ B

`∨

Figure 2.1: Sequent calculus for classical propositional logic (LK)

identity: it is one of the initial rules, stating that the validity of the sequent
A ` A is supposed to always hold, for any A. This is arguably natural,
as the sequent states that “from A one can prove A”. The rule also says
that A on the left is stronger than A on the right.

cut: it states the transitivity of logical consequence. One may recognize modus
ponens as a special case:

` A A ` B
` B

i.e., if A is provable and from A one may prove B, then B is provable. It
therefore says that A on the right is stronger than A on the left.

exchange: the rules (x `) and (` x) state that, on both sides of the sequent, the
order in which formulas appear does not matter. This is morally sound,

11

because we said that commas should be understood as conjunctions on
the left and disjuctions on the right, and conjunction and disjunction are
both commutative. These rules are technically important because they
allow us to state the other rules in a more compact way: without them,
the cut rule would for instance have to be stated as

Γ ` ∆, A, ∆′ Γ′, A, Γ′′ ` ∆′′

Γ, Γ′, Γ′′ ` ∆, ∆′, ∆′′

and every other rule would also have to be stated in a similar, more
verbose way. Although useful from the formal point of view, in practice
exchange rules are always left implicit.

weakening: on the left (w `) it states that one may freely add useless hy-
potheses: if Γ alone already proves a formula in ∆, then Γ together with
A is obviously still enough. On the right (` w), it says that one may
freely add unreachable conclusions: if Γ proves a formula in ∆, then it
also proves a formula in ∆ or A. Retrospectively (i.e., in light of the
cut-elimination theorem and the Curry-Howard correspondence), weak-
ening asserts that logical truth may be discarded, ignored.

contraction: on the left (c `) it states that having used a hypothesis twice is
the same as having used it once. On the right (` c), it states that having
obtained a conclusion twice is the same as having obtained it once. Ret-
rospectively, contraction asserts that logical truth is inexhaustible, i.e.,
that it may be used arbitrarily many times without ever being tarnished:
the Pythagorean theorem is just as true now as it was three thousand
years ago, in spite of people having invoked it countless times in the
meanwhile.

negation: the left rule (¬ `) states that if A is a consequence of Γ, then as-
suming both Γ and ¬A at the same time generates a contradiction. In
particular, it comprises the law of non-contradiction (A ∧ ¬A is contradic-
tory). The right rule (` ¬) states that if A proves one of ∆, then one of ∆
(in case A holds) or ¬A (in case A does not hold) is provable. In particu-
lar, it embodies the law of excluded middle (A∨¬A is provable). The rules
also say that Γ ` ∆ is the same as Γ,¬∆ ` and ` ¬Γ, ∆ (where ¬Γ and
¬∆ denote the lists obtained from Γ and ∆ by negating all occurrences
of formulas).

truth and conjunction: the left rules reflect the intuitive meaning of a se-
quent, according to which a comma on the left is a conjunction (∧ `), of
which > (truth) is the neutral element (> `). The right rules follow the
intuitive meaning of the logical connectives: rule ` > states that truth
is always provable and rule ` ∧ states that, if Γ proves one of ∆ or A
and Γ′ proves one of ∆ or B, then the conjunction of Γ, Γ′ proves one
of ∆, ∆′ or A ∧ B (this is especially evident when ∆ and ∆′ are empty,
but the reader is encouraged to check that the rule is consistent with the
intuitive meaning in all cases).

12

falsehood and disjunction: the rules are perfectly symmetric with respect to
those of truth and conjunction, following the intuition that commas on
the right are disjunctions and that hypotheses and conclusions are dual
(as also stated by the negation rules).

Definition 2.2 (derivation) A derivation is a tree whose nodes are labeled by se-
quents and which is built from the rules of Fig. 2.1.

Definition 2.3 (derivable and admissible rules) A rule

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
R

is derivable if there exists a derivation with hypotheses Γ1 ` ∆1, . . . , Γn ` ∆n and
endsequent Γ ` ∆.

A rule R as above is admissible if, for every proof using the rule R, there exists a
proof of the same endsequent not using R.

Remark 2.2 Both derivability and admissibility of a rule R may be understood as
saying that R is redundant, i.e., provability is not affected by the presence or absence
of R. However, derivability is stronger: if R is derivable by a derivation δ, take a proof
using R and “expand” each instance of R into δ. The resulting proof obviously has the
same endsequent, so R is admissible. Hence derivable intuitively means “redundant
because definable as a macro”.

In particular, if R is derivable by δ and π is a proof of size s containing R, there is
a proof π′ not containing R of size at most s · c, where c is the size of δ. On the other
hand, when R is admissible, there may in general be no obvious relationship between
π (the proof using R) and π′ (the proof of the same endsequent not using R).

Example 2.1 In case implication is considered as a primitive connective, it has the
following rules:

Γ ` ∆, A Γ′, B ` ∆′

Γ, Γ′, A⇒ B ` ∆, ∆′
⇒`

Γ, A ` ∆, B
Γ ` ∆, A⇒ B

`⇒

Let us verify that the definition A ⇒ B := ¬A ∨ B is sound, i.e., let us check that
the above rules are derivable in our formulation of LK:

Γ ` ∆, A
Γ,¬A ` ∆

¬`
Γ′, B ` ∆′

Γ, Γ′,¬A ∨ B ` ∆, ∆′
∨`

Γ, A ` ∆, B
Γ ` ∆,¬A, B

`¬

Γ ` ∆,¬A ∨ B
`∨

2.2 One-sided formulation

The use atomic negation, that is, working with Definition 1.3 instead of Defi-
nition 1.1, induces great simplifications to the formulation of sequent calculus.
The idea comes from the following:

Lemma 2.1 Γ ` ∆ is provable iff ` ¬Γ, ∆ is provable, where ¬Γ is the list obtained
by adding a negation to all formulas in Γ.

13

Identity rules:

` ¬A, A
id

` Γ,¬A ` ∆, A
` Γ, ∆

cut

Structural rules:

` Γ
` Γ, A

w
` Γ, A, A
` Γ, A

c

Logical rules:

` > > ` Γ
` Γ,⊥ ⊥

` Γ, A ` ∆, B
` Γ, ∆, A ∧ B

∧
` Γ, A, B
` Γ, A ∨ B

∨

Figure 2.2: One-sided propositional LK

Proof. The forward implication is immediate: just take a proof of Γ ` ∆ and
add n (` ¬) rules to it, where n is the number of occurrences of formulas in Γ.

For the converse, from a proof of ` ¬Γ, ∆ we obtain a proof of ¬¬Γ ` ∆ by
adding n (¬ `) rules. Now, it is immediate to see that A ` ¬¬A is provable
for all A, so we just cut one by one the formulas in ¬¬Γ and obtain Γ ` ∆, as
desired. �

Lemma 2.1 tells us that it is in principle enough to work with one-sided
sequents, i.e., sequents of the form ` Γ, where the left of ` is empty. Of
course, the proof of Lemma 2.1 uses negation rules, which need two-sided
sequents. This is where Definition 1.3 enters the picture: if negation is no
longer a primitive connective, we no longer need a rule for it and we may
therefore work with derivations which treat one-sided sequents only.

One-sided LK is defined by the rules of Fig. 2.2. Compared with Fig. 2.1,
the number of rules is halved: 8 instead of 16.

Remark 2.3 The symmetric version of Lemma 2.1 also holds, i.e., we may in principle
work with one-sided sequents of the form Γ `. So why did we prefer the left side to be
empty instead of the right? This is because we are ultimately interested in judgments
stating that “A is provable”, i.e., sequents of the form ` A. On the contrary, A `
means “a contradiction may be proved from A”, which is not as natural for our
purposes.

Example 2.2 Let us give an example of admissibility. Consider the calculus consist-
ing of only the rules ∧ and ∨ of one-sided LK, plus the “weakened” identity rule

` Γ,¬A, A

This is a version of the identity rule incorporating weakening: it is obviously derivable
in one-sided LK from an id rule and several w rules. Let us call such a calculus C. It is

14

possible to show that the weakening rule w is admissible in C, although not derivable.
Intuitively, in the calculus C +w weakening rules may be “pushed up” the derivation
tree, until they are situated just below identity rules. At that point, weakenings may
be “absorbed” into the identity rules, which are modified precisely for this purpose.
(This is actually true for all of LK, we considered here a simplified calculus because
the admissibility result is quicker to prove).

15

Chapter 3

First-order Quantification

3.1 Formulas and truth semantics

Definition 3.1 (first-order language) A first-order language L is given by

• a collection of function symbols, ranged over by f ;

• a collection of predicate symbols, ranged over by P;

such that each symbol σ (function or predicate) is associated with a non-negative in-
teger called its arity, denoted by ar(σ). Function symbols of arity zero are called
first-order constants, whereas predicate symbols of arity zero are called proposi-
tional constants.

Definition 3.2 (term) The terms on a first-order language L are defined by the
following grammar:

t, u ::= x
∣∣ f (t1, . . . , tn),

where x ranges over a countable set of first-order variables and f ranges over the
function symbols of L, with n = ar(f).

Example 3.1 (the language of basic arithmetic) A very important example of
first-order language is the language of basic arithmetic, denoted by Larith. It con-
sists of:

• a first-order constant 0, a unary function symbol S and two binary function
symbols + and ×, which are usually written in infix form, i.e., one writes t + u
and t× u instead of +(t, u) and ×(t, u), respectively;

• two binary predicate symbols = and <, which are also used in infix form; their
negated forms are written 6= and ≥.

The intended meaning of the function symbols is as follows: 0 represents the number
0, S the successor function, + addition and × multiplication. The equality symbol
stands, quite obviously, for equality between non-negative numbers, and < stands for
the strictly-less-than relation.

We inductively associate with every n ∈ N a term of Larith, called numeral, as
follows: 0 := 0 and n + 1 := S(n). The parentheses of the S symbol are usually

16

omitted and one writes for instance SSS0 for 3. The intended meaning is that n
represents the number n.

For conciseness, we adopt the atomic negation approach, so we extend
Definition 1.3 instead of Definition 1.1.

Definition 3.3 (first-order formula) Given a first-order language L, we extend it
by adding a negated predicate symbol P for each predicate symbol P of L, such
that ar(P) = ar(P). The first-order formulas on L are generated by the following
grammar:

A, B ::= P(t1, . . . , tn)
∣∣ P(t1, . . . , tn)

∣∣ > ∣∣ A ∧ B
∣∣ ⊥ ∣∣ A ∨ B

∣∣ ∀x.A
∣∣ ∃x.A,

where t1, . . . , tn range over terms on L and n = ar(P).
The set of free first-order variables of a formula A is denoted by fv(A) and

defined inductively as follows. Firs one defines, given a term t, fv(t) as the set of
first-order variables appearing in t; then one sets

fv(P(t1, . . . , tn)) := fv(P(t1, . . . , tn)) :=
n⋃

i=1

fv(ti)

fv(>) := fv(⊥) := ∅

fv(A ∧ B) := fv(A ∨ B) := fv(A) ∪ fv(B)

fv(∀x.A) := fv(∃x.A) := fv(A) \ {x}

A variable x is free in A if x ∈ fv(A). If x appears in A but it is not free, we say that
it is bound in A. A formula A is closed if fv(A) = ∅, i.e., it has no free variable.

If Γ is a list of formulas A1, . . . , An, we write fv(Γ) :=
⋃n

i=1 fv(Ai).

Remark 3.1 A quantifier ∀x.A or ∃x.A is said to bind the occurrences of x in A,
so a quantifier is a particular form of binder. Binders are informally used in many
places in mathematics; for instance, in the expression

∞

∑
n=1

m
n2

the variable n is bound by the sum operator, whereas the variable m is free. A closed
formula is also called a sentence.

The name of a bound variable does not matter: in the above example, we clearly
have

∞

∑
n=1

m
n2 =

∞

∑
k=1

m
k2 .

In logic, this is often referred to as α-renaming and is treated as equality: two formu-
las differing only in the names of bound variables are considered equal. For instance,

∀n.xn + yn = zn is the same as ∀k.xk + yk = zk

Definition 3.4 (substitution) Let t, u be a terms. We define u[t/x] as the term
obtained for u by substituting every occurrence of the variable x with t. Formally, the
definition is by induction on u:

y[t/x] :=
{

t if y = x
y if y 6= x

f (u1, . . . , un)[t/x] := f (u1[t/x], . . . , un[t/x]).

17

Let t be a term and A a formula. We define the formula A[t/z] (substitution of t
for x in A) by induction on A, as follows:

P(u1, . . . , un)[t/x] := P(u1[t/x], . . . , un[t/x])

P(u1, . . . , un)[t/x] := P(u1[t/x], . . . , un[t/x])

>[t/x] := > ⊥[t/x] := ⊥
(A ∧ B)[t/x] := A[t/x] ∧ B[t/x] (A ∨ B)[t/x] := A[t/x] ∨ B[t/x]

(∀y.A)[t/x] := ∀y.A[t/x] (∃y.A)[t/x] := ∃y.A[t/x]

Remark 3.2 If we see u and t as trees, the substitution u[t/x] is taking each leaf of
u labelled by x and plugging into it the root of a copy of the tree t. The substitution
A[t/x] does the same, but in all terms appearing in A.

Note that the substitution (∀x.A)[t/x] never happens because, by α-renaming,
∀x.A is the same as ∀y.A[y/x], i.e., the bound variable may always be supposed to
be different from x.

Definition 3.5 (first-order structure) Let L be a first-order language. A first-
order structure for L, which we denote by S , consists of:

• a non-empty collection DS of individuals, called the domain of the structure;

• for each function symbol f of L of arity n, a function S(f) : Dn
S −→ DS ; if f

is a constant (i.e., the arity is zero), then S(f) is an individual;

• for each predicate symbol P of L of arity n, a collection S(P) ⊆ Dn
S ; if P is a

propositional constant (i.e., the arity is zero), then S(P) ∈ {0, 1}.

Definition 3.6 (environment) Let A be a first-order formula on a language L and
let S be a structure for L. An environment for A in S is a function η : X −→ DS
such that X is a finite set of first-order variables containing fv(A). If x 6∈ X, we write
η[x 7→ d] for the interpretation mapping y ∈ X to η(y) and x to d ∈ DS .

Definition 3.7 (interpretation of a term) Let S be a first-order structure on a lan-
guage L, let t be a term on L and let η be an environment defined on all the first-order
variables appearing in t. The interpretation of t in S under η, denoted by JtKSη , is
defined by induction on t:

JxKSη := η(x),

J f (t1, . . . , tn)KSη := S(f)(Jt1KSη , . . . , JtnKSη).

If t is closed (i.e., it contains no variable), then η is irrelevant and we just write JtKS .

Example 3.2 (standard structure for arithmetic) The standard structure for
Larith, denoted by Std, is defined by taking DStd := N (the natural numbers, i.e., the
non-negative integers) and by interpreting each function and predicate symbol in the
obvious way: 0 is the natural number zero, S, + and × are successor, addition and
multiplication on natural numbers, respectively, and = and ≤ are just the equality
and the usual order on N. Observe that JnKStd = n, i.e., each numeral is interpreted
by the corresponding integer.

This is usually referred to as the standard model (not structure) because it is in
fact a model of Peano arithmetic, a logical theory which we will define later.

18

S |=η P(t1, . . . , tn)
(Jt1KSη ,...,JtnKSη)∈S(P)

S |=η P(t1, . . . , tn)
(Jt1KSη ,...,JtnKSη) 6∈S(P)

S |=η >
S |=η A S |=η B

S |=η A ∧ B

S |=η A

S |=η A ∨ B

S |=η B

S |=η A ∨ B

S |=η[x 7→d] A for all d ∈ DS
S |=η ∀x.A

S |=η[x 7→d] A

S |=η ∃x.A

Figure 3.1: Truth semantics of first-order classical logic

Definition 3.8 (model) Let L be a first-order language, let A be a formula on L, let
S be a first-order structure for L and let η be an environment for A in S . We define
the relation S |=η A as in Fig. 3.1. The relation 6|= is defined as the complement of
|=.

If A is a sentence (i.e., it is closed), then the environment η is irrelevant and we
write directly S |= A. If this holds, we say that S is a model of A. Otherwise, i.e.,
when S 6|= A, we say that S is a countermodel of A.

A sentence A is satisfiable if it has a model and unsatisfiable otherwise. It is
valid if it has no countermodel, in which case we write |= A.

Remark 3.3 One may wonder why we introduced the environment η if in the end we
are interested only in the truth of closed formulas (i.e., sentences), which do not need
it. The answer is simple: the truth of a sentence A in S (the relation S |= A) is defined
by induction, which means that it is defined in terms of the truth of its subformulas,
which may be open and therefore need η. This is an example of induction loading:
in order for a definition or proof by induction to carry over, we often need to define or
prove something stronger than what we intended originally.

Remark 3.4 Propositional logic may be seen as first-order logic on a language in
which there are only predicate constants (i.e., predicate symbols of arity zero). In
that case, a first-order structure collapses to a valuation (Definition 1.2) and environ-
ments are useless (formulas can never contain first-order variables), so one recovers
the definition of propositional model/satisfiablity/validity/etc.

3.2 Sequent calculus

Sequent calculus for first-order classical logic, or LK1, is obtained by adding
to the rules of Fig. 2.2 the two rules given in Fig. 3.2. Let us discuss them:

universal quantifier: we may read ` Γ, A as ¬Γ ` A, which intuitively means
that A is provable from some hypotheses (the negation of the formulas
in Γ). Now, to assert the provability of ∀x.A, we must make sure that

19

` Γ, A
` Γ, ∀x.A

∀ x 6∈fv(Γ)
` Γ, A[t/x]
` Γ, ∃x.A

∃

Figure 3.2: Rules for first-order quantifiers, one-sided formulation

Γ, A[t/x] ` ∆
Γ, ∀x.A ` ∆

∀`
Γ ` ∆, A

Γ ` ∆, ∀x.A
`∀ x 6∈fv(Γ,∆)

Γ, A ` ∆
Γ, ∃x.A ` ∆

∃` x 6∈fv(Γ,∆)
Γ ` ∆, A[t/x]
Γ ` ∆, ∃x.A

`∃

Figure 3.3: Rules for first-order quantifiers, two-sided formulation

x is not used by the hypotheses, i.e., that no formula in ¬Γ is making
any assumption about x. In other words, x must be generic. The side
condition of the rule (x 6∈ fv(Γ)) has precisely this purpose.

existential quantifier: let us consider again ¬Γ ` A[t/x], which intuitively
means that A[t/x] is provable from some hypotheses. Now, A[t/x] is
precisely the statement “the property A holds for t”, from which we
obviously obtain the provability of ∃x.A from the same hypotheses. The
term t in the rule is said to be the witness of the existential quantification.

Remark 3.5 Like we said above, the side condition x 6∈ fv(Γ) ensures the genericity
of x, which is clearly needed for universal quantification: we must make sure that
A[x] holds for all x, not just for those satisfying some hypotheses. This requirement
is not only unnecessary for existential quantification but it does not even make sense:
by α-renaming, the variable x is never present, neither in Γ nor in A[t/x].

Indeed, to make the two rules more symmetric, the universal quantifier rule should
be formulated as follows:

` Γ, A[z/x]
` Γ, ∀x.A

z 6∈fv(Γ)

It is then apparent how both rules consider a property A of x, where x is just a
placeholder, i.e., we may write A as A[x], just like we write f (x) for a function of a
real variable x. We might as well use any other variable, e.g. f (y), the function does
not change (another example of α-renaming). In the existential rule, the premise states
the provability of A[t] for some witness t, which is an arbitrary term, not necessarily
a variable. In the universal rule, the premise states the provability of A[z] where z
is necessarily a variable, which must furthermore be generic. In neither case does x
actually appear anywhere.

Please observe also that, in both rules, x may not even appear in A. In that case,
we are just adding a “dummy” quantifier: A is not speaking of x, so we vacuously
have both that A holds for all x and that there exists x satisfying A.

Sequent calculus for first-order logic may of course be given also in the
two-sided formulation. In that case, negation is defined as a primitive con-

20

nective and the calculus is obtained by adjoining the rules of Fig. 3.3 to those
of Fig. 2.1.

3.3 Ultrafilters

In the rest of the section, we fix a first-order language L.

Definition 3.9 (elementary equivalence) Let S be a first-order structure on L.
We set

US := {A sentence on L | S |= A}.

Two first-order structures S ,S ′ on L are elementarily equivalent if US = US ′ , i.e.,
if they validate the same sentences, in which case we write S ≡ S ′.

From the point of view of proof theory, the most interesting aspect of a
first-order structure S is the sentences it validates, not how it validates them.
For our purposes, two elementarily equivalent structures should really be con-
sidered the same, so the set US provides us with a useful abstraction, allowing
to disregard the details of S (its domain and how it interprets the symbols of
L).

We will now see that we may characterize the sets of the form US , so that
we will be able to use such sets instead of first-order structures, obtaining a
sort of proof-theoretic version of truth semantics.

Definition 3.10 (ultrafilter) An ultrafilter of sentences is a set U of sentences
which is:

• closed under logical consequence: if A ∈ U and ` ¬A, B is derivable in LK1,
then B ∈ U;

• closed under conjunction: if A, B ∈ U, then A ∧ B ∈ U;

• proper and maximal: for every sentence A, exactly one of A ∈ U or ¬A ∈ U

holds.

The ultrafilter U is complete if, in addition, A[t/x] ∈ U for every closed term t
implies that ∀x.A ∈ U.

Remark 3.6 The notion of ultrafilter is more general: it may be applied to any pre-
ordered set. Here, we are giving directly the notion specialized to sentences preordered
by A � B if ` ¬A, B is provable in LK1.

Lemma 3.1 For every first-order structure S , US is an ultrafilter.

Proof. Closure under logical consequence follows from the validity of LK1

(Proposition 4.2). Closure under conjunction and the fact that US is proper
and maximal are an immediate consequence of the definition of truth. �

So, every first-order structure induces an ultrafilter. In fact, the converse is
also true, and this will be a fundamental point in the proof of the completeness

21

theorem. However, for this latter we only need a weaker statement, namely
that a complete ultrafilter U induces a first-order structure whose set of true
sentences is exactly U.

Let L̂ be the language L augmented with a constant x̂ for each first-order
variable x (this technicality will allow us to treat open terms as if they were
closed).

Lemma 3.2 Let U be a complete ultrafilter on L̂. Then, there exists a first-order
structure SU such that, for every sentence A,

A ∈ U iff SU |= A.

Proof. The structure SU has as domain the set of all closed termsD. The inter-
pretation of function symbols is immediate: if f is of arity n and t1, . . . , tn ∈ D,
we set

SU(f)(t1, . . . , tn) := f (t1, . . . , tn).

Let P (or P) be a propositional constant. We set SU(P) = 1 iff P ∈ U, and
SU(P) = 1 iff P 6∈ U. Let P (or P) be a predicate symbol of arity n > 0. We set

SU(P) := {(t1, . . . , tn) ∈ Dn | P(t1, . . . , tn) ∈ U}

and
SU(P) := {(t1, . . . , tn) ∈ Dn | P(t1, . . . , tn) 6∈ U}

We now check the statement of the lemma, by induction on A. The atomic
cases are immediate. Let A = B ∧ C. For the forward implication, suppose
that B ∧ C ∈ U. Since ` ¬B ∨ ¬C, B and ` ¬B ∨ ¬C, C are both provable,
we have B, C ∈ U as well, so we conclude by the induction hypothesis and
the definition of truth of a conjunction. For the converse, we consider the
contrapositive and let SU 6|= B ∧ C, which means without loss of generality
that SU 6|= B. The induction hypothesis gives us B 6∈ U, which implies B∧C 6∈
U by the above.

Let A = B ∨ C. For the forward implication, B ∨ C ∈ U implies that at
least one of ¬B, ¬C is not in U, otherwise ¬B ∧ ¬C ∈ U contradicting the fact
that U is proper. Suppose without loss of generality that ¬B 6∈ U, which by
maximality gives B ∈ U, which by induction hypothesis gives SU |= B, which
allows us to conclude. For the converse, SU 6|= B ∨ C means that SU 6|= B and
SU 6|= C, which by induction hypothesis gives us that neither B nor C is in
U, so by maximality ¬B,¬C ∈ U, which by closure under conjunction implies
¬B ∧ ¬C ∈ U and therefore B ∨ C 6∈ U because U is proper.

For the quantifier cases we will need an auxiliary result.

Claim. Let η be an environment. Then, SU |=η[x 7→t] C iff SU |=η C[t/x].

Proof. An easy induction on C. �
The most important consequence of the above Claim, which we will use in

the sequel, is that SU |= ∀x.B iff SU |= B[t/x] for all t ∈ D.
Let now A = ∀x.B. For the forward implication, let ∀x.B ∈ U. Now, the

sequent ` ∃x.¬B, B[t/x] is provable for all t ∈ D, hence B[t/x] ∈ U for all
t ∈ D. The induction hypothesis gives us that SU |= B[t/x] for all t ∈ D, so

22

we conclude by the above Claim. For the converse, suppose that SU 6|= ∀x.B.
By the above Claim, there exists t ∈ D such that SU 6|= B[t/x], so by the
induction hypothesis we have B[t/x] 6∈ U, which implies ∀x.B 6∈ U, otherwise
we would contradict closure under logical consequence.

Let now A = ∃x.B. For the forward implication, assume ∃x.B ∈ U. There
must exist t ∈ D such that ¬B[t/x] 6∈ U, otherwise, by completeness, we
would have ∀x.¬B ∈ U and contradict the fact that U is proper. Then, maxi-
mality gives us B[t/x] ∈ U, which implies SU |= B[t/x] by the induction hy-
pothesis, which is enough to conclude SU |= ∃x.B by the above Claim. For the
converse, suppose that SU 6|= ∃x.B. Then, by the above Claim, SU 6|= B[t/x]
for all t ∈ D. But then, by the induction hypothesis, B[t/x] 6∈ U for all t ∈ D,
which by maximality implies ¬B[t/x] ∈ U for all t ∈ D, which in turn implies
∀x.¬B ∈ U by completeness, and we conclude ∃x.B 6∈ U by the fact that U is
proper. �

Remark 3.7 As noted above, the addition of the constants x̂ is purely technical and
will play a role in the proof of the completeness theorem. Here we want to observe
that the structure SU is also a structure for the original language L, because L is
obviously a sublanguage of L̂, and this is what matters.

23

Chapter 4

Completeness

In this chapter, we fix an arbitrary first-order language L. All formulas are
assumed to be on L and their validity refers to first-order structures for L.

Our aim is to show the following result:

Theorem 4.1 (validity and completeness of LK1) For every sentence A,

|= A iff ` A is provable in LK1.

The backward direction is called validity, because it asserts that LK1 may
only prove valid sentences. The forward direction is called completeness, be-
cause it asserts that LK1 proves all valid sentences, i.e., it does not “miss” any
valid sentence.

We start with validity, which is easy.

Proposition 4.2 (validity) For every sentence A, ` A provable implies |= A.

Proof. We prove a more general statement: ` Γ provable implies |= ∨
Γ,

where
∨

Γ is the disjunction of all formulas in Γ. The lemma is obviously a
special case. The general statement is shown by a straightforward induction
on the proof of ` Γ: each nullary rule (ax and >) introduces a valid sequent
and each other rule is easily seen to preserve validity. �

Remark 4.1 The reason why validity is so simple to prove is that the rules of LK1

were built with the interpretation “` Γ means |= ∨
Γ” in mind. Indeed, the discussion

we made of the rules after introducing them (Sect. 2.1 and Sect. 3.2) is essentially a
proof of their validity.

Observe that validity implies the consistency of LK1, i.e., the fact that the
empty sequent ` is not derivable. Indeed, if ` were derivable, then ` ⊥ would
be derivable, which is forbidden by validity (⊥ is not valid).

Completeness is much harder. It was proved for the first time by Gödel
in 1929. The most widely taught proof today is a simpler argument found
by Henkin at the end of the 1940s. The proof we give here is due to Schütte.
Albeit a bit more laborious than Henkin’s, it is more interesting from a proof-
theoretic perspective. As all completeness proofs, it is by contraposition, i.e.,

24

` Θ,¬A, Θ′, A, Θ′′; Ψ ` Θ,>, Θ′; Ψ

` [A ∧ B], Θ; Ψ, A ` [A ∧ B], Θ; Ψ, B
` Θ; Ψ, A ∧ B

` [A ∨ B], Θ; Ψ, A, B
` Θ; Ψ, A ∨ B

` [∀x.A], Θ; Ψ, A[zn/x]
` Θ; Ψ, ∀x.A

∗
` [∃x.A], Θ; Ψ, A[tn/x]

` Θ; Ψ, ∃x.A
†

` A,¬Cn, Θ; A ` A, Cn, Θ; A
` Θ, A;

‡
` [A], Θ; Ψ
` Θ; Ψ, A

A atomic

Figure 4.1: The exhaustive search calculus esLK1.

it actually shows the statement “ 6` A implies 6|= A”, and it is based on the
following idea:

• we define a proof search procedure for attempting to build a proof of A
in LK1;

• under the assumption that 6` A, the procedure will not find a proof but
will instead continue forever;

• using a fundamental result called König’s lemma, we show that, if the
procedure continues forever, then it generates an infinite set of formulas
which is in fact a complete ultrafilter containing ¬A;

• as discussed in Sect. 3.3, this implies the existence of a countermodel of
A, thus showing 6|= A.

4.1 Exhaustive search

First of all, we fix three enumerations

• of first-order variables z0, z1, z2, . . .;

• of terms t0, t1, t2, . . .;

• and of pairs of dual formulas (C0,¬C0), (C1,¬C1), (C2,¬C2),

We will be thus able to speak of “the n-th term”, “the n-th formula”, etc.
The proof search will actually be carried on in a variant of LK1, which we

call esLK1 (exhaustive search LK1) and which is defined by the rules of Fig. 4.1.
The calculus esLK1 manipulates sequents of the form ` Θ; Ψ where Θ and
Ψ are lists of formulas and, furthermore, Θ is without repetitions. Given a
repetition-free list Θ, we use the notation [A], Θ to denote the list A, Θ if Θ
does not already contain A, or the list Θ itself otherwise. There are four side
conditions:

25

(∗) in the universal rule, n is the smallest integer such that zn does not
appear free in Θ, Ψ;

(†) in the existential rule, n is the smallest integer such that A[tn/x] does
not appear in Θ;

(‡) in the cut rule, n is the smallest integer such that neither Cn nor ¬Cn
appear in Θ, A;

(•) a non-initial (i.e., unary or binary) rule cannot be applied if its conclusion
may also be the conclusion of an initial (i.e., nullary) rule; also, a > rule
cannot be applied if its conclusion may also be the conclusion of an
identity rule.

