
Resource Control Graphs

JEAN-YVES MOYEN
LIPN – UMR 7030
CNRS – Université Paris 13
F-93430 Villetaneuse France

Resource Control Graphs are an abstract representation of programs. Each state of the program
is abstracted by its size, and each instruction is abstracted by the effects it has on the state size
whenever it is executed. The Control Flow Graph of the program gives indications on how the
instructions might be combined during an execution.

Termination is proved by finding decreases in a well-founded order on state-size, in line with
other termination analyses, resulting in proofs similar in spirit to those produced by Size Change
Termination analysis.

However, the size of states may also be used to measure the amount of space consumed by the
program at each point of execution. This leads to an alternate characterisation of the Non Size
Increasing programs, i.e. of programs that can compute without allocating new memory.

This new tool is able to encompass several existing analyses and similarities with other studies
hint that even more might be expressable in this framework, thus giving hopes for a generic tool
for studying programs.

Categories and Subject Descriptors: D.2.4 [Software engineering]: Software/Program Verification; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and Problems—Computations on dis-
crete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-
gram analysis, size change termination, termination

1. INTRODUCTION

1.1 Motivations

The goal of this study is to predict and control computational resources, like space or time,
that are used during the execution of a program. For this, we introduce a new tool called
Resource Control Graphsand focus here on explaining how it can be used for termination
proofs and space complexity management.

We present a data flow analysis of a low-level language by means of Resource Control
Graph, and we think that this is a generic concept from which several program properties
could be checked.

Usual data flow analyses (see Nielson et al. [1999] for a detailed overview) use transfer

Author’s address: J.-Y. Moyen, LIPN, Institut Galilée, 99avenue J.B. Clément, 93430 Villetaneuse, France.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 1529-3785/YY/00-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY, Pages 1–41.

2 · Jean-Yves Moyen

functions to express how a given property is modified when following the program’s ex-
ecution. Then, a fixed point algorithm finds for each label a set of all possible values for
the property. For example, one might be interested in which sign a given variable can take
at each point. The instructions of the program give constraints on this (from one label to
the next one). Iterating these constraints with a fixed pointalgorithm can find the set of all
possible signs for the variable at each label.

Here, we want to consider each execution separately. So, when iterating the transfer
function and coming back to an already treated label, instead of unifying the new con-
straint with the old one and iterating towards a fixed point, we will consider this as a new
configuration. In the end, instead of having one set associated to each label, we will get
a set of so called “walks”, each associating one value to eachoccurrence of each label.
For example, a first walk can tell that if starting with a positive value at a given label, the
variable will stay positive, but another walk tells that if starting with a negative value, the
variable may become positive. In this case, the fixed point algorithm will build the set
{+,−} for each label.

Of course, we then need a way to study this set of walks and find common properties on
them that tell something about the program.

The first problem we consider is the one of detecting programsable to compute within a
constant amount of space, that is without performing dynamic memory allocation. These
were dubbedNon Size Increasingby Hofmann [1999].

There are several approaches that try to solve this problem.The first protection mech-
anism is by monitoring computations. However, if the monitor is compiled with the pro-
gram, it could itself cause memory leak or other problems. The second is the testing-based
approach, which is complementary to static analysis. Indeed, testing provides a lower
bound on the memory usage while static analysis gives an upper bound. The gap between
both bounds is of some value in practice. Lastly, the third approach is type checking done
by a bytecode verifier. In an untrusted environment (like embedded systems), the type
protection policy (Java or .Net) does not allow dynamic allocation. Actually, the former
approach relies on a high-level language that captures and deals with memory allocation
features [Aspinall and Compagnoni 2003]. Our approach guarantees, and even provides,
a proof certificate of upper bound on space computation on a low-level language without
disallowing dynamic memory allocations.

The second problem that we study is termination of programs.This is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] and Abel and Altenkirch [2002].
The intuition being that a program terminates whenever there is no more resources to con-
sume.

There are long term theoretical motivations. Indeed a lot ofwork have been done in the
last twenty years to provide syntactic characterisations of complexity classes,e.g.by Bel-
lantoni and Cook [1992] or Leivant and Marion [1993]. Those characterisations are the
foundation of recent research on describing broad classes of programs that run within
some specified amount of time or space. Examples include Hoffmann as well as Niggl
and Wunderlich [2006], Amadio et al. [2004] and Bonfante et al. [2007].

We believe that our Resource Control Graphs will be able to encompass several, or even
all, of these analyses and express them in a common framework. In this sense, Resource
Control Graphs are an attempt to build a generic tool for program analysis.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 3

1.2 Coping with undecidability

All these theoretical frameworks share the common particularity of dealing with behaviours
of programs (like time and space complexity) and not only with the inputs/outputs relation,
which only depends on the computed function.

Following Jones [1997], we call aprogram propertya subset of all programs (for a given,
yet unspecified, language) and we say that a propertyA is extensionalif for all programs
p, q computing the same function,p ∈ A ⇔ q ∈ A. That is, an extensional property is
shared by all programs computing the same function.

On the other hand, properties not shared by programs computing the same function are
called intensional. A typical extensional property is termination. Indeed, all programs
computing the same function must terminate on the same inputs (where the function is
defined). A typical intensional property is time complexity. Indeed, two programs with
different complexities can compute the same function; for example, insertion sort computes
the sorting function in timeO(n2) while merge sort computes it in timeO(n log(n)).

Classical complexity theory focuses on functions or problems and extensional proper-
ties. It defines complexity classes (such as LOGSPACE, PTIME) as classes ofproblems
and not classes of algorithms and studies complexity of problems (SAT, QBF, . . .) and
relationship between classes of problems (“Is P different from NP ?”, . . .) Here, we want
to considerintensionalcomplexity, that is try to understand why a given algorithm is more
efficient than another to compute the same function, and we want to study classes ofalgo-
rithmsrather than classes of problems or functions.

When studying the complexity of functions, one deals with extensional properties; how-
ever, the complexity of algorithms is an intensional property. Consider for example the
classC of functionscomputable in timeO(n log(n)). This is a class of functions, hence
not a program property. Consider now the corresponding program property:A is the set
of all programs computing a function fromC. Obviously, the merge sort algorithm is in
A. But the insertion sort algorithm, with complexityO(n2) is also in A. Indeed, the
function computed by the insertion sort, the sorting function, is inC because there exists a
O(n log(n)) program to compute it.

On the other hand, the complexity of algorithms is an intensional property. Consider the
program propertyB, the set of all programs whose complexity isO(n log(n)). Now, the
merge sort belongs toB because its complexity isO(n log(n)) but the insertion sort does
not belong toB because its complexity isO(n2). We no longer consider only the computed
function, but also the algorithm used to compute it. For thisreason, “bad” programs are
discarded.

A typical goal of intensional study would be to have a criterion to decide whether a given
program computes in polynomial time or not.

The study of extensional complexity quickly reaches the boundary of Rice’s theorem.
Any extensional property of programs is either trivial or undecidable. Intuition and empir-
ical results point out that intensional properties are evenharder to decide.

However, several very successful works do exist for studying both extensional properties
(like termination) or intensional ones (like time or space complexity of programs). As these
works provide decidable criteria, they must be either incomplete (reject a valid program) or
unsound (accept an invalid program). Of course, the choice is usually to ensure soundness:
if the program is accepted by the criterion, then the property (termination, polynomial
bound,. . .) is guaranteed. This allows the criterion to be seen as a certificate in a proof

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

4 · Jean-Yves Moyen

carrying code paradigm.
When studying intensional properties (usually complexityof algorithms), two different

kinds of approaches exist. The first one consists in restricting the syntax of programs so
that any program necessarily has the wanted property. The work on primitive recursive
functions, where the recurrence schemata are restricted toonly primitive recursion, falls
into this category. This approach gives many satisfactory results, such as the characterisa-
tions of PTIME by Cobham [1962] or Bellantoni and Cook [1992], the works of Leivant
and Marion on tiering and predicative analysis [1993] or theworks of Jones on CONS-free
programs [2000]. On the logical side, this leads to explicitmanagement of resources in
Linear Logic [Girard 1987].

All these characterisations usually have the very nice property ofextensional complete-
nessin the sense that eachfunctionin the class (of functions) considered can be computed
by an algorithm with the property considered (e.g., a function is in PTIME if and only if it
can be defined by bounded primitive recursion (Cobham)). Unfortunately,intensionalityis
not their main concern: these methods usually do not capturenatural algorithms [Colson
1998], and programmers have to rewrite their programs in a non-natural way.

So, the motto of this first family of methods can be described as leaving the proof burden
to the programmer rather than to the analyser. If one can write a program with the given
syntax (which, in some cases, can be a real challenge), then certain properties are guaran-
teed. The other family of methods follow a different direction: Let the programmer write
whatever he wants, but the analysis is not guaranteed to work.

Since any program cana priori be given to the analysis, decidability is generally achieved
by loosening the semantics during analysis. That is, one will considermore than all the
executions a program can have.This approach is more recent but has already some very
successful results such as the Size Change Termination [Leeet al. 2001] or themwp-
polynomials of Kristiansen and Jones [2005].

This second kind of methods can thus be described as not meddling with the programmer
and let the whole proof burden lay on the analysis. Of course,the analysis being incom-
plete, one usually finds out that certain kinds of programs will not be analysed correctly
and have to be rewritten. But this restriction is donea prosterioriand nota priori and it
can be tricky to find what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within this second kind of analysis. Hence,
the toy language used as an example is Turing-complete and will not be restricted.

1.3 Outline

Section 2 introduces the stack machines, used everywhere inthe remainder of this paper,
as a simple yet powerful programming language. Section 3 describes the core idea of
Resource Control Graphs that can be summed up as finding a decidable (recursive) superset
of all the executions that still ensure a given property (such as termination or a complexity
bound). Then, Section 4 immediately shows how this can be used in order to detect Non
Size Increasing programs. Section 5 presents Vector Addition Systems with States that are
generalised into Resource Systems with States in Section 6.They form the backbone of
the Resource Control Graphs. Section 7 presents the tool itself and explains how to build
a Resource Control Graph for a program and how it can be used tostudy the program.
Section 8 shows application of RCGs in building terminationproofs similar to the Size
Change Termination principle. Finally, Section 9 discusses how matrix algebra could be
used in program analyses, leading to several possible further developments.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 5

1.4 Notations

In a directed graph1 G = (S, A), will write s
a
→s′ to say thata is an edge betweens ands′.

Similarly, we will write s0
a1→s1

a2→ . . .
an→sn to say thata1 . . . an is a path passing through

verticess0, · · · , sn. Or simplys0
w
→sn if w = a1 . . . an. s→ s′ means that there exists an

edgea such thats
a
→s′, and

+
→,

∗
→ are the transitive and reflexive-transitive closures of→.

A partial order≺ is awell partial order if there are no infinite decreasing sequence and
no infinite anti-chain. That is, for every infinite sequencex1, · · · , xn, . . . there are indexes
i < j such thatxi � xj . This means that the order is well-founded (no infinite decreasing
sequence) but also that there is no infinite sequence of pairwise incomparable elements.
The order induced by the divisibility relation onN, for example, is well-founded but is
not a well partial order since the sequence of all prime numbers is an infinite sequence of
pairwise incomparable elements.

The set of integers (positive and negative) isZ, andN is the set of integers≥ 0. When
working with infinity, Z = Z

⋃
{+∞}; that is, we do not need−∞ here. When working

with vectors ofZk,≤ denotes the component-wise partial order. That isa ≤ b if and only
if ai ≤ bi for all 1 ≤ i ≤ k. This is a well partial order onNk.

If w is a word anda a letter, we notea.w the word that begins with the lettera and ends
with w. Similarly, if w is a stack anda a value,a.w denotes the stack whose top isa and
whose tail isw.

2. STACK MACHINES

2.1 Syntax

A stack machine consists of a finite number ofregisters, each able to store a letter of an
alphabet, and a finite number ofstacks, that can be seen as lists of letters. Stacks can only
be modified by usualpush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in a single unit of time.

Definition 2.1 (Stack machine). Stack machines are defined by the following gram-
mar2:

(Alphabet) Σ finite set of symbols
(Programs) p ::= lbl 1 : i 1; . . . ; lbl n : i n;
(Instructions) I ∋ i ::= if (test) then goto lbl 0 else goto lbl 1 |

r := pop (stk) | push (r, stk) |r := op(r1, · · · , rk) | end
(Labels) L ∋ lbl finite set of labels
(Registers) R ∋ r finite set of registers
(Stacks) S ∋ stk finite set of stacks
(Operators) O ∋ op finite set of operators

Each operator has a fixed arityk andn is an integer constant. The syntax of a program
induces a functionnext : L → L such thatnext (lbl i) = lbl i+1 and a mapping
ι : L → I such thatι(lbl k) = i k. Thepop operation removes the top symbol of a stack
and put it in a register. Thepush operation copies the symbol in the register onto the top

1We will use s ∈ S to designate vertices anda ∈ A to designate edges. The choice of using French ini-
tials (“Sommet” and “Arête”) rather than the usual(V, E) is done to avoid confusion between vertices and the
valuations introduced later.
2We use a bold face font for registers and stacks and a typewriter font for instructions

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

6 · Jean-Yves Moyen

of the stack. Theιif -instruction gives control to eitherlbl 0 or lbl 1 depending on the
outcome of the test. Each operator is interpreted with respect to a given semantic function
JopK.

