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Resource Control Graphs are an abstract representation of programs. Each state of the program
is abstracted by its size, and each instruction is abstracted by the effects it has on the state size
whenever it is executed. The Control Flow Graph of the program gives indications on how the
instructions might be combined during an execution.

Termination is proved by finding decreases in a well-founded order on state-size, in line with
other termination analyses, resulting in proofs similar in spirit to those produced by Size Change
Termination analysis.

However, the size of states may also be used to measure the amount of space consumed by the
program at each point of execution. This leads to an alternate characterisation of the Non Size
Increasing programs, i.e. of programs that can compute without allocating new memory.

This new tool is able to encompass several existing analyses and similarities with other studies
hint that even more might be expressable in this framework, thus giving hopes for a generic tool
for studying programs.

Categories and Subject Descriptors: D.25dffware engineering]: Software/Program Verification; F.2.2Apal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and ProblemsSemputations on dis-
crete structuresF.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2iscrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification
Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-
gram analysis, size change termination, termination

1. INTRODUCTION
1.1 Motivations

The goal of this study is to predict and control computatioesources, like space or time,
that are used during the execution of a program. For thisniveduce a new tool called
Resource Control Graphend focus here on explaining how it can be used for terminatio
proofs and space complexity management.

We present a data flow analysis of a low-level language by smiedResource Control
Graph, and we think that this is a generic concept from whislesal program properties
could be checked.

Usual data flow analyses (see Nielson et al. [1999] for a ldetaverview) use transfer
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2 - Jean-Yves Moyen

functions to express how a given property is modified whelofohg the program’s ex-
ecution. Then, a fixed point algorithm finds for each labelteo$all possible values for
the property. For example, one might be interested in whgnh & given variable can take
at each point. The instructions of the program give constisain this (from one label to
the next one). Iterating these constraints with a fixed palgndrithm can find the set of all
possible signs for the variable at each label.

Here, we want to consider each execution separately. Son wéting the transfer
function and coming back to an already treated label, idstéaunifying the new con-
straint with the old one and iterating towards a fixed poirg,will consider this as a new
configuration. In the end, instead of having one set assatiat each label, we will get
a set of so called “walks”, each associating one value to eachrrence of each label.
For example, a first walk can tell that if starting with a pisitvalue at a given label, the
variable will stay positive, but another walk tells thatti&ging with a negative value, the
variable may become positive. In this case, the fixed pomdrihm will build the set
{+, —} for each label.

Of course, we then need a way to study this set of walks and @indhton properties on
them that tell something about the program.

The first problem we consider is the one of detecting progiantesto compute within a
constant amount of space, that is without performing dycangmory allocation. These
were dubbedNon Size Increasingy Hofmann [1999].

There are several approaches that try to solve this probldra.first protection mech-
anism is by monitoring computations. However, if the monisocompiled with the pro-
gram, it could itself cause memory leak or other problem §dctond is the testing-based
approach, which is complementary to static analysis. lddessting provides a lower
bound on the memory usage while static analysis gives arrigmuad. The gap between
both bounds is of some value in practice. Lastly, the thiggdrapch is type checking done
by a bytecode verifier. In an untrusted environment (like edded systems), the type
protection policy (Java or .Net) does not allow dynamicedkion. Actually, the former
approach relies on a high-level language that captures eald &vith memory allocation
features [Aspinall and Compagnoni 2003]. Our approachantaes, and even provides,
a proof certificate of upper bound on space computation omwddael language without
disallowing dynamic memory allocations.

The second problem that we study is termination of prograrhss is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] andl/smel Altenkirch [2002].
The intuition being that a program terminates wheneveketigeno more resources to con-
sume.

There are long term theoretical motivations. Indeed a lotatk have been done in the
last twenty years to provide syntactic characterisatidm®mplexity classes.g. by Bel-
lantoni and Cook [1992] or Leivant and Marion [1993]. Thosamcterisations are the
foundation of recent research on describing broad clasEesograms that run within
some specified amount of time or space. Examples includent4wif as well as Niggl
and Wunderlich [2006], Amadio et al. [2004] and Bonfantelef2007].

We believe that our Resource Control Graphs will be able tmempass several, or even
all, of these analyses and express them in a common framewotkis sense, Resource
Control Graphs are an attempt to build a generic tool for mopanalysis.
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1.2 Coping with undecidability

All these theoretical frameworks share the common pagritylof dealing with behaviours
of programs (like time and space complexity) and not onlyhe inputs/outputs relation,
which only depends on the computed function.

Following Jones [1997], we call@ogram propertya subset of all programs (for a given,
yet unspecified, language) and we say that a propéit/extensionalf for all programs
p, ¢ computing the same functiop,€ A < ¢ € A. That is, an extensional property is
shared by all programs computing the same function.

On the other hand, properties not shared by programs congpile same function are
calledintensional A typical extensional property is termination. Indeed,pgbgrams
computing the same function must terminate on the samesn(ihiere the function is
defined). A typical intensional property is time complexitndeed, two programs with
different complexities can compute the same function; %aneple, insertion sort computes
the sorting function in time (n?) while merge sort computes it in tim@(n log(n)).