Since esLK1 is a calculus tailored for proof search, it is best understood by
reading its rules bottom-up, from conclusion to premise(s). The search for a
proof of a sentence A starts with the sequent `; A and proceeds bottom-up,
generating sequents of the form ` Θ; Ψ. Intuitively, Ψ is the workspace and Θ
is the memory. The workspace is where formulas are decomposed into their
subformulas. The first thing we check is whether ` Θ; Ψ is trivially provable
(i.e., whether the memory contains a pair of dual formulas or >), in which
case we stop. Otherwise, we decompose the first formula in the workspace
and we memorize the fact that such a formula has been processed. In case the
formula is a conjunction, two parallel search threads are initiated. When all
possible decompositions have been done (i.e., atomic formulas are obtained)
without having reached a trivially provable sequent, the workspace becomes
empty and a formula is drawn into the workspace from memory, so that the
process starts anew. However, if a formula is in memory it means that it has
already been processed before, so this time we try to find a proof by adding
a new hypothesis, either Cn or ¬Cn (the smallest dual pair not already in
memory), thus starting two parallel threads.

The reason why repetitions are not allowed in Θ is clear: it represents a
memory, what matters is that a formula is present, not how many times. On
the other hand, it is convenient to allow repetitions in the workspace because
they arise from the decomposition of formulas like B∨ B. The side conditions
(∗, †, ‡ and •) and the fact that we use lists guarantee the determinism of the
proof search procedure:

Lemma 4.3 (determinism) Every sequent ` Θ; Ψ is conclusion of exactly one rule.

Proof. Suppose first that Ψ is empty. By inspecting Fig. 4.1, we see that the
sequent may be the conclusion only of an identity, > or cut rule. These four
cases are mutually exclusive: the first applies if Θ contains a pair of dual
formulas; the second applies if Θ does not contain a pair of dual formulas but
contains >; the third applies in all other cases.

Suppose now that Ψ is not empty. Then, it contains a rightmost formula A,
which completely determines the rule of which ` Θ; Ψ may be the conclusion,
depending on the main connective of A or whether it is atomic. �

Of course, a sequent ` Θ; Ψ of esLK1 immediately corresponds to a se-
quent of LK1: simply turn the semicolon into a comma, obtaining ` Θ, Ψ.

26

Proposition 4.4 (soundness of esLK1 with respect to LK1) If ` Θ; Ψ is prov-
able in esLK1, then ` Θ, Ψ is provable in LK1.

Proof. The rules of esLK1 are all derivable in LK1. �

Proposition 4.4 basically says that if we start the proof search procedure
with `; A and the procedure terminates, then ` A is indeed provable in LK1.
The aim of the rest of the section is to prove a converse of Proposition 4.4, i.e.,
that if ` A is provable in LK1, then the procedure starting with `; A does find
a proof.

Lemma 4.5 (memory weakening) Let A be a formula not appearing in Θ, Θ′.
Then, the weakening rule

` Θ, Θ′; Ψ
` Θ, A, Θ′; Ψ

is admissible in esLK1.

Proof. Let π be a proof of ` Θ, Θ′; Ψ in esLK1. We reason by induction on
the last rule of π. If it is an initial rule, we conclude immediately. Suppose
now that Ψ = Ψ′, B ∧ C and that π terminates with

` [B ∧ C], Θ, Θ′; Ψ′, B ` [B ∧ C], Θ, Θ′; Ψ′, C
` Θ, Θ′; Ψ′, B ∧ C

We apply twice the induction hypothesis to obtain the provability of ` [B ∧
C], Θ, A, Θ′; Ψ′, C and ` [B ∧ C], Θ, A, Θ′; Ψ′, C (observe that, if A = B ∧ C,
then these two sequents are ` Θ, B ∧ C, Θ′; Ψ′, C and ` Θ, B ∧ C, Θ′; Ψ′, C,
respectively), from which we conclude by applying a conjunction rule. The
other cases are similar. �

Lemma 4.6 (generalized memorization) The rule

` [A], Θ; Ψ
` Θ; Ψ, A

where A is not necessarily atomic, is admissible in esLK1.

Proof. We reason by induction on A. If it is atomic, the rule is already part of
esLK1. Let A = B ∧ C. Using weakening (Lemma 4.5) if necessary, we know
that ` [B], [B ∧ C], Θ; Ψ and ` [C], [B ∧ C], Θ; Ψ are provable in esLK1. We
apply twice the induction hypothesis and obtain proofs of ` [B ∧ C], Θ; Ψ, B
and ` [B ∧ C], Θ; Ψ, C, from which we conclude by applying a conjunction
rule. The other cases are similar. �

Lemma 4.7 (workspace weakening) The weakening rule

` Θ; Ψ
` Θ; Ψ, A

is admissible in esLK1.

27

Proof. An immediate consequence of Lemma 4.5 and Lemma 4.6: from a
proof of ` Θ; Ψ, the former gives us a proof of ` [A], Θ; Ψ, from which the
latter gives us a proof of ` Θ; Ψ, A. �

Lemma 4.8 (cyclic permutation) If ` Θ, Θ′; is provable in esLK1, then also `
Θ′, Θ; is provable.

Proof. By induction on the length of Θ. If Θ is empty, the result vacuously
holds. Let Θ = A, Θ′′ and let n be the smallest integer such that neither Cn
nor ¬Cn appear in Θ, Θ′. By weakening (Lemma 4.5 and Lemma 4.7), we have
a proof of ` A,¬Cn, Θ′′, Θ′; A and a proof of ` A,¬Cn, Θ′′, Θ′; A, from which
a cut rule gives us a proof of ` Θ′′, Θ′, A;, to which we apply the induction
hypothesis. �

Lemma 4.9 (contraction) The rule
` A, Θ; A
` Θ, A;

is admissible in esLK1.

Proof. From a proof of ` A, Θ; A, by weakening (Lemma 4.5) we get a proof
of ` A,¬Cn, Θ; A and a proof of ` A,¬Cn, Θ; A, where n is the smallest integer
such that neither Cn nor ¬Cn appear in A, Θ. From these, a cut rule allows us
to conclude. �

Lemma 4.10 (cut) Let m be the smallest integer such that neither Cm nor ¬Cm is
in A, Θ, let n ≥ m and suppose that ` A, �nCn, . . . , �mCm, Θ; is provable in esLK1

for all possible combinations of �i being either ¬ or nothing. Then, ` A, Θ; is also
provable in esLK1.

Proof. The proof is by induction on the integer n−m. The base case is n = m,
in which we start with a proof of ` A,¬Cm, Θ; and a proof of ` A, Cm, Θ;. By
weakening (Lemma 4.7), we have proofs of ` A,¬Cm, Θ; A and ` A, Cm, Θ; A,
so a cut (which we may apply because by hypothesis) yields ` Θ, A;, from
which the result follows by applying Lemma 4.8.

In case n−m > 0, we start with 2m−n proofs of

` A,¬Cn, �n−1Cn−1, . . . , �mCm, Θ;

and 2m−n proofs of

` A, Cn, �n−1Cn−1, . . . , �mCm, Θ; .

After applying weakening (Lemma 4.7) to each of them and combining them
pairwise with a cut, we obtain 2m−n proofs of

` �n−1Cn−1, . . . , �mCm, Θ, A;

from which we conclude by induction hypothesis, after applying Lemma 4.8.
�

28

Lemma 4.11 (existential) Let m be the smallest integer such that A[tm/x] is not
in Θ and let n ≥ m. Then, the rule

` A[tm/x], . . . , A[tn/x], ∃x.A, Θ;
` ∃x.A, Θ

is admissible in esLK1.

Proof. The proof is by induction on the integer n−m. The base case is n = m,
in which we have a proof of ` A[tm/x], ∃x.A, Θ;, from which Lemma 4.6
gives us a proof of ` ∃x.A, Θ; A[tm/x]. Applying an existential rule (which is
possible because by hypothesis m is the smallest such that A[tm/x] is not in Θ)
gives us a proof of ` ∃x.A, Θ; ∃x.A, from which we conclude by Lemma 4.9.

If n−m > 0, we have a proof of ` A[tm/x], . . . , A[tn−1/x], A[tn/x], ∃x.A, Θ;,
from which Lemma 4.8 gives us a proof of

` A[tn/x], ∃x.A, Θ, A[tm/x], . . . , A[tn−1/x]; .

We now apply Lemma 4.6 and obtain ` ∃x.A, Θ, A[tm/x], . . . , A[tn−1/x]; A[tn/x].
An existential rule (which, again, is allowed) yields a proof of

` ∃x.A, Θ, A[tm/x], . . . , A[tn−1/x]; ∃x.A,

from which Lemma 4.9 gives us a proof of ` Θ, A[tm/x], . . . , A[tn−1/x], ∃x.A;,
and we conclude by applying the induction hypothesis. �

Proposition 4.12 (completeness of esLK1 with respect to LK1) If ` Γ is prov-
able in LK1, then ` Θ; Ψ is provable in esLK1, where Θ is any sequence containing
the formulas of Γ and Ψ is arbitrary.

Proof. We show that ` Θ; is provable; the provability of ` Θ; Ψ follows from
weakening (Lemma 4.7). We proceed by induction on the last rule of the proof
of ` Γ. If it is an id, the result is immediate. Suppose that the last rule is a cut

` ∆,¬Cn ` Σ, Cn
` ∆, Σ

By consistency, at least one of ∆, Σ is non-empty, so that Θ = Θ′, A, Θ′′.
Let now m be the least integer such that neither Cm nor ¬Cm appear in
Θ, so that n ≥ m. The induction hypothesis gives us 2n−m+1 proofs of
` A, �nCn, . . . , �mCm, Θ′′, Θ′;, precisely as in the hypothesis of Lemma 4.10,
which we use to infer the provability of ` A, Θ′′, Θ′;, from which we obtain
` Θ; by an application of Lemma 4.8.

Suppose now that the last rule is structural. Weakening is addressed by
Lemma 4.5. Contraction is trivial, because the multiplicity of formulas in Γ is
irrelevant.

Let us consider the logical rules. If the last rule is >, the result is immedi-
ate. The rule ⊥ is treated using Lemma 4.5. Let now the last rule be

` ∆, A ` Σ, B
` ∆, Σ, A ∧ B

29

and let Θ = Θ′, A ∧ B, Θ′′. Then the induction hypothesis gives us the prov-
ability in esLK1 of ` [A], A ∧ B, Θ′′, Θ′; and ` [B], A ∧ B, Θ′′, Θ′;, from which
we obtain the provability of ` A ∧ B, Θ′′, Θ′; A and ` A ∧ B, Θ′′, Θ′; B by ap-
plying Lemma 4.6 twice. A conjunction rule then gives us a proof of ` A ∧
B, Θ′′, Θ′; A ∧ B, from which Lemma 4.9 gives us a proof of ` Θ′′, Θ′, A ∧ B;,
and we conclude by applying Lemma 4.8.

The cases of ∨ and ∀ are similar. Let us treat the case of ∃, which is more
delicate. Suppose that the LK1 proof ends with

` ∆, A[tn/x]
` ∆, ∃x.A

Let Θ = Θ′, ∃x.A, Θ′′ and let m be the smallest integer such that A[tm/x] is
not in Θ, so that n ≥ m. The induction hypothesis gives an esLK1 proof of

` A[tm/x], . . . , A[tn/x], ∃x.A, Θ′′, Θ′;

from which we obtain a proof of ` Θ′′, Θ′, ∃x.A by Lemma 4.11, and we con-
clude again by applying Lemma 4.8. �

Note that Proposition 4.12 has as corollary the property we wanted: if ` A
is provable in LK1, then the search procedure starting with `; A in esLK1 will
find a proof. Indeed, suppose ` A provable in LK1. There are two cases:

• A is atomic: in that case, the procedure starts with

` A;
`; A

and Proposition 4.12 guarantees us that ` A; is provable;

• A is not atomic: in that case, the procedure starts with

` A; Ψ1 . . . ` A; Ψn

`; A

where Ψ1, . . . , Ψn contain the subformulas of A (in fact, 1 ≤ n ≤ 2);
again, Proposition 4.12 guarantees us that all the sequents ` A; Ψi are
provable.

So, in both cases, the proof search terminates.

4.2 The completeness proof

We will now consider the rules of Fig. 4.1 coinductively, i.e., we allow possibly
infinite trees generated by the rules of esLK1. Such possibly infinite trees are
called pseudo-proofs. A proof of course is a pseudo-proof which happens to be
finite.

Lemma 4.13 (uniqueness) For every sequent ` Θ; Ψ, there is exactly one pseudo-
proof of esLK1 which ends with that sequent.

30

Proof. By Lemma 4.3. �

Lemma 4.14 (König) Every infinite pseudo-proof contains an infinite branch.

Proof. Infinite pseud-proofs are finitely branching infinite trees. König’s
lemma says that such trees necessarily have a finite branch: start from the
root; by hypothesis, an infinite number of nodes is reachable from it, and yet
there are only finitely many children nodes, so at least one of those children
must be the root of an infinite tree, and so on. �

In the following, given a sequent ` Θ; Ψ of esLK1, we disregard the order-
ing of Θ and see it as a set.

Lemma 4.15 (monotonicity) Let

` Θ0; Ψ0, ` Θ1; Ψ1, ` Θ2; Ψ2, . . . ,` Θi; Ψi, . . .

be the sequents labelling an infinite branch of an infinite pseudo-proof of conclusion
` Θ0; Ψ0. Then, for all i ∈N, Θi ⊆ Θi+1.

Proof. A simple inspection of Fig. 4.1. �

Suppose that ` A is not provable in LK1, for A a given sentence. By Propo-
sition 4.4, it is not provable in esLK1 either. Then, the unique (by Lemma 4.13)
pseudo-proof π of `; A in esLK1 must be infinite. By Lemma 4.14, π contains
an infinite branch, labelled by the sequents

` Θ0; Ψ0, ` Θ1; Ψ1, ` Θ2; Ψ2, . . . ,` Θi; Ψi, . . .

with Θ0 empty and Ψ0 = A. If C is a formula, we denote by Ĉ the sentence
of the extended language L̂ (see Sect. 3.3) obtained from C by replacing every
free occurrence of variable x with x̂. We then define, for all i ∈N,

Θ̂i := {Ĉ | C ∈ Θi} I :=
∞⋃

i=0

Θ̂i, U := {¬C | C ∈ I}.

We will now prove that the set U is a complete ultrafilter containing ¬A, which
will allow us to conclude 6|= A by Lemma 3.2.

First of all, whether A is atomic or not, the first rule (going bottom-up) of
π puts A in Θ1, and Â = A because A is closed, so ¬A ∈ U.

Before we proceed further, we need an auxiliary lemma:

Lemma 4.16 For every Ĉ ∈ I and for every n ∈ N, there exists k ≥ n such that
Θk = Θ′, C and Ψ is empty.

Proof. Let p be the smallest such that C ∈ Θp, let m = max(p, n) and, given
i ∈N, let jCi be the the position of C in Θm+i, counting from the right, starting
from 0 (C is guaranteed to be in Θm+i for all i by Lemma 4.15). It is enough to
show that jCl = 0 for some l such that Ψm+l is empty, and then we may take
k := m + l. Now, by inspecting Fig. 4.1, we see that jCi+1 = jCi for every rule

31

except cut, for which we have instead jCi+1 = jCi − 1 (assuming jCi is not already
null) and in which Ψm+i is empty. Observe now, again by inspecting Fig. 4.1,
that each rule except cut, when read bottom-up, makes the workspace either
shrink or be populated by formulas of strictly smaller logical size. This implies
that the workspace becomes empty after a finite number of rules (bottom-up),
and the claim is proved. �

In other words, Lemma 4.16 guarantees that each formula in memory is
pulled out into the workspace infinitely often. In particular, an infinite number
of sequents in (` Θi; Ψi)i∈N is the conclusion of a cut rule.

We now prove that U is proper and maximal. Since the memory does not
shrink (Lemma 4.15), each of the infinitely many cut rules given by Lemma 4.16
introduces a pair of formulas (Cn,¬Cn) with larger and larger n. Therefore,
for all n ∈ N, there exists i ∈ N such that either Cn or ¬Cn is present in Θi,
proving that U is proper. Suppose now that there exists i ∈ N such that Θi
contains both ¬A and A for some A. Then ` Θi; Ψi would be the conclusion of
an identity rule, contradicting the hypothesis that the branch is infinite. This
proves that U is maximal.

Let us prove closure under logical consequence. Let A ∈ U and suppose
that ` ¬A, B is provable in LK1. By definition, ¬A ∈ Θi for some i. Suppose
now, for the sake of contradiction, that B 6∈ U, which means B ∈ Θj for
some j. By taking k := max(i, j), we have that Θk contains both ¬A and B
(Lemma 4.15). But, by Proposition 4.12, the provability of ` ¬A, B in LK1

implies the provability of ` Θk; Ψk, against the assumption that the only (by
Lemma 4.13) pseudo-proof of ` Θk; Ψk is infinite.

For what concerns closure under conjunction, let A, B ∈ U, which means
¬A,¬B ∈ Θi for some i. If, for the sake of absurdity, A ∧ B 6∈ U, we would
have A ∧ B ∈ Θj, hence ¬A,¬B, A ∧ B ∈ Θk for k := max(i, j) (Lemma 4.15).
But sooner or later (Lemma 4.16) A ∧ B would be extracted from the memory
by means of a cut rule; this would be immediately followed by a conjunction
rule and a rule treating A in the workspace, which would bring A in Θp
for some p > k. Again by Lemma 4.15, Θp would contain both A and ¬A,
contradiction.

So U is an ultrafilter. Let us prove its completeness. Let us assume that
A[t/x] ∈ U for all closed terms t and suppose, for the sake of contradic-
tion, that ∀x.A 6∈ U. This implies that ∀x.A ∈ Θi for some i. Again, by
Lemma 4.16, at some point such a formula will be put in the workspace, im-
plying the presence of A[zn/x] in Θk for some zn and k > i. This in turn
implies ¬A[ẑn/x] ∈ U. But we started with the assumption that A[ẑn/x] ∈ U,
which means that for some p ≥ i we have both ¬A[zn/x] and A[zn/x] in Θp,
contradicting the fact that the pseudo-proof is infinite.

32

Chapter 5

Undecidability and
Incompleteness

5.1 Informal computability

Gödel’s incompleteness theorems rely crucially on a notion of “mechanizable
procedure” or, more technically, of “computable function”. Mathematicians
throughout history had been aware that certain mathematical constructions
are effective, i.e., realizable in the physical world (at least theoretically, i.e., ig-
noring resource limits, or what we would call today computational complexity),
whereas others are, somehow, purely abstract. However, negative results such
as Gödel’s required to put this distinction on more formal grounds.

In the early 20th century, several people independently gave formal defini-
tions of the intuitive concept of computable function. Perhaps the three most
famous are (in order of appearance):

recursive functions: this is the original concept of computability used by Gödel
in his proof of the incompleteness theorem, and was developed and ex-
panded later mostly by Kleene. The idea is the following: we fix a set
of functions, the basic functions, which are so simple that we “know”
they are computable, then we give ways of building new computable
functions starting from functions which we have already shown to be
computable. Essentially, this amounts to defining a very rudimentary
programming language, in which the only data is of type nat (the non-
negative integers) and in which the only control structure are while

loops.

λ-calculus: this model of computation was introduced by Church and may be
seen as the paradigmatic functional programming language. It turned
out to have a strikingly deep connection with a proof theoretic formalism
independently developed by Gentzen (natural deduction): the so-called
Curry-Howard correspondence, which we will see later.

Turing machines: this is perhaps the most famous model of computation, and
it is still widely used today as the basis, for example, of computational

33

complexity theory. Turing devised his machines by reflecting on what a
mathematician does when he/she performs a computation: he/she has
a sheet of paper (which we may suppose to be extendable at will) on
which he/she writes and erases a finite set of symbols according to a
fixed, finite set of rules. A Turing machine imitates this behavior, which
justifies the intuitive feeling that Turing machines compute exactly what
a human can compute.

Each one of the above models yields a notion of computable function
on natural numbers: it is a function f : N → N such that f may be com-
puted (according to a formal definition which depends on the model) by the
programs/machines/λ-terms considered in the model. These formalized ver-
sions of the notion of computable function are usually called recursive, Turing-
computable and λ-definable, respectively.

Wonder of wonders, they all turn out to coincide. Furthermore, any other
“reasonable” model of computation introduced in the sequel also turned out
to yield exactly the same class of computable functions. This is why people
believe in the so-called Church-Turing thesis: there is only one formal notion
of computable function on the natural numbers, which is given by any rea-
sonable model of computation as expressive as recursive functions or Turing
machines or λ-calculus, and which exactly captures our intuitive notion of
“computable function”.

Here, we will not introduce any formal model of computation but rather
speak informally of “programs” as we intuitively understand them, i.e., finite
sets of instructions executable on some kind of machine which are powerful
enough to compute any computable function. We will appeal to the follow-
ing intuitive notions, which we hope are acquired and understood by any
graduate student in computer science:

• programs may manipulate any datatype whose elements are finite ob-
jects, such as Booleans, natural numbers, formulas, sequents, sequent
calculus proofs, programs themselves, etc.

• Programs may call other programs, start parallel threads executing other
programs, communicate one with the other, etc.

• A set X of elements of type data (such as a set of natural numbers or
formulas) is called decidable if there exists a program P : data → bool

which, given in input e : data, outputs true if e ∈ X and outputs false

if e 6∈ X. We then say that P decides X. If no such program exists, X is
said to be undecidable.

• A set X as above is called recursively enumerable (or semi-decidable) if there
exists a program P : data→ bool which, given in input e : data, outputs
true if e ∈ X and may output false or run forever if e 6∈ X. In that case,
we say that P semi-decides X.

• Given a set X as above, we denote by X its complement, i.e., the set of
elements of type data which are not in X. Then, X decidable implies X

34

decidable (simply take the program deciding X and add a negation to
it).

• On the other hand, the complement of a recursively enumerable set is
called co-recursively enumerable and is in general not recursively enumer-
able. In fact, a set X is both recursively enumerable and co-recursively
enumerable exactly when it is decidable (for the forward direction, a
program deciding X may be constructed by launching two parallel threads,
one running the program semi-deciding X and the other running the
program semi-deciding X; the first thread that stops gives the answer.
The converse is obvious).

• There exist undecidable (but semi-decidable) sets, the mother of all of
them being the set of programs that terminate when given some fixed
input (of the suitable datatype).

5.2 Incompleteness: a road map

The job of a mathematician is to prove theorems. But what is a theorem?
And what does it take to prove one? Let us attempt to give informal defini-
tions. A theorem is, in a first approximation, a statement about some kind
of mathematical world, which may or may not have direct connections to the
physical world. The objects populating this world (geometrical shapes, integer
numbers, complex numbers, differential equations, probability distributions,
presheaves, toposes. . .) exist somewhere, exactly where is a fascinating ques-
tion which we will leave the reader to ponder upon, here let us just say that it
is in the collective imagination of mathematicians.

Now, more precisely, a theorem is a true statement about the mathematical
world. Truth too, however, is an intuitive notion: for instance, we feel that
0 = 1 is false, while 3 + 2 = 5 is true. These are extremely simple statements,
whose truth or falsity is obvious, but it is enough to rise the complexity by
a few order of magnitudes to make ourselves feel less sure about “truth”
(consider, for example, the statement “982 451 653 is prime”). So, how do we
make truth more precise? How can we be sure that a statement is a theorem?

The most widely accepted way is to resort to the so-called axiomatic method,
introduced by Euclid in the 3rd century BC. We start from a set of basic state-
ments, called axioms (or postulates), whose truth is supposedly self-evident and
incontrovertible. Then, we devise a set of rules that allow us to derive true
statements from true statements, i.e., new theorems from old theorems (or ax-
ioms). The validity of these rules too must be self-evident, as is the fact that
applying any number of them to a true statement still yields a true statement.
This, and nothing else, is how mathematicians prove theorems.1

1Two remarks are in order here. First, observe that the “liberalism” of the mathematical world
with respect to the physical world is what allows mathematics to be an exact science, i.e., a science
in which something may indeed be “proved”. In physical sciences, nothing can ever be “proved”:
there is no guarantee that our current laws of physics, which seem to predict very well the
behavior of the reality around us, will stop working tomorrow. In some sense, mathematics can
be exact because it establishes its own rules.

35

What we have done in the previous chapters may be seen as providing
ourselves with formidably precise tools to implement the axiomatic method.
We fix a language, which is the “language of mathematics”, i.e., the language
in which we feel we may express all desirable statements about the mathe-
matical world. Then, we fix our set of axioms, which will formally be called a
theory. Then, sequent calculus allows us to prove theorems from those axioms
under the form of proofs of sequents Γ ` A, where A is the theorem itself and
Γ is a finite set of axioms of our theory (those that happen to be necessary to
establish the truth of A—we stressed that they are finite because a theory may
as well contain infinitely many axioms). We then say that “A is a theorem of
the theory T”, or “T proves A”, and write T ` A.

The notion of model, which we briefly introduced, formalizes the idea of
“mathematical world” and gives us the bridge with truth: a statement A is a
logical consequence of the theory T, which we write T � A, if is is true in any
model of T, i.e., if A is true in any mathematical world in which all the axioms
of T are true. The completeness theorem (plus a corollary of it, the so-called
compactness theorem) establishes that there is a perfect harmony between the
theorems we may prove and the truth of such theorems:

T � A iff T ` A.

It must be pointed out here that our implementation of the axiomatic
method does suffer one restriction: we are limited to mathematical worlds
describable by first-order sentences/first-order models. This, however, does
not turn out to be a heavy limitation: in the early 20th century logicians de-
vised first-order languages and theories which allow to speak, by means of
encodings, of basically any statement whatsoever that mathematicians ever
wish to consider (such encodings are admittedly rather artificial, but they
technically suffice to exhibit the power of first-order logic). In fact, by reduc-
ing geometry to analysis, and analysis to algebra plus topology, and algebra
to arithmetic (or number theory), it was clear already by the turn of the 20th
century that it was enough to put first-order arithmetic on solid grounds to
give solid foundations to the whole mathematical building.

Now, every theory usually has a preferred world which it is inspired upon,
which is referred to as the intended model of the theory. For instance, in the
case of arithmetic this is the set N := {0, 1, 2, 3, . . .} or, in technical terms, the
standard model Std introduced in Example 3.2, which uses the language of basic
arithmetic introduced in Example 3.1. So the standard model corresponds to
the mathematician’s intuition of the world of natural numbers and, in the
original, informal sense of the word “theorem” we gave above, a theorem of
arithmetic is a sentence which is true in Std: these are the theorems number
theorists are interested in. Our goal is therefore to devise a theory (i.e., a set

Second, it is important to stress here the ultimate social nature of mathematics: both the axioms
and the rules are established by consensus within the community of mathematicians, they do
not “descend from the sky”. They may be debated, they may evolve, usually with the intent of
making them better suited to the needs of the community, just like any other social construct. The
axiomatic method itself is too, in fact, a social construct: although nowadays it is “the” way of
doing mathematics, mathematicians existed before Euclid and developed relatively sophisticated
mathematics without using the axiomatic method.

36

of axioms) T in the language of arithmetic such that

T ` A iff Std |= A.

The forward implication, called soundness, is a minimum requirement: why
would we be interested in an axiomatic system proving statements which are
false in the intended model? On the other hand, a theory verifying the back-
ward implication is called complete, because it does not “miss” any theorem.

Gödel’s first incompleteness theorem states the impossibility of realizing
the above equivalence: a sound theory T which is strong enough to prove cer-
tain facts about Std (basically any theory strong enough to attempt to capture
all theorems) is necessarily incomplete, unless its axioms are uncomputable
and, therefore, useless from a practical point of view.2

What does this mean? From the proof theoretic point of view, it says
that no matter how we try to axiomatize arithmetic, provided we do it in a
computable (more precisely, recursively enumerable) way, there will always
be theorems which our axiomatization will miss.

From the point of view of models, it is useful to realize that a complete the-
ory is a theory which has essentially one model: it may have infinitely many
models of all different sorts but these are all elementarily equivalent (Defini-
tion 3.9), i.e., given an arithmetic statement, there is only one possible notion
of truth associated with it, which is the truth in the standard model. So what
Gödel’s incompleteness says is that the intended model, the intuitive math-
ematical world of natural numbers cannot be captured by a recursively enu-
merable axiomatization. Any such axiomatization is always speaking, along
with the intended world of the standard model, of some other weird, non-
standard worlds, where there are “integers” satisfying properties we would
not have thought.

In both cases, Gödel’s theorem says that the axiomatic method does not work,
because it cannot capture the mathematical world that exists in our intuitions.
But the axiomatic method is the only method we have for doing mathemat-
ics, which immediately conveys the importance Gödel’s result. In practice, of
course, this does not mean that we should stop doing mathematics. It simply
means that our search for mathematical truth cannot be narrowed to a single,
all-encompassing formal system, but it is rather an open-ended activity, which
will always need new ideas and new insights (at least until something replac-
ing the axiomatic method is found. . .). So, after all, Gödel’s incompleteness is
good news!

We have spoken about the first incompleteness theorem, which obviously
implies that there is a second theorem. This latter basically gives an example
of a true but unprovable sentence of T: the consistency of T itself. In other
words, as soon as a sound theory of arithmetic is powerful enough, it cannot
prove its own consistency. This result was important at the time of Gödel,

2There obviously is a sound and complete theory of arithmetic: just take T := {A sentence |
Std |= A}. The first incompleteness theorem says that such a T is not even recursively enumer-
able. We say that this is useless because, in that case, when given an LK1 proof of Γ ` A, we
are unable to determine whether this is indeed a proof that T ` A, because the statement Γ ⊆ T
is not even semi-decidable. In other words, there is no way to tell whether a purported proof is
indeed a proof. . .

37

because Hilbert’s program was essentially a quest for a self-justifying (i.e.,
self-consistent) elementary theory of mathematics. Today, it is used primarily
as the motivation for studying the relative consistency of theories: if T cannot
prove its own consistency, maybe it can prove the consistency of T′, which is
therefore strictly weaker, and one may thus study the relationship of theories
in terms of so-called consistency strength, which is still an actively developed
field of research.

5.3 Logical theories

Let us fix a language L.

Definition 5.1 (theory) A theory T on L is a set of sentences on L, which are
referred to as the axioms of T. A theory T′ on a language L′ is an extension of T if
L ⊆ L′ and T ⊆ T′. A theory T′ is a subtheory of T if the latter is an extension of
T′.

A model of T is a structureM for L which verifiesM |= C for every C ∈ T.
A sentence A is a logical consequence of T, which we write T � A, ifM |= A

for every model M of T. A conservative extension of T is an extension T′ of T
on a language L′ such that, whenever A is sentence of L, T′ � A implies T � A
(i.e., every formula on the smaller language that is a logical consequence of the bigger
theory is already a logical consequence of the smaller theory).

A sentence A is provable in T, which we write T ` A, if there exists a finite
subset Γ ⊆ T such that the sequent Γ ` A is provable in LK1.