The precise sets of labels, registers and stacks can be inferred from the program. Hence
if the alphabet is fixed, the machine can be identified with theprogram itself.

The syntaxlbl : if (test) then goto lbl 0 can be used as a shorthand for
lbl : if (test) then goto lbl 0 else goto next (lbl). Similarly, we can ab-
breviateif true then goto lbl as goto lbl , that is an unconditional jump to a
given label. The kinds of tests allowed are not specified here. Of course, tests must be
computable (for obvious reasons) in constant time and space, so that they do not play an
important part when dealing with complexity properties. Comparisons between letters of
the alphabet (e.g.≤ if they are integers) are typical tests that can be used.

If the alphabet contains a single letter, then the registersare useless and the stacks can be
seen as unary numbers. The machine then becomes a usual counter machine [Shepherdson
and Sturgis 1963].

Example2.2. The following program reverses a list in stackl and put the result in
stackl′ (assumingl′ is empty at the beginning of the execution). It uses registera to store
intermediate letters. The empty stack is denoted[].

0 : if l = [] then goto end ; 3 : goto 0;
1 : a := pop (l); end : end ;
2 : push (a, l′);

2.2 Semantics

Definition 2.3 (Stores). A store is a functionσ assigning a symbol (letter of the al-
phabet) to each register and a finite string inΣ∗ to each stack. Store update is denoted
σ{x← v}.

Definition 2.4 (States). Let p be a stack program. Astateof p is a pairθ = 〈IP , σ〉
where theInstruction PointerIP is a label andσ is a store. LetΘ be set of all states,Θ∗

(Θω) be the set of finite (infinite) sequences of states andΘ∗ω be the union of the two.

Definition 2.5 (Executions). The operational semantics of Figure 1 defines a relation3

p ⊢ θ
i
→θ′.

An executionof a programp is a sequence (finite or not)p ⊢ θ0
i 1→θ1

i 2→ . . .
i n→θn . . .

An infinite execution is said to benon-terminating. A finite execution isterminating. If
the program admits no infinite execution, then it isuniformly terminating.

We use⊥ to denote runtime error. We may also allow operators to return⊥ if we want
to allow operators that generate errors. It is important to notice that⊥ is not a state, and
hence, will not be considered when quantifying over all states.

If the instruction is not specified, we will write simplyp ⊢ θ → θ′ and use
+
→,

∗
→ for the

transitive and reflexive-transitive closures.

3Notice that the labeli on the edge is technically not an instruction since for testswe also keep the information
of which branch is taken.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 7

i = ι(IP) = r := op(r1, · · · , rk) σ′ = σ{r← JopK(σ(r1), . . . , σ(rk))}

p ⊢ 〈IP , σ〉
i
→〈next (IP), σ′〉

ι(IP) = if (test) then goto lbl 1 else goto lbl 2 (test) is true

p ⊢ 〈IP , σ〉
(test)true→ 〈lbl 1, σ〉

ι(IP) = if (test) then goto lbl 1 else goto lbl 2 (test) is false

p ⊢ 〈IP , σ〉
(test)false→ 〈lbl 2, σ〉

i = ι(IP) = r := pop(stk) σ(stk) = a.w σ′ = σ{r← a, stk← w}

p ⊢ 〈IP , σ〉
i
→〈next (IP), σ′〉

i = ι(IP) = r := pop (stk)nstrone σ(stk) = ǫ

p ⊢ 〈IP , σ〉
ı
→⊥

i = ι(IP) = push (r, stk) σ′ = σ{stk← σ(r).σ(stk)}

p ⊢ 〈IP , σ〉
i
→〈next (IP), σ′〉

Fig. 1. Small steps semantics

Definition 2.6 (Traces). The trace of an executionp ⊢ θ0
i 1→θ1

i 2→ . . .
i n→θn . . . is the

instructions sequencei 1 . . . i n . . .

Definition 2.7 (Length). Let θ = 〈IP , σ〉 be a state. Itslength |θ| is the sum of the
number of elements in each stack4. That is:

|θ| =
∑

stk∈S

|stk|

The length of a state corresponds to the usual notion of spaceconsumption. Since there
is a fixed number of registers and each can only store a finite number of different values,
the space need to store all registers is always bounded. So, we do not take registers into
account while computing space usage.

The notion of length allows to define usual time and space complexity classes.

Definition 2.8 (Running time, running space). The time usageof an execution is the
length of the corresponding sequence (possibly infinite fornon-terminating programs). Let
f be an increasing function from the non-negative integers tothe non-negative integers. We
say that therunning- timeof a program is bounded byf if the time usage of each execution
is bounded byf(|θ|) whereθ is the first state of the execution.

Thespace usageof an execution is the least upper bound of the length of a state in it.
Letf be an increasing function from the non-negative integers tothe non-negative integers.

4Hence, it should more formally be|〈IP , σ〉| =
P

stki∈S
|σ(stki)| . Since explicitly mentioning the store

everywhere would be quite unreadable, we usestki instead ofσ(stki) and, similarly,r instead ofσ(r), when the
context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

8 · Jean-Yves Moyen

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
..........

......

......
......
.......
.......
........
..........

...............
...
...........
........
.......
.......
......
......
......
......
...

..
...........................

......

......

......

......

..
......
......
......
........
.......
......
.......
.........
.........

.................................
......
......
......
.......................

......
...

Θ∗ω

Θω

Ψ
A

Θ∗

......

......

......
......
.......
.......
........
.........

..............
...
..........
.........
.......
.......
......
......
......
......
..

..
...........................

......

......

......

......

..
......
......
......
.......
.......
.......
......
.........
.........

..................................
......
......
......
........................

......
..

Ψ
A

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
....

Θ∗ω

Θω

Θ∗

......

......

......
......
.......
.......
........
.........

..............
...
..........
.........
.......
.......
......
......
......
......
..

..
...........................

......

......

......

......

..
......
......
......
.......
.......
.......
......
.........
.........

..................................
......
......
......
........................

......
..

Ψ
A

......

......

......
......
.......
.......
........
.........

..........
...........

.............
.................

.........................
...

....................
...............

............
...........
.........
........
........
.......
......
......
......
......
....

Θ∗ω
Θ∗

Θω

Fig. 2. Sequences of states, executions and admissible sequences

We say that therunning- spaceof a program is bounded byf if the space usage of each
execution is bounded byf(|θ|) whereθ is the first state of the execution.

Definition 2.9 (Complexity). Letf : N→ N be an increasing function. The classT (f)
is the set of functions that can be computed by a program whoserunning time is bounded
by f . The classS(f) is the set of functions that can be computed by a program whose
running space is bounded byf .

FPTIME denotes the set of functions computable in polynomial time by a stack machine,
that isf ∈ FPTIME if and only if f ∈ T (P) for some polynomialP .

If we want to define classes such as LOGSPACE, then we must, as usual, use some read-
only stacks that can only bepoped but notpush ed and some write-only output stacks.
These play no role when computing the length of a state.

2.3 Turing Machines

Stack machines are Turing complete. We quickly describe here the straightforward ways
to simulate one model by the other.

Simulating a stack machine withk stacks can be done by a Turing machine withk + 1
tapes. The firstk tapes each store one of the stacks while the last one store allthe registers.
The different instructions are represented by the states ofthe machine.

Simulating a TM with a single tape can be done by using two stacks to represent the
tape in an usual way (each stack represent half of the tape). Registers are used to store the
current state as well as the scanned symbol.

3. A TASTE OF RCG

This section describes the idea behind Resource Control Graphs in order to get a better
grip on the formal definitions later on.

3.1 Admissible sequences

Consider an execution of a program. It can be described as a sequence of states. Clearly,
not all sequences of states describe an execution. So we havea set of executions,Ψ, which
is a subset of the set of all sequences of states (finite or infinite), Θ∗ω.

The undecidability results entail that, given a program, itis impossible to say whether
the setΨ of executions, and the setΘω of infinite sequences of states, are disjoint. So,
the idea here is to find a setA of admissiblesequences that is a superset of the set of all
executions, and whose intersection withΘω can be computed. If this intersection is empty,
thena fortiori, there are no infinite executions of the program; but if the intersection is not
empty, then we cannot decide whether this is due to some non-terminating execution of the
program or to some of the sequences added for the sake of the analysis. This means that

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 9

depending on the machine considered and the wayA is built, we can be in three different
situations as depicted in Figure 2. We buildA ⊃ Ψ such thatA

⋂
Θω is decidable. If

it is empty, then the program uniformly terminates; otherwise, we cannot say anything.
Of course, the undecidability theorem implies that if we requireA to be recursive (or at
least recursively separable fromΘω), then there will necessarily be some programs for
which the situation will be the one in the middle (in Figure 2), i.e. the program uniformly
terminates, but we cannot determine that it does.

One conceptually simple way to represent all the possible executions (and only these),
is to build astate-transition graph. This is a directed graph where each vertex is a state
of the program and there is an edge between two vertices if andonly if it is possible to go
from one state to the other with a single step of the operational semantics. Of course, since
there are infinitely many different stores, there are infinitely many possible states and the
graph is infinite.

3.2 The folding trick

Using the state-transition graph to represent executions is not convenient since handling an
infinite graph can be tedious. To circumvent this, we must look into states and decompose
them.

A state is actually a pair of one label and one store. The labelcorresponds to thecontrol
of the program while the store representsmemory. A first try to get rid of the infinite
state-transition graph is then to only consider the controlpart of each state.

Thus, there will only be finitely many different nodes in the graph (since there are only
finitely many different labels). By identifying all states bearing the same label, it becomes
possible to “fold” the infinite state-transition graph intoa finite graph, called theControl
Flow Graph (CFG) of the program. The CFG is a usual tool for program analyses and
transformations and can directly be built from the program.

Definition 3.1 (Control Flow Graph). Let p be a program. ItsControl Flow Graph
(CFG) is a directed graphG = (S, A) where:

—S = L. There is one vertex for each label.

—If ι(lbl) = if (test) then goto lbl 1 else goto lbl 2 then there is one
edge fromlbl to lbl 1 labelled (test)true and one fromlbl to lbl 2 labelled (test)false.

—If ι(lbl) = end then there is no edge going out oflbl .

—Otherwise, there is one edge fromlbl to next (lbl) labelledι(lbl).

Vertices and edges are named after, respectively, the labelor instruction5 they represent.
No distinction is made between the vertex and the label or theedge and the instruction as
long as the context is clear.

Example3.2. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one correspondence between executions
of the program and (maximal) paths in the graph. This is no longer true with Control Flow
Graphs. Now, to each execution corresponds a path (finite or infinite) in the CFG. The
converse, however, is not true. There are paths in the CFG that correspond to no execution.

5Again, since the two branches of tests are separated, some edges do not correspond exactly to an instruction of
the program. We will nonetheless continue to call these “instructions”.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

10 · Jean-Yves Moyen

end 1

0

2

3

l= [] l 6= []

pop

push

goto 0

Fig. 3. CFG of the reverse program.

Let P be the set of paths in the CFG. Since we can associate a path to each execution,
we can say thatP is a superset ofΨ.

This leads to a first try at building a set of admissible6 sequences by choosingA = P .
However, as soon as the graph contains loops,P will contain infinite sequences. So this

is quite a poor try at building an admissible set of sequences, corresponding exactly to the
trivial analysis “A program without loops uniformly terminates”.

In order to do better, we need to plug back the memory into the CFG.

3.3 Walks

So, in order to take memory into account but still keep the CFG, we will not consider
vertices any more but states again. Clearly, each state is associated to a vertex of the CFG.
Moreover to each instructioni , we can associate a functionJi K such that for all statesθ, θ′

for whichp ⊢ θ = 〈IP , σ〉
i
→〈IP ′, σ′〉 = θ′, we haveσ′ = Ji K(σ).

So, instead of considering paths in the graph, we can now consider walks. Walks are
sequences of states following a path where each new store is computed according to the
semantics functionJi K of the edge just followed.

The only case where the CFG has out-degree greater than1 is for tests. In order to
prevent the wrong branch to be taken, the semantics functionJ(test)trueK can be a partial
function only defined for stores where the test is true (and conversely for the false branch
of tests).

But if we do this exactly that way, then there will be a bijection between the executions
and the walks and everything will stay undecidable.

So the idea at this point is to keep both branches of the test possible, that is more or less
replacing a deterministic test by a non-deterministic choice between the two outcomes.
This leads to a set of walks bigger than the set of executions but, hopefully, recursively
separable from the set of infinite sequences of states.