Definition 5.2 A theory T is:

consistent if T 6� ⊥;

complete if, for every sentence A, either T � A or T � ¬A;

decidable (or recursively enumerable) if the set of logical consequences of T is
decidable (or recursively enumerable).

Proposition 5.1 A theory T is

1. consistent iff T 6� A for some sentence A iff it has a model;

2. complete iff it has only one model model up to ≡ (elementary equivalence, cf.
Definition 3.9).

3. recursively enumerable iff the set T alone is recursively enumerable.

Proof. For point 1, we reason cotrapositively, i.e., we show that (i) T is in-
consistent iff (ii) T � A for every A iff (iii) T has no model. We start with (i)
implies (iii): no structure S verifies S |= ⊥, so the only way for T � ⊥ to hold
is that T has no models. For what concerns (iii) implies (ii), call MT and MA
the class of models of T and of A, respectively, and observe that, by definition,
T � A iff MT ⊆ MA; but MT = ∅, so MT ⊆ MA regardless of MA. Finally, (ii)
implies (i) is trivial (the latter is a particular case of the former).

38

For point 2, assume that T is complete and let M1,M2 be two models of
T. Now, for every sentence A, either T � A or T � ¬A, which by definition
means that eitherM1,M2 |= A orM1,M2 |= ¬A, hence, by genericity of A,
M1 ≡ M2. For the converse, suppose that all models of T validate the same
sentences. Now, either T has no model, in which case we conclude by point 1,
or it has a model M. Then, given a sentence A, we have that either M |= A,
in which case T � A (because every model behaves like M), or M |= ¬A, in
which case T � ¬A (for the same reason).

For point 3, the forward implication is trivial. For the backward implica-
tion, the fact that T is recursively enumerable allows us to write a program
checkT which semi-decides whether a proof of Γ ` A in LK1 is indeed a proof
of T ` A: checkT simply starts one parallel thread for each distinct formula
C in Γ, in which the program semi-deciding whether C ∈ T is executed. If
all such threads terminate, we may conclude that we have indeed a proof of
T ` A. Therefore, to semi-decide whether T ` A, we perform a parallel search
for a proof of all possible sequents Γ ` A with Γ a finite subset of T. In case we
do have T ` A, such a search will terminate, and we may answer positively;
otherwise, the program will run forever. �

Remark 5.1 In the sequel, when we say that a theory is recursively enumerable,
we will intend that its set of axioms is recursively enumerable. Thanks to Proposi-
tion 5.1.3, this is actually the same as Definition 5.2.

On the other hand, observe that Proposition 5.1.3 is false when applied to decidable
theories: the logical consequences of a decidable set of axioms may very well form
an undecidable set (albeit this will certainly be recursively enumerable). Robinson’s
arithmetic and Peano arithmetic (which we will introduce below) are two examples.

The following is a central result of model theory, which we will not prove
here. It may actually be deduced from the completeness theorem (Theo-
rem 4.1).

Theorem 5.2 (compactness) Let T be a theory such that, for every finite subset
Γ ⊆ T, there exists MΓ such that MΓ |= Γ. Then, there exists M such that
M |= T.

Remark 5.2 The converse of Theorem 5.2 is obvious. Hence, in light of Proposi-
tion 5.1.1 we may summarize compactness by saying that a theory T is consistent iff
every finite subtheory of T is consistent.

Corollary 5.3 (of Theorem 4.1) For every theory T and sentence A, we have

T � A iff T ` A

Proof. The implication from left to right uses completeness and compactness
(Theorem 5.2), which is itself a consequence of completeness. We consider
two cases:

• T is inconsistent: in this case, we need to prove that T ` A for every sen-
tence A. By compactness, there exists a finite subtheory Γ ⊆ T which is
also inconsistent, which by completeness means that Γ ` ⊥ is provable,
from which we obtain the provability of Γ ` A for every A.

39

• T is consistent: we reason contrapositively and suppose T 6` A, which
means, by definition, that Γ ` A is not provable for any finite Γ ⊆
T. Completeness then gives us a countermodel of

∧
Γ ⇒ A, which

is a model of the finite theory Γ ∪ {¬A}. Now, since T is consistent,
we also trivially have a model of each Γ itself, so we may conclude by
compactness that the theory T ∪ {¬A} has a model, hence T 6� A.

The implication from right to left is an immediate consequence of validity:
Γ ` A provable (with Γ a finite subset of T) implies

∧
Γ ⇒ A valid, which in

turn is easily seen to imply that Γ � A, which implies T � A because Γ ⊆ T.
�

Remark 5.3 By Corollary 5.3, we may replace (where it makes sense) every symbol
� with the symbol `. This is especially true of Definition 5.2 and Proposition 5.1.

We conclude this section with the following result, which will be essential
in the proof of the first incompleteness theorem.

Proposition 5.4 A recursively enumerable theory T which is both consistent and
complete is decidable.

Proof. Observe that, when coupled together, consistency and completeness
imply that, for all A, exactly one of T ` A or T ` ¬A holds: completeness says
“at least one of the two”, consistency says “at most one of the two”. So we may
construct a program decideT deciding whether T ` A as follows: we generate,
by brute force, all possible LK1 proofs; whenever we find a proof π of the
sequent Γ ` A or Γ ` ¬A, we open a parallel thread which executes checkT
(the program given in the proof of Proposition 5.1.3) on π, and we keep going;
by the above property, one of these threads is guaranteed to terminate; if it is
a thread checking a proof of a sequent of the form Γ ` A, decideT terminates
answering “provable”; if it is a thread checking a proof of a sequent of the
form Γ ` ¬A, decideT terminates answering “not provable”. �

5.4 Arithmetical theories

We already introduced the language Larith of basic arithmetic (Example 3.1).
It contains:

• a first-order constant 0, representing the natural number 0;

• a unary function symbol S, representing the successor function;

• two binary function symbols + and ×, written in infix notation and
representing addition and multiplication, respectively;

• two binary predicate symbols = and <, also written in infix notation
and whose negations are written 6= and ≥, which stand for the equality
and strictly-less-than relations.

40

We also defined the numerals to be the closed terms of the form n :=

n︷ ︸︸ ︷
S · · · S 0,

for each n ∈N, which are supposed to represent the non-negative integers.
Theories on the language Larith are known as arithmetical theories. The

intended model of such theories is the standard model Std introduced in Exam-
ple 3.2, which is the set of natural numbers N with the usual operations and
relations. Therefore, a reasonable desiderata for an arithmetical theory T is
that it does not prove sentences which are false in the standard model.

Definition 5.3 (sound arithmetical theory) An arithmetical theory T is sound
if, for every sentence A, T ` A implies Std |= A.

Soundness is a fairly strong requirement:

Lemma 5.5 A sound theory T is consistent.

Proof. Observe that Std 6|= 0 = 1, which by soundness and Corollary 5.3
implies T 6� 0 = 1, so we conclude by Proposition 5.1.1. �

The most famous arithmetical theory is probably (first-order) Peano arith-
metic. An interesting subtheory of Peano arithmetic is Robinson’s arithmetic,
which we introduce next. First, we start with formulas asserting the basic
laws of equality: reflexivity, symmetry, transitivity and contextuality. Any
theory with equality would contain similar axioms, adapted to the function
and predicate symbols of its language.

E1 := ∀x.x = x

E2 := ∀xx′.x = x′ ⇒ Sx = Sx′

E3 := ∀xx′yy′.x = x′ ∧ y = y′ ⇒ x + y = x′ + y′

E4 := ∀xx′yy′.x = x′ ∧ y = y′ ⇒ x× y = x′ × y′

E5 := ∀xx′yy′.x = x′ ∧ y = y′ ⇒ (x = y⇒ x′ = y′)

E6 := ∀xx′yy′.x = x′ ∧ y = y′ ⇒ (x < y⇒ x′ < y′)

We invite the reader to check that symmetry and transitivity of equality are
derivable from the above axioms (in particular, from E1 and E5).

Then there are the axioms proper to Robison’s arithmetic:

R1 := ∀x.Sx 6= 0 (zero is not the successor of any number)

R2 := ∀x.∀y.Sx = Sy⇒ x = y (the successor function is injective)

R3 := ∀x.x = 0∨ (∃y.x = Sy) (every number is either zero or a successor)

R4 := ∀x.x + 0 = x (the recursive definition. . .

R5 := ∀x.∀y.x + Sy = S(x + y) . . . of addition)

R6 := ∀x.x× 0 = 0 (the recursive definition. . .

R7 := ∀x.∀y.x× Sy = (x× y) + x . . . of multiplication)

R8 := ∀x.x ≥ 0 (every number is non-negative)

R9 := ∀x.∀y.x < y ∨ x = y ∨ y < x (the order is total)

R10 := ∀x.∀y.x < Sy⇔ (x < y ∨ x = y) (x < y + 1 means either x = y or x < y)

41

Robison’s arithmetic, which is denoted by Q, consists of the set of all the
above axioms. First-order Peano arithmetic, denoted by PA, is obtained by
adding to Q the following infinite set of axioms, one for each formula A of
Larith:

IndA := A[0/x]⇒ (∀y.A[y/x]⇒ A[Sy/x])⇒ ∀x.A.

The formula IndA is obviously stating the induction principle applied to the
predicate A, so Peano arithmetic is just Robinson’s arithmetic plus induction.

The fundamental property of Robinson’s arithmetic is that it is able to
represent decidable sets of integers.

Definition 5.4 (representability) Let T be an extension of Q. A set X ⊆ N is
representable in T if there exists a formula A with one free variable x such that

n ∈ X implies T ` A[n/x],

n 6∈ X implies T ` ¬A[n/x].

Lemma 5.6 Every decidable set X ⊆N is representable in Q.

Proof. The proof of this (crucial) lemma is very technical, we will not even
attempt to give it here. Essentially, one may think of it as consisting of three
ingredients:

1. the Gödelization of programs, i.e., the fact that every program, as well as
the configurations generated by the execution of a program, by virtue of
being all finite objects, may be encoded as natural numbers;

2. the arithmetization of the execution of programs, i.e., the fact that the ma-
nipulation of program configurations induced by the step-by-step exe-
cution of such programs may be turned into a function on the numbers
representing the configurations;

3. the expressiveness of Robinson’s arithmetic, which is just enough so that
all those numerical functions (or, rather, their graphs) may be encoded
by formulas of Larith which may be proved or disproved using the ax-
ioms of Q.

The idea is then the following: if X is decidable, then there is a program
P : nat→ bool deciding it; the sequence of configurations induced by the ex-
ecution of P on input n, which is finite (P always terminates) may be encoded
by an integer m; using all of the above, one finds

• a formula ExecP with two free variables x, y such that, if m encodes
an execution of P on input n, then Q ` ExecP[n/x, m/y], and Q `
¬ExecP[n/x, m/y] otherwise;

• a formula AcceptP with one free variable y such that, if the execution of
P encoded by m terminates with answer true, then Q ` AcceptP[m/y],
and Q ` ¬AcceptP[m/y] otherwise.

42

Then, one may set A := ∃y.ExecP ∧AcceptP. �

Remark 5.4 It is important to observe that the proof of Lemma 5.6 uses just the lan-
guage and axioms of Q. Therefore, any theory extending Q enjoys Lemma 5.6 and,
even though the language of T may extend Larith, the language used for represent-
ing predicates is still Larith. Actually, Q is in some sense the minimum amount of
arithmetic needed for Lemma 5.6 to hold.

Lemma 5.7 Any consistent extension T of Q is undecidable.

Proof. Let us assume, for the sake of absurdity, that T is decidable. Consider
a computable enumeration A0, A1, A2, . . . of all formulas of Larith with one
free variable x. Define the set

D := {n ∈N | T ` An[n/x]}.

Since T is decidable, the set D is also decidable, as well as its complement
D := N \ D. But T extends Q, so by Lemma 5.6 D is representable in T by
some formula of Larith with one free variable x, say Ai. Now we have two
possibilities:

• i ∈ D: then, by representability, T ` Ai[i/x]. But, at the same time,
i ∈ D is equivalent to i 6∈ D and so, by definition of D, T 6` Ai[i/x], a
contradiction.

• i 6∈ D: then, by representability, T ` ¬Ai[i/x]. But, at the same time,
i 6∈ D is equivalent to i ∈ D, so T ` Ai[i/x] by definition of D. So T
would be inconsistent, against the hypothesis.

In both cases, we obtain a contradiction, so T must be undecidable. �

Remark 5.5 The set D used in the proof is an example of a standard technique in
logic and computer science, called diagonalization. First introduced by Cantor, it
underlies countless arguments for showing negative results, such as Russel’s paradox
(“the set of all sets not containing themselves”) or Turing’s proof of the undecidability
of the halting problem.

The name “diagonalization” comes from the fact that a unary predicate is obtained
from a binary one by identifying its two parameters: if (x, y) is a general coordinate
in a bidimensional space, (x, x) designates a coordinate on the “diagonal” of the space.
In the case of D, the two parameters that are identified are the index of the formula
and the numeral substituted in it.

Apart from playing a fundamental role in the proof of the first incomplete-
ness theorem, the above result has the following remarkable consequence:

Proposition 5.8 (undecidability of first-order logic) Provability in first-order logic
is undecidable. More specifically, the problem of deciding whether, for a given formula
A, the sequent ` A is provable in LK1 is in general undecidable.

43

Proof. Observe that Q has finitely many axioms. Let us call R the conjunction
of all of them. Then, given a formula C of Larith, Q ` C is equivalent to the
provability of R ` C in LK1, which is in turn equivalent to the provability of
` R⇒ C, so we conclude by Lemma 5.7. �

5.5 The incompleteness theorems

Theorem 5.9 (Gödel’s first incompleteness theorem) Let T be a sound, recur-
sively enumerable extension of Q. Then, T is incomplete.

Proof. Recall that soundness implies consistency (Lemma 5.5). So, as a con-
sistent extension of Q, T is undecidable by Lemma 5.7. Suppose now that T is
complete. Then, T would be recursively enumerable, consistent and complete,
hence decidable by Proposition 5.4, contradiction. �

Gödel’s original proof of Theorem 5.9 is more complex than the one pre-
sented here. This higher complexity results in a more accurate result: Gödel
explicitly constructs a formula GT such that, under the assumptions of The-
orem 5.9, neither T ` GT nor T ` ¬GT holds. In a nutshell, this is done as
follows:

• one starts by arithmetizing the language Larith, with the goal of defining
formulas which speak of provability in Q.

• In particular, one constructs a formula Thm with two free variables x, y
such that Q ` Thm[n/x, m/y] precisely when n is the code of an LK1

proof of a sequent Γ ` A with Γ ⊆ Q and the code of A is m.

• From the above, we may define Unprov := ∀x.¬Thm, so that we have
Q ` Unprov[m/y] precisely when the formula whose code is m is un-
provable in Robinson’s arithmetic.

• One then proves the Fixpoint Lemma, or Diagonalization Lemma: for
every formula A with one free variable y, there exists a sentence F (its
fixpoint) such that Q ` F ⇔ A[pFq/y], where pFq denotes the code of F.
In other words, the sentence F is equivalent to the fact that its own code
(which is an integer) enjoys the property A, and such an equivalence is
provable in Q.

• At this point, one obtains the famous liar’s paradox: if we consider
the fixpoint GQ of Unprov, we have Q ` GQ ⇔ Unprov[pGQq/y],
i.e., Q proves that GQ asserts its own unprovability in Q. From this,
modulo other technical lemmas, one concludes that neither Q ` GQ
nor Q ` ¬GQ (there is a subtlety here: while the unprovability of GQ
only requires the consistency of Q, the unprovability of ¬GQ requires
a stronger property, namely its ω-consistency. This mismatch was later
fixed by Rosser: by complicating a bit the reasoning, it is possible to
prove incompleteness relying on mere consistency. Our simpler proof,
although weaker, has the advantage of bypassing this problem entirely).

44

Moreover, the machinery developed to construct the Gödel formula GT
also allows us, in case the theory is PA (or an extension of it), to find a formula
Con(PA) := ∀x.¬Thm[p⊥q/y] which expresses the consistency of PA itself.
After some technical work, it is possible to show that PA ` Con(PA) ⇔ GPA,
which leads to the second incompleteness theorem:

Theorem 5.10 (Gödel’s second incompleteness theorem) No sound, recursively
enumerable extension of PA proves its own consistency.

Let us mention a further benefit of Gödel’s proof. So far we proved the
existence of a sentence G such that neither G nor ¬G are provable from, say,
Peano arithmetic PA (our proof of Theorem 5.9 does not even do that: it is
purely existential, it shows that such a G must exist without explicitly con-
structing it). In fact, we can do more: we can show that, between G and ¬G,
it is the former which is true in the standard model. The explanation of this
fact requires a couple of further technical definitions.

Definition 5.5 (bounded quantifiers) We define bounded quantifiers as follows:

∀x < t.A := ∀x.x < t⇒ A,

∃x < t.A := ∃x.x < t ∧ A,

where t is an arbitrary term nor containing x.
We denote by ∆0

0 the set of all formulas of Larith whose quantifiers, if present, are
all instances of bounded quantifiers. We then define the following sets of formulas:

Σ0
1 := {A formula | Q ` A⇔ ∃x1 . . . ∃xm.B, with B ∈ ∆0

0};
Π0

1 := {A formula | Q ` A⇔ ∀x1 . . . ∀xm.B, with B ∈ ∆0
0}.

Remark 5.6 Observe that the negation of a Σ0
1 formula is a Π0

1 formula, and vice
versa.

The following result tells us that completeness holds for Σ0
1 formulas:

Lemma 5.11 If A ∈ Σ0
1 and Std |= A, then Q ` A.

Proof. One first proves that ∆0
0 formulas are primitive recursive, i.e., their truth

in the standard model may be verified by means of a program only containing
for loops. Intuitively, this is because a bounded quantifier only requires a
number of verifications which is known in advance. Now, A ∈ Σ0

1 means
Q ` A ⇔ ∃x.B with B ∈ ∆0

0 (we have assumed for simplicity that there is
only one quantifier, the argument does not change substantially in the general
case). The fact that Std |= A implies that Std |=[x 7→n] B for some n ∈ N.
But, since primitive recursive sets are in particular decidable, we may apply
Lemma 5.6 and infer Q ` B[n/x], from which we conclude by applying an
existential rule in LK1. �

Now, the additional technical import of Gödel’s proof is that Thm is a ∆0
0

formula. Intuitively, this is because, once both a proof π and a formula A
are fixed, verifying whether π proves A does not require more than for loops

45

(everything is bounded by the size of π). Therefore, the Gödel formula G is
Π0

1 (it is equivalent to ∀x.¬Thm). So, when in the incompleteness proof we
say that Q 6` ¬G, by Lemma 5.11 (applied contrapositively) we are saying that
Std 6|= ¬G, hence Std |= G. This is actually a general rule, let us state it:

Lemma 5.12 If A ∈ Π0
1, then Q 6` A implies Std |= A, i.e., an unprovable Π0

1
formula must be true in the standard model.

Lemma 5.12 holds in particular for the sentence stating the consistency
of PA. Indeed, this is equivalent to GPA and, more explicitly, may be stated
as Con(PA) := ∀x.¬Thm[p⊥q/y]. Therefore, PA is consistent, in the sense
that Con(PA) is a “theorem” in the informal sense we gave in Sect. 5.2 (it is
a sentence which is true in the intended model). However, such a theorem
escapes PA.

Let us conclude by observing that, as we formulated them here, Gödel’s in-
completeness theorems apply only to arithmetical theories, i.e., theories based
on (an extension of) the language Larith. There are other interesting theories,
such as Zermelo-Fraenkel set theory ZF, which are based on completely dif-
ferent languages3 but for which we would like the incompleteness theorems
to hold, because they intuitively encompass more mathematics than arith-
metic. This is possible by showing that Q or PA may be encoded in the desired
theory: for instance, all the function and predicate symbols of Larith may be
encoded in the language of ZF in such a way that the (encoding of the) axioms
of Q or PA become provable in ZF. At that point, it is clear that the incom-
pleteness theorems apply to such non-arithmetical theories as well, thereby
revealing the surprising breadth of Gödel’s results: any theory which claims
to be a “theory of mathematics” will contain enough arithmetic to fall into the
incompleteness trap.

3The language of ZF is extremely simple, it consists of only one binary predicate symbol ∈,
together with the usual equality predicate =.

46

Chapter 6

Cut Elimination

The following theorem, which is arguably the central result of proof theory,
was proved by Gentzen in 1934. Let us call cut-free LK1 the calculus LK1

without the cut rule.

Theorem 6.1 (cut-elimination) The cut rule is admissible in cut-free LK1.

What is especially interesting about Theorem 6.1 is that its proof is con-
structive, i.e., it gives a procedure for gradually transforming a proof with cuts
into a proof without cuts.

First of all, we need some terminology.

Definition 6.1 (principal formula, context) By observing Fig. 2.2 and Fig. 3.2,
we see that the conclusion of each logical rule is always of the form ` Σ, F, where F is
the occurrence of formula introduced by the rule. We say that Σ and F are the context
and the principal formula of the rule, respectively.

In the ax rule, both ¬A and A are called principal (and the context is empty).
Dually, in a cut rule, there is no principal formula.

We also stipulate that no formula is principal in structural rules.

Definition 6.2 (principal ancestor) Let δ be a derivation in LK1 and let ` Σ, F be
a sequent appearing in δ, which is the conclusion of an instance of rule R such that
F is not principal (note that, under this hypothesis, R cannot be ax). Then, we define
the immediate ancestors of F according to the nature of R, as follows:

• if R is logical or cut, by inspecting the rules we see that there is exactly one
occurrence of formula in the premise(s) of R corresponding to F; then, we take
that occurrence to be the only immediate ancestor of F.

• If R is a weakening, there are two mutually exclusive cases:

– F is the occurrence introduced by the rule; then F has no immediate an-
cestor;

– otherwise, there is a unique occurrence in the premise corresponding to F,
which is taken to be its only immediate ancestor.

• If R is a contraction, there are two mutually exclusive cases:

47

– F is the occurrence which is contracted by the rule; then, both occurrences
of F in the premise are immediate ancestors of F;

– otherwise, there is a unique occurrence in the premise corresponding to F,
which is taken to be its only immediate ancestor.

We say that an occurrence An of formula is an ancestor of an occurrence A0 of
the same formula if there exist A1, . . . , An−1 such that, for all 0 ≤ i < n, Ai+1 is an
immediate ancestor of Ai (i.e., the ancestor relation is the reflexive-transitive closure
of the immediate ancestor relation). An ancestor is principal if it is the principal
formula of the rule of which it is conclusion.

Remark 6.1 Because of the contraction rule, an occurrence of formula may have more
than one principal ancestor. Because of the weakening rule, it may have none.

Definition 6.3 (taxonomy of cuts) Consider an instance of cut rule

...
` Γ,¬A

R1

...
` ∆, A

R2

` Γ, ∆
cut

We say that A and ¬A are the cut-formulas. Such an instance of cut is

principal: if both cut-formulas are principal (for R1 and R2);

simply commutative: if exactly one of the cut-formulas is principal;

doubly commutative: if none of the cut-formulas is principal.

Simply and doubly commutative cuts are collectively called just commutative.

Recall that a multiset on a set X is a function µ : X −→N. Intuitively, it is a
“set with reptitions”. Indeed, a usual subset S ⊆ X may be seen as a function
S : X −→ {0, 1}: an element of X either is or is not in S. For a multiset µ, an
element may be in µ with a multiplicity higher than 1. We will only use finite
multisets, which are such that µ(x) = 0 for all but finitely many x ∈ X.

Definition 6.4 (weight of a proof) The logical size of a formula A, denoted by
|A|, is defined inductively as follows:

|P(t1, . . . , tn)| := |P(t1, . . . , tn)| := 1

|>| := |⊥| := 1

|A ∧ B| := |A ∨ B| := |A|+ |B|+ 1

|∀x.A| := |∃x.A| := |A|+ 1

Observe that |A| = |¬A|.
The weight of an instance of cut rule whose principal formula is A is the pair

(|A|, i), where i = 0 if the cut is principal, i = 1 if the cut is simply commutative
and i = 2 if the cut is doubly commutative.

Let π be a proof of LK1. The weight of π, denoted by µ(π), is the multiset
composed of all weights of all instances of cut rule of π.

48

` A,¬A
id

.... π

` Γ, A
` Γ, A

cut

.... π

` Γ, A

` > >

.... π

` ∆
` ∆,⊥ ⊥

` Γ
cut

.... π

` ∆

.... π

` Γ, A

.... π′

` Γ′, B
` Γ, Γ′, A ∧ B

∧

.... σ

` ∆,¬A,¬B
` ∆,¬A ∨ ¬B

∨

` Γ, Γ′, ∆
cut

.... π

` Γ, A

.... π′

` Γ′, B

.... σ

` ∆,¬A,¬B
` Γ′, ∆,¬A

cut

` Γ, Γ′, ∆
cut

.... π

` Γ, A
` Γ, ∀x.A

∀

.... σ

` ∆, A[t/x]
` ∆, ∃x.¬A

∃

` Γ, ∆
cut

.... π[t/x]
` Γ, A[t/x]

.... σ

` ∆,¬A[t/x]
` Γ, ∆

cut

Figure 6.1: Elimination of principal cuts.

Note that the weight of a cut is an element of N× {0, 1, 2}, so the weight
of a proof is an element of N(N×{0,1,2}), i.e., a function N× {0, 1, 2} −→ N

which is almost everywhere null. This means that weights may be seen as
ordinals strictly smaller than ω3·ω = ωω. Formally, the proof of Theorem 6.1
is an induction on that ordinal. Indeed, we will show that, given a proof π of
` Γ, either α(π) = [] (the empty multiset, or the everywhere-zero function),
in which case π is cut-free by definition, or α(π) > 0, in which case we will
show that we may find another proof π′ of ` Γ such that α(π′) < α(π).

So, let π be a proof of ` Γ containing at least one instance of cut. Then,
since π is a finite tree, there is necessarily a maximal cut, i.e., a cut of the form

.... σ

` Σ,¬A

.... δ

` ∆, A
` Σ, ∆

such that σ and δ are cut-free. At this point, we operate according to the
nature of such a cut:

principal: if the cut is principal, we locally apply one of the transformations
of Fig. 6.1, obtaining a proof π′ of ` Γ (the conclusion is obviously left
unchanged by the transformations);

simply commutative: if the cut is simply commutative, we may suppose with-
out loss of generality that A is principal in ` ∆, A; then we find all the

49

principal ancestors of ¬A in σ, let us say there are n of them, belong-
ing to sequents of the form ` Φ1,¬A, . . . ,` Φn,¬A; at this point, we
“insert” n copies of δ in σ by means of n instances of cut:

....
` Φi,¬A

.... δ

` ∆, A
` Φi, ∆

This operation produces a proof of ` Σ, ∆, . . . , ∆, where there are n
copies of ∆; from this, we obtain ` Σ, ∆ by means of structural rules,
which gives us a proof π′ of ` Γ (again, the conclusion of the proof is
obviously left unchanged by this whole operation);

doubly commutative: if the cut is doubly commutative, we choose arbitrarily
between A and ¬A and proceed as above.

It is now easy to check that, in all cases, α(π′) < α(π):

principal: by inspection of Fig. 6.1;

simply commutative: we observe that the new cuts introduced are on the
same cut-formulas as the original one, but they are all principal, so we
transform 1 cut of weight (|A|, 1) into n cuts of weight (|A|, 0), which is
strictly smaller; it is important to observe that no other cut is introduced,
thanks to the hypothesis of maximality of the original cut;

doubly commutative: we observe that the new cuts introduced are on the
same cut-formulas as the original one, but they are all simply commu-
tative, so we transform 1 cut of weight (|A|, 2) into n cuts of weight
(|A|, 1), which is strictly smaller; the same remark on the maximality of
the original cut holds here.

Remark 6.2 It is important to stress the modularity of the above proof. As long as
a pair of dual connectives has a principal cut-elimination rule which makes the logical
size decrease, the proof applies unchanged.

In fact, the same proof may be applied to the two-sided formulation of LK. In
that case, instead of having a principal cut-elimination rule for each pair of dual
connectives, we have one rule for each connective: indeed, a two-sided principal cut
relates an occurrence of A on the right with an occurrence of A on the left, with
both occurrences being introduced by the right and left logical rules for the main
connective of A. In Sect. 7.1 we will give a specialized version of such rules for LJ,
the intuitionistic sequent calculus. From those, it is immediate to find the general
rules for two-sided LK.

The cut-elimination theorem may appear to be somewhat surprising, es-
pecially in view of the central role that the cut rule plays in our proof of
the completeness theorem (Chapter 4). In fact, there are completeness proofs
which apply directly to cut-free LK1, so this impression is misleading. How-
ever, there is a technical way of saying that cut-elimination does indeed have
a highly non-trivial meaning, as follows.

50

Definition 6.5 (subformula property) We say that a sequent calculus rule of the
form

Γ1 ` ∆1 . . . Γn ` ∆n

Γ′ ` ∆′

satisfies the subformula property if every formula appearing in Γ1, . . . , Γn, ∆1,
. . . , ∆n is a subformula of a formula appearing in Γ′ ` ∆′.

A derivation satisfies the subformula property if every rule in it satisfies the sub-
formula property.

It is enough to inspect the rules of LK1 (both in its two-sided and one-
sided formulation) to see that all rules satisfy the subformula property except
cut. Therefore, the cut-elimination theorem says that every LK1 proof may be
transformed into a proof enjoying the subformula property. Note that such a
proof only ever mentions subformulas of its conclusion, i.e., to prove ` A we
only need to work on the subformulas of A. This is also known as an analytic
proof.

The existence of analytic proofs is a non-trivial fact: when mathematicians
face a difficult problem, i.e., a formula they cannot prove with known meth-
ods, it is common practice to seek new methods, often involving objects and
constructions which are far removed from those mentioned by the original for-
mula (think of analytic number theory, which uses complex analysis to prove
statements about natural numbers). The existence of analytic proofs means
that, in principle, such detours are useless: every theorem has a proof using
only the concepts mentioned in the statement of the theorem.

Another view of the subformula property is obtained by considering proof
search, in which sequent calculus rules are read bottom-up. Indeed, this is the
direction in which they are applied by mathematicians: only a god would
be able to build a proof top-down starting from exactly the axioms necessary
to prove the conclusion. We poor human beings have the conclusion and
(desperately, sometimes) look for a premise from which it might come, with
the goal of reaching one day an axiom. From this bottom-up perspective,
the subformula property assures us that we need not, so to speak, invent
anything: the formulas we will deal with at the next step of the search are all
subformulas of the formulas we already have. This restricts immensely the
search space.

It is fair to say that the subformula property gives us a precise way of
saying that the cut rule is the only intelligent rule of sequent calculus. It is the only
rule that requires creativity: when read bottom-up, the cut rule introduces a
(pair of dual) formula(s) which may have nothing to do whatsoever with the
formulas we are trying to prove. The only clue that guides us in the choice
of such a formula is the intuition that it will help us reach our goal. We may
therefore read cut-elimination as saying that “creativity is useless”, which is
indeed a quite non-trivial fact.