4. MONITORING SPACE USAGE

In order to illustrate the ideas of the previous Section, we introduce here the notion of
Resource Control Graph for the specific case of monitoring space usage. In Section 7, this

6P is indeed recursive. By adapting Lemma 5.13, it is possible to show thatP is an omega-regular language and
hence can be recognised by a Büchi’s automaton.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 11

notion will be fully generalised to define Resource Control Graphs.

4.1 Space Resource Control Graphs

Definition 4.1 (Weight). For each instructioni , we define aweightki as follows:

—The weight of any instruction that is neitherpush norpop is 0.

—The weight of apush instruction is+1.

—The weight of apop instruction is−1.

PROPOSITION 4.2. For all statesθ such thatp ⊢ θ
i
→θ′, we have|θ′| = |θ|+ ki.

It is important here that bothθ andθ′ are states. Indeed, this means that when an error
occurs (⊥), nothing is said about the weight of the instruction causing the error.

Definition 4.3 (Space Resource Control Graph). Let p be a program. Its Space Re-
source Control Graph (Space-RCG) is a weighted directed graphG such that:

—G is the Control Flow Graph ofp.

—For each edgei , the weightω(i) is ki .

Definition 4.4 (Configurations, walks). A configurationis a pairη = (s, v) wheres ∈
S is a vertex andv ∈ Z is thevaluation. A configuration isadmissibleif and only if v ∈ N.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for all i > 0, vi = vi−1 + ω(ai). A walk is
admissibleif all configurations in it are admissible.

Definition 4.5 (Traces). The trace of a walk is the sequence of all edges followed by
the walk, in order.

PROPOSITION 4.6. Letp be a program,G be its Space-RCG andp ⊢ θ1 = 〈IP1, σ1〉 →
. . .→ θn = 〈IPn, σn〉 be an execution with tracet, then there is an admissible walk inG,
(IP1, |θ1|)→ . . .→ (IPn, |θn|), with the same tracet.

PROOF. By construction of the Space-RCG and induction on the length of the execu-
tion.

4.2 Characterisation of Space usage

THEOREM 4.7. Let f be a total functionN → N. Let p be a program andG be its
Space-RCG.

p ∈ S(f) if and only if for each initial stateθ0 = 〈IP0, σ0〉 with executionp ⊢
θ0

∗
→θn, the trace of the execution is also the trace of an admissiblewalk (IP0, |θ0|) →

(IP1, v1)→ . . .→ (IPn, vn) and for eachk, vk ≤ f(|θ0|).

PROOF. Proposition 4.6 tells us thatvk = |θk|. Then, both implications hold by defini-
tion of space usage.

Definition 4.8 (Resource awareness). A Space-RCG isf -resource awareif for any ad-
missible walk(s0, v0)

∗
→(sn, vn), vn ≤ f(v0).

Non-admissible walks are not taken into account because they never correspond to real
executions of the program.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

12 · Jean-Yves Moyen

COROLLARY 4.9. Let f : N → N be a total function,p be a program andG be its
Space-RCG.

If G is f -resource aware, thenp ∈ S(f).

Here, the converse is not true because the Space-RCG can haveadmissible walks with
uncontrolled valuations that do not correspond to any real execution.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was introduce by Hofmann [1999]. For-
mer syntactical restrictions for PTIME, such as the safe recurrence of Bellantoni and Cook
[1992], forbid iteration of functions because this can yield super-polynomial growth. How-
ever, this excludes perfectly regular algorithms such as the insertion sort where the inser-
tion function is iterated. The idea is then that iterating functionsthat do not increase the
size of datais harmless.

Hofmann detects Non Size Increasing programs in a typed functional language by adding
a special type,3, which can be seen as the type of pointers to free memory. Here, the valu-
ations of Space RCG will play exactly the same role as Hofmann’s 3, that is managing the
memory freed by previous de-allocation and reuse it rather than re-allocating new memory.

Even if this work was inspired by Hofmann’s, there is currently no explicit link or equiv-
alence Theorem between the programs detected by one or the other.

Definition 4.10(Non Size Increasing). A program isNon Size Increasing(NSI) if its
space usage is bounded byλx.x + α for some constantα.

NSI is the class of functions that can be computed by Non Size Increasing programs.
That is,NSI =

⋃
α S(λx.x + α).

PROPOSITION 4.11. Let p be a program andG be its Space-RCG. IfG is λx.x + α-
resource aware for some constantα, thenp is NSI.

PROOF. This is a direct consequence of Theorem 4.7.

THEOREM 4.12. Letp be a program andG be its Space-RCG.G is λx.x+α-resource
aware (for someα) if and only if it contains no cycle of strictly positive weight.

PROOF. If there is no cycle of strictly positive weight, then letα be the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it is well-defined.
Consider a walk(s0, v0)

∗
→(sn, vn) in G. Sinceα is the maximum weight of a path, we

havevn ≤ v0 + α. Hence,G is λx.x + α-resource aware.
Conversely, if there is a cycle of strictly positive weight,then it can be followed infinitely

many times and provides an admissible walk with unbounded valuations.

Building the Space-RCG can be done in linear time in the size of the program. Finding
the maximum weight of a path can be done in polynomial time in the size of the graph
(and so in the size of the program) with Bellman-Ford’s algorithm ([Cormen et al. 1990]
chapter25.5). So we can detect NSI programs and find the constantα in polynomial time
in the size of the program.

Example4.13. The Space-RCG of the reverse program (from Example 2.2) is dis-
played on Figure 4. Since it contains no cycle of strictly positive weight, the program
is Non Size Increasing. Moreover, since the maximum weight of any path is1, it can be
computed in spaceλx.x + 1, that is the constantα is 1 for this program.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 13

end 1

0

2

3

0 0

−1

+1

0

Fig. 4. Space-RCG of the reverse program.

Actually, the reverse program can be computed in spaceλx.x. This is not detected
because we consider here all paths and not only paths starting from 0 (the initial node,
corresponding to the first label of the program). This could be improved, and should be for
any practical use, but the sharp bound is not needed in our theoretical framework.

This result, however, lacks an intensionality statement (how many of all NSI programs
are caught?) or even an extensional completeness one (does there exist functions in NSI
that cannot be captured by such a program?) Of course, the class of allprogramsthat are
Non Size Increasing is undecidable. This means that intensionality statements are hard to
achieve. However, we can reach an extensional completenessone.

Definition 4.14(Normalising programs). Let p be a program andα be a constant. We
define program̃pα as follows:

—There is an extra stackmem (empty at start) and an extra symbol3.

—Theα first instructions of̃pα arepush (3, mem). That is,p̃α starts by pushingα copies
of 3 on mem.

—The following instructions of̃pα are the instructions ofp, except that eachpush is
followed by apop (mem) and eachpop is preceded by apush (3, mem).

PROPOSITION 4.15. If p runs in spaceλx.x + α, thenp̃α computes the same function
asp.

PROOF. As long as they do not cause runtime error (i.e. pop ing an empty stack), the
added instructions do not interfere with the computed function because they only act on
the new stackmem.

The only runtime error thatmem can cause would be if one tries topop it when its
empty. However, if this happens, then apush on a non-mem stack must have happened
just before whilemem was empty. In the state just reached by thispush , the sum of the
lengths of the non-mem stacks would bex+α+1 wherex is the length of the initial state.
This contradicts the fact thatp runs in spaceλx.x + α.

Notice also that such a normalisation could be made for a program running in space
f(x) for any computable functionf . However, in that case the simulation would require
to computef(x) from the input and then push sufficiently many3s. This would be quite
tricky to do and require control over the space used to computef(x). Hence, adapting these

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

14 · Jean-Yves Moyen

Phase II

0

Phase I

push

11 1

push

Perform instructions

Fig. 5. Space-RCG of a normalised program.

ideas to classes of programs defined by their space complexity other than NSI cannot be
done in a straightforward way and caution must be exerted.

LEMMA 4.16. Let p be a program. The Space-RCG ofp̃α has no cycle of strictly
positive weight.

PROOF. By construction of̃pα. The first part (pushingα copies of3 on mem) is done
without any cycles in the control flow, by actually usingα copies of thepush instruction.
The second part (simulatingp) has eachpush paired with apop (on another stack) and
hence cannot generate paths of weight other than0 or 1, and, especially, no cycle of weight
different from0.

THEOREM 4.17 (EXTENSIONAL COMPLETENESS). Letf be a function inNSI. There
exists a programp computingf whose Space-RCG has no cycle of strictly positive weight.

PROOF. Sincef is in NSI, it is computed by a programq running in spaceλx.x + α
for someα. By Proposition 4.15 and Lemma 4.16,p = q̃α also computesf and has a
Space-RCG without strictly positive cycle.

This result means that this characterisation of NSI by programs whose Space-RCG have
no cycle of strictly positive weight is extensionally complete: each function in NSI can be
computed by a program that fits into the characterisation (that is, whose Space-RCG is
λx.x + α-resource aware). Of course, intentional completeness (capturing all Non Size
Increasing programs) is far from reached (but is unreachable with a decidable algorithm):
there exist Non Size Increasing programs whose Space-RCG has cycle of positive weight
(but, due to extensional completeness, the functions computed by these programs can
also be computed byanotherprogram whose Space-RCG has no cycle of strictly posi-
tive weight).

Example4.18. The following two programs compute the same function,namely push-
ing five 0s onto stackl. The leftmost one uses a loop whose number of iterations is fixed
inside the program by the assignment at label0, while the rightmost one uses five copies
of push .

Since value of variables is not taken into account by the analysis, the Space-RCG of
the first program will have a loop of strictly positive weightcorresponding to the loop in
the program. Hence, this first program is Non Size Increasingbut not detected by the

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 15

characterisation. This means that the characterisation isnot intensionally complete: some
programs have the wanted property but are left out. This is, obviously, an unwanted fact
but nonetheless inevitable because the set of Non Size Increasing programs is undecidable.

However, because of the extensional completeness, there must exist programs comput-
ing the same function that fit into the characterisation. Thesecond program is an example
of such a program. Indeed, its Control Flow Graph does not contain any cycles, hence, the
Space-RCG does not have cycles either (and so, no cycle of positive weight).

0 : a := 5; 0 : push (0, l);
1 : if a = 0 then goto end ; 1 : push (0, l);
2 : push (0, l); 2 : push (0, l);
3 : a := a− 1; 3 : push (0, l);
4 : goto 1; 4 : push (0, l);

end : end end : end

If one applies the normalisation of Definition 4.14 to the first program, one will obtain:

0 : push (3, mem); 6 : if a = 0 then goto end ;
1 : push (3, mem); 7 : pop (mem);
2 : push (3, mem); 8 : push (0, l);
3 : push (3, mem); 9 : a := a− 1;
4 : push (3, mem); 10 : goto 6;
5 : a = 5; end : end ;

This program computes the same function. The first part (in the leftmost column) allocates
a constant amount of memory on a “free memory” stack. Since the amount of memory
needed (the constantα in the Lemmas and Theorems above) is known, this can be done
with no loops by using several copies ofpush . Then, the program mimics the loop of the
first program. However, before allocating any new memory (that is, before performing any
push), it starts by removing some free memory frommem (with a pop). This ensures
that no cycle in the Space-RCG will have a strictly positive weight.

4.4 Linear Space

Linear space seems to be closely related to NSI. Indeed, linear space functions can be
computed in spaceλx.βx + α and so NSI is a special case withβ = 1. Hence we want to
try and adapt our result to detect linear space usage.

Definition 4.19. FLINSPACEdenotes the set of functions computable in linear space by
a stack machine, that iff ∈ FLINSPACE if and only if f ∈ S(l) for some linear function
l : x 7→ βx + α.

The idea is quite easy: since we are allowed to use a factor ofβ more space than what
is initially allocated, it is sufficient to consider that every time some of the initial data is
freed,β “tokens” (3) are released and can later be used to controlβ different allocations.

In order to do so, the most convenient way is to design certainstacks of the machine as
input stacksand the others must be initially empty. Then, apop operation on an input stack
would have weight−β instead of simply−1 to account for this linear factor. However,
doing so we must be careful that newly allocated memory (thatis, furtherpush) will only
be counted as1 when freed again (to avoid a cycle of freeing one slot, allocating β, freeing
theseβ slots and reallocatingβ2 and so on). In order to do so, we simply require that the

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

16 · Jean-Yves Moyen

input stacks are read-only in the sense that it is not possible to perform apush operation
on them.

Notice that any program can be turned into such a program by having twice as many
stacks (one input and one work for each) and starting by copying all the input stacks into
the corresponding working stacks and then only dealing withthe working stacks.

With these programs, the invariant will not be the length of states, but something slightly
more complicated, namelyβ times the length of input stacks plus the length of work stacks.
We will call this measureβ-size. Globally, we will use size to denote some kind of measure
on states that is used by the RCG for analysis. The terminology is close to the one used
for Size Change Termination [Lee et al. 2001], where values are assumed to have some
(well-founded) “size ordering” which is not specified and not necessarily related to the
actual space usage of the data. Typically, termination of a program working over positive
integers can be proved using the usual ordering onN as size ordering, even if the integers
are all32 bits integers, thus taking exactly the same space in memory.