So, is creativity useless? Is it useless to look into sophisticated mathemat-
ical theories for finding a proof of an elementary fact? Quantitative consid-
erations give us a clear negative answer: Statman and Orevkov showed that
there exist sequences of formulas F0, F1, F2, . . ., such that the logical size of Fn

51

is Θ(n) and such that each ` Fn admits a proof in LK1 of size Θ(n), such
that the shortest cut-free proof of ` Fn has size hyperexponential in n (the
hyperexponential function, also known as tetration, is defined recursively by
h(0) := 1, h(n+ 1) := 2h(n)). Already for n = 5 the size of such a proof greatly
surpasses the number of atoms in the universe.

The above result implies in particular that cut-elimination is, in general,
an unfeasible algorithm, i.e., its complexity is too big to be of any practical use.
Therefore, although in principle analytic proofs always exist and we have an
effective procedure for converting an arbitrary proof into an analytic proof, in
practice it is much more convenient to use cuts! This, in a way, may be seen
as the “revenge of creativity”: being stupid gets you as far as being smart, but
you’d better be ready to waste a lot of time. . .

52

Chapter 7

Intuitionistic Logic

Intuitionistic logic arises from exquisitely proof-theoretic considerations: we
are not merely interested in whether a formula is provable (i.e., in its validity)
but in how it is provable.

The distinguishing characteristic of intuitionistic logic is conferring a stronger
meaning to disjunction and existential quantification:

Definition 7.1 (disjunction and existence properties) We say that a proof sys-
tem satisfies the

disjunction property if the provability of A ∨ B implies the provability of A or the
provability of B;

existence property if the provability of ∃x.A implies the provability of A[t/x] for
some term t (called witness of A).

In classical logic, none of the above properties holds. The failure of the dis-
junction property is blatantly given by the law of excluded middle: ` A ∨ ¬A
is always provable in LK, but in case A is a satisfiable formula also admitting
a countermodel (such as a propositional constant), by validity of LK none of
` A and ` ¬A will be provable. The failure of the existential property is
exemplified by the so-called drinker’s formula:

F := ∃x.(D(x)⇒ ∀y.D(y)).

If we interpret D(z) as meaning “z is drinking”, then F is saying that, in a
bar, there is always someone such that, if he or she is drinking, then everyone
is drinking. The formula F is true in all first-order structures (we invite the
reader to check this), hence provable in LK1 (we invite the reader to find such
a proof), and yet we have

Lemma 7.1 There is no term t such that ` D(t)⇒ ∀y.D(y) is provable in LK1.

Proof. This is an application of cut-elimination and the reversibility of the
rules (`⇒) and (` ∀), thanks to which we may assume that a proof of the

53

above formula must end as follows:

D(t) ` D(y)
D(t) ` ∀y.D(y)
` D(t)⇒ ∀y.D(y)

which implies that y is not free in t, in particular t 6= y, so the top sequent is
unprovable. �

Example 7.1 Another often cited example of classical existential proof giving no ex-
plicit witness is the following:

Fact. There exists a pair of irrational numbers (x, y) such that xy ∈ Q.

Proof. Let a :=
√

2
√

2
. We have two possibilities:

• a 6∈ Q, i.e., a is irrational: in that case, the pair (a,
√

2) satisfies the statement
(recall that

√
2 is irrational);

• a ∈ Q: in that case, the pair (
√

2,
√

2) satisfies the statement.

In both cases, the statement is satisfied, so we may conclude. �

The above proof gives us two possible pairs of irrational numbers satisfying the

statement, namely (
√

2
√

2
,
√

2) and (
√

2,
√

2), but it gives us no hint whatsoever as
to which one of these may be taken as an actual witness of the statement. This is an
example of non-constructive proof.

The non-constructivity of the above proof is actually quite mild: at least we have
two possible candidates which are given explicitly. Many important theorems of stan-
dard mathematics (typically, in analysis) are non-constructive in a much more violent
way: think of a basis for the vector space of all functions from R to itself; we know
that it must exists, but how in the world would we define it explicitly?

Remark 7.1 From now on, it will make little sense to appeal to the idea of truth and
validity of a formula. Indeed, intuitionistic logic refines classical logic in a way which
is not primarily related to truth values (as, for instance, many-valued logics or fuzzy
logics do).

The right way to look at intuitionistic logic is as a proof system forcing us to see
differences that classical logic ignores. Typically, it distinguishes between the validity
of a formula A and the impossibility of A being invalid. Such a distinction is
obviously meaningless if we only look at truth values but it makes perfect sense if we
look at proofs of A: in the first case, we found a direct proof of ` A; in the second case,
we proved ` A from a proof of ` ¬¬A.

More concretely, a constructive proof of the statement in Example 7.1 would sat-
isfy the existence property and, when formalized in sequent calculus, would end with
two existential rules

` Irrat(t) ∧ Irrat(u)⇒ Rat(tu)

` ∃x.∃y.Irrat(x) ∧ Irrat(y)⇒ Rat(xy)

54

for some explicit terms t, u. Instead, the proof given above uses excluded middle
which, as we will see momentarily, is equivalent to the principle ¬¬A ⇒ A, so the
formalization of that proof does not end with two existential rules. A similar remark
applies to the proof of the drinker’s formula.

7.1 Sequent calculus

Identity rules:

A ` A
id

Γ ` A Γ′, A ` Σ
Γ, Γ′ ` Σ

cut

Structural rules:

Γ ` Σ
Γ, A ` Σ

w` Γ `
Γ ` A

`w

Γ, A, A ` Σ
Γ, A ` Σ

c`
(no contraction to the right)

Logical rules:

Γ ` A Γ′, B ` Σ
Γ, Γ′, A⇒ B ` Σ

⇒`
Γ, A ` B

Γ ` A⇒ B
`⇒

(no rule for > to the left) Γ ` > `>

Γ, Ai ` Σ
Γ, A1 ∧ A2 ` Σ

∧`i , i∈{1,2} Γ ` A Γ ` B
Γ ` A ∧ B

`∧

Γ,⊥ ` Σ
⊥`

(no rule for ⊥ to the right)

Γ, A ` Σ Γ, B ` Σ
Γ, A ∨ B ` Σ

∨`
Γ ` Ai

Γ ` A1 ∨ A2
`∨i i∈{1,2}

Γ, A[t/x] ` Σ
Γ, ∀x.A ` Σ

∀` Γ ` A
Γ ` ∀x.A

`∀ x 6∈fv(Γ)

Γ, A ` Σ
Γ, ∃x.A ` Σ

∃` x 6∈fv(Γ)
Γ ` A[t/x]
Γ ` ∃x.A

`∃

Figure 7.1: Intuitionistic sequent calculus LJ1. The multiset Σ contains at most
one occurrence of formula.

Intuitionistic sequent calculus, denoted by LJ (or LJ1 if we want to stress
the presence of first-order quantifiers), is defined by restricting the rules of

55

LK to operate on a restricted class of sequents:

Definition 7.2 (intuitionistic sequent) A sequent Γ ` Σ is intuitionistic if Σ
contains at most one formula. The rules of sequent calculus for intuitionistic logic,
denoted by LJ, are presented in Fig. 7.1.

Some comments about Fig. 7.1:

contraction: the most important structural modification imposed by the re-
striction to intuitionistic sequents is that contraction to the right is for-
bidden: indeed, the rule

Γ ` ∆, A, A
Γ ` ∆, A

would be impossible to apply because the sequent in the premise is not
intuitionistic, even if ∆ is empty.

Implication: in intuitionistic logic, implication is a primitive connective, i.e.,
it cannot be defined as A ⇒ B := ¬A ∨ B. This is why its rules are
included in LJ.

Negation: as anticipated above, a prominent difference between intuitionis-
tic and classical logic is the behavior of negation, which (among other
things) is no longer involutive. This, in particular, prevents us from us-
ing a De Morgan definition of negation (in fact, De Morgan laws too
fail in intuitionistic logic). However, we may still make some syntactic
economy and, instead of considering negation as a primitive connective,
we define it as

¬A := A⇒ ⊥.

We invite the reader to check that the definition is classically sound, i.e.,
that the equivalence between the above formulas may be derived in LK.

Additive formulation of logical rules: with respect to Fig. 2.1, we used the
additive formulation of the logical rules. For disjunction, the choice is
justified by observing that the rule

Γ ` ∆, A, B
Γ ` ∆, A ∨ B

would be impossible to apply because the sequent in the premise is
not intuitionistic. Therefore, if we want to be able to prove disjunctive
formulas in LJ (which we obviously do!), we need to shift to the additive
formulation, knowing anyway that it is equivalent to the multiplicative
formulation used in Fig. 2.1, so it makes no difference classically.

As for conjunction, we could in principle use the multiplicative formu-
lation, which adapts seamlessly to intuitionistic sequents:

Γ, A, B ` Σ
Γ, A ∧ B ` Σ

Γ ` A Γ′ ` B
Γ, Γ′ ` A ∧ B

However, making the same choice as for the dual connective makes the
formulation of cut-elimination more harmonious (see below).

56

The same holds for truth and falsehood: their multiplicative formulation
poses no problems (we give it below) but, to be more uniform, we prefer
to formulate these rules too in the additive style.

Γ ` Σ
Γ,> ` Σ ` >

⊥ `
Γ `

Γ ` ⊥

Quantifiers: the quantifier rules are unchanged: they are just the adaptation
of the classical rules to intuitionistic sequents.

Example 7.2 (rules for negation) The following rules are derivable:

Γ ` A
Γ,¬A ` ⊥ ¬`

Γ, A ` ⊥
Γ ` ¬A

`¬

Indeed, recalling that ¬A := A ⇒ ⊥, they are special cases of the (⇒`) and (`⇒)
rules, respectively.

Let us move on to the central result of (intuitionistic) proof theory:

Theorem 7.2 Cut-elimination holds in LJ.

The proof is essentially identical to that of Theorem 6.1. We only need to

57

define the cut-elimination rules for principal cuts, which are as follows:

A ` A
id

.... π

Γ, A ` Σ
Γ, A ` Σ

cut

.... π

Γ, A ` Σ

.... π

Γ, A ` B
Γ ` A⇒ B

`⇒

.... σ

Γ′ ` A

.... τ

Γ′′, B ` Σ
Γ′, Γ′′, A⇒ B ` Σ

⇒`

Γ, Γ′, Γ′′ ` Σ
cut

.... σ

Γ′ ` A

.... π

Γ, A ` B
Γ, Γ′ ` B

cut

.... τ

Γ′′, B ` Σ
Γ, Γ′, Γ′′ ` Σ

cut

.... σ1
Γ ` A1

.... σ2
Γ ` A2

Γ ` A1 ∧ A2
`∧

.... π

Γ′, Ai ` Σ
Γ′, A1 ∧ A2 ` Σ

∧`i

Γ, Γ′ ` Σ
cut

.... σi
Γ ` Ai

.... π

Γ′, Ai ` Σ
Γ, Γ′ ` Σ

cut

.... π

Γ ` Ai
Γ ` A1 ∨ A2

`∨i

.... σ1

Γ′, A1 ` Σ

.... σ2

Γ′, A2 ` Σ
Γ′, A1 ∨ A2 ` Σ

∨`

Γ, Γ′ ` Σ
cut

.... π

Γ ` Ai

.... σi

Γ′, Ai ` Σ
Γ, Γ′ ` Σ

cut

.... π

Γ ` A
Γ ` ∀x.A

`∀

.... σ

Γ′, A[t/x] ` Σ
Γ′, ∀x.A ` Σ

∀`

Γ, Γ′ ` Σ
cut

.... π[t/x]
Γ ` A[t/x]

.... σ

Γ′, A[t/x] ` Σ
Γ, Γ′ ` Σ

cut

.... σ

Γ ` A[t/x]
Γ ` ∃x.A

`∃

.... π

Γ′, A ` Σ
Γ′, ∃x.A ` Σ

∃`

Γ, Γ′ ` Σ
cut

.... σ

Γ ` A[t/x]

.... π[t/x]
Γ′, A[t/x] ` Σ

Γ, Γ′ ` Σ
cut

(Note that, with the additive formulation, there can be no principal cut whose
main formula is > or ⊥, because each of these constants lacks a rule on one
side, the left and right, respectively).

Every result we prove in the rest of the chapter is a consequence of cut-
elimination. In particular, we will use cut-elimination to prove that LJ does
indeed define a constructive logic, i.e., it is a proof system in which both the
disjunction and existence properties are verified.

Let us first take a detour into consistency. In the classical case, the con-
sistency of LK1 is an immediate corollary of its validity: there exist invalid
formulas, hence by validity there exist unprovable formulas, hence ` is not
provable in LK1 (for otherwise every formula would be provable). So, as far as
we are concerned, cut-elimination is not strictly needed to show consistency.

In the case of intuitionistic logic, there is a truth semantics in terms of
Kripke models, with respect to which LJ1 may be shown to be valid and com-

58

plete. The description of such a semantics is beyond the scope of these notes.
We will content ourselves with inviting the reader to observe that it must be
quite different from the usual Boolean truth semantics, because ¬P ∨ P is not
intuitionistically valid. So, in absence of a truth semantics, cut-elimination
becomes our only way to consistency:

Proposition 7.3 (consistency of LJ1) The empty sequent ` is not provable in LJ1.

Proof. Simply observe that ` is not cut-free-provable: no rule except cut
allows to infer the empty sequent. But then, by cut-elimination, ` is not
provable at all. �

Let us move on towards the disjunction and existence properties.

Definition 7.3 (strictly positive subformula) A strictly positive context is de-
fined by the following grammar:

S ::= 〈·〉
∣∣ > ∣∣ S ∧ A

∣∣ A ∧ S
∣∣ ⊥ ∣∣ S ∨ A

∣∣ A ∨ S
∣∣ A⇒ S

∣∣ ∀x.S
∣∣ ∃x.S

The special constant 〈·〉 is called the hole of the context. Note that every context
contains at most one occurrence of the hole. We denote by S〈A〉 the formula obtained
by substituting the formula A for the hole in S.

A subformula occurrence B of A is strictly positive if A = S〈B〉 for a strictly
positive context S.

Theorem 7.4 1. If Γ contains no strictly positive disjunctive subformulas, then
Γ ` A ∨ B provable in LJ implies Γ ` A or Γ ` B provable in LJ;

2. if Γ contains no strictly positive existential subformulas, then Γ ` ∃x.A prov-
able in LJ implies Γ ` A[t1/x]∨ · · · ∨ A[tn/x] provable in LJ, for some terms
t1, . . . , tn;

3. if Γ contains no strictly positive existential or disjunctive subformula, then
Γ ` ∃x.A provable in LJ implies Γ ` A[t/x] provable in LJ for some term t.

Proof. Let us start with point 1. We proceed by induction on the last rule of
the proof of Γ ` A ∨ B. By cut-elimination, we may suppose that such a rule
is never a cut. It cannot be an identity rule or a (∨ `) rule either, for otherwise
a disjunction would appear strictly positively in Γ. It cannot be a right logical
rule other than (` ∨i), for obvious reasons (the principal connective of the
formula on the right is a disjunction).

Now, a simple inspection of the left logical rules and the structural rules
other than (` w) shows that exactly one of their premise will be of the form
Γ′ ` A ∨ B with Γ′ containing no strictly positive disjunctive subformula, so
we may conclude by induction.

We are therefore left with two cases:

• the last rule is (` w): then Γ ` is provable, from which both Γ ` A and
Γ ` B are provable, as required;

• the last rule is (` ∨i), in which case the premise is Γ ` A (if i = 1) or
Γ ` B (if i = 2), as desired.

59

Point 2 is proved in a similar way. The only difference is that now it
is possible for the last rule to be (∨ `), in which case we have a proof of
Γ′, B ` ∃x.A and a proof of Γ′, C ` ∃x.A, where Γ = Γ′, B ∨ C. From these, the
induction hypothesis gives us a proof π of Γ′, B ` F and a proof σ of Γ′, C ` G
with F = A[u1/x] ∨ · · · ∨ A[um/x] and G = A[v1/x] ∨ · · · ∨ A[vn/x], so we
may obtain a proof of a sequent of the desired form as follows:

.... π

Γ′, B ` F
Γ′, B ` F ∨ G

∨`1

.... σ

Γ′, B ` G
Γ′, C ` F ∨ G

∨`2

Γ ` F ∨ G
`∨

Point 3 is proved as point 2, except that now it is no longer possible to
have (∨ `) as a last rule, which implies that induction applies to exactly one
premise, obtaining the stated result. �

Corollary 7.5 (disjunction and existence properties) The calculus LJ1 enjoys
both the disjunction and the existence property.

Proof. The disjunction and existence properties involve provability in an
empty context, so we simply apply Theorem 7.4 with Γ empty, which verifies
in particular the conditions required by point 1 (which gives the disjunction
property) and point 3 (which gives the existence property). �

7.2 The relationship between intuitionistic and clas-
sical logic

As we defined it, intuitionistic logic looks like a restriction of classical logic.
Although we will see that such a viewpoint is misleading, let us start with
confirming this first impression by giving some examples of formulas which
are provable in LK but not in LJ. We will need the following observation:

Lemma 7.6 If Γ ` is provable in LJ, then Γ contains the subformula ⊥.

Proof. By induction on the last rule of the proof of Γ `. �

Example 7.3 (excluded middle) This is the typical classical principle which is re-
fused by intuitionistic logic. Take a propositional constant P. Then, by the disjunction
property, if ` ¬P∨ P were provable in LJ, so would be one of ` ¬P or ` P. The latter
is obviously impossible (no non-cut rule concludes with a sequent containing a single
propositional constant). By reversibility of the (`⇒) rule, a proof of the former would
give a proof of P ` ⊥, from which by a cut with ⊥ ` (which is provable by means of
a (⊥ `) rule) we obtain the provability of P `, which is impossible by Lemma 7.6.

60

By contrast, the double negation of excluded middle is intuitionistically
provable (we use the rules for negation introduced in Example 7.2):

A ` A
id

A ` ¬A ∨ A
`∨2

¬(¬A ∨ A), A ` ⊥ ¬`

¬(¬A ∨ A) ` ¬A
`¬

¬(¬A ∨ A) ` ¬A ∨ A
`∨1

¬(¬A ∨ A),¬(¬A ∨ A) ` ⊥ ¬`

¬(¬A ∨ A) ` ⊥ c`

` ¬¬(¬A ∨ A)
`¬

Also note that a subproof of the above proof shows the provability of

¬(¬A ∨ A)⇒ (¬A ∨ A).

We will use these facts in the following example.

Example 7.4 (proof by contradiction) The quintessential form of classical reason-
ing which is forbidden in intuitionistic logic is the proof by contradiction. This may
be stated as the principle ¬¬A⇒ A (note that the converse, A⇒ ¬¬A, is provable
intuitionistically). The fact that such a principle is not provable in LJ may be shown
directly but we will obtain it as a consequence of it being equivalent to the excluded
middle.

Indeed, recalling that ¬¬(¬A ∨ A) is provable in LJ (see above), we have

....
` ¬¬(¬A ∨ A) ¬A ∨ A ` ¬A ∨ A
¬¬(¬A ∨ A)⇒ (¬A ∨ A) ` ¬A ∨ A

so the provability of ` ¬¬C ⇒ C for all C implies the excluded middle (let C =
¬A ∨ A above and apply a cut rule). Conversely, the implication (¬A ∨ A) ⇒
(¬¬A⇒ A) is provable in LJ:

¬A ` ¬A
id ⊥ ` ⊥`

¬A,¬¬A ` ⇒`

¬A,¬¬A ` A
w` A ` A

id

A,¬¬A ` A
`w

¬A ∨ A,¬¬A ` A
∨`

¬A ∨ A ` ¬¬A⇒ A
`⇒

Another form of proof by contradiction which is classically valid but intuitionisti-
cally invalid is expressed by the principle (¬A⇒ A)⇒ A (A is “so true” that even
its own negation implies it). We know (see above) that (¬(¬P ∨ P)⇒ (¬P ∨ P), so
if such a principle were generally provable in LJ, we would obtain the provability of
excluded middle, contradicting Example 7.3.

Example 7.5 (De Morgan’s laws) The classical implication

¬(¬A ∧ ¬B)⇒ A ∨ B

61

is not provable in intuitionistic logic. Indeed, by the contextual disjunction property
of Theorem 7.4.1 we would have either ¬(¬A ∧ ¬B) ` A or ¬(¬A ∧ ¬B) ` B
provable in LJ. Suppose without loss of generality that the former is provable. Since
A may be supposed to be a propositional constant, the proof must end with

¬(¬A ∧ ¬B), A ` ⊥
¬(¬A ∧ ¬B) ` ¬A ¬(¬A ∧ ¬B) ` ¬B

¬(¬A ∧ ¬B) ` ¬A ∧ ¬B ⊥ ` A
¬(¬A ∧ ¬B) ` A

where we used the reversibility of the (` ∧) and (`⇒) rules. Now, by cutting ¬(¬A∧
¬B) ` A with ¬(¬A∧¬B), A ` ⊥ and applying a contraction, we obtain a proof of
¬(¬A ∧ ¬B) ` ⊥, which implies that ¬(¬A ∧ ¬B) ` is provable. A cut-free proof
of this latter sequent must end with

` ¬A ∧ ¬B ⊥ `
¬(¬A ∧ ¬B) `

(in fact, we could apply a contraction first and obtain ¬(¬A ∧ ¬B) ` ¬A ∧ ¬B
as top sequent, but we already visited this sequent during our proof search, so it is
pointless to reconsider it). From the above, we infer (by reversibility of the (` ∧) rule)
the provability of ` ¬A, which we know from Example 7.3 to be impossible.

Example 7.6 (all binary connectives are primitive) We saw that De Morgan’s
laws fail in intuitionistic logic. This prevents us from defining conjunction in terms
of disjunction (or vice versa). The classical definition of implication A ⇒ B :=
¬A ∨ B fails too. In fact, by the disjunction property in context (Theorem 7.4.1), the
provability of A⇒ B ` ¬A ∨ B would imply the provability of either A⇒ B ` ¬A
or A⇒ B ` B. A proof of the first sequent must end with

A ` A B ` ⊥
A⇒ B, A ` ⊥
A⇒ B ` ¬A

and we know that B ` ⊥, which is equivalent to B `, is not provable in general
(Lemma 7.6). A proof of the second must end with

` A B ` B
A⇒ B ` B

with ` A obviously unprovable in general.
Therefore, in intuitionistic logic, the binary connectives are not inter-definable,

i.e., they must all be taken as primitive.

Example 7.7 (prenex forms) The classical implication

((∀x.A)⇒ B)⇒ (∃x.A⇒ B)

(with x 6∈ fv(B)) is not provable in LJ1. Indeed, the contextual existence property of
Theorem 7.4.3 would give us the provability in LJ1 of

(∀x.A)⇒ B ` A[t/x]⇒ B

62

for some term t, which is equivalent to the provability of

(∀x.A)⇒ B, A[t/x] ` B.

Since A and B may be assumed atomic, the only possible ending of a (cut-free) proof
of such a sequent is

A[t/x] ` A
A[t/x] ` ∀x.A B ` B
(∀x.A)⇒ B, A[t/x] ` B

To conclude, we must have t = x, which is impossible because in that case the rule
(` ∀) could not be applied (x would be free in the context).

Example 7.8 (drinker’s formula) The drinker’s formula

∃x.(D(x)⇒ ∀y.D(y))

is not provable in LJ1. Indeed, the existence property would give us the provability of
` D(t) ⇒ ∀y.D(y) for some term t, which Lemma 7.1 tells us is unprovable (even
in LK1!).

Let us now reverse the intuition given by these examples and show that,
actually, classical logic may be translated in intuitionistic logic.

Definition 7.4 (Gödel-Gentzen’s double-negation translation) Let us define
the function (·)g by induction on formulas:

P(t1, . . . , tn)
g := ¬¬P(t1, . . . , tn)

⊥g := ⊥
>g := >

(A⇒ B)g := Ag ⇒ Bg

(A ∧ B)g := Ag ∧ Bg

(A ∨ B)g := ¬¬(Ag ∨ Bg)

(∀x.A)g := ∀x.Ag

(∃x.A)g := ¬¬∃x.Ag

Lemma 7.7 Let A, B be formulas.

1. ¬¬¬A `LJ ¬A and, therefore, ¬¬¬¬A `LJ ¬¬A;

2. `LJ ¬¬⊥ ⇔ ⊥ and `LJ ¬¬> ⇔ >;

3. ¬¬(A⇒ B) `LJ A⇒ ¬¬B;

4. ¬¬(A ∧ B) `LJ ¬¬A and ¬¬(A ∧ B) `LJ ¬¬B;

Proof. Left as exercise to the reader. �

Lemma 7.8 For every formula A, ¬¬Ag `LJ Ag.

63

Proof. By induction on A, using Lemma 7.7. The atomic case is point 1;
the cases ⊥ and > use point 2; the implication case uses point 3; the con-
junction case uses point 4; the disjunction and existential quantification cases
use again point 2; finally, the induction hypothesis suffices for the universal
quantification case. �

Note that the double negation introduced in front of existential quantifiers
is fundamental to obtain Lemma 7.8: if we had defined (∃x.A)g = ∃x.Ag, we
would be stuck, because ¬¬∃x.A does not intuitionistically imply ∃x.¬¬A.

Lemma 7.9 Let A be a formula. Then, for every term t, A[t/x]g = Ag[t/x].

Proof. A straightforward induction on A. �

In what follows, we use the notation Γ `LK ∆ to mean that the sequent
Γ ` ∆ is provable in (two-sided) LK1. Similarly, Γ `LJ A will mean that the
sequent Γ ` A is provable in LJ1. Therefore, `LK A means “A is classically
provable”, whereas `LJ A means “A is intuitionistically provable”.

Theorem 7.10 Γ `LK ∆ implies Γg,¬∆g `LJ ⊥.

Proof. By induction on the last rule of the proof of Γ ` ∆ in (two-sided) LK,
using Lemma 7.8. The cases of the rules (∀`) and (`∃) also use Lemma 7.9. �

Corollary 7.11 (Gödel, Gentzen) There exists a transformation of formulas (·)g

such that, for every formula A:

1. `LK Ag ⇔ A;

2. `LK A iff `LJ Ag.

Proof. The first point is obvious from the definition of (·)g. For the second
point, `LJ Ag trivially implies `LK Ag, which implies `LK A (by point 1); for
the converse, `LK A implies, via Theorem 7.10, that the sequent ¬Ag ` ⊥
is provable in LJ, from which we immediately obtain ` ¬¬Ag, from which
`LJ Ag follows by Lemma 7.8. �

Corollary 7.12 (Gödel, Gentzen) Classical logic and intuitionistic logic are equicon-
sistent.

Proof. Immediate from the above. �

Remark 7.2 As anticipated above, the results of Corollary 7.11 tell us that it is not
quite fair to think of intuitionistic logic simply as a restriction of classical logic. It
is more correct to think of it as a refinement: intuitionistic logic is sensitive to
distinctions which classical logic ignores (typically, the difference between existence
and impossibility of non-existence) but is not really less powerful because, for every
classically provable formula, intuitionistic logic proves a formula which is classically
equivalent to it.

64

We conclude this section by observing that, in the propositional case, a
much simpler translation works:

Corollary 7.13 (Glivenko) If A is propositional, then `LK A iff `LJ ¬¬A.

Proof. It is enough to show that, in the propositional case, Ag `LJ ¬¬A.
Actually, we show that Ag a`J ¬¬A. This is done by induction on A. The
atomic case is trivial, because Ag = ¬¬A. Let A = B ⇒ C. We shall first
prove that ¬¬B ⇒ ¬¬C a`J ¬¬(B ⇒ C). The forward implication is shown
by the following derivation:

¬¬B⇒ ¬¬C

[¬(B⇒ C)]‡

[¬B]† [B]∗

⊥
C

B⇒ C
∗

⊥ †

¬¬B
†

¬¬C

[¬(B⇒ C)]‡
[C]]

B⇒ C
⊥
¬C

]

⊥
¬¬(B⇒ C)

‡

For the backward implication, we have:

[¬¬B]‡

¬¬(B⇒ C)

[¬C]]
[B⇒ C]∗ [B]†

C
⊥

¬(B⇒ C)
∗

⊥
¬B

†

⊥
¬¬C

]

¬¬B⇒ ¬¬C
‡

Now, using the above and the induction hypothesis, we have Ag = Bg ⇒
Cg a`J ¬¬B⇒ ¬¬C a`J ¬¬(B⇒ C). �

Of course, Glivenko’s theorem is false in presence of quantifiers, because
the converse of point 5 of Lemma 7.7 is false. This is why a more complex
translation is needed.

7.3 Minimal logic

It is possible to restrict even further the shape of sequents, obtaining what is
known as minimal logic:

Definition 7.5 (minimal sequent) A sequent is minimal if it is of the shape Γ `
A, i.e., if the right side contains exactly one formula. The rules of sequent calculus
for minimal logic, denoted by LM, are those of LJ (Fig. 7.1), minus the rule (⊥ `)
(the only one which may introduce non-minimal sequents) and the rule (` w) (whose

65

premise is not minimal). The other rules are left untouched, with the proviso that Σ
is never empty.

Of course, cut-elimination holds for LM too. The cut-elimination rules are
exactly those of LJ, with the difference that Σ is always equal to a formula.

The most important consequence of this additional restriction is the elim-
ination of all structural rules to the right of sequents: if intuitionistic logic
forbids contraction, minimal logic also forbids weakening.

The other difference with respect to intuitionistic logic is that, in minimal
logic, ⊥ has no special rule associated to it, so it behaves just like a propo-
sitional constant P. In particular, minimal logic refuses the principle known
as ex falso quodlibet, represented by the formula ⊥ ⇒ A, which is unprovable
in LM. Indeed, by reversibility of (`⇒), if ` ⊥ ⇒ A were provable, then so
would be ⊥ ` A. If we take A to be atomic, we see that no non-cut rule may
have that sequent as consequence.

The interest of minimal logic will become clear when we will introduce
the Curry-Howard correspondence (Chapter 9). For the moment, let us ob-
serve that the double-negative translation, Theorem 7.10 and its corollaries
actually apply with LM instead of LJ. Indeed, the reader is invited to check
that Lemmas 7.7 and 7.8 hold using minimal (rather than just intuitionistic)
sequents. So minimal logic is merely a minor variant of intuitionistic logic
and is essentially equivalent to it.

66

Chapter 8

Natural Deduction

Sequent calculus is centered upon the fundamental symmetry between premises
and conclusions of a proof. This is reflected in the fact that each connective
has two rules: a right rule describing how new conclusions may be drawn
from existing ones, and a left rule describing how the existing premises may
be extended to stronger premises.

Everyday mathematical practice is centered much more on the former ac-
tivity than on the latter and that is why the left rules of sequent calculus may
look awkward at first sight. For instance, the rule

Γ ` A Γ ` B
Γ ` A ∧ B

looks perfectly natural: if Γ proves A and Γ proves B, then Γ proves A ∧ B.
The corresponding left rules are a bit more contrived. For instance, the rule

Γ, A ` C
Γ, A ∧ B ` C

says that if A (and Γ) is enough to prove C, then surely A ∧ B is enough too.
This is straightforward, of course, but less natural. Indeed, the intuitive flow
of reasoning goes from premises to conclusions (i.e., left to right), whereas
left logical rules force us to go backwards. In other words, intuitive proof
construction works precisely along an orientation (i.e., a disruption) of the
symmetry of sequent calculus, resulting in half of its rules looking unnatural.

It would perhaps be more intuitive to consider the following rule:

Γ ` A ∧ B
Γ ` A

which states that if I know A ∧ B (under the hypotheses Γ), then I know in
particular A. This respects the natural flow of reasoning, because it goes from
premises (A ∧ B) to conclusions (A).

The above rule reveals to us a different symmetry than premise/conclusion.
Indeed, we see that, if the rule (` ∧) tells us how to build, i.e., to introduce
a conjunction, the second rule we suggested above tells us how to use a con-
junction, i.e., how to eliminate it. It turns out that the introduction/elimination

67

symmetry may be taken as the hinge of another proof system, called natural
deduction, also introduced by Gentzen. The name “natural” comes, of course,
from the above discussion: compared to the premise/conclusion symmetry,
the introduction/elimination symmetry adheres more naturally to the intu-
itive flow of reasoning.

8.1 Sequent presentation

Natural deduction may be presented as a proof system manipulating minimal
sequents, i.e., sequents of the form Γ ` A with exactly one formula to the
right, regardless of the logical system. The different logical systems (minimal,
intuitionistic or classical logic) are captured by suitably enabling (or disabling)
certain inference rules.

The rules defining natural deduction are given in Fig. 8.1. The rules for
minimal natural deduction, denoted by NM, are in common to all natural de-
duction systems. Intuitionistic natural deduction, denoted by NJ, is obtained
by adding the ⊥E rule to NM. Classical natural deduction, denoted by NK, is
obtained by adding the RAA rule (reductio ad absurdum) to NJ.

As anticipated above, each connective induces a pair of elimination and
introduction rules. The introduction rules are identical to the right rules of
LM. On the contrary, the elimination rules are quite different from the corre-
sponding left rules of sequent calculus, although we will see that the two are
strongly related. Indeed, an elimination of natural deduction corresponds to a
combination of left rule, cut and (perhaps) structural rules in sequent calculus.

Note the absence of cut and structural rules in natural deduction. The
absence of cut is in fact only apparent: as we will see in the next section,
cuts correspond to certain patterns (an introduction immediately followed by
an elimination) which may be eliminated through a process similar to cut-
elimination. On the other hand, the structural rules are, so to speak, em-
bedded in the remaining rules: weakening is embedded in the id rule and
contraction is embedded in every binary (or ternary) rule. This is just a con-
venient way of presenting the system: it would be awkward to consider rules
which operate on the left of ` when every logical rule acts on the right. In
fact, the absence of structural rules is not an essential ingredient of natural
deduction, nor is it exclusive to it: it is possible to present sequent calculus
too in a such a structural-free manner, we saw a hint of this in Example 2.2.
At any rate, cut and structural rules are admissible in natural deduction:

Lemma 8.1 (Cut and structural rules) 1. If π and σ are proofs of Γ ` A and
∆, A ` B, respectively, then there is a proof of Γ, ∆ ` B using exactly the logical
rules of π and σ;

2. if π is a proof of Γ ` C, then Γ, A ` C is provable using the same logical rules
as π;

3. if π is a proof of Γ, A, A ` C, then Γ, A ` C is provable using the same logical
rules as π.

68

Minimal natural deduction:

Γ, A ` A
id

Γ ` A⇒ B Γ ` B
Γ ` B

⇒E
Γ, A ` B

Γ ` A⇒ B
⇒I

(no elimination rule for >) Γ ` > >I

Γ ` A1 ∧ A2

Γ ` Ai
∧Ei , i∈{1,2} Γ ` A Γ ` B

Γ ` A ∧ B
∧I

Γ ` A ∨ B Γ, A ` C Γ, B ` C
Γ ` C

∨E
Γ ` Ai

Γ ` A1 ∨ A2
∨Ii i∈{1,2}

Γ ` ∀x.A
Γ ` A[t/x]

∀E Γ ` A
Γ ` ∀x.A

∀I x 6∈fv(Γ)

Γ ` ∃x.A Γ, A ` C
Γ ` C

∃E x 6∈fv(Γ,C)
Γ ` A[t/x]
Γ ` ∃x.A

∃I

Additional rule for intuitionistic natural deduction:

Γ ` ⊥
Γ ` A

⊥E
(no introduction rule for ⊥)

Additional rule for classical natural deduction:

Γ,¬A ` ⊥
Γ ` A

RAA

Figure 8.1: Natural deduction: minimal (NM), intuitionistic (NJ) and classical
(NK).

Proof. All points are proved by straightforward inductions. �

For NK, there is an alternative rule to RAA, which asserts directly the prov-
ability of ¬¬A⇒ A:

Γ ` ¬¬A
Γ ` A

K

The rules K and RAA are immediately seen to be inter-derivable:

Γ ` ¬¬A
Γ,¬A ` ¬¬A

(admissible)
Γ,¬A ` ¬A

id

Γ ` ⊥ ⇒E

Γ ` A
RAA

69

which shows that K is derivable from RAA (recall that ¬C = C ⇒ ⊥, and that
structural rules are admissible), and

Γ,¬A ` ⊥
Γ ` ¬¬A

⇒I

Γ ` A
K

which shows that RAA is derivable from K.

8.2 Natural deduction and sequent calculus

In this section, we will show that provability in natural deduction exactly
matches provability in sequent calculus. To make proofs shorter, we will only
consider the fragment of logic restricted to the connectives ⇒, ∨ and the
constant ⊥. The reader is invited to check that all results are valid in the
presence of conjunction and quantifiers (and >).

Proposition 8.2 If Γ ` A is provable in NM (resp. NJ, NK) then Γ ` A is provable
in LM (resp. LJ, LK).

Proof. By induction on the last rule of the proof of Γ ` A in natural de-
duction. The assumption rule and the introduction rules are immediate. For
what concerns the elimination rules, we have (implicitly using the induction
hypothesis)

.... 1
Γ ` B⇒ C

.... 2
Γ ` B

Γ ` C

.... 1
Γ ` B⇒ C

.... 2
Γ ` B C ` C
Γ, B⇒ C ` C

Γ, Γ ` C
Γ ` C

and

.... 1
Γ ` B ∨ C

.... 2
Γ, B ` A

.... 3
Γ, C ` A

Γ ` A

.... 1
Γ ` B ∨ C

.... 2
Γ, B ` A

.... 3
Γ, C ` A

Γ, B ∨ C ` A
Γ, Γ ` A
Γ ` A

In both cases, an elimination rule is translated into a left rule (the additive ver-
sion in the case of disjunction), followed by a cut rule, followed by structural
rules (i.e., contractions) if necessary.

In the case of NJ, we also need to treat the elimination of absurdity. The
pattern is the same (left rule, cut rule, structural rules, a weakening in this
case):

.... 1
Γ ` ⊥
Γ ` A

.... 1
Γ ` ⊥ ⊥ `

Γ `
Γ ` A

70

For NK, translating double negation elimination is immediate:

.... 1
Γ ` ¬¬A

Γ ` A

.... 1
Γ ` ¬¬A

A ` A
` ¬A, A
¬¬A ` A

Γ ` A

�

For the converse, we need an auxiliary lemma to deal with structural rules.
In the following, by “proof” we mean “natural deduction proof”.

Let ∆ be a sequence of formulas D1, . . . , Dn. In the following, we set
∨

∆ =
D1 ∨ . . . ∨ Dn (we fix one associative pattern, they are all provably equivalent
anyway), and

∨
∆ = ⊥ in case n = 0.

Proposition 8.3 If Γ ` ∆ is provable in LM (resp. LJ, LK), then Γ ` ∨∆ is provable
in NM (resp. NJ, NK).

Proof. The proof is once more by induction on the last rule proving the
sequent Γ ` ∆. The case of LM is simpler because the sequent is actually of
the form Γ ` D, with D a minimal formula. As usual, the axiom rule and
the right rules are immediate. The cut rule and the structural rules on the left
are given by Lemma 8.1. For what concerns the left rules, we have, using the
induction hypothesis and point 1 of Lemma 8.1,

.... 1
Γ ` A

.... 2
Σ, B ` D

Γ, Σ, A⇒ B ` D

Γ, A⇒ B ` A⇒ B

.... 1
Γ ` A

Γ, A⇒ B ` B.... 2
Γ, Σ, A⇒ B ` D

and, using the induction hypothesis and point 2 of Lemma 8.1,
.... 1

Γ, A ` D

.... 2
Γ, B ` D

Γ, A ∨ B ` D

Γ, A ∨ B ` A ∨ B

.... 1
Γ, A ∨ B, A ` D

.... 2
Γ, A ∨ B, B ` D

Γ, A ∨ B ` D

So left rules are translated, as expected, as elimination rules (plus some struc-
tural manipulations).

The translation of LJ is immediate: the left ⊥ rule is just an assumption
rule in NJ, and the right rule may only be applied when ∆ is empty, so it
translates to nothing in NJ, because in that case we already have

∨
∆ = ⊥.

The case of LK requires some additional work, because right rules may
result in sequents with more than one formula to the right, i.e., in ∆, and this
has non-trivial consequences with our definition of

∨
∆. First we use the fact

that, in a proof of Γ ` ∨∆, we may always “single out” an element of the
disjunction:

71

Lemma 8.4 In NJ, Γ ` D ∨ A provable implies Γ,¬D ` A provable.

Proof. By point 2 of Lemma 8.1, if we have Γ ` D ∨ A we also have Γ,¬D `
D ∨ A. Then, using a disjunction elimination rule, we have

Γ,¬D ` D ∨ A

Γ,¬D, D ` ¬D Γ,¬D, D ` D
Γ,¬D, D ` ⊥
Γ,¬D, D ` A Γ,¬D, A ` A
Γ,¬D ` A

�
Then, we use the fact that, in classical logic, D ⇒ A is equivalent to ¬D ∨ A,

which is subsumed by the following:

Lemma 8.5 In NK, we have ¬D ⇒ A ` D ∨ A.

Proof. We give the derivation in tree form, which is much more compact:

[¬(D ∨ A)]‡
[A]†

D ∨ A
⊥
¬A

†
¬D ⇒ A

[¬(D ∨ A)]‡
[D]∗

D ∨ A
⊥
¬D

∗

A
⊥

¬¬(D ∨ A)
‡

D ∨ A

Note the (fundamental!) use of double negation elimination. �

The proof now is easy: right weakening, disjunction and ⊥ rules are imme-
diate (modulo associativity of the disjunction

∨
∆). For what concerns right

contraction and right implication, the strategy is the same: we single out the
active occurrence(s) through Lemma 8.4; then, we apply the appropriate rule
and we use Lemma 8.5 to get the desired conclusion. We give the detail of the
right implication rule, leaving contraction to the reader. We want to simulate
the rule

Γ, A ` ∆, B
Γ ` ∆, A⇒ B.

By the induction hypothesis, in NK we have Γ, A ` ∨∆ ∨ B (perhaps modulo
some re-association of the disjunctions). Using Lemma 8.4, we obtain a proof
of Γ,¬∨∆, A ` B, from which we build

Γ,¬∨∆, A ` B
Γ,¬∨∆ ` A⇒ B

Γ ` ¬∆⇒ (A⇒ B).

From that, Lemma 8.5 gives us the desired proof of Γ ` ∨∆ ∨ (A ⇒ B) (via
point 1 of Lemma 8.1). �

72

8.3 Proof tree presentation

Natural deduction may be equivalently presented in terms of proof trees. A
proof tree consists of a tree of the form

C1 . . . Cn....
A

in which the root A is the conclusion, i.e., the formula which is proved, and the
leaves C1, . . . , Cn are the hypotheses needed to prove A (they are occurrences of
formulas, i.e., we may have Ci = Cj for some i 6= j). Some leaves of the tree
are discharged (denoted by [Ci]), meaning that they are not to be considered
hypotheses. If all leaves are discharged, then the conclusion holds without
hypotheses (it is the case, for example, of every propositional tautology).

8.3.1 Minimal natural deduction

The proofs of natural deduction for minimal logic (NM) are built inductively
as follows:

Assumption: for every formula A,
A

is a proof of conclusion A and hypothesis A.

Implication introduction: if B is provable from an arbitrary number of hy-
potheses A, then A⇒ B is provable as follows:

[A]∗....
B

A⇒ B
∗

where the hypotheses A have been “discharged”, i.e., they are no longer
hypotheses of the proof (observe that some occurrences of A might still
be left as hypotheses, and that the rule might actually discharge no hy-
pothesis at all). The sign “∗” is used to identify which occurrences of A
are discharged by the rule.

Implication elimination: if A ⇒ B and A are provable, then B is provable
(this is modus ponens):

A⇒ B A
B

Conjunction introduction: if A and B are provable, then A∧ B is provable as
follows:

A B
A ∧ B

73

Conjunction elimination: if A ∧ B is provable, then both A and B are prov-
able, as follows:

A ∧ B
A

A ∧ B
B

Disjunction introduction: if any of A or B is provable, then A∨ B is provable,
as follows:

A
A ∨ B

B
A ∨ B

Disjunction elimination: if A ∨ B is provable, and if C is provable by assum-
ing A and by assuming B, then C is provable:

A ∨ B

[A]∗....
C

[B]∗....
C

C
∗

The discharged hypotheses are subjected to the same remarks as in the
arrow introduction rule.

Universal quantifier introduction: if A is provable from hypotheses not con-
taining the free variable x, then ∀x.A is provable, under the same hy-
potheses:

A
∀x.A

Universal quantifier elimination: if ∀x.A is provable, then all instances of A
are provable:

∀x.A
A[t/x]

t

where t is an arbitrary term (which is specified by the rule, in case x
does not actually appear in A).

Existential quantifier introduction: if A[t/x] is provable for some term t, then
∃x.A is provable, as follows:

A[t/x]
∃x.A

Existential quantifier elimination: if ∃x.A is provable, if x 6∈ fv(()C) and if
from A we may deduce C without additional hypotheses on x, then we
may prove C:

∃x.A

[A]∗....
C

C
∗

The discharged hypotheses are subjected to the same remarks as in the
arrow introduction rule.

74

Example 8.1 Here are the proofs of two well known minimal tautologies:1

[A]∗

B⇒ A
A⇒ B⇒ A

∗

[A⇒ B⇒ C]∗ [A]‡

B⇒ C
[A⇒ B]† [A]‡

B
C

A⇒ C
‡

(A⇒ B)⇒ A⇒ C
†

(A⇒ B⇒ C)⇒ (A⇒ B)⇒ A⇒ C
∗

8.3.2 Intuitionistic natural deduction

The proofs of natural deduction for intuitionistic logic (NJ) are those of NM
extended as follows:

Absurdity elimination: if a set of hypotheses led us to a proof of ⊥, then
we may prove anything at all from the same hypotheses (this is ex falso
quodlibet):

⊥
A

8.3.3 Classical natural deduction

The proofs of natural deduction for classical logic (NK) are those of NJ with
one additional rule:

Proof by contradiction: if assuming ¬A leads us to a contradiction, then we
have a proof of A:

[¬A]∗....
⊥
A
∗

The usual remarks for discharged formulas apply.

Of course, another possible rules for obtaining NK from NJ is the follow-
ing:

¬¬A
A

Note the difference between the rule for proof by contradiction RAA and the
application of an implication introduction rule, perfectly valid in intuitionistic
logic:

[¬A]∗....
⊥
¬¬A

∗

1Every propositional minimal tautology is a consequence of these two formulas via the modus
ponens rule. Anticipating on Chapter 9, the discovery of what we now call the Curry-Howard
correspondence began with Haskell Curry’s remark that these two formulas exactly match the
types of the two combinators K and S, which in turn generate every λ-term through application.

75

Classical logic comes from intuitionistic logic by identifying the impossibility
of invalidity with validity, which is what the double negation elimination rule
is about.

A further alternative is to use excluded middle (tertium non datur) as an
axiom, i.e., a rule with no hypothesis:

¬A ∨ A

We may easily prove the equivalence of this rule with the other two intro-
duced above. For instance, this is how we can prove the excluded middle by
contradiction:

[¬(¬A ∨ A)]∗
[¬A]†

¬A ∨ A
⊥
¬¬A

†

[¬(¬A ∨ A)]∗
[A]‡

¬A ∨ A
⊥
¬A

‡

⊥
¬A ∨ A

∗

where the last rule is a reductio ad absurdum. Conversely, the double negation
elimination rule may be derived using excluded middle as follows:

¬A ∨ A

¬¬A [¬A]∗

⊥
A [A]∗

A
∗

where the last rule is a disjunction elimination, and we used absurdity elimi-
nation (ex falso quodlibet) in the left branch.

8.4 Normalization (cut-elimination in natural de-
duction)

Let us look at the translation in NM of a cut rule whose both premises are in-
troduced by the rules immediately above (a principal cut). The most important
case for our purposes is that in which the cut formula is of the form A ⇒ B.
We furthermore suppose that the occurrence of A used by the right rule is the
result of a certain number of structural rules (contractions or weakening):

.... 1
Γ, A, . . . , A ` B

Γ, A ` B
Γ ` A⇒ B

.... 2
∆ ` A

.... 3
B, Σ ` C

A⇒ B, ∆, Σ ` C
Γ, ∆, Σ ` C

76

The NM translation is

Γ [A]∗ . . . [A]∗.... 1
B

A⇒ B
∗

∆.... 2
A

B Σ.... 3
C

We notice that the introduction of the implication A ⇒ B is immediately fol-
lowed by its elimination. The reader is invited to check that such an intro-
duction/elimination pattern is present in the NM translation of all cases of
principal cut in LM.

The introduction/elimination pattern looks unnecessary: in the above case,
we could eliminate it by considering the proof

Γ

∆.... 2
A . . .

∆.... 2
A.... 1

B Σ.... 3
C

Note that the proof marked by (2) may be duplicated several times, or com-
pletely discarded, according to the number of occurrences of A discharged by
the introduction rule under consideration.

The reader is invited to check that, if one translates in NM the reduced
version of the principal cut, which is

.... 2
∆ ` A

.... 2
∆ ` A

.... 1
Γ, A, . . . , A ` B

....
Γ, ∆, . . . , A ` B

Γ, ∆, . . . , ∆ ` B
Γ, ∆ ` B

.... 3
B, Σ ` C

Γ, ∆, Σ ` C

(where all rules are either cuts or structural), one obtains exactly the “simpli-
fied” natural deduction proof given above. In other words, the obvious way
of getting rid of the introduction/elimination pattern precisely matches the
standard cut-elimination step.

For this reason, the natural deduction equivalent of a cut-free proof is
a proof containing no introduction/elimination pattern as the one above.
Such proofs are called normal. Accordingly, the cut-elimination process is
replaced by a normalization process, which aims at eliminating all introduc-

77

tion/elimination patterns by means of the following rewriting rules:

[A]∗ . . . [A]∗....
B

A⇒ B
∗

....
A

B →

....
A . . .

....
A....

B

....
A

....
B

A ∧ B
A →

....
A

....
A

....
B

A ∧ B
B →

....
B

.... π

A
∀x.A

A[t/x]
t

→

.... π[t/x]
A[t/x]

In the last rule, by π[t/x] we mean the whole proof π in which every free
occurrence of x is replaced by t in every formula occurring in π. This is
possible because, thanks to the condition on the introduction rule of universal
quantification, x does not appear free in the hypotheses of π.

Of course, it is implicitly intended that the above rewriting rules may be
applied at any place within a proof, not just at the root.

If we restrict to the fragment of NM containing only implication, conjunc-
tion and universal quantification (the negative fragment), the above rules are
enough. This is in contrast with cut-elimination in sequent calculus, which
needs to deal with non-principal cuts (those that we called simply and dou-
bly commutative). On the other hand, if we wish to consider also the posi-
tive connectives (disjunction and existential quantification), then the reduction
steps corresponding to principal cuts must also be accompanied by so-called
commuting conversions. For instance, in the case of disjunction, we have the
reduction

....
A

A ∨ B

[A]∗ . . . [A]∗....
C

[B]∗ . . . [B]∗....
C

C
∗

→

....
A . . .

....
A....

C

and its symmetric counterpart

....
B

A ∨ B

[A]∗ . . . [A]∗....
C

[B]∗ . . . [B]∗....
C

C
∗

→

....
B . . .

....
B....

C

but we also have 6 commuting conversions, one for each elimination rule, such

78

as

A ∨ B

[A]∗....
C ∧ D

[B]∗....
C ∧ D

C ∧ D
∗

C →
A ∨ B

[A]∗....
C ∧ D

C

[B]∗....
C ∧ D

C
C

∗

If we also consider existential quantification, then there are a total of 14 com-
muting conversions (7 for disjunction, 7 for existential quantification). These
are all needed to achieve a normal form because, without them, the intro-
duction/elimination patterns which form “across” positive elimination rules,
and which still correspond to cuts in sequent calculus, would be impossible
to remove.

79

Chapter 9

The Curry-Howard
Correspondence

9.1 The simply typed λ-calculus

We fix a (countably infinite) set of ground types X, Y, . . . (which can be thought
of as including, for instance, the type of Booleans, integers, lists of integers,
etc.). Simple types are generated by the following grammar:

T, U ::= X
∣∣ T → U,

where X ranges over ground types.
We fix a countably infinite set of variables x, y, . . . (in spite of the identical

notation, these are not to be confused with the first-order variables used in
a first-order language). Additionally, we fix a function T from variables to
types such that, for every type T, there are infinitely many variables x such
that T (x) = T.

The simply-typed terms, together with their assigned type, are inductively
defined as follows. In the definition, we use the notation M : T as an abbre-
viation for “M is a term of type T” and we also use the notation fv(M) to
denote the set of free variables of a term M, defined at the same time as the
terms themselves, in the usual way.

Variable: for every variable x such that T (x) = T, xT : T, and fv(xT) = {x}.

Abstraction: for every variable x such that T (x) = T and M : U, λxT .M :
T → U, and fv(λxT .M) = fv(M) \ {x}.

Application: for all M : T → U and N : T, MN : U, and fv(MN) = fv(M) ∪
fv(N).

To make notations lighter, we stipulate that application associates to the
left, i.e., MNP means (MN)P, and we drop the type superscripts for bound
variables, since their type is already specified in the abstraction: λxT .x means
λxT .xT .

80

Logic Computer Science
formula = type

proof = program
cut-elimination = execution

Table 9.1: The Curry-Howard correspondence

Computation in the λ-calculus is expressed by the following rewriting rule,
called β-reduction, which is easily seen to preserve types:

(λxT .M)N → M[N/x]

where M[N/x] denotes, as usual, the capture-free substitution of N to all free
occurrences of x appearing in M. Just like in the pure λ-calculus, a term of the
form given in the left-hand side of the above rules is called redex. Of course,
the above rewriting rules are intended to apply to any subterm which is a
redex. A term containing no redex is called normal.

We may now observe that the simple types are in bijection with the formu-
las of the implication fragment of minimal logic, with the “dictionary”

• ground types←→ atomic formulas;

• arrow type←→ implication.

Similarly, the simply-typed terms are in bijection with the proofs of the impli-
cation fragment of NM, with the “dictionary”:

• variables←→ assumptions;

• abstraction←→ implication introduction rule;

• application←→ implication elimination rule.

Moreover, and this is the key observation, β-reduction exactly matches the
normalization rule of NM, i.e., we have

• one β-reduction step←→ one normalization step,

as we invite the reader to check. This is the Curry-Howard correspondence,
summarized in Table 9.1.

9.2 Product and sum types

Now that we know that each formula is a type and each proof is a program,
we may wonder whether the remaining logical constructions (conjunction,
disjunction, quantifiers) have any computational meaning. It turns our that
the answer is positive, with the exception of first-order quantifiers, which do
not give anything interesting (to address first-order logic in a computation-
ally meaningful way, one must look at dependent types, which are out of the

81

scope of these notes). Second-order quantifiers, on the contrary, are extremely
interesting from a computational point of view, as we shall see later.

A product type is of the form T ×U, where T and U are types. The corre-
sponding constructions on terms are

Pairing: if M : T and N : U, then 〈M, N〉 : T ×U;

Projections: if M : T ×U, then π1M : T and π2M : U.

Pairing and projections interact through the following rewriting rule, which
is added to β-reduction:

π1〈M, N〉 → M π2〈M, N〉 → N

A sum type is of the form T + U, where T and U are types. The corre-
sponding constructions on terms are

Injections: if M : T and N : U, then ιU1 M : T + U and ιT2 N : T + U;

Case: if M : T + U and P, Q : V, then case(xT , yU) M P Q : V, and x (resp. y)
becomes bound in P (resp. Q).

In presence of injections and case constructs, β-reduction is augmented with
the following rewriting rules:

case(xT , yU) (ιU1 M) P Q → P[M/x]

case(xT , yU) (ιT2 M) P Q → Q[M/y]

This time, we also need the following commuting conversions:

(case(xT , yU) M P Q)N → case(xT , yU) M (PN) (QN)

πi(case(xT , yU) M P Q) → case(xT , yU) M (πiP) (πiQ)

case(xT , yU) (case(zV , wW) M R S) P Q →

case(zV , wW) M (case(xT , yU) R P Q) (case(xT , yU) S P Q)

We invite the reader to check that the Curry-Howard correspondence ex-
tends to product and sum types, with the following additions to the “dictio-
nary”:

• product type←→ conjunction;

• sum type←→ disjunction;

• pairing←→ conjunction introduction rule;

• projections←→ conjunction elimination rules;

• injections←→ disjunction introduction rules;

• case←→ disjunction elimination rule;

and, of course, the augmented β-reduction still corresponds to normalization.

82

Chapter 10

System F

10.1 Intuitionistic second-order propositional logic

The formulas of (the implication fragment of) second-order propositional logic
are defined by the following grammar:

A, B ::= X
∣∣ A⇒ B

∣∣ ∀X.A,

where X ranges over a denumerably infinite set of propositional atoms.
The set of free propositional atoms of a formula A is defined as usual, and

is denoted by fv(()A). If A, B are formulas, A[B/X] denotes, as usual, the
capture-free substitution of B to all free occurrences of X in A.

The proofs of intuitionistic second-order propositional logic are those ob-
tained using the rules of minimal natural deduction, in which second-order
quantification is treated as follows:

Universal quantifier introduction: if A is provable from hypotheses not con-
taining the free variable X, then ∀X.A is provable, under the same hy-
potheses:

A
∀X.A

Universal quantifier elimination: if ∀X.A is provable, then all instances of A
are provable:

∀X.A
A[B/X]

B

where B is an arbitrary formula (which is specified by the rule, in case
X does not actually appear in A).

Normalization for second order quantification is very similar to the first
order case: π

A
∀X.A

A[B/X]
B

.... π[B/X]

A[B/X]

83

where π[B/X] denotes the proof π in which every occurrence of the atom X
has been replaced by the formula B (this is why B must be specified by the
rule itself).

Observe that, with second-order quantification, minimal natural deduction
is actually as expressive as intuitionistic natural deduction, because absurdity
may be defined as ⊥ := ∀X.X. In fact, every other usual logical connective is
also definable in terms of implication and second-order universal quantifica-
tion:

• A ∧ B := ∀X.(A⇒ B⇒ X)⇒ X;

• A ∨ B := ∀X.(A⇒ X)⇒ (B⇒ X)⇒ X;

• ∃X.A := ∀Y.(∀X.A⇒ Y)⇒ Y.

We invite the reader to check that, with the above definitions, the usual intro-
duction and elimination rules for the respective connectives are derivable, and
that the derivations satisfy the appropriate normalization rules for eliminating
introduction/elimination patterns.

Hence, the system we are dealing with is actually second order proposi-
tional NJ, which is equivalent, in terms of provability, to second order propo-
sitional LJ, thanks to Propositions 8.2 and 8.3, which immediately carry over
to second order.

10.2 Polymorphic types

The types of F are the simple types plus the polymorphic types:

T, U ::= X
∣∣ T → U

∣∣ ΠX.T.

Free and bound type variables are defined as usual, with ΠX being a binder.
The terms of F, together with their assigned type, are inductively defined

by adding the two following formation rules to those of the simply typed
λ-calculus:

Universal abstraction: for every propositional atom X and M : T, ΛX.M :
ΠX.T, provided that, for all x ∈ fv(()M), X 6∈ fv(()T (x)). In that case,
fv(()ΛX.M) = fv(()M).

Universal application: for all M : ∀X.T and type U, MU : T[U/X], and
fv(()MU) = fv(()M).

Computation in system F is expressed by usual β-reduction plus the fol-
lowing rewriting rule (which is, of course, applicable in any context):

(ΛX.M)T → M[T/X],

where M[T/X] denotes the capture-free substitution of T to all free occur-
rences of X appearing in M. This rule allows types to change dynamically,
which is the meaning of polymorphism.

84

Observe that the second reduction rule is isomorphic to the normalization
rule for second order quantification in NJ. Therefore, system F extends the
Curry-Howard correspondence, by adding the following entries to our “dic-
tionary”:

• universal abstraction←→ universal quantifier introduction rule;

• universal application←→ universal quantifier elimination rule.

One consequence of this is that product and sum types may be defined
in system F, using the second-order definition of conjunction and disjunction.
For instance, for product types, we have

T ×U := ΠX.(T → U → X)→ X,

and
〈M, N〉 := ΛX.λcT→U→X .cMN,

πU,V
1 := λpT×U .pT(λxTyU .x), πU,V

2 := λpT×U .pU(λxTyU .y).

These terms mirror exactly the derivations of the second-order encoding of
introduction and elimination rules for conjunction. The fact that the encod-
ing respects the usual normalization rules of natural deduction allows us to
conclude immediately that

πT,U
1 〈M, N〉 →∗ M, πT,U

2 〈M, N〉 →∗ N,

as expected. Of course, we invite the reader to do the computation in system
F and check this, also in the case of disjunction/sum types.

10.3 Programming in system F

10.3.1 Free structures

Much more than product and sum types can be encoded in system F. In fact,
any free structure (or free algebra, as it is often called in computer science) has a
natural representation in system F.

The most general way of defining free structures uses category theory and
the concept of initial algebra. We recall the definition.