Definition 4.20(Extended stack machines). An extended stack machineis a stack ma-
chine with the following modification:

There are two disjoint sets of stacks,Si is the set ofinput stacksandSw is the set
of working stacks. There are two instructionspop i andpop w depending on whether an
input or working stack is considered but only onepush = push w instruction, that is it is
impossible topush anything on an input stack.

The β-sizeof a state isβ times the length of input stacks plus the length of working
stacks, that is:

||θ||β = β
∑

stki∈Si

|stki|+
∑

stkw∈Sw

|stkw|

Theweightof pop i is−β, the weight ofpop w is−1, the weight ofpush is +1. The
weight of any other instruction is0.

Theβ-Space RCG is built as the Space-RCG: the underlying graph isthe control flow
graph and the weight of each edge is the weight of the corresponding instruction.

Proposition 4.6 becomes:

PROPOSITION 4.21. Let p be a program,Gβ be its β-Space RCG andp ⊢ θ1 =
〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an execution with tracet, then there is an ad-
missible walk(IP1, ||θ1||β)→ . . .→ (IPn, ||θn||β) with the same tracet.

Then, adapting Theorem 4.7 and Theorem 4.12, we have:

PROPOSITION 4.22. Letp be a program andGβ be itsβ-Space RCG. IfGβ is λx.x +
α-resource aware for some constantα, thenp ∈ S(λx.βx + α).

THEOREM 4.23. Let p be a program andGβ be itsβ-Space RCG.Gβ is λx.x + α-
resource aware (for someα) if and only if it contains no cycle of strictly positive weight.

COROLLARY 4.24. Let p be a program. If there existsβ such that itsβ-Space RCG
contains no cycle of strictly positive weight, thenp computes a function inFLINSPACE.

This can be checked in NPTIME sinceβ is polynomially bounded in the size of the
program.

Also for FLINSPACE, the normalisation process of programs can be performed. The first
phase of the normalised program consists in first pushing onto mem α copies of3, then

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 17

end 1

0

2

3

4

0 0

−β

+1

+1

0

Fig. 6. β-Space RCG of the double-reverse program.

repeatedly copying each input stack onto the correspondingworking stack and each time a
symbol is copied,β−1 new3s are pushed ontomem (so that the global space usage from
now on is alwaysβx + α). This means that here also the characterisation is extensionally
complete: for each FLINSPACE function, there exists one program computing it that fits
into the characterisation.

Example4.25. The following program “double-reverses” a list. It issimilar to the
reverse program but each element is present twice in the result. The list l is an input stack
(and hence cannot bepush ed) whilel′ is a working stack.

0 : if l = [] then goto end ; 3 : push w(a, l′);
1 : a := pop i(l); 4 : goto 0;
2 : push w(a, l′); end : end ;

Its β-Space RCG is displayed on Figure 6. Since it contains no cycle of strictly positive
weight if β ≥ 2, the program is in LINSPACE. More precisely, it can be computed in space
λx.2x

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vector Addition Systems with States(VASS) which are known to be
equivalent to Petri Nets [Reutenauer 1989]. Resources Control Graphs are a generalisation
of VASS.

5.1 Definitions

Definition 5.1 (VASS, configurations, walks). A Vector Addition System with Statesis
a directed graphG = (S, A) together with aweighting functionω : A→ Z

k wherek is a
fixed integer.

A configurationis a pairη = (s, v) wheres ∈ S is a vertex andv ∈ Z
k is thevaluation.

A configuration isadmissibleif and only if v ∈ N
k.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn) such that
s0

a1→s1
a2→ . . .

an→sn and for all i > 0, vi = vi−1 + ω(ai). A walk is admissibleif all
configurations in it are admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

18 · Jean-Yves Moyen

a

b

c

d

(0,−1,+1)

(−1, 0, 0)

(0,+1,−2) (0, 0,+1)

(0, 0,−1)

a

b

c

d

(0,+2,+1)

(+3, 0,−1)

(−1, 0,+1) (0,−1, 0)

(0, 0,−1)

Fig. 7. Two VASS

We say that the patha1 . . . an is theunderlying pathof the walk and the walkfollows
this path. Similarly,G is theunderlying graphfor the VASS.

As for graphs and paths, we will writeη → η′ if there exists an edgea such thatη
a
→η′

and
+
→,

∗
→ for the closures.

Definition 5.2 (Weight of a path). Let V be a VASS anda1 . . . an be a path in it. The
weight of edges is extended to paths canonically:ω(a1 . . . an) =

∑
ω(ai). This means

thatω is a morphism between(A, ·) (the free monoid generated by the edges) and(Zk, +).

Example5.3. Figure 7 displays two VASS. More formally, the first one should be de-
scribed as a graphG = (S, A) with:

—S = {a, b, c, d}

—A = {a
a1→b, a

a2→c, b
a3→c, c

a4→d, d
a5→a}

—ω(a1) = (0,−1, +1), ω(a2) = (−1, 0, 0), ω(a3) = (0, +1,−2), ω(a4) = (0, 0, +1),
ω(a5) = (0, 0,−1).

LEMMA 5.4. LetV be a VASS anda1 . . . an be a finite path in it. There exists a valu-
ationv0 such that for0 ≤ i ≤ n, v0 + ω(a1 . . . ai) ∈ N

k.

This means that every finite path is the underlying path of an admissible walk.

PROOF. Because the path is finite, thejth component ofω(a1 . . . ai) is bounded from
below by someαj (of course, this bound is not necessarily reached with the same i for
all components, but nonetheless such a bound exists for eachcomponent separately). By
puttingβj = max(0,−αj) (that is0 if αj is positive), thenv0 = (β1, · · · , βk) verifies the
property.

Example5.5. Let us consider the first VASS of Figure 7 and the patha
a1→b

a3→c. This
path has weight(0, 0,−1). If we consider the initial valuation(0, 0, 0) and the correspond-
ing walk(a, (0, 0, 0))

a1→(b, (0,−1, 1))
a3→(c, (0, 0,−1)), this walk is not admissible because

the second and third valuations have a strictly negative coefficient. However, following the
same path, it is always possible to take a “big enough” initial valuation in order to get
an admissible walk. Here, the walk(a, (0, 1, 1))

a1→(b, (0, 0, 2))
a3→(c, (0, 1, 0)) follows the

same path and is admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 19

LEMMA 5.6. Let (s0, v0) → . . . → (sn, vn) be an admissible walk in a VASS. Then,
for all v′0 ≥ v0 (component-wise comparison),(s0, v

′
0)→ . . .→ (sn, v′n) is an admissible

walk (following the same path).

PROOF. By monotonicity of the addition.

Example5.7. Continuing the previous example, this means that any valuation larger
(component-wisely) than(0, 1, 1) leads to an admissible walk when following the same
path. So, among other, the walk starting at(a, (17, 14, 42)) and following edgesa1 anda3

is admissible.

Definition 5.8 (Uniform termination). A VASS is said to beuniformly terminatingif it
admits no infinite admissible walk. That is, every walk is either finite or reaches a non-
admissible configuration.

THEOREM 5.9. A VASS isnot uniformly terminating if and only if there exists a cycle
whose weight is inNk (that is, is non-negative with respect to each component).

PROOF. If such a cycle exists, starting and ending at vertexs, then by Lemma 5.4 there
existsv0 such that the walk starting at(s, v0) and following the cycle is admissible. After
following the cycle once, the configuration(s, v1) is reached. Since the weight of the cycle
is non-negative,v1 ≥ v0. Then, by Lemma 5.6 the walk can follow the cycle one more
time, reaching(s, v2), and still be admissible. By iterating this process, it is possible to
build an infinite admissible walk.

Conversely, let(s0, v0) → . . . → (sn, vn) → . . . be an infinite admissible walk. Since
there are only finitely many vertices, there exists at least one vertexs′ appearing infinitely
many times in it. Let(s′l, v

′
l) be the occurrences of the corresponding configurations in

the walk. Since the component-wise order over vectors ofN
k is a well partial order, there

existsi, j such thatv′i ≤ v′j . The cycle followed betweens′i ands′j has a non-negative
weight.

Example5.10. The second VASS of Figure 7 is not uniformly terminating. Indeed,
if we consider the cycleC = a1a3a4a5a1a3a4a5a2a4a5, it has weight(1, 1, 0). By
Lemma 5.4, there exists a valuationv = (m, n, p) such that the walk which starts at
(a, (m, n, p)) and following this cycle is admissible (it is sufficient to choose(m, n, p) ≥
(2, 0, 0)). After following the cycle once, the configuration is(a, (m + 1, n + 1, p)) from
which the cycle can be followed once again, thus reaching(a, (m+2, n+2, p)). Repeating
this leads to an infinite admissible walk.

5.2 Decidability of the uniform termination

Definition 5.11(Linear parts, semi-linear parts). Let (M, +) be a commutative mo-
noid7. A linear part of M is a subset of the formv + V ∗ wherev ∈ M andV is a finite
subset ofM . That is, ifV = {v1, · · · , vp}, a linear part can be expressed as:

{
v +

i=p∑

i=1

nivi|ni ∈ N

}

7Recall that a commutative monoid is a monoid (a set with an associative internal operation admitting a neutral
element) whose operation is commutative. A typical exampleof commutative monoid is(N,×) (inverse for each
element is not needed).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

20 · Jean-Yves Moyen

A semi-linear partof M is a finite union of linear parts.

Recall that rational parts are built from+, union and Kleene’s star∗. When dealing with
words (that is the free monoid generated by a finite alphabet), + is word concatenation (not
commutative) and so rational parts are exactly the regular languages.

LEMMA 5.12. In a commutative monoid, semi-linear parts are exactly the rational
parts.

PROOF. Semi-linear parts are expressed as rational parts.
Conversely, it is sufficient to show that the set of semi-linear parts contains all finite

parts and is closed by union, sum and∗.
Semi-linear parts contains finite part and are closed under union by definition. Closure

under sum is obtained because(a + A∗) + (b + B∗) = (a + b) + (A
⋃

B)∗ and sum is
distributive over union ((A

⋃
B) + C = (A + C)

⋃
(B + C)).

The hard point being the closure under∗ which is a consequence of commutativity. It
holds because(v + V ∗)∗ = (v + ({v}

⋃
V)∗)

⋃
{0} (the key idea being that(a(b∗))∗ =

a∗b∗ in a commutative monoid). See [Reutenauer 1989] (Proposition 3.5) for details.

LEMMA 5.13. The set of non-empty cycles in a graph is a rational part (of the free
monoid generated by the edges).

PROOF. Consider the graph as an automaton with each edge labelled by a unique label.
The set of paths between two given vertices is a regular language; specifically, the set of
cycles that begin and end at vertexs is regular. The full set of cycles is the union of those
sets over all the (finitely many) vertices, and is consequently also regular.

Example5.14. Consider again the VASS of Figure 7 or, rather, their underlying graph.
The set of (possibly empty) cycles froma to itself is described by the regular expression
A = ((a1a3a4a5)|(a2a4a5))

∗ and correspond exactly to the rational language recognised
by this expression. Then the set of all (non-empty) cycles inthese VASS is the language
recognised by the regular expression:

(((a1a3a4a5)|(a2a4a5))A)|(a3a4a5Aa1)|(a4a5A(a1a3|a2))|(a5A(a1a3|a2)a4)

where each of the four alternatives correspond to the set of (non-empty) cycles from one
vertex to itself.

COROLLARY 5.15. The set of weights of (non-empty) cycles in a VASS is a semi-linear
part ofZk.

PROOF. Since the weighting functionω is a morphism between(A, ·) and(Zk, +), it
preserves rational parts. Hence, the set of weights of cycles is a rational part ofZk. Since
+ is commutative, it is also a semi-linear part.

Notice that the proofs are constructive. Hence the semi-linear part can be built effec-
tively.

Example5.16. For concision, we will write hereωi instead ofω(ai).
First, let us look at the weight of cycles froma to itself. By applying the weighting

morphism (ω) to A, we obtain the regular expression:

((ω1 + ω3 + ω4 + ω5)|(ω2 + ω4 + ω5))
∗

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 21

To express this as a semi-linear part, we must change the alternatives (|) into union of sets.
This leads to:

{ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗

which is a semi-linear part ofZ3. For the first VASS, this is:

{(0, 0,−1), (−1, 0, 0)}∗ = {(−k, 0,−l)|k, l ∈ N}

Next, consider the expression describing cycles fromb to itself: a3a4a5Aa1. When
applying the weight to it, we obtain:

{ω3 + ω4 + ω5}+ {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗ + {ω1}

By commutativity of addition, this can be expressed as the semi-linear part:

(ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗

Again, if we consider the first VASS, this is:

(0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗ = {(−k, 0,−l)|k, l ∈ N, l > 0}

Then, we must do the same work for the three other alternatives (corresponding to cycles
from a, c andd). This leads, to the following semi-linear parts:

—for a, c andd: (ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗
⋃

(ω2 +
ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}

∗

—for b: (ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗

The expression forb is different from the others because non-empty cycles atb must go at
least once through the large cycle while other non-empty cycle can go through the small
cycle only.

The resulting semi-linear part ofZ
k describing weight of cycles corresponds to the union

of these semi-linear parts, namely:

{ (ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}
∗ }

⋃
{ (ω2 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}

∗ }

For the first VASS, this is:

((0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗)
⋃

((−1, 0, 0) + {(0, 0,−1), (−1, 0, 0)}∗)

= {(−k, 0,−l)|k, l ∈ N, k + l > 0}

For the second VASS, this is:

((−1, 1, 1) + {(−1, 1, 1), (3,−1,−2)}∗)
⋃

((3,−1,−2) + {(−1, 1, 1), (3,−1,−2)}∗)

= {(3l− k, k − l, k − 2l)|k, l ∈ N, k + l > 0}

THEOREM 5.17. Uniform termination of VASS is inNPTIME.

PROOF. By Theorem 5.9, a VASS isnot uniformly terminating if and only if there is a
cycle whose weight is inNk. Since the set of weights of cycles is a semi-linear part ofZ

k,
it is sufficient to be able to decide whether a linear part ofZ

k intersectsNk (and try this for
each linear part of the union).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

22 · Jean-Yves Moyen

Let U = {u1, · · · , up} andu + U∗ be a linear part ofZk. It intersectsNk if and only if
there existn1, · · · , np ∈ N such thatu +

∑
niui ≥ 0.

This can be solved in NPTIME using usual integer linear programming techniques.

Since VASS and Petri nets are equivalent, this also shows that uniform termination of
Petri nets is decidable. Without going through the equivalence, a direct and simpler proof
can be made for Petri nets. Such a proof can be found in [Moyen 2003], (theorem60, page
83).

Example5.18. Consider again the two VASS of Figure 7. The set of weight of non-
empty cycles of the first VASS corresponds to the semi-linearpart:

((0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗)
⋃

((−1, 0, 0) + {(0, 0,−1), (−1, 0, 0)}∗)

The first linear part of the union,(0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗, intersectN3 if and
only if there existsn1, n2 ∈ N such that:

(0, 0,−1) + n1 × (0, 0,−1) + n2 × (−1, 0, 0) ≥ (0, 0, 0)

This is clearly impossible.
Similarly, the second linear part cannot intersectN

3. Hence, the set of weights of non-
empty cycles does not intersectN

3 and the VASS is uniformly terminating.
For the second VASS, the weights correspond to the semi-linear part:

((−1, 1, 1) + {(−1, 1, 1), (3,−1,−2)}∗)
⋃

((3,−1,−2) + {(−1, 1, 1), (3,−1,−2)}∗)

There, for the first linear-part, the system becomes:

(−1, 1, 1) + n1 × (−1, 1, 1) + n2 × (3,−1,−2) ≥ (0, 0, 0)

Usual Integer Linear Programming techniques show that the system has solution, for exam-
ple with n1 = 1, n2 = 1, corresponding to the cycle(a1a3a4a5)

2(a2a4a5) whose weight
is (1, 1, 0). Hence, the VASS is not uniformly terminating.

However, any infinite walk starting from, for example, the configuration(a, (0, 14, 0))
is not admissible. Deciding whether a given configuration leads to an infinite admissible
walk or not is a different problem from uniform termination.

It is worth noticing that in the second case, the cycle detected isnot a simple cycle. So
the problem is different from the one of detecting simple cycles in graphs and requires a
specific solution.

5.3 VASS as Resource Control Graphs

Before the formal definition of Resource Control Graphs, we show here how VASS can be
used to build proofs of uniform termination of programs.

In the rest of this section, we consider the following size function:

||〈IP , σ〉|| = (|stk1|, . . . , |stks|)stki∈S

that is, the vector whose components are the lengths of the different stacks of a given
program. Moreover, we use(ei) to denote the canonical basis ofZ

k, that isei is the vector
whosejth component isδi,j .

Definition 5.19(Weights). To each instruction, we assign the followingweight:

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 23

end 1

0

2

3

(0, 0) (0, 0)

(−1, 0)

(0,+1)

(0, 0)

Fig. 8. The Resource Control VASS for the reverse program

—ω(r := pop (stki)) = −ei

—ω(push (r, stki)) = ei

—ω(i) = 0 for all other instructions.

Definition 5.20(Resource Control VASS). Let p be a program. ItsResource Control
VASSis a VASS whose underlying graph is the Control Flow Graph ofp and edgei has
weightω(i) as defined above.

PROPOSITION 5.21. Let p be a program andG be its Resource Control VASS. Ifθ0 =
〈IP0, σ0〉

∗
→〈IPn, σn〉 = θn is an execution ofp, then(IP0, ||θ0||)

∗
→(IPn, ||θn||) is an

admissible walk ofG with the same trace.

PROOF. By induction on the length of the execution. Notice that executions leading to
errors (⊥) are not taken into account here.

THEOREM 5.22. Let p be a program andG be its Resource Control VASS. IfG is
uniformly terminating, thenp is uniformly terminating.

PROOF. If p is not uniformly terminating, then by the previous proposition there exists
an infinitely long execution that can be mapped onto an infinite admissible walk.

Since uniform termination of VASS is decidable, this allowsto detect uniform termi-
nation of a broad class of programs. Of course, the converse is not true since uniform
termination of programs is not decidable.

Example5.23. The Resource Control VASS of the reverse program is displayed on
Figure 8. Since it is uniformly terminating, so is the reverse program.

Weighted graphs, as used in Section 4 to prove Non-Size Increasingness of programs are
the special case of VASS when the dimension is one.

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisation of the VASS seen in the previous
Section. For VASS, the only information kept is a vector of integers, and only addition
of vectors can be performed. When modelling programs, this is not sufficient. Indeed, if
one wants to closely represent the memory of a stack machine,a vector is not sufficient.
Moreover, vector addition is not powerful enough to represent common operations such as
copy of a variable (x := y).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

24 · Jean-Yves Moyen

Hence, we will now relax the constraints on valuations and weights. We will allow
valuations to be drawn from any set and allow as weight any function mapping valuations
to valuations. Notice that in the case of VASS, each weight isaddition of a vectorv, which
could be represented as the functionλx.x + v.

For the sake of generality, we will even allow the sets of valuations to be different for
each vertex. This may seem strange, but a typical use of that is to have vectors with
different numbers of components as valuations (that is the set of valuations for vertexsi

would beZ
ki) and matrix multiplications as weights (where the matriceshave the correct

number of rows and columns). Of course, it is always possibleto take the (disjoint) union
of these sets, but it usually clutters needlessly the notations. See Example 9.3 for more
details.

6.1 Graphs and States

Definition 6.1 (RSS, configurations, walks). A Resource System with States(RSS) is a
tuple(G, V, V +, W, ω) where

—G = (S, A) is a directed graph,S = {s1, · · · , sn} is the set of vertices andA =
{a1, · · · , am} is the set of edges.

—V1, · · · , Vn are the sets ofvaluations. V is the union of all of them.
—V +

i ⊂ Vi are the sets ofadmissible valuations. V + is the union of them.
—Wi,j : Vi → Vj are the sets ofweights. W is the union of them.

—ω : A→W is theweighting functionsuch thatω(a) ∈Wi,j if si
a
→sj .

When it is clear what both the valuations and weights sets are, we will name the RSS after
the underlying graphG.

A configurationis a pairη = (s, v) wheres = si ∈ S is a vertex of the graph and
v ∈ Vi is a valuation. A configuration isadmissibleif v ∈ V +

i is admissible.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for alli > 0, vi = ω(ai)(vi−1). A walk is admis-
sible if all configurations in it are admissible.

The walkfollowspathp which is called eitherunderlying pathor traceof the walk.

As earlier, we writeη → η′ if the relation holds for an unspecified edge and
+
→,

∗
→ for

the transitive and reflexive-transitive closures.

The idea behind having both valuations and admissible valuations is that this allowsV
to have some nice algebraic properties not shared byV +. Moreover, this also allows the set
of valuations to be the closure of the admissible valuationsunder the weighting functions,
thus removing the deadlock problem of reaching something that would not be a valuation
(and replacing it by the more semantical problem of detecting non admissible valuations).
Typically with VASS,V is the ringZ

k, andV + is N
k. Since weights can add any vector,

with positive or negative components, to a valuation,V is the closure ofV + under this
operation. Moreover, VASS do not suffer from the deadlock problems that appear in Petri
nets (but this is done by introducing the problem of decidingwhether a walk is admissible).

Notice that either unions (forV , V + or W) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Weight of a path). Let G be an RSS. The weighting function can be
canonically extended over all paths inG by choosingω(ab) = ω(b) ◦ ω(a).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 25

(W, ◦) is a magma. It is not a monoid because the identity is not unique. There is a finite
set of neutral elements, the identities over eachVi.

Notice that we do not actually need the wholeW . Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We will overload the notation and
call it W as well.

In the following, to improve readability, we will writev ⊛ ω(a) instead ofω(a)(v)
andω(a) # ω(b) instead ofω(b) ◦ ω(a). When following paths, we now have:ω(ab) =
ω(b) ◦ ω(a) = ω(a) # ω(b). So, this allows for a more natural expression of weights of
paths8.

Example6.3. For the VASS of the previous Section, we haveVi = Z
k andV +

i = N
k

for all i, andω(ai) = λx.x + ui for some vectorui ∈ Z
k. Or, we could describe VASS by

saying thatV = W = Z
k, V + = N

k and⊛ = # = +.
The notation with⊛ and# is much more convenient, especially to easily handle weights

of paths, as is done in the Lemmas and Theorems of the previousSection.

If we considerVi as objects andω ∈ W as arrows, we have a category. Indeed, identity
exists for eachVi and composition of two arrows is properly defined.

6.2 Properties of RSS

6.2.1 Order

Definition 6.4 (Ordered RSS). An ordered RSSis an RSSG = (G, V, V +, W, ω) to-
gether with a partial ordering≺ over valuations such that the restriction of≺ to V + is a
well partial order.

For VASS, the component-wise order on vectors of the same length is the well partial
order (overV + = N

k) that was used in the previous Section.

Definition 6.5 (Monotonicity, positivity). Let (G, V, V +, W, ω) be an ordered RSS. We
say that it isincreasingif all weighting functionsω(ai) are increasing with respect to≺.
Since the composition of increasing functions is still increasing, the weighting function of
any path will be increasing.

We say that(G, V, V +, W, ω) is positiveif for eachv ∈ V + andv′ ∈ V , v ≺ v′ implies
v′ ∈ V +.

VASS are both increasing and positive. Monotonicity is the key of Lemma 5.6 while
positivity is implicitly used in the proof of Theorem 5.9 to say that the valuation reached
after one cycle is still admissible.

Definition 6.6 (Resource awareness). Let G be an ordered RSS andf : V → V be a
function.G is f -resource awareif for any walk (s0, v0)

∗
→(sn, vn) we havevn � f(v0)

6.2.2 Uniform termination

Definition 6.7 (Uniform termination). Let G be an RSS.G is uniformly terminatingif
there is no infinite admissible walk overG.

8From an algebraic point of view, this means thatω is considered as a morphism between(A, ·) and (W, #),
and⊛ is a right-action ofW on V . Moreover,(W, #) often appears to be isomorphic to a well known structure
(usually a group, such as(Zk ,+) for VASS).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

26 · Jean-Yves Moyen

Notice that if an RSS is not uniformly terminating, then there exists an infinite admis-
sible walk that stays entirely within one strongly connected component of the underlying
graph. In the following, when dealing with infinite walks we suppose without loss of gen-
erality that the RSS is strongly connected.

Theorem 5.9 can be generalised to RSS:

THEOREM 6.8. If G doesnot uniformly terminate, then there is an admissible cycle

(s, v)
+
→(s, u) with v � u. If G is increasing and positive, then this is an equivalence.

PROOF. If an infinite admissible walk exists, then we can extract from it an infinite
sequence of admissible configurations(s′, vk) with fixed s′, since there is only a finite
number of vertices. Since the order is a well partial order onV +, there exists ai < j with
vi � vj , thus leading to an admissible cycle.

If such a cycle exists, then it is sufficient to follow it infinitely many time to have an
infinite admissible walk. Monotonicity is needed to ensure that every time one follows
the cycle, the valuation does indeed not decrease. Positivity is needed to ensure that when
going through never decreasing valuations one will not leaveV +.

PROPOSITION 6.9. LetG = (G, V, V +, W, ω) be an RSS.

(1) If V is finite, thenW is finite.

(2) If V is finite, then uniform termination ofG is decidable.