Definition 10.1 (Initial algebra) Let A be a category, and let F : A → A be an
endofunctor. An F-algebra is a pair (A, α) where A is an object of A and α : FA→
A. Given two F-algebras (A, α), (B, β), an F-morphism between them is a morphism
f : A→ B which makes the following diagram commute:

FA α //

F f
��

A

f
��

FB
β
// B

It is easy to see that F-algebras and F-morphisms form a category, denoted by AF. An
F-algebra is initial if it is an initial object in AF.

85

Of course, initial algebras are unique modulo a unique isomorphism, so we
may speak of the initial algebra of a functor. The initial algebra of F is the
“smallest” fixpoint of F, in the following sense:

Proposition 10.1 If (Z, ζ) is the initial algebra of F : A → A, then (FZ, Fζ) ∼=
(Z, ζ) in AF.

Proof. Note that, for every F-algebra (A, α), (FA, Fα) is also an F-algebra,
and it is immediate to see that α is an F-morphism from (FA, Fα) to (A, α).
In the case of (Z, ζ), its initial property gives us a (unique) F-morphism ι :
(Z, ζ) → (FZ, Fζ). Again using the initial property, we have ζ ◦ ι = idZ. For
what concerns the opposite direction, using the fact that ι is an F-morphism
and that F is a functor, we have ι ◦ ζ = Fζ ◦ Fι = F(ζ ◦ ι) = idFZ. �

In the following, we denote by A + B the disjoint union of two sets A and
B, and we denote by [f , g] the copairing of two functions f : A→ C, g : B→ C,
which is the canonical function of type A + B→ C defined “case-wise from f
and g. Of course the copairing notation generalizes to an arbitrary number of
functions: for any family of sets (Ai)i∈I , if fi : Ai → C, [fi]i∈I : ∑i∈I Ai → C.

Definition 10.2 (Free structure) Let C1, . . . , Cn : Set → Set be functors. A free
structure on C1, . . . , Cn is a tuple (Θ, c1, . . . , cn) where Θ is a set and ci : CiΘ →
Θ for 1 ≤ i ≤ n, such that (Θ, [c1, . . . , cn]) is the initial algebra of the functor
C1 + · · ·+ Cn : Set→ Set.

The functions c1, . . . , cn are to be seen as constructors, whose types are given
by the functors C1, . . . , Cn. The fact that the algebra is initial for C1 + · · ·+ Cn
means, by Proposition 10.1, that every element of Θ is of the form ci(z) with
z ∈ Ci(Θ) for some 1 ≤ i ≤ n and that i and z are unique.

The key consequence is that we may define functions on Θ by induction on
the structure of its elements. For instance, if A is a set and we have functions
hi : Ci(A)→ A for 1 ≤ i ≤ n, we may define a function f : Θ→ A by

f (θ) = hi(Ci(f)(z)) whenever θ = ci(z).

Some examples of free structures:

1. in the degenerate case n = 0, the sum of zero functors is the constant
functor 0 yielding the empty set. Since ∅ is the initial object of Set,
Set0 ∼= Set, so (∅, id∅) is the initial object of Set0 and the empty set is
therefore the free structure on no constructors.

2. Let n = 2 and let C1, C2 be constant functors yielding two sets T, U,
respectively. It is immediate that (T + U, ι1, ι2) is the free structure on
C1, C2, with ι1, ι2 the canonical injections. In the special case in which
T = U = 1 = {∗}, we get the set of Boolean values, and ι1, ι2 may be
referred to as “true” and “false”.

3. Let n = 1 and C1 be the constant functor yielding a set K. In that case,
it is easy to see that the free structure is K itself, with the constructor
being the identity idK. So every set is the free structure on. . . itself.

86

4. Let n = 2, suppose that C1 is the constant functor yielding 1 and that
C2 is the identity functor. Then, if Θ is the underlying set of the free
structure on C1, C2, it must come with two constructors

c1 : 1→ Θ,

c2 : Θ→ Θ,

such that (Θ, [c1, c2]) is initial for the functor sending a set X to 1 + X
(i.e., which adds an element ∗ 6∈ X to X). We invite the reader to check
that (N, 0, succ) is the free structure in this case. The function [0, succ] :
1 + N→N sends ∗ to 0 and a natural number n to n + 1.

5. Let n = 2, C1 = 1 and C2(X) = T×X for a fixed set T. The free structure
is (T∗, ε, cons), where T∗ is the set of finite lists (words) of elements of
T, ε is the empty list and cons : T × T∗ → T∗ is the function adding an
element to the head of a list. Of course, by letting T = 1 we obtain again
the integers.

6. Some free structures may be specified in more than one way. For exam-
ple, setting T = 2 (a set with two elements) in the above example, or
choosing n = 3, C1 = 1 and both C2, C3 equal to the identity functor are
two different ways of defining binary words.

7. Let n = 2, C1 = 1 and C2(X) = X × X. In this case, we get binary
trees, with the one-root-one-leaf tree as the base case and the function
building a tree from two trees as the other constructor.

8. Let n = 2, C1 = 1 and C2(X) = T → X, i.e., the set of functions from
a fixed set T to X. In this case, we get the set of trees with branches
indexed by T; the constructors are the one-root-one-leaf tree and the
map building a tree from a T-indexed family of trees. Of course, if we
let T = 2 we retrieve the above example.

The reader will have understood by now that any inductive date type, i.e., a
set of objects whose elements are defined by induction using a finite number
of constructors, may be defined as a free structure.

10.3.2 Representing free structures in system F

In system F, we may imagine that types represent sets: X is a “generic” set,
T → U is the function space, and we have seen that we may define the Carte-
sian product T ×U and the disjoint sum T + U. Then, we may suppose that,
in certain cases, the functors C1, . . . , Cn may be represented by types of F con-
taining a fixed free atom X representing the argument of the functor. The
fact that the Ci are covariant will be reflected by the fact X may only occur
positively.1 For example:

1An occurrence of X is positive (resp. negative) in Ci if it appears to the left of an even (resp.
odd) number of arrows.

87

• if C1 and C2 are as in example 4, and if we admit to have a type 1
representing the singleton set (which we actually do, as we shall see),
we have C1 = 1 and C2 = X;

• in example 5, we have C1 = 1 and C2 = T × X;

• in example 7, we have C1 = 1 and C2 = X× X;

• in example 8, we have C1 = 1 and C2 = T → X.

In such cases, the free structure on C1, . . . , Cn may be represented in system
F by the type

Θ = ΠX.(C1 → X)→ · · · → (C1 → X)→ X.

In fact, the constructors of Θ may be represented by terms of system F, as
follows.

In the sequel, we write xT ` M : U to say that M is a system F term of
type U containing a distinguished free variable xT (of type T). Given a type
C in which X occurs positively only, a type C′ in which X occurs negatively
only and a term xT ` M : U, we build terms

xC[T/X] ` CLMM : C[U/X],

xC′ [U/X] ` CLMM : C′[T/X],

by induction on C and C′:

• if C is an atom, there are two cases:

– C = X, in which case CLMM = M;

– C = Y, in which case CLMM = xY, independently of M.

If C′ is atom, only the second case can apply.

• if C = D′ → E, then observe that X must occur negatively only in D′

and positively only in E. This means that we know how to inductively
define

xE[T/X] ` ELMM : E[U/X],

xD′ [U/X] ` D′LMM : D′[T/X],

from which we set

CLMM = λyD′ [U/X].ELMM[xC[T/X]D′LMM[y/x]/x].

If C′ = D → E′, the definition is symmetric: just replace D′ with D and
E with E′.

• if C = ΠY.D, then X occurs only positively in D hand we know how to
inductively define

xD[T/X] ` DLMM : D[U/X].

88

From this, we set

CLMM = ΛY.DLMM[xΠY.D[T/X]Y/x].

If C′ = ΠY.D′, the situation is again similar: just replace D with D′ and
T with U.

Let now C1, . . . , Cn be types containing X positively, as above. For 1 ≤ i ≤
n, we set

Mi = xΘXsC1→X
1 · · · sCn→X

n ,

which is of type X. Using our notation, we have xΘ ` Mi : X, so we may build

xCi [Θ/X] ` CiLMM : Ci,

for all 1 ≤ i ≤ n. From these, we define the terms

ci = λxCi [Θ/X].ΛX.λsC1→X
1 . . . sCn→X

n .siCiLMiM,

which are of type Ci[Θ/X] → Θ and represent the constructor ci of the free
structure Θ.

As evidence of the fact that we have actually found a representation of
the free structure in question, we give a general construction for inductively
defining functions on the type Θ. Suppose we are given terms Hi : Ci[T/X]→
T for all 1 ≤ i ≤ n and for some type T. We would like to define a term
xΘ ` F : T such that, for all N : Ci[Θ/X],

(λxΘ.F)(ci N)→∗ Hi(CiLFM[N/x]),

which is what we expect if λxΘ.F has to represent the function of type Θ→ T
defined by induction on Θ from H1, . . . , Hn. It is easy to verify that the solution
is given by setting

F = xΘTH1 · · ·Hn.

Let us apply the construction to the examples given in the previous section:

1. if n = 0, then Θ = ΠX.X, which is the empty type, corresponding to
absurdity (∀X.X) and representing the empty set.

2. If C1 = T and C2 = U, we have Θ = ΠX.(T → X) → (U → X) → X,
corresponding to the polymorphic/second order encoding of the sum
type/ disjunction.

The special case of T = 1 (we shall see what is the definition of 1 in a
moment) deserves attention. Since 1 logically corresponds to truth and
1⇒ X is the same as X, we may simplify the type ΠX.(1→ X)→ (1→
X)→ X into

B = ΠX.X → X → X,

which is the type of Booleans in system F. The two normal terms of
type B are ΛX.λxXyX .x and ΛX.λxXyX .y, representing true and false,
respectively.

89

3. Two special cases are of interest. First, let K = 1. By operating the same
simplification as above, we obtain the type

U = ΠX.X → X,

which is the unit type, corresponding to the singleton set 1. Its only
normal term is ΛX.λxX .x.

The second case is K = T ×U. Since (T ×U) → X may be considered
to be isomorphic to T → U → X, we get the type

Θ = ΠX.(T → U → X)→ X,

which is exactly the polymorphic/second order encoding of the product
type/conjunction.

4. This case will be covered in detail in the next section.

5. If C1 = 1 and C2 = T × X, with the simplifications 1 → X = X and
(T × X)→ X = T → X → X, we get

ΠX.X → (T → X → X)→ X,

which is the type of lists of elements of type T.

6. If C1 is as above and C2 = X × X, with the same simplifications we get
the type of binary trees:

ΠX.X → (X → X → X)→ X.

7. Similarly, if C1 is as above and C2 = T → X, we get the type of tree of
branching type T:

ΠX.X → ((T → X)→ X)→ X.

The last three cases are explained in detail in [GLT89]. Here, we shall content
ourselves with giving the details of case 4, which is the most computationally
relevant.

10.3.3 The case of integers: representable functions

If we apply the above construction, with the necessary optimizations, to the
case of the two functor-types C1 = 1 and C2 = X, we obtain the type

ΠX.X → (X → X)→ X.

Of course, the order of C1, C2 (and of C1, . . . , Cn in general) is arbitrary, so we
may as well consider the type

N = ΠX.(X → X)→ X → X,

which is what we shall take as the type of natural numbers in system F.

90

The constructors obtained by pedantically applying the general definitions
(but exchanging the order of C1 and C2 in the abstractions, and considering
the optimization 1→ X = X) are

c1 = λx1.ΛX.λsX→XzX .z∗,
c2 = λxN.ΛX.λsX→XzX .s(xXsz).

In c1, the type 1 and the term ∗ (the only element of type 1) are purely formal;
we may remove them in accordance with our optimization 1 → X = X and
obtain

0 = ΛX.λsX→XzX .z.

If we write succ = c2, we invite the reader to check that

n︷ ︸︸ ︷
succ(. . . succ 0 . . .)→∗ ΛX.λsX→XzX .

n︷ ︸︸ ︷
s(. . . s z . . .),

which, if we forget the type annotations, is exactly the so-called Church nu-
meral n, one of the standard representations of the natural number n in the
λ-calculus. One can prove that all normal terms of type N, with the exception
of ΛX.λsX→X .s, are of this form.2 So the constructor 0 is nothing but the rep-
resentation of 0, and the constructor succ represents the successor function, as
expected from a representation of the natural numbers as a free structure.

The general induction scheme gives us, for any type T, G : T and H : T →
T, the function

F = λxN.xTHG : N→ T,

which is immediately seen to represent the function f (n) = hn(g), if we con-
sider T as a set, g ∈ T is h a function on T.

From iteration, using polymorphism, we may obtain primitive recursive
definitions. We recall that primitive recursion lets us define, from functions
g : Nk →N and h : Nn+2 →N, the function f : Nk+1 →N by

f (x,~y) =
{

g(~y) if x = 0,
h(x− 1,~y, f (x− 1,~y)) if x > 0.

So suppose we have

G :

n︷ ︸︸ ︷
N→ · · · → N→ N,

H : N→
n︷ ︸︸ ︷

N→ · · · → N→ N→ N,

corresponding to the functions g and h, respectively. We shall use product
types, which we have seen are definable in system F. With these, we define

Ĝ = 〈GyN
1 . . . yN

n , 0〉 : N×N,

Ĥ = λpN×N.〈H(πN,N
2 p)yN

1 . . . yN
n (πN,N

1 p), succ(πN,N
2 p)〉 : N×N→ N×N,

2See [GLT89], Sect. 15.1.1 for a proof.

91

and then we set

F = λxNyN
1 . . . yN

n .πN,N
1 (x(N×N)ĤĜ) : N→

n︷ ︸︸ ︷
N→ · · · → N→ N.

We let the reader check that F represents indeed the function f as defined
above. The idea is that the computation is done on a pair of integers (m, n),
with n being the current stage of the recursion and m being the partial result at
the n-th stage. Computation starts with the pair (g(~y), 0), and ends by project-
ing on the first component of the pair. If the argument leading the recursion is
0, we immediately obtain the desired result. Otherwise, one application of the
term Ĥ gives us the pair (h(0,~y, g(~y)), 1). If the argument leading the recur-
sion is 1, we can stop and obtain the expected result. Otherwise, we reapply
Ĥ, which gives us (h(1,~y, h(0,~y, g(~y)), 2), and so on.

Now that we know how to represent integers, we may give the following
definition:

Definition 10.3 A partial function f : N → N is representable in system F if
there is a term F : N → N such that, for every x ∈ N, if x is in the domain of f , we
have

Mx →∗ f (x),

and if x is not in the domain of f , Mx must have no normal form.

We have seen so far that in system F we can represent at least all primitive
recursive functions. In fact, we can do much, much more. However, there
are limits, the biggest one being that we may only represent total functions.
In other words, the second clause of Definition 10.3 never applies. This is
because, as we shall see, every term of system F is normalizable.

92

Chapter 11

Second-Order Arithmetic

11.1 Second-order Peano arithmetic

Second-order Peano arithmetic is the original formal system introduced by
Peano to formalize number theory. The fact that it is a full second-order
theory, i.e., that it has first-order and second-order quantification, allows the
language to quantify not only over individuals of the domain of discourse (i.e.,
the integers), but also on properties of such individuals (i.e., sets of integers).

The formulation we give below, which we call PA2, is due to Takeuti. It is
proof-theoretically more amenable than Peano’s original formulation, without
serious differences in terms of expressiveness: the theory is enormously more
expressive than its first-order counterpart. However, the categoricity of the
theory is lost (by contrast, second-order Peano arithmetic is well known to be
categorical, i.e., to admit only one model modulo isomorphism).

The terms of the language of PA2 are given by

t, u, v ::= x
∣∣ f (t1, . . . , tn),

where x ranges over a denumerably infinite set of first-order variables, and f
ranges over a denumerably infinite set of functional symbols, each coming with
its arity (equal to n above). We suppose that the functional symbols of arity
n are in bijection with the primitive recursive functions Nn → N. Among
these, there is a nullary symbol 0, representing the constant 0 ∈ N, and a
unary symbol S, representing the successor.

The formulas of PA2 are given by

A, B ::= t = u
∣∣ (t1, . . . , tn) ∈ X

∣∣ A⇒ B
∣∣ ∀x.A

∣∣ ∃x.A
∣∣ ∀X.A,

where X ranges over a denumerably infinite set of second-order variables, each
coming with its arity (equal to n above). Observe that the symbol ‘∈’ appearing
in the atomic formula (t1, . . . , tn) ∈ X (which we may abbreviate by~t ∈ X) is
not part of the language, i.e., there is no membership relation in the language.
We only use the symbol as a convenient (and, we believe, more readable)
notation for the more usual X~t. In case the arity of the second-order variable
is zero, we just write X instead of () ∈ X.

93

Additional connectives (negation, conjunction, second order existential
quantification, etc.) are defined from second-order quantification. As usual,
t 6= u is short for ¬(t = u). Note that first-order existential quantification may
also be encoded by ∃x.A := ∀X.(∀x.A ⇒ X) ⇒ X, but we choose to include
it in the language for the sake of the exposition.

The rules of PA2 are those of first-order NK plus the rules for second order
quantification, of which introduction is formulated as usual, while elimination
is formulated as follows:

∀X.A
A[B/Xx1 . . . xn]

where the notation A[B/Xx1 . . . xn] means that every occurrence of the
atom (t1, . . . , tn) ∈ X in A, with X free, is replaced by the formula
B[t1/x1, . . . , tn/xn]. For instance, (0 ∈ X)[S0 = x/Xx] is equal to S0 = 0.

Finally, PA2 has the following axioms (the notations are explained below):

Er := ∀x.x = x,

EL := ∀xy.x = y⇒ x =L y,

Epr := universally closed equations defining primitive recursive functions,

P4 := ∀x.Sx 6= 0,

I := ∀x.Int(x).

Axiom Er states the reflexivity of equality. In the axiom EL, we used the
definition

x =L y := ∀Z.x ∈ Z ⇒ y ∈ Z,

which is known as Leibniz equality, so the axiom says that equality implies
Leibniz equality. Using the reflexivity axiom and a second-order elimination
rule with the formula x = z, we may prove the converse:

x =L y
x = x ⇒ x = y

Er
x = x

x = y

Therefore, axioms Er and EL together state that equality and Leibniz equal-
ity coincide. This fact may be used to derive all of the other fundamental
properties of equality, namely symmetry, transitivity, and contextuality:

Es := ∀xy.x = y⇒ y = x

Et := ∀xyz.x = y⇒ y = z⇒ x = z

Eu := ∀xy.x = y⇒ u[x/z] = u[y/z] for every term u

The axiom EL may also be used to derive the following rule, for any formula
A:

t = u A[t/x]
A[u/x]

Leibniz equality trivially satisfies also the reflexivity axiom, so one may
eliminate altogether the equality symbol from the language and use Leibniz
equality as the definition of equality, thus avoiding the axioms Er and EL. This

94

is indeed a possible “optimization” of the formulation of PA2.1 However, we
chose to include a primitive equality relation for the sake of the exposition.

The infinitely many axioms of the form Epr are needed to “use” the func-
tion symbols of the language: since each function symbol corresponds to a
recursive function, each symbol comes with suitable equational axioms cor-
responding to the definition of that function. For instance, there will be a
binary function symbol + (for which we use infix notation) which comes with
the axioms ∀y.0+ y = y and ∀xy.Sx + y = S(x + y).

The axiom P4 (traditionally referred to as Peano’s 4th axiom), stating that
zero is not the successor of any number, is the only axiom forcing an inequality.
It rules out the possibility of trivial models, i.e., models whose domain is a
singleton. Combined with the injectivity of the successor, it implies that PA2
has no finite model. The injectivity of the successor, traditionally known as
Peano’s 3rd axiom, is the formula

P3 := ∀xy.Sx = Sy⇒ x = y,

which is derivable in our formulation of the theory, using the equation defin-
ing the predecessor function P (namely, ∀z.P(Sz) = z), plus the axioms and
rules concerning equality which we derived above:

∀z.P(Sz) = z
P(Sy) = y

∀z.P(Sz) = z
P(Sx) = x

.... EPz
Sx = Sy⇒ P(Sx) = P(Sy) [Sx = Sy]∗

P(Sx) = P(Sy)
x = P(Sy)

x = y
Sx = Sy⇒ x = y

∗

P3

In the axiom I, we used the formula

Int(x) := ∀X.0 ∈ X ⇒ (∀y.y ∈ X ⇒ Sy ∈ X)⇒ x ∈ X.

This axiom is the essence of Peano arithmetic: it is the principle of induction.
Indeed, the formula Int(x) asserts that x is an integer: it belongs to any set
X which contains zero and is closed under successor. Therefore, axiom I
is stating “every individual is an integer”, which means that we may freely
apply induction to every term of the language.

Second order Peano arithmetic may be further endowed with an extra ax-
iom providing some form of choice. For instance, Krivine [Kri04] calls “analy-
sis” the system we refer to as PA2 plus the axiom of dependent choice. This is
because dependent choice is enough for proving all standard results of analy-
sis. In these notes we shall not consider any form of the axiom of choice.

1One may “optimize” even further by suppressing all axioms except P4 and I, and adding the
above rule stating A[t/x] ⇒ A[u/x] as soon as the equation t = u is derivable from primitive
recursive equations and the basic properties of equality (reflexivity, symmetry, transitivity, con-
textuality). This is the choice made by Krivine in his system AF2 (arithmétique fonctionnelle du
second ordre [Kri93]).

95

11.2 Second-order Heyting arithmetic

Second-order Heyting arithmetic (HA2) has exactly the same language and ax-
ioms of PA2, but we no longer allow proving A from its double negation.
In other words, HA2 is the intuitionistic version of second-order Peano arith-
metic. The two systems are related by Gödel-Gentzen’s negative translation,
of which we shall present here a generalization, due to Friedman.

We write A `LJ B (resp. A `LK B) to mean that B is an intuitionistic
(resp. classical) consequence of A, i.e., B can be derived from A in NJ (resp.
NK). Similarly, we write A a`J B (resp. A a`K B) to mean that A and B are
intuitionistically (resp. classically) equivalent. Then, the notations PA2 ` A
and HA2 ` A will mean

Er, EL, E1
pr, . . . , En

pr, P4, I `LK A

and
Er, EL, E1

pr, . . . , En
pr, P4, I `LJ A,

respectively, where E1
pr, . . . , En

pr is an arbitrary number of axioms expressing
primitive recursive equations.

We will now introduce a “reltivized” version of the Gödel-Gentzen nega-
tive translation. Le A, R be arithmetic formulas. We set ¬R A := A ⇒ R, and
define AR by induction on A:

AR = ¬R¬R A if A is atomic

(B⇒ C)R = BR ⇒ CR

(∀x.B)R = ∀x.BR

(∃x.B)R = ¬R¬R∃x.BR

(∀X.B)R = ∀X.BR

In other words AR is obtained from A by replacing every atom C with ¬R¬RC,
and by prefixing every existential quantifier with a (relative) double negation.
Notice that the Gödel-Gentzen translation (·)g introduced in Definition 7.4 is
obtained as the special case in which R = ⊥.

In the following, R always denotes a generic formula.

Lemma 11.1 Let A, B be formulas.

1. ⊥R a`J R;

2. ¬R¬R¬R A `LJ ¬R A and, therefore, ¬R¬R¬R¬R A `LJ ¬R¬R A;

3. ¬R¬R(A⇒ B) `LJ A⇒ ¬R¬RB;

4. ¬R¬R∀ξ.A `LJ ∀ξ.¬R¬R A, where ξ is a variable of any order;

5. ¬R¬R∃x.A `LJ ¬R∀x.¬R A (this also holds for second order, but we will only
need it for first order, in the proof of Friedman’s Theorem 11.9).

Proof. The proof consists of the following deductions:

96

1.
⊥R = ∀X.(X ⇒ R)⇒ R

(R⇒ R)⇒ R
[R]

R⇒ R
R

R
(X ⇒ R)⇒ R

⊥R

2.

¬R¬R¬R A

[¬R A]∗ [A]†

R
¬R¬R A

∗

R
¬R A

†

3.

¬R¬R(A⇒ B)

[¬RB]†
[A⇒ B]∗ [A]]

B
R

¬R(A⇒ B)
∗

R
¬R¬RB

†

A⇒ ¬R¬RB
]

4.

¬R¬R∀ξ.A

[¬R A]†
[∀ξ.A]∗

A
R

¬R∀ξ.A
∗

R
¬R¬R A

†

∀ξ.¬R¬R A

5.

¬R¬R∃x.A

[∃x.A]†

[∀x.¬R A]‡

¬R A [A]∗

R
R

∗

¬R∃x.A
†

R
¬R∀x.¬R A

‡

�

Lemma 11.2 For every formula A, ¬R¬R AR `LJ AR.

Proof. By induction on A, using Lemma 11.1. The atomic case is point 2; the
implication case uses point 3; the universal quantification cases use point 4;
and the existential quantification case uses again point 2. �

Note that the double negation introduced in front of existential quantifiers
is fundamental to obtain Lemma 11.2: if we had defined (∃x.A)R = ∃x.AR,

97

we would be stuck, because ¬R¬R∃x.A does not intuitionistically imply
∃x.¬R¬R A.

Lemma 11.3 For every formula A, (¬¬A)R `LJ AR.

Proof. By definition, (¬¬A)R = (AR ⇒ ⊥R) ⇒ ⊥R. By point 1 of
Lemma 11.1, this is intuitionistically equivalent to ¬R¬R AR, hence the result
follows by Lemma 11.2. �

Lemma 11.4 Let A be a formula. Then:

1. for every term t, (A[t/x])R = AR[t/x];

2. for every formula B, (A[B/X~x])R a`J AR[BR/X~x].

Proof. A straightforward induction on A. �

Theorem 11.5 Let Γ be a sequence of formulas, let A be a formula, and let R be
a formula whose free variables (of any order) are not quantified in Γ or A. Then,
Γ `LK A implies ΓR `LJ AR.

Proof. By induction on the last rule of the proof of Γ `LK A. The cases of an
assumption and of the introduction or elimination of an implication are trivial.
The case of a universal quantification uses Lemma 11.4 (point 1 for first-order,
point 2 for second-order); the introduction case also uses the assumption that
no free variable of R is quantified in Γ, A. The case of the introduction of
an existential quantifier gives, using the induction hypothesis and point 1 of
Lemma 11.4, the following derivation:

....
B[t/x]
∃x.B 99K

[¬R∃x.BR]∗

....
BR[t/x]

∃x.BR

R
¬R¬R∃x.BR

∗

The case of the elimination of existential quantifier gives, using the induction
hypothesis, point 1 of Lemma 11.4, and Lemma 11.2,

∃x.B

[B]∗....
C

C
∗
99K

¬R¬R∃x.BR

[∃x.BR]†
[¬RCR]]

[BR]∗....
CR

R
R

∗

¬R∃x.BR †

R
¬R¬RCR

]

....
CR

98

The last case to be examined is a double-negation elimination rule. But this is
precisely Lemma 11.3. �

The translation also works for theorems of arithmetic:

Lemma 11.6 For every R and for every axiom A of PA2, A `LJ AR.

Proof. Given a closed formula of the form ∀~x.t = u, it is immediate to show
that ∀~x.t = u `LJ (∀~x.t = u)R. This covers the case of the axiom Er and of
all the primitive recursive axioms Epr. For the axioms EL and P4, the proof
consists of the following derivations:

[(x = y)R]‡

[(x ∈ Z)R]†

[¬R(y ∈ Z)]$

EL
x = y⇒ x =L y [x = y]#

x =L y
x ∈ Z ⇒ y ∈ Z [x ∈ Z]∗

y ∈ Z
R

¬R(x ∈ Z)
∗

R
¬R(x = y)

#

R
(y ∈ Z)R

$

(x ∈ Z)R ⇒ (y ∈ Z)R †

(x =L y)R

(x = y)R ⇒ (x =L y)R
‡

ER
L

[(Sx = 0)R]∗

P4

Sx 6= 0 [Sx = 0]†

⊥
R

¬R(Sx = 0)
†

R.... Point 1 of Lemma 7.7

⊥R

(Sx = 0)R ⇒ ⊥R
∗

PR
4

Finally, the case of the axiom I is immediate: we obtain Int(x) by eliminating
the first-order quantifier, then we prove Int(x)R simply by instantiating the
variable X with the formula ¬R¬R(z ∈ X) using a second-order elimination
rule. From that, we re-introduce the first-order quantifier and get IR. �

Corollary 11.7 (Gödel) PA2 ` A iff HA2 ` Ag. In particular, Peano arithmetic
and Heyting arithmetic are equiconsistent.

99

Proof. By Corollary 7.11, we know that Er, EL, E1
pr, . . . , En

pr, P4, I `LK A im-
plies Er

g, EL
g, (E1

pr)
g, . . . , (En

pr)
g, P4

g, Ig `LJ Ag, so we apply Lemma 11.6 to
conclude HA2 ` Ag. To show equiconsistency, suppose that PA2 is incon-
sistent. Then, PA2 ` S0 = 0, which gives us HA2 ` ¬¬(S0 = 0), which
is enough to obtain a contradiction by modus ponens from ¬(S0 = 0) (an
instance of P4). �

The generalization of the Gödel-Gentzen translation we presented here,
which uses “parametric” double negations, was introduced by Friedman to
show that that Peano arithmetic is conservative over Heyting arithmetic for
“simple” formulas, as follows.

By assumption, the language of PA2 contains a binary function symbol leq
which represents the function

leq(x, y) =
{

0 if x ≤ y,
1 if x > y.

From this, we define the formula

x ≤ y := leq(x, y) = 0,

which contains x and y free. Then, we define bounded first-order quantifiers as

∀x ≤ t.A := ∀x.x ≤ t⇒ A,

∃x ≤ t.A := ∃x.x ≤ t ∧ A,

where x is not free in t and we are using the second-order encoding of con-
junction.

We define ∆0
0 to be the set of formulas A such that

PA2 ` A⇔ Φ,

where Φ is a second-order-closed formula belonging to the following frag-
ment of PA2:

Φ, Ψ := t = u
∣∣ X

∣∣ Φ⇒ Ψ
∣∣ ∀x ≤ t.Φ

∣∣ ∃x ≤ t.Φ
∣∣ ∀X.Φ.

We then define the sets of formulas Σ0
1 and Π0

2 as follows:

• A ∈ Σ0
1 iff A a`K ∃x.B with B ∈ ∆0

0;

• A ∈ Π0
2 iff A a`K ∀x.B with B ∈ Σ0

1.

Lemma 11.8 (Gödel) If A ∈ ∆0
0 and ~x = x1, . . . , xn are the free first-order variables

of A, then there exists a function symbol fA of arity n such that

PA2 ` A⇔ fA(~x) = 0.

Proof. The idea is that the truth value of a ∆0
0 formula is primitive recursive.