(3) If bothV andW are enumerable, then it uniform termination for an ordered RSSG is
semi-decidable.

PROOF.

(1) Because the set of functionsF(V, V) is finite and containsW .

(2) If there are only finitely many valuations, any infinite walk eventually comes back to

exactly the same configuration, hence the cycle of Theorem 6.8 becomes(s, v)
+
→(s, v).

Then it is possible to compute all the possible weights of cycles (there are only finitely
many of them) and check with each valuation whether the condition is met. Notice
that this does not require the RSS to be ordered.

(3) By enumerating the cycles and the valuations simultaneously, computing the new val-
uation after going through the cycle and checking with the ordering whether this sat-
isfies Theorem 6.8.

Corollary 5.15 can be generalised:

PROPOSITION 6.10. If (W, #) is commutative, then the set of weights of cycles of an
RSS is semi-linear.

This allows us to easily find candidates for a generalisationof Theorem 5.17 if the set of
“positive” weights is easily expressible (as it was the casefor VASS). Among other prop-
erties: if it is itself semi-linear, then uniform termination is decidable (because intersection
between two semi-linear parts is decidable).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 27

6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functions,meaning that ifs
a
→s′, for

each valuationv there is only one valuationv′ such that(s, v)
a
→(s′, v′). Sometimes, it

is more convenient to have several possible results becauseapproximations of the values
leads to a loss of information. In this case, the weights considered will be relations rather
than functions and we requirev′ ∈ ω̂(a)(v) rather thanv′ = ω(a)(v).

6.3.1 Constraints RSS

Definition 6.11(Constraints RSS, configurations, walks).
A Constraints RSSis a tuple(G, V, V +, W, ω) where

—G = (S, A) is a directed graph.

—V +
i ⊂ Vi are, respectively, the sets ofadmissible valuationsandvaluations.

—Wi,j : Vi → P(Vj) are the sets ofweights.

—ω̂ : A→W is theweighting functionsuch that̂ω(a) ∈Wi,j if si
a
→sj .

Configurations and admissible configurations are defined as earlier.
A walk is a sequence (finite or not) of configurations(s0, v0)

a1→ . . .
an→(sn, vn)

an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for alli > 0, vi ∈ ω̂(ai)(vi−1). A walk is admis-
sible if all configurations in it are admissible.

It is important to notice that even if weighting functions return sets (that is, they are
relations rather than functions), each walk has to choose one element from this set as a
new valuation. That is, we do not consider configurations with sets as valuations, but
rather introduce some kind of non-determinism in the RSS. The main use for this will be
when some valuations are in no way related to the previous ones and can be anything (e.g.
if a value is provided via some external mechanism such as ascanf instruction).

Definition 6.12(Weight of a path). Let G be an RSS. The weighting function can be
canonically extended over all paths inG by choosinĝω(ab)(x) =

⋃
y∈bω(a)(x) ω̂(b)(y).

As earlier, uniform termination means that there exists no infinite admissible walk. How-
ever, monotonicity becomesx � y ⇒ ∀x′ ∈ ω̂(x), ∃y′ ∈ ω̂(y)/x′ � y′.

Then, Theorem 6.8 becomes:

THEOREM 6.13. Let G be a positive increasing Constraints RSS.G is not uniformly

terminating if and only if there is an admissible cycle(s, v0)
+
→(s, v1) such thatv0 � v1.

PROOF. If an admissible infinite walk exists, then we can extract from it an admissible
cycle in exactly the same way as with Theorem 6.8.

Conversely, if a non-decreasing admissible cyclec exists, let(s, v0)
a
→(s′, v′0)

∗
→(s, v1)

be the first, second and last configurations when following the cycle. By hypothesis,v0 �
v1.

Then, there existsv′1 ∈ ω̂(a)(v1) such that(s, v1)
a
→(s′, v′1) andv′0 � v′1. By positivity

of the VASS,v′1 is still admissible.
By iterating this process, we build the admissible cycle(s, v1)

c
→(s, v2) with v1 � v2.

Then, this can be donead infinitumthus leading to an admissible infinite walk.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

28 · Jean-Yves Moyen

Ack

(−1,+1)

(−1,+∞) (0,−1)

Fig. 9. Constraints VASS for Ackermann’s function

6.3.2 Constraints VASS.
Let us show how this concept applies to VASS and why it can be useful when studying

programs. Remember thatZ = Z
⋃
{+∞}.

Definition 6.14(Constraints VASS). A Constraints VASSis a directed graphG = (S, A)

together with aweighting functionω : A→ Z
k

wherek is a fixed integer.
A configurationis a pairη = (s, v) wheres ∈ S andv ∈ Z

k. It is admissibleif v ∈ N
k.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn) such that
s0

a1→s1
a2→ . . .

an→sn and for all i > 0, vi ≤ vi−1 + ω(ai). A walk is admissibleif all
configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we shouldconsider the weighting
functionω̂(a) : Z

k → P(Zk) such that̂ω(a)(v) = {v′|v′ ≤ v + ω(a)}. Then, the relation
between valuations in a walk will be the generalvi ∈ ω̂(ai)(vi−1). Since, all constraints
have the same shape, we can express this in a more readable way. Constraints VASS are
positive and increasing. When there is no+∞ in the weights, it is always “best” to choose
the greatest possible valuation, that is use the (regular) VASS with the same underlying
graph and weighting function.

Example6.15. Consider the following functional program computingAckermann’s
function:

Ack (0, n)→n + 1

Ack (m + 1, 0)→Ack (m, 1)

Ack (m + 1, n + 1)→Ack (m, Ack (m + 1, n))

For functional programs, an equivalent of the CFG it thecall graph. There is one vertex
for each function symbol (here only one) and one edge for eachcall (here,3). Since there
are two positive integers in the program, it is natural to choose(m, n) as valuation.

The first line does not perform any call, hence there is no edgecorresponding to it in the
graph (since termination is studied here, the first line can never lead to non-termination,
hence it is safe to have nothing corresponding to it in the graph).

The second line performs one call where the arguments of the function go from(m +
1, 0) to (m, 1), this corresponds to adding(−1, 1) to the valuation.

The third line performs two calls. The inner call is fromAck (m+1, n+1) to Ack (m+
1, n) (embedded in some context). That is, in this call, the arguments of the function go
from (m + 1, n + 1) to (m + 1, n), so the corresponding edge is labelled(0,−1).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 29

However, when considering the outer call in the last line thesecond argument becomes
Ack (m + 1, n) which cannot be related to the parametern in any easy way. So, using a
regular VASS, this call would not be representable.

With a Constraints VASS, we can represent this last call. Indeed, not knowing anything
on the result simply means that we can relax all constraints on it which will be represented
by the vector(−1, +∞). The constraints VASS for Ackermann’s function is displayed on
Figure 9.

Since this Constraints VASS is uniformly terminating, so isAckermann’s function.
This both illustrates why Constraints VASS can be useful as well as hints how to apply

the ideas behind RCGs to functional programs.

7. RESOURCE CONTROL GRAPHS

Instead of the weighted graphs or VASS used before, we will now use any RSS to model
programs. A set of admissible valuations will be given to each state and weighting func-
tions simulate the corresponding instruction.

Since we can now have any approximation of the memory (the stores) for valuations,
we cannot simply use the length of a state to abstract it. Instead, we consider given a
size functionthat associates to each state (or to each store) some size. The size function
is unspecified in general. Of course, when using RCG to model programs, the first thing
to do is usually to determine a suitable size function (according to the studied property).
Notice that depending on the size function, weights of instructions can or cannot be defined
properly (that is, some sizes are either too restrictive or too loose and no function can
accurately reproduce on the size the effect of a given instruction on actual data). In this
case, the RCG cannot be defined and another size function has to be considered.

7.1 Resource Control Graphs

Definition 7.1 (RCG). Let p be a program andG be its control flow graph. LetV + be
a set of admissible valuations (and≺ be a well partial order on it). Let|| • || : Θ → V +

be a size function from states to valuations andV +
lbl be the image by|| • || of all states

〈lbl , σ〉 for all storesσ.
For eachi , edge ofG, let ω(i) be a function such that for all statesθ verifying p ⊢

θ
i
→θ′, ω(i)(||θ||) = ||θ′||. Let V be the closure ofV + by all the weighting functions

ω(i).
TheResource Control Graph(RCG) ofp is the RSS build onG with weightsω(i) for

each edgei, valuationsV and admissible valuationsV + (ordered by≺). V +
lbl being the

admissible valuations for vertexlbl .

As stated before, we will writev ⊛ ω(i) instead ofω(i)(v) andω(i) # ω(j) instead of
ω(j) ◦ ω(i).

LEMMA 7.2. Let p be a program,G be its RCG andp ⊢ θ0 → . . . → θn be an
execution with tracet. There exists an admissible walk(s0, ||θ0||) → . . . → (sn, ||θn||)
with the same tracet.

THEOREM 7.3. Let p be a program andG be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

Example7.4. A Space-RCG as defined in Section 4 is a special case of general RCG.
In this case,||θ|| = |θ|, this leads toV +

lbl = V + = N for each labellbl . Similarly,

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

30 · Jean-Yves Moyen

ω(i) = λx.x + ki with ki as in definition 4.1. Sincek ∈ Z, the closure ofV + by the
weighting functions isV = Z.

In this case, resource awareness of the Space-RCG (orβ-Space-RCG) guarantees a re-
source bound on the program execution.

Example7.5. For a better representation of programs, the size can bethe vector where
each component is the length of a stack:||〈IP , σ〉|| = (|stk1|, . . . , |stks|)stki∈S . This
corresponds exactly to what is done with the Resource Control VASS of Section 5.3. As
shown, this allows to decide uniform termination of severalprograms.

This termination analysis is close to the Size Change Termination [Lee et al. 2001] in
the sense that the size of data is monitored and a well ordering on it ensure that it can-
not decrease forever. It is sufficient to prove uniform termination of most common lists
programs such as reversing a list or insertion sort. It is also, in some way, slightly more
efficient than the original SCT because it can take into account not only the decreasing in
size, but also the increasing. In this way, a program that would loop on something like
pop pop push (2 pops and1 push) is not caught by SCT but is proved uniformly ter-
minating with this analysis. In this sense, it is closer to the SCT with difference constraints
(δSCT) [Ben-Amram 2006].

This method is in NPTIME, as we have shown, uniform termination of VASS is in
NPTIME. The original SCT, as well as fan-in freeδSCT, is PSPACE-complete. However,
this simple method does not allow for data duplication or copy. Lee, Jones and Ben-Amram
already claimed in the original SCT that there exists a poly-time algorithm for SCT dealing
with “programs whose size-change graphs have in- and out-degrees bounded by1”. It is
easy to check that VASS can only model such kind of programs accurately9, hence the NP
bound is not a big surprise.

Moreover, this method has a fixed definition of size and hence will not detect termination
of programs whose termination argument does not depend on the decrease of the length of
a list. Among other, any program working solely on integers (represented as letters of the
alphabet) will not be analysed correctly.

Example7.6. However, this representation can be improved. Typically, using Re-
source Control VASS it is impossible to detect anything happening to registers. If we
have a suitable size function|| • || : Σ → N for registers10, we can choose||〈IP , σ〉|| =
(||r1||, . . . , ||rr||)ri∈R. In this case, depending on the operators, weight could be either
vector addition or matrix multiplication (to allow the copyof a register).

Remark7.7. Taking exactly the image of|| • || as the set of admissible valuationsV +

might be a bit too harsh. Indeed, this set might have any shapeand is probably not really
easy to handle. So, it is sometimes more convenient to consider a superset of it in order
to easily decide if a valuation is admissible or not. The convex hull (in V) of the image
of || • || is typically such a superset. Notice that it is very similar to the idea of trying to
find an admissible set of sequences of states which will be more manageable than the set of
executions. Here, we try to find an admissible set of valuations which is more manageable
than the actual set of sizes. For more details on how to build and manage such a superset,
see the work of Avery [2006].

9And cannot even model all those programs due to the restriction on copying variables.
10Note that thesize function used here is in no way related to thelength of a state. It plays no role when
computing the space usage of a state and may also be seen as an ordering over the alphabet.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 31

Remark7.8. The size function is not specified and may depend on the property one
wants to study. We do not address here the problem of finding a suitable size function for a
given program. As hinted, it might be a simple vector of functions over stacks and registers
but it can also be a more complicated function such as a linearcombination or so. Hence,
with a proper size function, one is able not only to check thata given register (seen as an
integer) is always positive but also that a given register isalways bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Example7.9. Let us consider the following program, working on integers (that is the
alphabet is the setunsigned of 32 bits positive integers):

0 : i := 0; 4 : if i < n then goto 2;
1 : if i ≥ n then goto 5; 5 : i := i + 1;
2 : i := i + 1; end : end ;
3 : some instructions modifying neitheri nor n

This is simply a loopfor(i=0;i<n;i++) (in a C-like syntax). If we consider a size
function that simply takes the vector of the registers, thatis ||〈IP , σ〉|| = (i, n), then the
loop will have weight(+1, 0) and thus lead to a cycle of positive weight. However, a
clever analysis of the program could detect that inside the loop we must necessarily have
n− i > 0 and thus suggest the size||〈IP , σ〉|| = n− i. Using this, the loop has weight−1
and we can prove uniform termination of the program.

As stated, we do not address here the problem of finding a correct size function for
a given program. This problem is undecidable in general. Butinvariants can often be
automatically generated, usually by looking at the pre- andpost-conditions of the loops.

Notice also that this inequality must hold only in the loop. Indeed, at label5 or after,
we may havei > n. Hence using this size function everywhere would cause troubles since
then||(5, σ)|| will not be admissible.

Having different sets of valuations for each labels, that isa size function operating
differently on each label, can solve this problem. By choosing ||〈IP , σ〉|| = (i, n) for
IP = 0, 1, 5, end and||〈IP , σ〉|| = (i, n, n − i) otherwise, we can ensure that the “natu-
ral” sets of admissible valuations (N

2 andN
3) indeed correspond to the image of the size

function (or at least a manageable superset of it).
In this case, of course, we need the weight between labels1 and2 to take into account

the apparition of a new component in the valuation. Here, this can be done using a matrix
multiplication since the new component in the valuation is alinear combination of the
existing ones. See Example 9.3 for the complete construction of the RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to model programs and build RCG as was
done with the Ackermann’s function of Example 6.15. In that case, the relation required
between weights and sizes is:

for all statesθ verifying p ⊢ θ
i
→θ′, ||θ′|| ∈ ω̂(i)(||θ||).

Then, the simulation Lemma and uniform termination Theoremare still true:

LEMMA 7.10. Let p be a program,G be its Constraints RCG andp ⊢ θ0 → . . . →
θn be an execution with tracet. There exists an admissible walk(s0, ||θ0||) → . . . →
(sn, ||θn||) with the same tracet.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

32 · Jean-Yves Moyen

PROOF. Because||θi|| belongs tôω(a)(θi−1) and can thus always be chosen as the new
valuation.

THEOREM 7.11. Letp be a program andG be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

8. δ-SIZE CHANGE TERMINATION

In Section 4, we have used RCG in order to have an analysis of running space similar
to the Non Size Increasing approach of Hofmann. Here, we willuse RCG to analyse
termination of programs in a way similar to the Size Change Termination of Lee, Jones
and Ben-Amram and, more precisely, to theδ-Size Change Termination of Ben-Amram.

We consider here the(Z, min, +) semi-ring and denotesmin as⊕ and+ as⊗. These
operations are canonically extended to define multiplication of matrices11 fromM(Z).

8.1 Matrices and graphs

Definition 8.1 (Constraint graph). Let M be a square matrix of dimensionn. Its con-
straint graphis a weighted directed graphG such that:

—There aren verticesXi, 1 ≤ i ≤ n plus an extra vertexY .

—If Mi,j 6= +∞, there is an edge of weightMi,j betweenXi andXj .
—There is an edge of weight0 betweenY andXi, for all i.

Definition 8.2 (l-weight). LetG be a directed weighted graph. Thel-weight betweena
andb is the minimum weight of all paths of lengthl betweena andb and+∞ if there is
no such path.

The coefficientMk
i,j is thek-weight betweenXi andXj in the constraint graph ofM .

LEMMA 8.3. The systemX ≤ X ⊗M has a solution if and only if there is no strictly
negative coefficient in the diagonal ofMk, for all k. In that case, it admits a non-negative
solution.

It is possible to decide in polynomial time whether such a system admits a solution.

PROOF. The matrix inequality corresponds to the set of inequalities{Xj ≤ mini(Xi +
Mi,j)} which can, without modifying the set of solutions, be expressed as{Xj ≤ Xi +
Mi,j}.

If there is no strictly negative coefficient in the diagonal of Mk, that means that the
constraints graphG has no cycle of strictly negative weight. In this case, we canchoose
for Xi the value of the shortest path to reach it fromY . This is well defined because
there is no cycle of strictly negative weight and provides a solution for the system because
Xj ≤ Xi + Mi,j by definition of shortest paths.

Conversely, if there is a path of strictly negative weight, then it is easy to see that by
adding the inequations corresponding to the edges in this path one will eventually reach an
inequationXi < Xi and the system has no solution.

If there is a solution, thenX+(1, . . . , 1) is also a solution. Hence, there exists a solution
where all values are positive.

11That is, given two matricesA andB, (A ⊕ B)i,j = Ai,j ⊕ Bi,j = min(Ai,j , Bi,j) and(A ⊗ B)i,j =
L

k Ai,k ⊗ Bk,j = mink(Ai,k + Bk,j). Similarly, if X is a vector andM a matrix, then(X ⊗M)j =
L

k Vk ⊗Mk,j = mink(Vk + Mk,j).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 33

The system admits a solution if and only if the constraint graph has no cycle of strictly
negative weight. This can be decided in polynomial time by Bellman-Ford’s algorithm.

8.2 Size Change Termination

We explain here how to build RCG in order to perform the same kind of analysis as the
Size-Change Termination with difference constraints (δSCT) of Ben-Amram [2006]. Here,
we use matrices rather than Size Change Graphs thus following the work of Abel and Al-
tenkirch [2002] where similar SCT matrices are used (but over a 3-valued set, thus mim-
icking the initial SCT and not the work with difference constraints).

In this whole section, we consider a fixed programp, and for each labellbl a in it a fixed
integerka. LetVa = Z

ka andV +
a = N

ka be sets of (admissible) valuations associated with
each label and we consider given a size function|| • || such that for each labellbl a and
for each storeσ, ||〈lbl a, σ〉|| ∈ V +

a .

Definition 8.4 (Size Change Matrix). Let i be an instruction inp corresponding to an
edge betweenlbl a andlbl b in G. TheSize Change Matrix(SCT matrix) ofi is a matrix

M (i) ofMka,kb
(Z) such that for all statesθa with p ⊢ θa

i
→θb, ||θb|| ≤ ||θa|| ⊗M (i).

This means that if||θa|| = (x1, · · · , xka
) and||θb|| = (y1, · · · , ykb

), we have for each

j: yj ≤ mink{xk + M
(i)
k,j } where the coefficients ofM (i) can be any integer or+∞.

Definition 8.5 (Size Change RCG). TheSize Change RCG(SCT-RCG) ofp is the Con-
straints RCG forp build with admissible valuationsNka , and valuationsZka for vertex
lbl a. The weight for edgei is such that̂ω(i)(v) = {v′|v′ ≤ v ⊗M (i)} whereM (i) is
the SCT matrix fori .

As for Constraints VASS, the common shape of constraints allows to use a weighting
function ω(i) = M (i) instead of the weighting relation̂ω and ask along a walk that
vi ≤ ω(ai)(vi−1) rather thanvi ∈ ω̂(ai)(vi−1).

The uniform termination Theorem for Constraints RCG (Theorem 7.11) tells us that if
the SCT-RCG is uniformly terminating then so isp.

SCT-RCG are both increasing and positive, so it will be possible to apply Theorem 6.13.

THEOREM 8.6. Let G be the SCT-RCG ofp. It is uniformly terminating if and only if
it does not contains a cyclec of weightM (c) such thatX ≤ X ⊗M (c) admits a solution.

PROOF. If the systemX ≤ X ⊗M (c) admits a solution, then it admits an arbitrarily
large solution. Hence, there exists an admissible cycle(s, X)

c
→(s, X ⊗ M (c)) and by

Theorem 6.13, the SCT-RCG is not uniformly terminating.
Conversely, if the SCT-RCG is not uniformely terminating then, by Theorem 6.13 there

exists a cycle of weightM such thatX ≤ X ⊗M has a solution.

Remark8.7. The readers familiar with the original works of Lee et al. [2001] or Ben-
Amram [2006] may wonder why there is no idempotence condition in Theorem 8.6. As
a matter of fact, it happens that any square matrixM on the(Z, min, +) semi-ring has a
powerM ′ = Mk which is strongly sign idempotent, that is the coefficientsM ′n

i,j , for all
n > 0 all have the same sign.

The matrices we use here, as well as the Size Change Graphs in the other works, rep-
resent the flow of data. The idea behind idempotence is that wewant to detect a cycle in
the program such that the corresponding flow of data is also circular, that is each variable
flows to itself.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

34 · Jean-Yves Moyen

0

e 1

2 6

85

[
+∞ −1
0 +∞

] [
+∞ +∞
0 −1

]

Fig. 10. A Size Change Termination RCG.

The dangerous cycles (with respect to termination) are those who (i) have an idempotent
flow of data and (ii) do not have a decrease in one of the data. Indeed, these cycles could
be repeated infinitely many time, leading to an infinite execution.

However, as stated for matrices at the beginning of the Remark, each flow of data even-
tually becomes idempotent if repeated several times. Hence, finding a cycle whose weight
M is such thatX ≤ X ⊗M admits a solution is sufficient to get a cycle with idempotent
flow of data by repeating this cycle.

With RCG, the notion of valuation makes the inequalityX ≤ X ⊗M pretty natural,
since it exactly correspond to what happen to valuations after going through the cycle. The
original RCG works, however, did not have this notion of valuation but only the matrices
(or graphs), seen as a description of the modification on the size of variables (independently
to the actual value of variable, that is the valuations). Hence, the idempotence condition
was natural in this framework but the notion of RCG shows thatone can actually get rid of
it.

Notice that the flow of data is somewhat taken into account in Lemma 8.3 where we
consider the sign of the coefficients of the diagonal ofMk. The coefficients on the diagonal
of Mk explain how the data flows fromxi to itself after repeating the cyclek times.

Notice that by Lemma 8.3, the individual condition on cyclesis decidable in polynomial
time. The general condition, however, is undecidable. Nevertheless, if the matrices arefan-
in free, that is in each column of each SCT matrix, there is at most onenon-+∞ coefficient,
then the problem is PSPACE-complete. See [Ben-Amram 2006] for details. Notice that in
this paper, Ben-Amram uses mostly SCT graphs and not SCT matrices. The translation
from one to the other is, however, quite obvious. Similarly we present here directly a
condition on the cycles of the SCT-RCG without introducing the multipaths. This is close
to the “graph algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can be seen as an approximation of
theδSCT principle where only labels in{−1, 0, +∞} are used. Since this only gives way
to finitely many different SCT matrices, this is decidable ingeneral (PSPACE-complete).

Example8.8. Consider the following program (adapted from [Lee et al. 2001] fifth

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 35

example):

0 : if y = 0 then goto end ; 5 : goto 0;
1 : if x = 0 then goto 6; 6 : x := y;
2 : a := x; 7 : y := y− 1;
3 : x := y; 8 : goto 0;
4 : y := a− 1; end : end ;

It can be proved terminating by choosing the size function||θ|| = (x, y, a). With this size,
its SCT-RCG is displayed on Figure 10. For convenience reasons, instructions2 − 4, as
well as6 − 7 have been represented as a single edge (with a single matrix). This allows
to completely forget registera and so use(x, y) as size. Similarly, the other SCT matri-
ces are not depicted since they are the identity matrix. Since the SCT-RCG is uniformly
terminating, so is the program.

When working with this simple Size Change Principle (or any other restriction where
there can be only finitely many different weights), Theorem 8.6 gives an algorithmic way
of detecting uniform termination of the SCT-RCG. Indeed, there are only finitely many
different weights, hence there are only finitely many tuples(s, M, r) such that there exists
a path froms to r whose weight isM . Then, it is possible to build all these tuples in an
incremental way by starting with tuples(s, M, r) corresponding to each edge of the SCT-
RCG and add new tuples by composing existing ones with matching edges. This is the
core idea of the “graph algorithm” of Lee et al. [2001].

9. MORE ON MATRICES

9.1 Matrices Multiplication System with States

If we use vectors as valuations and (usual) matrices multiplication as weights, we can
define Matrices Multiplication Systems with States (MMSS) in a way similar to VASS.
Admissible valuations will still be the ones inNk but k is not fixed for the RSS and may
depend on the current vertex.

Definition 9.1 (Matrices Multiplication System with States). A Matrices Multiplication
System with States(MMSS) is an RSSG = (G, V, V +, W, ω) where:

—Vi = Z
ki , V +

i = N
ki for some constantki (depending on the vertexsi).

—Weights are matrices with integer coefficients.

—# = ⊛ = ×.

Using this, it is quite easy to model copy instructions of counters machines (x := y)
simply by using the correct permutation matrix as a weight. To represent increment or
decrement of a counter, an operation which was quite naturalwith VASS, we now need
a small trick known ashomogeneous coordinates12. Simply represent then counters as a
n+1 components vector whose first component is always1. Then, increment or decrement
of a variable just becomes a linear combination of components of the vector which can

12Homogeneous coordinates were originally introduced by A. F. Möbius. They are used, among other, in com-
puter graphics for exactly the same purposes as we do here, that is representing a translation by means of matrix
multiplication.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

36 · Jean-Yves Moyen

0

e 1

26

8 5




1 0 −1
0 0 1
0 1 0







1 0 −1
0 0 0
0 1 1




Fig. 11. MMSS as a RCG.

perfectly be done with matrices multiplication. For example, here is how one can model
the copy (x := y) and the increment (x := x + 1).