Formally, we take the integer 0 to mean “true” and any non-null integer to

100

mean “false” and we consider the following primitive recursive definitions:

eq(x, y) = (x− y) + (y− x)

imp(0, y) = y

imp(x + 1, y) = 0

all f (0,~y) = 0

all f (x + 1,~y) = f (x,~y) + all f (x,~y)

one f (0,~y) = 1

one f (x + 1,~y) = f (x,~y) · one f (x,~y)

for any primitive recursive f . The intended meaning of the above functions is
obvious: eq tests whether two integers are equal (in its definition we used the
“truncated difference” and the addition functions, which are obviously prim-
itive recursive); the function imp implements the truth table of implication;
all f (x,~y) checks whether f (n,~y) = 0 for all 0 ≤ n < x, whereas one f (x,~y)
checks whether there exists 0 ≤ n < x such that f (n,~y) = 0 (in the defini-
tions of these functions we used addition and multiplication). By assumption,
the function symbols eq, imp, all f and one f are available in the language of
PA2 (these last two symbols are parametric in a term f which represents a
primitive recursive function).

In what follows, we fix one first-order variable cX for each second-order
variable X. Let Φ be a formula belonging to the fragment defined above to
introduce ∆0

0 formulas, with free first-order variables ~x = x1, . . . , xn and free
second-order variables X1, . . . , Xm (note that Φ is not necessarily second-order
closed). We define a term vΦ(~x), containing the free variables ~x, by induction
on Φ:

vt=u(~x) := eq(t, u)

vX(~x) := cX

vΦ′⇒Ψ(~x) := imp(vΦ′(~x), vΨ(~x))

v∀y≤t.Ψ(~x) := allvΨ(St,~x)

v∃y≤t.Ψ(~x) := onevΨ(St,~x)

v∀X.Ψ(~x) := vΨ(~x)[0/cX] + vΨ(~x)[S0/cX]

It is now enough to prove that

PA2, X1 ⇔ (cX1 = 0), . . . , Xm ⇔ (cXm = 0) ` Φ⇔ (vΦ = 0).

In fact, by definition vΦ(~x) represents a primitive recursive function, hence
there is already a function symbol f defining it, and the result follows from
the fact that, by hypothesis, PA2 ` A⇔ Φ with Φ second-order closed (hence
m = 0).

The proof, which is by induction on Φ, is intuitively immediate (given the
definition of vΦ), but is long and tedious. It uses in an essential way induction
(axiom I) and classical logic, i.e., the elimination of double negation rule. We
prefer to omit the details here. �

101

Theorem 11.9 (Friedman) If A is a Σ0
1 or Π0

2 formula, then PA2 ` A iff HA2 ` A.

Proof. Let A ∈ Π0
2 be such that PA2 ` A. By definition and Lemma 11.8,

we may suppose A to be of the form ∀~x.∃~y. f (~x,~y) = 0. By considering a
primitive recursive encoding of tuples, we may actually assume A to be of
the even simpler form ∀x.∃y. f (x, y) = 0. Let now R denote the formula
∃y. f (x, y) = 0. By applying a first-order universal quantification elimination
rule to the proof of A, we obtain PA2 ` R. By Theorem 11.5 and Lemma 11.6,
we have HA2 ` RR. Now, RR = ¬R¬R∃y.¬R¬R(f (x, y) = 0), so by points 2
and 5 of Lemma 11.1 we have HA2 ` ¬R∀y.¬R(f (x, y) = 0). But this latter
formula intuitionistically implies R, as the following derivation shows:

¬R∀y.¬R(f (x, y) = 0)

[f (x, y) = 0]∗

R
¬R(f (x, y) = 0)

∗

∀y.¬R(f (x, y) = 0)

R

Note that the first rule on the top-right of the derivation is a first-order ex-
istential quantifier introduction, with witness y, which allows us to obtain
∃y. f (x, y) = 0 (that is, the formula R itself) from the assumption f (x, y) = 0.

So we just proved that HA2 ` R, which shows equiprovability of Σ0
1 formu-

las. To conclude, we simply use a first-order universal quantifier introduction
rule on R, which allows us to prove HA2 ` A, as desired. �

Therefore, if we restrict to theorems of the form ∃x. f (x) = 0 or
∀x.∃y. f (x, y) = 0, we do not even need to resort to adding double nega-
tions: Peano arithmetic simply does not prove anything more than Heyting
arithmetic. In particular, HA2 and PA2 prove the totality of exactly the same
set of recursive functions.

11.3 The hardness of proving normalization of sys-
tem F

In this section we shall justify why the normalization of system F is a “strong”
result. In fact, we shall see that it implies the consistency of PA2, which is
an extremely powerful system (as we said above, most current mathematics,
including analysis, may be formalized in PA2 plus some form of choice).

The proof, which we shall not give in full detail (see [Gir87] for a com-
plete exposition), is based on the following facts. First of all, standard proof-
theoretic encodings (based on Gödelization) assure us that the following state-
ments may be expressed as formulas of PA2:

CE(S) := “the sequent calculus S enjoys cut-elimination”;

Con(T) := “the theory T is consistent”;

where S is a generic sequent calculus system (with finitely many finite rules)
and T is a generic theory on the language of PA2. Then, we have:

102

1. the complexity of cut-elimination of LJ2 (intuitionistic predicate second-
order sequent calculus) is essentially contained in its propositional
second-order fragment LJF (LJ2 without first order). Note that LJ2 is the
sequent calculus in which HA2 may be formulated, whereas LJF is the
sequent calculus corresponding to system F. Technically, one can prove
that cut-elimination in LJF implies cut-elimination in LJ2. Furthermore,
the proof is formalizable in PA2:

PA2 ` CE(LJF)⇒ CE(LJ2).

2. Cut-elimination of LJ2 is such a strong statement that, by assuming it,
one reduces the consistency of HA2 to the consistency of a much weaker
system, namely intuitionistic elementary arithmetic (IEA). Of course, this
may again be formalized in PA2:

PA2 ` CE(LJ2)⇒ Con(IEA)⇒ Con(HA2).

3. The system IEA is actually weak enough that PA2 is able to prove it is
consistent:

PA2 ` Con(IEA).

Now, we know from Sect. 8.4 that normalization in natural deduction and
cut-elimination in sequent calculus match each other, so normalization of sys-
tem F (which is, via the Curry-Howard correspondence, a natural deduction
system) is equivalent to cut-elimination of LJF. We also know from Corol-
lary 11.7 that the consistency of HA2 is actually equivalent to the consistency
of PA2. Then, assuming that both of these last two results may also be for-
malized in PA2 (which is the case), expressing normalization of system F as a
PA2 formula

N(F) := “system F enjoys the normalization property”,

we have the following deduction entirely within PA2 + N(F):

PA2.... 2
CE(LJ2)⇒ Con(IEA)⇒ Con(HA2)

PA2.... 1
CE(LJF)⇒ CE(LJ2)

PA2.... Sect. 8.4
N(F)⇒ CE(LJF) N(F)

CE(LJF)

CE(LJ2)

Con(IEA)⇒ Con(HA2)

PA2.... 3
Con(IEA)

Con(HA2)

PA2.... Corollary 11.7
Con(HA2)⇒ Con(PA2)

Con(PA2)

So adding the axiom N(F) (normalization of system F) to PA2 gives a the-
ory proving the consistency of PA2. Therefore, by Gödel’s second incomplete-
ness theorem, the normalization of system F cannot itself be proved within
PA2.2

2Note that it is essential that the implication N(F) ⇒ Con(PA2) be provable in PA2 (or a
weaker system). If it were provable is a stronger system, we would not be able to conclude
anything about the ability of PA2 to prove normalization of system F. We hope the reader to be
convinced of the possibility of formalizing all the needed results (such as Proposition 11.11 and
Proposition 11.16 below), even though such a formalization will not be discussed here.

103

Let us give some details about points 1, 2 and 3 above. For point 1, we
define an erasure operation from formulas of PA2 to system F formulas, which
“forgets” first order information, as follows:

(t = u)− := U

((t1, . . . , tn) ∈ X)− := X

(A⇒ B)− := A− ⇒ B−

(∀x.A)− := A−

(∃x.A)− := A−

(∀X.A)− := ∀X.A−

where U is any closed system F formula.
We extend the erasure operation to sequent calculus derivations: we asso-

ciate a derivation δ− of Γ− ` Σ− in LJF with every derivation δ of Γ ` Σ in
LJ2, which is obtained from δ by erasing all first-order rules.

Lemma 11.10 Let δ be a derivation in LJ2.

1. if δ− is cut-free, then δ is cut-free;

2. if δ− → γ by means of a cut-elimination step, then δ→+ δ1 such that δ−1 = γ.

Proof. Point 1 is obvious. Point 2 is more tedious, because of all the commu-
tations of sequent calculus. We omit the details. �

Proposition 11.11 Cut-elimination in LJF implies cut-elimination in LJ2.

Proof. Let δ be a proof in LJ2. Since LJF enjoys cut-elimination, we have
δ− →∗ γ0 with γ0 cut-free. By iterating point 2 of Lemma 11.10, we obtain
δ→∗ δ0 such that δ−0 = γ0. But by point 1 of Lemma 11.10, δ0 is cut-free. �

For what concerns points 2 and 3, let us first define the system IEA. Its
language of terms is the same as PA2, but its formulas are restricted to first
order (and therefore, for reasons of expressiveness, conjunction, disjunction
and absurdity must be primitive connectives). The axioms of IEA are

Er := ∀x.x = x,

Ec[t, u] := ∀xy.x = y⇒ (t[x/z] = u[x/z])⇒ (t[y/z] = u[y/z])

for all terms t 6= u s.t. z ∈ fv(()t) ∪ fv(()u),

Epr := universally closed equations defining primitive recursive functions,

P4 := ∀x.Sx 6= 0.

The axioms of the form Ec[t, u] basically say that equality implies Leibniz
equality instantiated on atomic formulas. From these axioms and Er all the
basic properties of equality (symmetry, transitivity, contextuality) may be de-
rived. We take the proof system of IEA to be first-order LJ (but of course
first-order NJ would be equivalent). To sum up, considering that the axioms

104

of the form Ec[t, u] are all instances of EL, the relationship between IEA and
HA2 is

HA2 = IEA + EL + I + comprehension scheme.

The comprehension scheme is implicitly added in shifting from LJ to LJ2.
We shall not give any detail about point 3, except saying that the consis-

tency of IEA, which is non-trivial only because of P4, may actually be proved
in a much weaker system, known as primitive recursive arithmetic (PRA). We
refer the reader to [Gir87] for a proof.

To prove point 2, we introduce two transformations on PA2 formulas, de-
noted by (·)• and (·)◦. For the second one, we use the formula

CL(X) := ∀xy.x = y⇒ x ∈ X ⇒ y ∈ X,

which states that “the set X is extensional”. The translations are defined by
induction. Both are the identity on atomic formulas; for composite formulas,
we set:

(A⇒ B)• := A• ⇒ B• (A⇒ B)◦ := A◦ ⇒ B◦,
(∀x.A)• := ∀x.Int(x)⇒ A• (∀x.A)◦ := ∀x.A◦,
(∃x.A)• := ∃x.Int(x) ∧ A• (∃x.A)◦ := ∃x.A◦,
(∀X.A)• := ∀X.A• (∀X.A)◦ := ∀X.CL(X)⇒ A◦.

So the translation (·)• relativizes first-order quantifiers to integers and the
translation (·)◦ relativizes second-order quantifiers to extensional sets. The
main properties of the translations are given below.

Lemma 11.12 1. If Γ ` Σ is derivable in LJ2 and if x1, . . . , xm are the free first-
order variables appearing in Γ, Σ, then

IEA, EL, Int(x1), . . . , Int(xm), Γ• ` Σ•

is derivable in LJ2, where IEA on the left means, as usual, a finite number of
axioms of IEA;

2. if A is an axiom of IEA or EL, we have A ` A• in LJ2;

3. IEA, EL ` I• is derivable in LJ2.
(We remind that EL and I are the two axioms of PA2 and HA2 which are not

axioms of IEA).

Proof. We start with observing that point 2 is immediate: all axioms are uni-
versally quantified without any relativization, and a non-relativized statement
trivially implies its relativized version.

For point 1 and 3, we are going to need the following result:

Lemma 11.13 If t is any term whose free variables are among x1, . . . , xm, then

IEA, EL, Int(x1), . . . , Int(xm) ` Int(t)

is derivable in LJ2. �

105

The reason why Lemma 11.13 holds is that t only contains symbols for primi-
tive recursive functions, which are equationally defined by the axioms of IEA.
The axiom EL is needed to use the equations and the formulas of the form
Int(xi) allow us to apply induction. We invite the reader to do the proof,
which is a quite instructive programming exercise.3

The proof of point 1 is by induction on the last rule of the proof. The only
interesting cases are the left universal quantifier rule and the right existential
quantifier rule. We shall treat the first, leaving the other to the reader. So
suppose that our derivation ends with

.... δ

Γ, A[t/z] ` Σ
Γ, ∀z.A ` Σ .

We may further assume that every free variable of t is also free in Γ or Σ. In
fact, if there is y ∈ fv(()t) which does not appear in Γ, Σ, then such a variable
may be replaced by anything (it is “generic”), in particular by a closed term
like 0. This means that we may consider the proof

.... δ[0/y]
Γ, A[t[0/y]/z] ` Σ

Γ, ∀z.A ` Σ

instead, which satisfies our assumption and still allows us to apply induction
to δ[0/z], which is structurally identical to δ. So the induction hypothesis
applied to δ gives us a proof of

IEA, EL, Int(~x), Γ•, A•[t/z] ` Σ•,

where ~x are the free variables of Γ, Σ (and, by our assumption, they also con-
tain those of t) and Int(~x) is a shorthand for all the formulas of the form
Int(xi). (We also implicitly used the immediate fact that (A[t/z])• = A•[t/z]).
From this, using Lemma 11.13, we have

IEA, EL, Int(~x) ` Int(t/z) IEA, EL, Int(~x), Γ•, A•[t/z] ` Σ•

IEA, EL, Int(~x), Γ•, Int(t/z)⇒ A•[t/z] ` Σ•

IEA, EL, Int(~x), Γ•, (∀z.A)• ` Σ•

where we implicitly used some contraction rules.

3Basically, proving Lemma 11.13 amounts to programming primitive recursive functions in
system F, as we did in Sect. 10.3.3. In fact, erasing all first-order information from a cut-free
derivation of the sequent IEA, EL, Int(x1), . . . , Int(xm) ` Int(t) and converting it to a natural
deduction proof yields a system F term which computes exactly the m-ary primitive recursive
function described by t(~x). See [Kri93] for a proof of this fact.

106

For what concerns point 3, call γ the following derivation:

.... Lemma 11.13
IEA, EL, Int(y) ` Int(Sy)

Int(y) ` Int(y)
y ∈ X ` y ∈ X Sy ∈ X ` Sy ∈ X
y ∈ X ⇒ Sy ∈ X, y ∈ X ` Sy ∈ X

Int(y)⇒ y ∈ X ⇒ Sy ∈ X, Int(y), y ∈ X ` Sy ∈ X
(∀y.y ∈ X ⇒ Sy ∈ X)•, Int(y), y ∈ X ` Sy ∈ X

IEA, EL, (∀y.y ∈ X ⇒ Sy ∈ X)•, Int(y), Int(y), y ∈ X ` Int(Sy) ∧ Sy ∈ X

IEA, EL, (∀y.y ∈ X ⇒ Sy ∈ X)• ` ∀y.(Int(y) ∧ y ∈ X)⇒ (Int(Sy) ∧ Sy ∈ X).

Now, if we let

A := (∀y.y ∈ X ⇒ Sy ∈ X)•,

B := ∀y.(Int(y) ∧ y ∈ X)⇒ (Int(Sy) ∧ Sy ∈ X),

Int0(X, x) := 0 ∈ X ⇒ (∀y.y ∈ X ⇒ Sy ∈ X)⇒ x ∈ X,

(so that γ is of conclusion IEA, EL, A ` B), we invite the reader to check that

Int(x) = ∀X.Int0(X, x),

Int(x)• = ∀X.0 ∈ X ⇒ A⇒ x ∈ X,

Int0(X, x)[Int(z) ∧ z ∈ X/Xz] = (Int(0) ∧ 0 ∈ X)⇒ B⇒ (Int(x) ∧ x ∈ X).

With these notations in place, the proof of point 3 consists of the following
derivation:

.... Lemma 11.13

IEA, EL ` Int(0) 0 ∈ X ` 0 ∈ X
IEA, EL, 0 ∈ X ` Int(0) ∧ 0 ∈ X

.... γ

IEA, EL, A ` B
x ∈ X ` x ∈ X

Int(x) ∧ x ∈ X ` x ∈ X
IEA, EL, B⇒ (Int(x) ∧ x ∈ X), A ` x ∈ X

IEA, IEA, EL, EL, (Int(0) ∧ 0 ∈ X)⇒ B⇒ (Int(x) ∧ x ∈ X), 0 ∈ X, A ` x ∈ X
IEA, IEA, EL, EL, Int(x), 0 ∈ X, A ` x ∈ X

IEA, EL, Int(x) ` Int(x)•

IEA, EL ` Int(x)⇒ Int(x)•

IEA, EL ` I•. �

Lemma 11.14 1. If Γ ` Σ is derivable in LJ2 and if X1, . . . , Xn are the free
second-order variables appearing in Γ, Σ, then

IEA,CL(X1), . . . ,CL(Xn), Γ◦ ` Σ◦

is derivable in LJ2, where IEA on the left means, as usual, a finite number of
axioms of IEA;

2. ` E◦L is derivable in LJ2;

Proof. Point 1 is similar to point 1 of Lemma 11.12: it is proved by induction
on the last rule of the proof and the only interesting case is the left second-
order quantifier rule, which needs the following result, whose proof we leave
to the reader:

107

Lemma 11.15 For every formula B containing the free first-order variable z
and whose free second-order variables are contained in X1, . . . , Xn, the sequent
IEA,CL(X1), . . . ,CL(Xn) ` CL(Z)[B◦/Zz] is derivable in LJ2. �

For what concerns point 2, the proof is given by the following derivation:

x = y ` x = y
x ∈ Z ` x ∈ Z y ∈ Z ` y ∈ Z
x ∈ Z ⇒ y ∈ Z, x ∈ Z ` y ∈ Z

x = y, x = y⇒ x ∈ Z ⇒ y ∈ Z, x ∈ Z ` y ∈ Z

x = y,CL(Z), x ∈ Z ` y ∈ Z

` E◦L
�

Proposition 11.16 Assuming cut-elimination of LJ2, the consistency of IEA implies
the consistency of HA2.

Proof. We prove the contrapositive implication. Suppose that HA2 is incon-
sistent. This means that we have a proof in LJ2 of a sequent of the form

IEA, EL, I ` .

By point 1 of Lemma 11.12, we have a proof, still in LJ2, of

IEA, EL, IEA•, E•L, I• ` .

Note that there are no formulas of the form Int(x) on the left because all
axioms of IEA and HA2 are first-order closed. From this, using point 2 of
Lemma 11.12, we may remove the (·)• from the axioms of IEA and from EL,
and using point 3 we may remove altogether the formula I•, obtaining a proof
of the sequent

IEA, EL ` .

We now apply point 1 of Lemma 11.14, which gives us a proof, still in LJ2,
of the sequent

IEA, IEA◦, E◦L ` .

Again, note that there are no formulas of the form CL(X) on the left because
all axioms of IEA and EL are second-order closed. Point 2 of Lemma 11.14
allows us to remove the (·)◦ from the axioms of IEA and point 3 allows us to
remove the formula E◦L altogether, obtaining a proof of

IEA ` .

Although this shows that the axioms of IEA yield a contradiction in LJ2,
we cannot conclude yet: the proof contains cuts which use second-order for-
mulas, so the contradiction might come from the second-order rules of LJ2
and not from the axioms of IEA.

This is where we use our hypothesis that LJ2 enjoys cut-elimination: after
eliminating the cuts, we know that the proof verifies the subformula property,
and since no axiom of IEA uses second order, we actually know that the proof
is in LJ and, therefore, IEA really is inconsistent. �

108

Chapter 12

Normalization of System F

12.1 Towards normalization: the reducibility tech-
nique

A normalization theorem is a result stating that every object of a rewriting sys-
tem has a normal form. There is a very simple and elegant proof of the
normalization theorem for the simply typed λ-calculus, due to Tait [Tai67].
By the Curry-Howard isomorphism, and by the correspondence between nor-
malization in natural deduction and cut-elimination in sequent calculus, this
is actually an alternative proof of the cut-elimination theorem for proposi-
tional LJ. For simplicity, we shall restrict to the implication fragment only (so
to NM and LM).

In the following, we call neutral a term which does not start with an ab-
straction. The fundamental property of neutral terms is that they are stable
under application: if N is neutral, then for every M the term NM is still
neutral.

For each simple type T (which, we remind, is either an atom X or of the
form U → V), we define:

• Norm(T) as the set of all normalizable terms of type T;

• Neut(T) as the set of all normal neutral terms of type T.

We also define the set of reducible terms of type T, denoted by Red(T), by
induction on T, as follows:

• Red(X) = Norm(X);

• Red(U → V) = {M : U → V | ∀N ∈ Red(U), MN ∈ Red(V)}.

The normalization theorem is a consequence of the Adequacy and Adap-
tation Lemmas, given below. Each of them requires one auxiliary result.

Lemma 12.1 For every type T, Red(T) is closed under β-expansion, i.e., if M ∈
Red(T) and M1 → M, then M1 ∈ Red(T).

109

Proof. By induction on T. For the atomic case, obviously normalizable terms
are closed under β-expansion. So let T = U → V, let M ∈ Red(U → V) and
let M1 → M. Take any N ∈ Red(U). To conclude, it is enough to show that
M1N ∈ Red(V). But M1N → MN ∈ Red(V), so we conclude by the induction
hypothesis. �

Lemma 12.2 (Adequacy) Let M : U and let xT1
1 , . . . , xTn

n be the free variables of M.
For all N1 ∈ Red(T1), . . . , Nn ∈ Red(Tn), we have

M[N1/x1, . . . , Nn/xn] ∈ Red(U).

Proof. By induction on M. We shall use the shorthand notation P[~N/~x] for
denoting the simultaneous substitution of every Ni to xi in a term P.

If M = xU , the result is trivial.
Let M = λyV .M′, with U = V → V′ and M′ : V′. Let P ∈ Red(V).

The induction hypothesis gives us M1 = M′[~N/~x][P/y] ∈ Red(V′). But
M[~N/~x]P→ M1, so we conclude by applying Lemma 12.1.

Let M = PQ, with P : V → U and Q : V. If we set P′ = P[~N/~x],
Q′ = Q[~N/~x], using the induction hypothesis we have P′ ∈ Red(V → U),
Q′ ∈ Red(V). Then, by definition M[~N/~x] = P′Q′ ∈ Red(U). �

The following is a simple property of λ-terms, which holds regardless of
types (and we therefore formulate it without them).

Lemma 12.3 For every λ-term M, if Mx is normalizable, then so is M.

Proof. Consider a reduction Mx →∗ N, where N is a normal form. If all
reducts of M (including M itself) are neutral, then we actually have N = N′x,
with N′ normal and neutral, and M →∗ N′, so we conclude. Otherwise, we
must have Mx →∗ (λx.P)x → P →∗ N, which means that M →∗ λx.P →∗
λx.N, which is normal because N is. �

Lemma 12.4 (Adaptation) For every type T, Neut(T) ⊆ Red(T) ⊆ Norm(T).

Proof. Again, by induction on T. The atomic case is immediate from the
definition. Let T = U → V, and let N : U → V be normal and neutral. Take
M ∈ Red(U). It is enough to show that NM ∈ Red(V). By definition, NM
is still neutral. By the induction hypothesis, M is normalizable. If M0 is its
normal form, we have (using once more the induction hypothesis) NM0 ∈
Norm(V) ⊆ Red(V), so we conclude by applying Lemma 12.1.

Let now M ∈ Red(U → V). We want to show that M is normalizable.
Every variable is obviously normal and neutral, so by the induction hypoth-
esis xU ∈ Red(U). But by definition, MxU ∈ Red(V), so by the induction
hypothesis it is normalizable and Lemma 12.3 allows us to conclude. �

Theorem 12.5 (Normalization for simple types) Every simply-typed term is
normalizable.

110

Proof. Let M : U, with free variables xT1
1 , . . . , xTn

n . By the first inclusion of
the Adaptation Lemma 12.4, for all 1 ≤ i ≤ n, xTi

i ∈ Red(Ti). Then, the
Adequacy Lemma 12.2 gives us that M[xT1

1 /x1, . . . , xTn
n /xn] = M ∈ Red(U),

so we conclude by using the second inclusion of the Adaptation Lemma 12.4.
�

12.2 Reducibility and polymorphism

The reducibility technique is very powerful. After minor adjustments, it can
be used to prove the normalization theorem of Gödel’s system T, which is
not provable in first-order Peano arithmetic [GLT89]. It may also be adapted
to prove the strong normalization theorem, that is to say that every reduction
sequence eventually terminates (while normalization simply states that there
is always at least one terminating sequence).

However, to make it work for system F, non-trivial modifications are
needed. We immediately realize this by attempting to define Red(ΠX.U).
The intuition would be to set

Red(ΠX.U) = {M : ΠX.U | ∀V, MV ∈ Red(U[V/X])},

where V should range over every type, because any type may be substituted
to X in ΠX.U (this is the meaning, and power, of polymorphism!). But then
the definition is obviously ill-founded, because U[V/X] may be much more
complex than ΠX.U (think of V = ΠX.U itself. . .).

Girard solved this apparently inextricable tangle, which is due to the in-
trinsic impredicativity of second order quantification, by means of his so-
called reducibility candidates. Instead of directly defining reducibility of a
given type, we give an abstract notion of what a set of reducible terms should
look like (a “candidate”), independently of types (and therefore of induction).
Then, we define a parametric reducibility, in terms of a valuation which assigns
a reducibility candidate to every free atom of the type under consideration.
In the second-order case, instead of letting the type vary over all possible
instances (which is incompatible with induction), we shall let the valuation
vary over all possible assignments, which is sound because valuations are not
defined by induction.

The key is to identify which abstract properties characterize reducibility.
Originally, Girard found the right conditions by trial and error [GLT89]. Here,
we are able to identify them by inspecting the proof of Theorem 12.5: the only
two properties we ever need to show about the sets Red(T) is that they are
closed under β-expansion (Lemma 12.1) and that they enjoy the adaptation
conditions (Lemma 12.4). The other lemmas and parts of the proof, although
of course necessary, are not properties of the sets Red(T).

12.3 The reducibility candidates technique

We start by extending the definition of neutrality:

111

Definition 12.1 (Neutrality for system F) A term is neutral if it is neither an ab-
straction nor a universal abstraction.

The sets Norm(T) and Neut(T) are defined just as in the simply-typed
λ-calculus (with the updated notion of neutrality, of course).

Definition 12.2 (Reducibility candidate) A reducibility candidate of type T is
a set R of terms of type T such that:

CR1. R is closed under β-expansion;

CR2. Neut(T) ⊆ R ⊆ Norm(T).

We denote by CR(T) the set of all reducibility candidates of type T.

For any type T, the set Norm(T) is the prototypical reducibility candidate
of type T. Therefore, CR(T) is never empty.

Definition 12.3 (Valuation) A valuation is a partial function ρ from atomic types
to reducibility candidates, whose domain is finite and denoted by domρ.

If R is a reducibility candidate, we denote by ρ[X := R] the valuation whose
domain is domρ ∪ {X} and which coincides with ρ everywhere except on X, where
it is equal to R.

A valuation ρ covers a type T if the free atoms of T are all in domρ; it cov-
ers a term M : U whose free variables are xT1

1 , . . . , xTn
n if it covers every one of

U, T1, . . . , Tn.
The default valuation on Γ = X1, . . . , Xn is the valuation ρΓ such that

domρΓ = {X1, . . . , Xn} and such that ρΓ(Xi) = Norm(Xi) for all 1 ≤ i ≤ n.

Definition 12.4 (Substitution induced by a valuation) Let ρ be a valuation,
and let X be an atomic type. We set

Xρ =

{
U if X ∈ domρ and U is the type of ρ(X);
X if X 6∈ domρ.

Let T be a type whose free atoms are X1, . . . , Xn. We set

Tρ = T[Xρ
1 /X1, . . . , Xρ

n/Xn].

Similarly, if M : T and X1, . . . , Xn are all the free atoms appearing in T and in the
types of the free variables of M, we define

Mρ = M[Xρ
1 /X1, . . . , Xρ

n/Xn],

which is of type Tρ.

Observe that, if M : T and if Γ contains all the free atoms appearing in M and
T, then TρΓ = T and MρΓ = M, i.e., the default valuation induces the identity
substitution.

Given a type T and a valuation ρ covering T, we define the set of terms
Redρ(T) by induction on T:

112

• Redρ(X) = ρ(X);

• Redρ(U → V) = {M : (U → V)ρ | ∀N ∈ Redρ(U), MN ∈ Redρ(V)};

• Redρ(ΠX.U) = {M : (ΠX.U)ρ | ∀V ∀R ∈ CR(V), MV ∈
Redρ[X:=R](U)}.

Lemma 12.6 Let M : ΠX.U, let V be a type, and suppose that MV is normalizable.
Then, M is normalizable.

Proof. Entirely similar to the proof of Lemma 12.3. �

Lemma 12.7 For every type T and valuation ρ covering T, Redρ(T) ∈ CR(Tρ).

Proof. The fact that all terms in Redρ(T) have type Tρ is immediate from the
definition. Properties CR1 and CR2 are verified by induction on T.

The atomic case is trivial. For the arrow case, we follow exactly the argu-
ments given for Lemma 12.1 (for CR1) and Lemma 12.4 (for CR2). So we may
assume that T = ΠX.U.

For CR1, suppose that M1 → M ∈ Redρ(T). Take any type V and any
R ∈ CR(V). We have M1V → MV ∈ Redρ[X:=R](U) by hypothesis, so we
infer M1V ∈ Redρ[X:=R](U) by applying CR1, which holds for U. But, by
genericity of V and R, this is enough to conclude that M1 ∈ Redρ(T).

For what concerns the first inclusion of CR2, let N ∈ Neut(Tρ). Take any
type V and any R ∈ CR(V). Since N is neutral and normal, NV is also neutral
and normal, of type Uρ[X:=R]. But CR2 holds for U, so NV ∈ Redρ[X:=R](U),
which is enough to show that N ∈ Redρ(T).

Let us turn to the second inclusion of CR2. Let M ∈ Redρ(T), let V be
any type and R ∈ CR(V). Since CR2 holds for U, we know that MV ∈
Redρ[X:=R](U) ⊆ Norm(Uρ[X:=R]). But then Lemma 12.6 allows us to conclude
that M ∈ Norm(Tρ). �

Lemma 12.8 (Substitution) For every type V, W and every assignment ρ covering
them, we have Redρ(V[W/Y]) = Redρ[Y:=Redρ(W)](V).