(1, x, y)×




1 0 0
0 0 0
0 1 1


 = (1, y, y) (1, x, y)×




1 1 0
0 1 0
0 0 1


 = (1, x + 1, y)

Example9.2. Using homogeneous coordinates, the program of Example8.8 has the
MMSS depicted on Figure 11. Here, matrices multiplication is done on the usual(Z, +,×)
ring and not on the(Z, min, +) semi-ring as for SCT-RCG.

Example9.3. Similarly, use of homogeneous coordinates allows to build a MMSS to
prove uniform termination of the program of Example 7.9. It is depicted on the left part of
Figure 12 (where label3 has been omitted). The interesting thing here is the use of vectors
of different lengths at different labels, thus allowing to add the constraintn − i ≥ 0 only
inside the loop. This example shows both the use of disjoint sets of valuations and how to
work with the functional inequalities of Avery [2006].

But there is even more. VASS are able to forbid ax 6= 0 branch of a test being taken in an
admissible walk ifx is 0 simply by decrementingx and then incrementing it immediately
after. The net effect is null but ifx is 0, the intermediate valuation is not admissible.
This can still be done with MMSS. VASS, like Petri nets, are however not able to test if a
component is empty, that is forbid thex = 0 branch of a test to be taken ifx is not0.

With MMSS, we can perform this test to0. It is indeed sufficient to multiply the correct
component of the valuation by−1. If it was different from0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model a counters machine by a MMSS:
each execution of the machine will correspond to exactly oneadmissible walk in the MMSS
and each admissible walk in the MMSS will correspond to exactly one execution of the
machine.

This leads to the following theorem:

THEOREM 9.4. Uniform termination of MMSS is not decidable.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 37

0

1

2

4

5

e

(1, i,n)

(1, 0,n)

(1, i,n,n− i)

(1, i,n,n− i)

(1, i,n)

(1, i,n)




1 0 0
0 0 0
0 0 1







1 0 0 0
0 1 0 −1
0 0 1 1







1 1 0 −1
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0
0 1 0
0 0 1
0 0 0







1 1 0
0 1 0
0 0 1




0

1

2

3

end 


1 −1 0
0 1 0
0 0 1







1 0 1
0 1 0
0 0 1







1 0 0
0 −1 0
0 0 1







1 −1 0
0 1 0
0 0 1







1 1 0
0 1 0
0 0 1




Fig. 12. MMSS for loop and unary addition.

Example9.5. Consider the following program, performing addition in unary (that is,
repeatedly decrementingx and incrementingy until x is 0).

0 : if x = 0 then goto end ; 3 : goto 0;
1 : x := x− 1; end : end ;
2 : y := y + 1;

Right side of Figure 12 depicts a MMSS for this program such that there is a one-to-one
correspondence between executions of the program and admissible walks of the MMSS.
The size used is(1, x, y), the1 being here because of homogeneous coordinates. Notice
that we need to add an intermediate label for thex 6= 0 branch of the test in order to
generate the temporary valuation containingx − 1, only used to force admissible walks
with x = 0 to take the other branch.

On the other branch of the test, the−1 in the center of the matrice ensures that ifx > 0 in
the valuation at vertex0, then following this edge will lead to a non-admissible valuation.
That is, this edge can only be followed ifx = 0.

Since such a construction can be done for any counter machine(the unary addition
program uses all possible instructions for counter machines) and since counter machines
are Turing-complete, this shows why uniform termination ofMMSS is not decidable in
general.

This simulation of programs by matrices multiplications rises a surprising question. In-
deed, matrices multiplications are only able to perform linear operations on data. While
obviously some programs can perform non-linear operations.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

38 · Jean-Yves Moyen

This apparent contradiction is solved when we think more closely on how RSS work.
Each walk in a MMSS corresponds to a matrix multiplication (becauseω is a morphism),
hence to a linear transformation on data. However, two different walks give rise to two
different matrices, hence two different linear transformations.

When simulating a program, each different data will go through a different (admissible)
walk in the MMSS. Hence, each different value will pass through a different linear trans-
formation. Of course, the other walks (that is, the other linear transformations) also exist
and are considered on this data when looking at the set of walks, but non-admissibility
allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSS asa set of linear trans-
formations and the admissibility mechanism selects the proper transformation to apply on
each piece of data.

For example, if we consider a program performing multiplication of two integersx and
y, it will likely be a loop onx, addingy to the result each time. The corresponding MMSS
will have several paths (infinitely many) that can each be candidate for a walk once actual
data is provided. Different paths correspond to following the loop1, 2, 3, . . . , k, . . . times.
Then, the walk corresponding to each of these paths will perform the linear transformation
(1, x, y) 7→ (1, x− k, ky) representable by the matrix:




1 −k 0
0 1 0
0 0 k





However, when performing all these transformations on actual data, only those withk ≤ x
have an admissible result and only the one withk = x has all its intermediate valuations
admissible. So, the admissibility mechanism selects the right linear transformation to ap-
ply.

That means that when simulating a program computing a (non-linear) function by a
MMSS, the simulation actually consider the function as being piecewise linear, computes
the result of all the possible linear transformations implied and selects the one correspond-
ing to current data. In general, it is possible that each linear transformation is only valid
for a single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matrices of matrices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wherecomponent(i, j) is the
coefficient of the edge between verticesi and j). That is, a first order program can be
represented as such kind of tensors. However, it may then be possible to uses these tensors
(and tensors multiplication) in order to study second-order programs. In turn, the second
order programs would probably be representable by a tensor (with more dimensions) and
so one.

This could lead to a tensor algebra representing high order programs.

Example9.6. Here is a tensor representing the MMSS of the unary addition (as de-
picted in Figure 12). This is simply the connectivity matrixof the graph where each edge

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 39

is itself weighted by a matrix.



0




1 −1 0
0 1 0
0 0 1


 0 0 0




1 0 0
0 −1 0
0 0 1




0 0




1 1 0
0 1 0
0 0 1



 0 0 0

0 0 0




1 −1 0
0 1 0
0 0 1



 0 0

0 0 0 0




1 0 1
0 1 0
0 0 1



 0




1 0 0
0 1 0
0 0 1



 0 0 0 0 0

0 0 0 0 0 0




9.3 Polynomial time

Another interesting approach of program analysis using matrices is the one done by Niggl
and Wunderlich [2006] and Kristiansen and Jones [2005]. Theprograms they study are
similar to our stack machines except that the (conditional)jump is replaced by a fixed
iteration structure (loop) where the number of iterations is bounded by the length of a
given stack.

Then, they assign to each basic instruction a matrix, calleda certificatewhich contains
information on how to polynomially bound the size of the registers (or stacks) after the
instruction by their size before executing the instruction. It appears that when sequencing
instructions, the certificate for the sequence turns out to be the product of the certificates
for each instruction. Certificates for loops are some kind ofmultiplicative closure of the
certificate for the body and certificate forif statements are the least upper bound of the
two branches.

Building the certificate of a program thus leads to a polynomial bound on the result
depending on the inputs which can then be turned into a polynomial bound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMSS where the valuation would
give information on the size of registers (depending on the size of the inputs of the pro-
gram) and the weights of instructions will be these certificates. This will exactly be a
Resources Control Graph for the program. If the program is certified, then this RCG will
be polynomially resource aware.

10. CONCLUSION

We have introduced a new generic framework for studying programs. This framework is
highly adaptable via the size function and can thus study several properties of programs
with the same global tool. Analyses apparently quite different such as the study of Non
Size Increasing programs or the Size Change Termination canquite naturally be expressed
in terms of Resource Control Graphs, thus showing the adaptability of the tool.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

40 · Jean-Yves Moyen

Moreover, other analyses look like they can also be expressed in this way, thus giving
hopes for a truly generic tool to express and study programs properties such as termination
or complexity. It is even likely that high order could be studied that way, thus giving
insights for a better comprehension of high order complexity.

Theory of algorithms is not well established. This work is really on the study of pro-
grams and not of functions. Further works in this direction will shed some light on the very
nature of algorithms and hopefully give one day rise to a theoretical framework as solid
as our knowledge of functions. Here, the study of MMSS and thetensors multiplication
hints that a tensors algebra might be used as a mathematical background for a theory of
algorithms and must then be pursued.

Acknowledgements

Many thanks to A. Ben-Amram for pointing out critical flaws inan earlier version of the
proof of Theorem 5.17. Thanks also to M. Hofmann for pointingout the name “homoge-
neous coordinates” and its use in computer graphics.

Many thanks also to the anonymous referees whose lengthy comments helped to greatly
improve the presentation of the results.

REFERENCES

ABEL, A. AND ALTENKIRCH, T. 2002. A Predicative Analysis of Structural Recursion.Journal of Functional
Programming 12,1 (Jan.), 1–41.

AMADIO , R., COUPET-GRIMAL , S., ZILIO , S. D.,AND JAKUBIEC , L. 2004. A functional scenario for bytecode
verification of resource bounds. InComputer Science Logic, 12th International Workshop, CSL’04. Springer,
265–279.

ASPINALL, D. AND COMPAGNONI, A. 2003. Heap Bounded Assembly Language.Journal of Automated
Reasoning (Special Issue on Proof-Carrying Code) 31, 261–302.

AVERY, J. 2006. Size-change termination and bound analysis. InFunctional and Logic Programming: 8th
International Symposium, FLOPS 2006, M. Hagiya and P. Wadler, Eds. Lecture Notes in Computer Science,
vol. 3945. Springer.

BELLANTONI , S. AND COOK, S. 1992. A new recursion-theoretic characterization of the poly-time functions.
Computational Complexity 2, 97–110.

BEN-AMRAM , A. 2006. Size-Change Termination with Difference Constraints. ACM Transactions on Program-
ming Languages and Systems. To appear.

BONFANTE, G., MARION, J.-Y., AND MOYEN, J.-Y. 2007. Quasi-interpretation: a way to control re-
sources.Theoretical Computer Science. To appear, accessiblehttp://www.loria.fr/ ˜ marionjy/
Research/Publications/Articles/TCS.pdf .

COBHAM , A. 1962. The intrinsic computational difficulty of functions. In Proceedings of the International
Conference on Logic, Methodology, and Philosophy of Science, Y. Bar-Hillel, Ed. North-Holland, Amsterdam,
24–30.

COLSON, L. 1998. Functions versus Algorithms.EATCS Bulletin 65, 98–117. The logic in computer science
column.

CORMEN, T., LEISERSON, C.,AND RIVEST, R. 1990.Introduction to Algorithms. MIT Press.
GIRARD, J.-Y. 1987. Linear logic.Theoretical Computer Science 50, 1–102.
HOFMANN, M. 1999. Linear types and Non-Size Increasing polynomial time computation. InProceedings of

the Fourteenth IEEE Symposium on Logic in Computer Science (LICS’99). 464–473.
JONES, N. 2000. The expressive power of higher order types or, lifewithout cons. Journal of Functional

Programming 11,1, 55–94.
JONES, N. D. 1997.Computability and Complexity, from a Programming Perspective. MIT press.
KRISTIANSEN, L. AND JONES, N. D. 2005. The flow of data and the complexity of algorithms.In CiE’05:New

Computational Paradigms, Cooper, Lwe, and Torenvliet, Eds. Lecture Notes in Computer Science, vol. 3526.
Springer, 263–274.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

Resource Control Graphs · 41

LEE, C. S., JONES, N. D., AND BEN-AMRAM , A. M. 2001. The Size-Change Principle for Program Termina-
tion. In Symposium on Principles of Programming Languages. Vol. 28. ACM press, 81–92.

LEIVANT, D. AND MARION, J.-Y. 1993. Lambda Calculus Characterizations of Poly-Time. Fundamenta
Informaticae 19,1,2 (Sept.), 167–184.

MOYEN, J.-Y. 2003. Analyse de la complexité et transformation deprogrammes. Ph.D. thesis, University of
Nancy 2.

NIELSON, F., NIELSON, H. R.,AND HANKIN , C. 1999.Principles of Program Analysis. Springer.
NIGGL, K.-H. AND WUNDERLICH, H. 2006. Certifying polynomial time and linear/polynomial space for

imperative programs.SIAM Journal on Computing 35,5 (Mar.), 1122–1147. published electronically.
REUTENAUER, C. 1989.Aspects mathématiques des réseaux de Petri. Masson.
SHEPHERDSON, J. AND STURGIS, H. 1963. Computability of recursive functions.Journal of the ACM 10,2,

217–255.

Received September 2006; revised November 2007; accepted hopefully someday

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