Proof. A straightforward induction on V. �

Lemma 12.9 (Adequacy) Let M : U and let xT1
1 , . . . , xTn

n be the free variables of
M. For every valuation ρ covering M and for every N1 ∈ Redρ(T1), . . . , Nn ∈
Redρ(Tn), we have

Mρ[N1/x1, . . . , Nn/xn] ∈ Redρ(U).

Proof. By induction on M. We shall use the shorthand notation P[~N/~x] for
denoting the simultaneous substitution of every Ni to xi in a term P.

If M = xU , the result is trivial.
Let M = λyV .M1, with U = V → V1 and M1 : V1. Let P ∈ Redρ(V).

The induction hypothesis gives us M2 = Mρ
1 [
~N/~x][P/y] ∈ Redρ(V1).

113

But Mρ[~N/~x]P → M2, so we conclude by CR1 (which holds thanks to
Lemma 12.7).

Let M = PQ, with P : V → U and Q : V. If we set P1 = Pρ[~N/~x],
Q1 = Qρ[~N/~x], using the induction hypothesis we have P1 ∈ Redρ(V → U),
Q1 ∈ Redρ(V). Then, by definition Mρ[~N/~x] = P1Q1 ∈ Redρ(U).

Let M = ΛY.M1, with U = ΠY.U1 and M1 : U1. Note that, by α-
equivalence, we may always suppose Y 6∈ domρ. Let V be any type,
let R ∈ CR(V), and let M2 = Mρ[Y:=R]

1 [~N/~X]. The induction hypothesis

gives us M2 ∈ Redρ[Y:=R](U1). But by definition Mρ[Y:=R]
1 = Mρ

1 [V/Y], so
Mρ[~N/~x]V → M2, which is enough to prove Mρ ∈ Redρ(U).

Let M = PW with P : ΠY.V and W a type, so that U = V[W/Y]. Let
P1 = Pρ[~N/~X]. By induction, we know that P1 ∈ Redρ(ΠY.V), which gives us
that P1Wρ ∈ Redρ[Y:=Redρ(W)](V). But P1Wρ = Mρ[~N/~x], so we conclude by
applying Lemma 12.8. �

Theorem 12.10 (Normalization of system F) Every term of system F is normal-
izable.

Proof. Let M : U be a system F term, whose free variables are xT1
1 , . . . , xTn

n and
such that the free atoms of U, T1, . . . , Tn are in the list Γ. By the first inclusion
of CR2, we have xTi

i ∈ RedρΓ(Ti) (remember that TρΓ
i = Ti). Hence, by the

Adequacy Lemma 12.9, we have MρΓ [xT1
1 /x1, . . . , xTn

n /xn] = M ∈ RedρΓ(U),
so we conclude by the second inclusion of CR2. �

114

Chapter 13

Denotational Semantics

13.1 The case of the simply typed λ-calculus

The field of denotational semantics was developed originally for the
λ-calculus. The aim is to find a denotation for λ-terms, i.e., something which
reflects the intuitive meaning of λ-terms, which are supposed to be functions.
So, for instance, if we write JMK for the denotation of a λ-term M containing
a free variable x, we would like JMK to be a function of x and if N is another
λ-term, we would like JM[N/x]K to denote the result of applying the function
JMK to the argument JNK. In particular, denotational semantics must be an
invariant of computation:

M→ M′ implies JMK = JM′K.

Moreover, if the denotation of N and N′ is equal, then their image through
the function JMK should be equal

JNK = JN′K implies JM[N/x]K = JM[N′/x]K.

For the simply typed λ-calculus, it is not hard to give an interpretation sat-
isfying the above requirements, with λ-terms denoting set-theoretic functions.
We start by choosing, for each atomic type X, a set JXK. Then, we define

JT → UK = JUKJTK,

where by YX we denote the set of all functions from the set X to the set Y. The
fundamental remark at this point is that, given any three sets Γ, X, Y there is
a bijection

ΦΓ,X,Y : YΓ×X → (YX)Γ,

which maps a function f : Γ×X → Y to its “Curryed” version Φ(f) : Γ→ YX .
Using the above bijection, we may define the interpretation of λ-terms by

induction on their structure. Given a λ-term M : U and a sequence ρ =

xT1
1 , . . . , xTn

n containing at least the free variables of M, we define

JMKρ : JT1K× · · · × JTnK→ JUK

as follows (for brevity, we set Γ := JT1K× · · · × JTnK):

115

• if M = xU , then we must have xi = x and Ti = U for some i, and we
define JMKρ to be the projection on the i-th argument;

• if M = λxT .N, then we must have U = T → V and N : V. By induction,

JNKρ,xT : Γ× JTK→ JUK

is already defined, and we set

JMKρ = ΦΓ,JTK,JVK(JNKρ,xT),

which the reader my check to be of the right type.

• If M = NP, then we must have N : T → U and P : T. By induction

JNKρ : Γ→ JUKJTK and JPKρ : Γ→ JTK

are already defined. From that, we define JMKρ to be the function

JMKρ : Γ → JUK
c 7→ Φ−1

Γ,JTK,JUK(JNKρ)(c, JPKρ(c)).

Again, the reader may check that the expression is well-typed.

Although we shall not verify it here, it is not hard to show that the follow-
ing holds:

Theorem 13.1 For any interpretation of atomic types, for every simply typed λ-terms
M, N and for every ρ containing the free variables of M and N,

M 'βη N implies JMKρ = JNKρ.

By inspecting the definition of interpretation, we realize that the only es-
sential point is to be able to “Curry” and “un-Curry” functions. This is pos-
sible in any Cartesian closed category, i.e., a category C with finite products and
such that, for any objects X, Y, there is an object YX such that, for any other
object Γ, we have an isomorphism

C[Γ× X, Y] ∼= C[Γ, YX]

which is natural in Γ, X and Y. We invite the reader to check that the above
definitions may be rephrased, almost word by word, in any Cartesian closed
category: we simply replace the word “set” by “object”, “function” by “mor-
phism”, and Φ is the natural isomorphism just described. The naturality of Φ
is needed for Theorem 13.1 to hold in the general case.

13.2 The pure λ-calculus

Set-theoretic models of the simply-typed λ-calculus like the one above have
been known for a long time, at least from the 50s and 60s. However, until the
mid-60s, there was an almost universal consensus that the computationally

116

much more interesting pure λ-calculus could not have any model. This is
certainly true from the set-theoretic point of view: a non-trivial model of the
pure λ-calculus like the one above would require an infinite set D such that
DD may be injected in D, a possibility ruled out long ago by Cantor.

In the late 60s, Dana Scott came up with the idea of solving the stalemate
by using something more than just plain sets. Retrospectively, this may be jus-
tified by looking at a situation which is very well-known in analysis: although
the set of all functions on the real numbers R has cardinality strictly greater
than the continuum, this is not true if we restrict to continuous functions. In
fact, let c be the cardinality of the continuum, and let c′ be the cardinality of
the set C0(R) of continuous functions on R.

• Since every constant function is continuous, we have c ≤ c′;

• since the set of rational numbers Q, whose cardinality is well-known to
be ℵ0, is dense in R, every function in C0(R) is uniquely determined
by the values it takes on rational numbers. Therefore, every function in
C0(R) induces one (and one only) function in RQ, so we have

c′ ≤ cℵ0 = c.

We conclude that there are as many continuous functions on R as there are
real numbers.

Probably the simplest example of how the above idea may be exploited
for yielding models of the pure λ-calculus is Plotkin’s model. This is based on
a general construction which, of course, is due to Scott. We shall give the
concrete model first, and the abstract definitions later.

Consider the set P(N) of all subsets of N, and let Pf(N) be set of all finite
subsets of N. Let e ∈ Pf(N) and define

Oe := {x ⊆N | e ⊆ x}.

Obviously the sets Oe, for e spanning Pf(N), cover P(N); moreover, for all
e1, e2 ∈ Pf(N), e1 ∪ e2 is obviously still finite and Oe1 ∩Oe2 = Oe1∪e2 . There-
fore, the family {Oe | e ∈ Pf(N)} is a basis for a topology on P(N), which we
call the Scott topology. It is possible to prove (we shall do this in the general
case) the following:

Proposition 13.2 A function f : P(N) → P(N) is continuous with respect to the
Scott topology iff, for ever x ⊆N, we have

f (x) =
⋃

e⊆fx
f (e),

where e ⊆f x means that e is a finite subset of x.

In other words, Scott-continuous functions are uniquely determined by the
values they take on finite sets. Since the set Pf(N) is denumerable, we recre-
ated a very similar situation to the one described above using real numbers.
We denote by Cs(P(N)) the set of Scott-continuous functions on P(N).

117

Thanks to Proposition 13.2, we may represent every f ∈ Cs(P(N)) by its
trace

tr(f) := {(e, n) ∈ Pf(N)×N | n ∈ f (e)}.

Note that the trace is not the graph of f restricted to finite arguments (oth-
erwise it would be a subset of Pf(N) × P(N), whereas it is a subset of
Pf(N)×N). If f (e) = y, the trace contains a pair (e, n) for each n ∈ y and
there may be infinitely many such pairs, because y need not be finite, even if
e is.

This “trick” of considering the trace of f instead of its graph is essential to
inject Cs(P(N)) into P(N) itself. For this, we fix two bijections

p·q : Pf(N)→N,

β : N×N→N,

and define, given a Scott-continuous function f : P(N)→ P(N), the set

Φ(f) := {β(peq, n) | (e, n) ∈ tr(f)}.

It is immediate to check that Φ is an injection Cs(P(N)) ↪→ P(N).
Conversely, we may define a map Ψ : P(N) � Cs(P(N)) as follows. If

x·y is the inverse of p·q and if π1, π2 : N→ N are the two “projections” such
that β−1 = (π1, π2), given u ⊆N we define the function

Ψ0(u) : Pf(N) → P(N)
e 7→ {π2(n) | n ∈ u, xπ1(n)y = e}.

One may check that, for all u ∈ P(N), Ψ0(u) is continuous. Therefore, since
Pf(N) is dense in P(N), it uniquely extends to a continuous function Ψ(u),
which is defined by

Ψ(u)(x) = {π2(n) | n ∈ u, xπ1(n)y ⊆ x},

for all x ∈ P(N).
It it easy to verify that Ψ ◦Φ is the identity on Cs(P(N)). The converse is

not true: Ψ is not injective because there is more than one way of specifying a
continuous function by a “trace”, i.e., every subset t ⊆ Pf(N)×N induces a
continuous function fun(t) by setting

fun(t)(x) = {n | (e, n) ∈ u, e ⊆ x}, ∀x ∈ P(N),

but different subsets of Pf(N) ×N may induce the same function. For in-
stance, if f ∈ Cs(P(N)) and (e, n), (e′, n) ∈ tr(f) with e ⊆ e′, we invite the
reader to check that, if we set t = tr(f) \ {(e′, n)}, we still have fun(t) = f .

Nevertheless, the presence of the two maps Φ and Ψ, which are called a
retraction pair, is enough to adapt the definitions of Sect. 13.1 to the untyped
setting: a pure λ-term M whose free variables are contained in the list ρ =
x1, . . . , xn will be interpreted by a continuous function

JMKρ :

n︷ ︸︸ ︷
P(N)× · · · × P(N)→ P(N)

118

(contrarily to the familiar situation in analysis, Scott-continuity on the product
is equivalent to separate Scott-continuity in each argument), and whenever we
use Φ, Φ−1 in the simply-typed λ-calculus, we use Φ, Ψ in Plotkin’s model.
More importantly, we have

Theorem 13.3 (Plotkin) For every pure λ-terms M, N and for every sequence of
variables ρ containing the free variables of M, N, if we denote by J·Kρ the interpreta-
tion in Plotkin’s model, we have

M 'β N implies JMKρ = JNKρ.

We observe that, contrarily to Theorem 13.1, η-equivalence is not validated
by Plotkin’s model. However, Plotkin exhibited a particular choice of the
bijections p·q : Pf(N) → N and β : N2 → N used in the definition of the
model such that, for all ρ as above,

JMKρ = JNKρ iff B(M) = B(N),

where B(P) denotes the Böhm tree of the pure λ-term P. The problem of
characterizing the equality of a pure λ-calculus model (the so-called theory of
the model) is a very interesting one, but we shall not speak more about this
here.

As in the simply-typed case, the situation we have in Plotkin’s model
is an instance of a more general pattern: a denotational model of the pure
λ-calculus is found as soon as we have a reflexive object in a Cartesian closed
category. By reflexive object we mean an object D with morphisms

DD
Φ
)) D

Ψ
kk

such that Ψ ◦Φ = idDD . If we actually have Ψ = Φ−1, then the model will be
extensional, i.e., it will also validate η-equivalence.

So P(N) should be a reflexive object in a Cartesian closed category. . . but
which one? In the next section we shall see that the Scott topology we de-
fined on P(N) is actually a special case of a more general definition, yielding
a so-called Scott domain. Scott domains and Scott-continuous functions form
a Cartesian closed category, of which P(N) is a reflexive object. Indeed, al-
though we didn’t mention this because we cannot yet define what it means, a
fundamental fact in the construction on Plotkin’s model is that Φ and Ψ are
themselves Scott-continuous, i.e., they are morphisms of the category.

A posteriori, as the reader will have remarked at this point, Scott’s essential
achievement was to find a Cartesian closed category in which reflexive ob-
jects exist. The belief, widespread at the time, that the pure λ-calculus had no
models is justified by the fact that people were only considering the prototyp-
ical Cartesian closed category, that of sets and functions, whose only reflexive
objects are the empty set and the singletons.

119

13.3 Scott domains and continuous functions

What follows is mostly a succinct presentation of the material exposed in
[AC98]. Let us start with some preliminary definitions. If (D,≤) is a poset
(partially ordered set), and if x, y ∈ D, we denote by x ∨ y (resp. x ∧ y) the
supremum (resp. infimum) of x and y, if it exists. Similarly, if A ⊆ D, we
denote by

∨
A the supremum of all the elements of A, if it exists. We write

x ↑ y if there exists z such that x ≤ z and y ≤ z. We denote by ↓ x the principal
ideal of the element x, i.e.

↓ x := {y ∈ D | y ≤ x}.

Definition 13.1 (Directed set, Scott topology) Let (D,≤) be a partial order. A
set ∆ ⊆ D is directed if, for all x, y ∈ ∆, there exists z ∈ ∆ such that x ≤ z and
y ≤ z.

The Scott topology on D is determined as follows: a set O ⊆ D is open if

1. it is upward-closed, i.e., x ∈ O and x ≤ x′ implies x′ ∈ O;

2. it is inaccessible by directed suprema: for every directed ∆ ⊆ D such that∨
∆ exists,

∨
∆ ∈ O implies ∆ ∩O 6= ∅.

The following gives important examples of Scott-open sets:

Lemma 13.4 Let (D,≤) be a poset. Then, for all x ∈ D, the set

x◦ := {y ∈ D | y 6≤ x} = { ↓ x

is open in the Scott topology on D.

Proof. The set x◦ is clearly upward-closed. Let ∆ be directed such that its
supremum exists, and suppose that

∨
∆ ∈ x◦, i.e.,

∨
∆ 6≤ x. If ∆ ∩ x◦ = ∅, we

would have ∆ ⊆ ↓ x, so x is an upper bound of ∆, so
∨

∆ ≤ x, contrarily to
the hypothesis. �

If the posets involved are complete, continuous functions with respect to
their Scott topologies may actually be defined in a purely order-theoretic way,
without the need to invoke any topology at all.

Definition 13.2 (Complete partial order (cpo)) A poset (D,≤) is complete if it
has a least element, denoted by ⊥, and if the supremum of every directed set exists.

Proposition 13.7 below gives a purely order-theoretic characterization of
continuous functions between cpos endowed with their Scott topology. To
prove it, we first need a couple of preliminary topological definitions and
results.

Given a topological space X, we define its specialization preorder � as the
following relation on X: x � x′ just if for every open set O, x ∈ O implies
x′ ∈ O.

Lemma 13.5 Every continuous function between two topological spaces X, Y is
monotonic with respect to their specialization preorders.

120

Proof. Let f : X → Y be continuous. We shall prove its monotonicity by
contraposition. Let x, x′ ∈ X be such that f (x) 6� f (x′) in Y. This means
that there exists an open set O ⊆ Y such that f (x) ∈ O but f (x′) 6∈ O. By
continuity, f−1(O) is an open set of X, and obviously x ∈ f−1(O) whereas
x′ 6∈ f−1(O), so x 6� x′ in X. �

Lemma 13.6 The specialization preorder of the Scott topology on a poset (D,≤)
coincides with ≤.

Proof. The fact that x ≤ x′ implies x � x′ is an immediate consequence of
the fact that Scott-open sets are upward-closed w.r.t. ≤. Let now x � x′, and
suppose, for the sake of contradiction, that x 6≤ x′. This means x ∈ x′◦, but
then, by Lemma 13.4 and the definition of �, we would have x′ ∈ x′◦ and
therefore x′ 6≤ x′, contradicting reflexivity. �

Proposition 13.7 Let (D,≤), (E,≤′) be cpos, and let f : D → E. Then, f is
continuous with respect to the Scott topologies on D and E iff for every directed
∆ ⊆ D such that

∨
∆ exists, we have:

1. the set f (∆) = { f (x) | x ∈ ∆} is also directed;

2. f (
∨

∆) =
∨

f (∆).

Proof. Let f be topologically continuous. By Lemmas 13.5 and 13.6, f is
monotonic with respect to ≤ and ≤′, from which one easily infers the in-
equality

∨
f (∆) ≤′ f (

∨
∆), as well as property 1 (monotonic functions map

directed sets to directed sets). To complete the proof of property 2, suppose
that

∨
f (∆) <′ f (

∨
∆), i.e., suppose that f (

∨
∆) ∈ (

∨
f (∆))◦. By continu-

ity, the set O = f−1((
∨

f (∆))◦) is Scott-open, and by definition
∨

∆ ∈ O
implies that there exists x ∈ ∆ such that x ∈ O, which in turn implies that
f (x) ∈ (

∨
f (∆))◦, which is impossible, because we know that f (x) ≤′ ∨ f (∆)

since x ∈ ∆.
Suppose now that f verifies conditions 1 and 2, take a Scott-open set O ⊆

E, a directed set ∆ ⊆ D, and assume that
∨

∆ ∈ f−1(O). This implies that
f (
∨

∆) =
∨

f (∆) ∈ O, which by definition of Scott-open implies that f (x) ∈ O
for some x ∈ ∆, which means that x ∈ ∆ ∩ f−1(O), proving that f−1(O) is
also Scott-open and that f is continuous. �

Hence, when working with cpos (as is always the case in denotational
semantics), properties 1 and 2 of Proposition 13.7 may be taken as the defini-
tion of Scott-continuous function and there is no need to introduce the Scott
topology.

Furthermore, one usually considers cpos having additional properties
which make continuity enjoy even more concrete (and intuitive) equivalent
formulations, such as the one of Proposition 13.2 in Plotkin’s model. This is
what we shall do next.

Intuitively, one must think of the elements of a cpo as “pieces of informa-
tion”, the least element ⊥ being the absence of information. With this view

121

in mind, the relation x ≤ y may be read as “the information x approximates
the information y”. The following definition is an abstract way of speaking of
“finite information”.

Definition 13.3 (Compact element) Let (D,≤) be a poset. An element d ∈ D is
compact if for all directed ∆ ⊆ D such that

∨
∆ exists, d ≤ ∨

∆ implies that there
exists x ∈ ∆ such that d ≤ x.

We denote by K(D) the set of compact elements of a poset D, and given x ∈ D,
we set K(x) = {d ∈ K(D) | d ≤ x}.

Intuitively, K(x) is the set of finite approximations of x. The fact that
compact elements correspond to finite information is supported by the char-
acterization (2) of continuous functions given in Proposition 13.8 below: a
continuous function is entirely determined by the values it takes on compact
elements, just as a continuous function on real numbers (which may contain
infinite information) is entirely determined by the values it takes on the ratio-
nal numbers (which contain finite information).

Topologically speaking, a compact element is similar to an isolated point
(in fact, some people call compact elements isolated): in Definition 13.3 the
special case

∨
∆ = d gives us necessarily d ∈ ∆. Therefore, just like the only

sequences converging to an isolated point are those which are eventually equal
to that point, the only directed sets whose supremum is a compact element
are those already containing that element. In general, the analogy “supremum
= limit” is very useful when dealing with Scott topologies.

Let f : D → E be a monotonic function between posets. Let x ∈ D and
e ∈ K(f (x)); we define

apx f (x, e) := {d ∈ K(x) | e ≤ f (d)}.

The idea of the above definition is that, given a finite approximation e of f (x),
d ∈ apx f (x, e) is a finite approximation of x such that f (d) approximates f (x)
at least as well as e. This is another intuition behind continuity, formalized by
characterization (3) of Proposition 13.8: to obtain a finite approximation of the
output, a continuous function only needs a finite approximation of the input.

Definition 13.4 (Scott domain) A Scott domain is a cpo (D,≤) which is further:

bounded complete: for all x, y ∈ D, x ↑ y implies that x ∨ y exists;

algebraic: for all x ∈ D,
∨K(x) = x.

The essential property of Scott domains is that they are algebraic. Bounded
completeness is a secondary property; it implies that the set K(x) is directed,
so that its supremum exists (indeed, we invite the reader to prove that if d, d′

are compact and d ∨ d′ exists, then it is compact as well; then, if d, d′ ∈ K(x),
obviously d ↑ d′, and by bounded completeness and the above remark we
have d ∨ d′ ∈ K(x)).

As anticipated above, continuous functions on Scott domains may be char-
acterized as follows:

122

Proposition 13.8 Let D, E be Scott domains, and let f : D → E. Then, the following
are equivalent:

1. f is continuous;

2. for every x ∈ D, f (x) =
∨

d∈K(x) f (d);

3. f is monotonic and for all x ∈ D and e ∈ K(f (x)), apx f (x, e) 6= ∅.

Proof. That (1) implies (2) is an immediate consequence of the fact that D is
algebraic, via continuity:

f (x) = f

 ∨
d∈K(x)

d

 =
∨

d∈K(x)

f (d).

Let us prove that (2) implies (3). Monotonicity is a consequence of the
obvious fact that x ≤ x′ implies K(x) ⊆ K(x′), and so f (x) =

∨
d∈K(x) f (d) ≤∨

d′∈K(x′) f (d′) = f (x′). For what concerns the other part of property (3), if
x ∈ D and e ∈ K(f (x)), we have e ≤ f (x) =

∨
d∈K(x) f (d), so by compactness

of e we must have e ≤ f (d) form some d ∈ K(x), which means by definition
that d ∈ apx f (x, e).

Let us now consider the implication of (3) to (1). Let ∆ ⊆ D be di-
rected. Monotonicity immediately gives us that f (∆) is also directed, as well
as the inequality

∨
f (∆) ≤ f (

∨
∆). This inequality implies in particular that

K(∨ f (∆)) ⊆ K(f (
∨

∆)). We shall prove the reverse inclusion, which allows
us to conclude thanks to the fact that E is algebraic (if y, y′ ∈ E are such
that K(y) = K(y′), then necessarily y =

∨K(y) =
∨K(y′) = y′). So let

e ∈ K(f (
∨

∆)). We know that there is at least one d ∈ apx f (
∨

∆, e), which
by definition is such that d ∈ K(∨∆) and e ≤ f (d). But, by compactness of
d, d ≤ ∨

∆ implies d ≤ x for some x ∈ ∆, which by monotonicity implies
e ≤ f (d) ≤ f (x) ≤ ∨ f (∆), which proves e ∈ K(∨ f (∆)), as desired. �

13.4 Berry’s dI-domains and stable functions

In order to capture the notion of sequential computation, which is the one
expressed by the λ-calculus, in the early 80s Gérard Berry introduced a re-
finement of Scott domains, which have more structure and satisfy one further
property.

Definition 13.5 (dI-domain) A dI-domain is a Scott domain (D,≤) in which all
binary infima exist and which satisfies the following:

property d (distributivity): if x, y, z ∈ D are such that there exists w ∈ D such
that x, y, z ≤ w, then x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

property I: for all d ∈ K(D), K(d) is finite.

Distributivity is a useful property, but we shall not use it here. Property I
is the essential one: it states that compact points really are “finite”. In fact, it
implies the following:

123

Lemma 13.9 Let (D,≤) be a dI-domain. Then:

1. for all x ∈ D, x ∈ K(D) iff ↓ x is finite;

2. as a consequence, if d, e ∈ K(D), then d ∧ e ∈ K(D).

Proof. Let us start with point 1. The forward implication is shown by an easy
induction on the cardinality ofK(x) (which is finite because of property I). The
only interesting case is the base case K(d) = {d}, with d 6= ⊥, where we use
the fact that D is algebraic: if there were any x < d, we would have to have x =∨K(x) =

∨
∅ = ⊥; but⊥ is always compact, soK(d) = {⊥, d}, contradiction.

The backward implication of point 1 is true in any Scott domain: if ↓ x is finite,
K(x) must be finite too; but D is algebraic, so K(x) is directed, and the only
finite directed sets are those with a greatest element. Since

∨K(x) = x, we
conclude that x ∈ K(x), so it is compact.

Point 2 is an immediate consequence of point 1: d, e ∈ K(D) implies that
↓ d and ↓ e are both finite; but then ↓(d∧ e) = ↓ d∩↓ e, is also finite, so K(d∧ e)
is finite and d ∧ e ∈ K(D) as well. �

Consider D = N∪{ω, d, e}, with the usual order≤ on N plus the relations
n < ω for all n ∈ N and ω < d, ω < e. We invite the reader to check that
(D,≤) is a Scott domain (with distributive infima) which is not a dI-domain,
which furthermore gives a counterexample to Lemma 13.9: d and e are both
compact, but ↓ d and ↓ e are both infinite and d ∧ e = ω is not compact.

The notion of function capturing sequentiality, which we mentioned above,
is the following:

Definition 13.6 (Stable function) Let D, E be dI-domains. A function f : D → E
is stable if it is continuous and if, furthermore, for all x, x′ ∈ D,

x ↑ x′ implies f (x ∧ x′) = f (x) ∧ f (x′).

For stable functions, Proposition 13.8 may be strengthened as follows:

Proposition 13.10 Let D, E be dI-domains, and let f : D → E. Then, f is stable iff
it is monotonic and, for all x ∈ D and e ∈ K(f (x)), apx f (x, e) has a least element.

Proof. Suppose that f is stable, and take x ∈ D, e ∈ K(f (x)). By definition,
f is continuous and hence monotonic. Moreover, we know that apx f (x, e) is a
non-empty subset of K(D). Since D is a dI-domain, apx f (x, e) necessarily has
minimal elements (property I guarantees that there are no infinitely descend-
ing chains of compact elements). Choose one of them, let us call it d, and sup-
pose, for the sake of contradiction, that there exists d′ ∈ apx f (x, e) such that
d 6≤ d′. Note that d ↑ d′ because both d, d′ ≤ x. Now, since e ≤ f (d), f (d′), we
have, by stability, e ≤ f (d) ∧ f (d′) = f (d ∧ d′). But by point 2 of Lemma 13.9
d ∧ d′ ∈ K(D), so d ∧ d′ ∈ apx f (x, e), which contradicts the minimality of d,
because d ∧ d′ < d.

Suppose now that f is as stated. Point 3 of Proposition 13.8 already assures
us that f is continuous, so let x ↑ y ∈ D. Since x ∧ y ≤ x, y, we immediately
have f (x∧ y) ≤ f (x)∧ f (y). We will prove the converse inequality by showing

124

that K(f (x)∧ f (y)) ⊆ K(f (x∧ y)), which is enough to conclude by algebraic-
ity. Let e ∈ K(E) be such that e ≤ f (x) ∧ f (y). If z ∈ D is such that x, y ≤ z
(which exists because x ↑ y), by monotonicity we have e ≤ f (x), f (y), f (z). So
let

d1 = min apx f (x, e),

d2 = min apx f (y, e),

d = min apx f (z, e),

which all exist by hypothesis. Observe now that d1, d2 ∈ apx f (z, e), so
d ≤ d1, d2, but then we have d ∈ apx f (x, e) ∩ apx f (y, e), which implies that
d1 = d2 = d. Since d ≤ x, y, we have d ≤ x ∧ y, so by monotonicity
e ≤ f (d) ≤ f (x ∧ y), as desired. �

So a stable function f has, with respect to a continuous one, the following
additional property: when we want to compute f (x) up to a finite approxi-
mation e, there is a smallest finite approximation of x which suffices. In the
case of a continuous function, we may have several (even infinitely many!)
approximations of x doing the job, none standing out as canonical.

Coherence spaces are a special case of dI-domains. They were introduced
by Girard with the intent of giving a denotational semantics of system F. A
deeper analysis of coherence spaces led to the introduction of linear functions, a
further refinement of stable functions, which successively gave birth to linear
logic. We refer the reader to [GLT89] for an exhaustive treatment of coherence
spaces, linear functions and their relation with linear logic.

125

Bibliography

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-
calculi, volume 46 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 1998.

[Gir87] Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1. Bib-
liopolis, 1987.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1989.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood,
1993.

[Kri04] Jean-Louis Krivine. Realizability in classical logic, 2004. Lecture
notes available at http://www.pps.jussieu.fr/∼krivine/.

[NvP01] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge
University Press, 2001.

[Tai67] William W. Tait. Intensional interpretations of functionals of finite
type I. Journal of Symbolic Logic, 32(2):198–212, 1967.

126

	Propositional Classical Logic
	Formulas and truth semantics
	Atomic negation

	Sequent Calculus
	Two-sided formulation
	One-sided formulation

	First-order Quantification
	Formulas and truth semantics
	Sequent calculus
	Ultrafilters

	Completeness
	Exhaustive search
	The completeness proof

	Undecidability and Incompleteness
	Informal computability
	Incompleteness: a road map
	Logical theories
	Arithmetical theories
	The incompleteness theorems

	Cut Elimination
	Intuitionistic Logic
	Sequent calculus
	The relationship between intuitionistic and classical logic
	Minimal logic

	Natural Deduction
	Sequent presentation
	Natural deduction and sequent calculus
	Proof tree presentation
	Minimal natural deduction
	Intuitionistic natural deduction
	Classical natural deduction

	Normalization (cut-elimination in natural deduction)

	The Curry-Howard Correspondence
	The simply typed -calculus
	Product and sum types

	System F
	Intuitionistic second-order propositional logic
	Polymorphic types
	Programming in system F
	Free structures
	Representing free structures in system F
	The case of integers: representable functions

	Second-Order Arithmetic
	Second-order Peano arithmetic
	Second-order Heyting arithmetic
	The hardness of proving normalization of system F

	Normalization of System F
	Towards normalization: the reducibility technique
	Reducibility and polymorphism
	The reducibility candidates technique

	Denotational Semantics
	The case of the simply typed -calculus
	The pure -calculus
	Scott domains and continuous functions
	Berry's dI-domains and stable functions