Classical complexity theory focuses on functions or profdend extensional proper-
ties. It defines complexity classes (such a3GSPACE, PTIME) as classes ofroblems
and not classes of algorithms and studies complexity of lprob (SAT, QBF, ...) and
relationship between classes of problems (“Is P differemthfNP ?”, ...) Here, we want
to consideintensionalcomplexity, that is try to understand why a given algorittsmmiore
efficient than another to compute the same function, and v teastudy classes @figo-
rithmsrather than classes of problems or functions.

When studying the complexity of functions, one deals witteagional properties; how-
ever, the complexity of algorithms is an intensional proypeConsider for example the
classC of functionscomputable in time)(n log(n)). This is a class of functions, hence
not a program property. Consider now the correspondingrprogproperty:A is the set
of all programs computing a function froth Obviously, the merge sort algorithm is in
A. But the insertion sort algorithm, with complexity(n?) is alsoin A. Indeed, the
function computed by the insertion sort, the sorting fumttis inC because there exists a
O(nlog(n)) program to compute it.

On the other hand, the complexity of algorithms is an intemai property. Consider the
program property3, the set of all programs whose complexityign log(n)). Now, the
merge sort belongs tB because its complexity i9(n log(n)) but the insertion sort does
not belong taB because its complexity 8(n?). We no longer consider only the computed
function, but also the algorithm used to compute it. For te&son, “bad” programs are
discarded.

Atypical goal of intensional study would be to have a critario decide whether a given
program computes in polynomial time or not.

The study of extensional complexity quickly reaches thenlauy of Rice’s theorem.
Any extensional property of programs is either trivial odenidable. Intuition and empir-
ical results point out that intensional properties are éxamder to decide.

However, several very successful works do exist for stuglipioth extensional properties
(like termination) or intensional ones (like time or spaoeplexity of programs). As these
works provide decidable criteria, they must be either inptate (reject a valid program) or
unsound (accept an invalid program). Of course, the cheiasually to ensure soundness:
if the program is accepted by the criterion, then the prgpé@ermination, polynomial
bound,...) is guaranteed. This allows the criterion to lEns®s a certificate in a proof
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carrying code paradigm.

When studying intensional properties (usually complegitalgorithms), two different
kinds of approaches exist. The first one consists in restgiche syntax of programs so
that any program necessarily has the wanted property. Thlk oo primitive recursive
functions, where the recurrence schemata are restrictedlyoprimitive recursion, falls
into this category. This approach gives many satisfactesylts, such as the characterisa-
tions of Prime by Cobham [1962] or Bellantoni and Cook [1992], the works efvant
and Marion on tiering and predicative analysis [1993] ontloeks of Jones on CONS-free
programs [2000]. On the logical side, this leads to explititnagement of resources in
Linear Logic [Girard 1987].

All these characterisations usually have the very nice ggof extensional complete-
nessin the sense that eaéhnctionin the class (of functions) considered can be computed
by an algorithm with the property consideredd, a function is in RIME if and only if it
can be defined by bounded primitive recursion (Cobham))otdnhatelyjntensionalityis
not their main concern: these methods usually do not captatteal algorithms [Colson
1998], and programmers have to rewrite their programs innarradural way.

So, the motto of this first family of methods can be descritsléaving the proof burden
to the programmer rather than to the analyser. If one car\arjtrogram with the given
syntax (which, in some cases, can be a real challenge), #r&ircproperties are guaran-
teed. The other family of methods follow a different directi Let the programmer write
whatever he wants, but the analysis is not guaranteed to.work

Since any program campriori be given to the analysis, decidability is generally achieve
by loosening the semantics during analysis. That is, onlecaiisidermorethan all the
executions a program can have.This approach is more reaehiabs already some very
successful results such as the Size Change Terminationgtl.ak 2001] or thenwp-
polynomials of Kristiansen and Jones [2005].

This second kind of methods can thus be described as not mgedth the programmer
and let the whole proof burden lay on the analysis. Of coutseanalysis being incom-
plete, one usually finds out that certain kinds of progranikneit be analysed correctly
and have to be rewritten. But this restriction is d@nprosterioriand nota priori and it
can be tricky to find what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within thissdd&ind of analysis. Hence,
the toy language used as an example is Turing-complete dhdowbe restricted.

1.3 Ouitline

Section 2 introduces the stack machines, used everywhéne remainder of this paper,
as a simple yet powerful programming language. Section 8riles the core idea of
Resource Control Graphs that can be summed up as findingdatdée{recursive) superset
of all the executions that still ensure a given property isag termination or a complexity
bound). Then, Section 4 immediately shows how this can be imserder to detect Non
Size Increasing programs. Section 5 presents Vector Auid8ystems with States that are
generalised into Resource Systems with States in Sectidiméy form the backbone of
the Resource Control Graphs. Section 7 presents the tetflatsd explains how to build
a Resource Control Graph for a program and how it can be usstlitly the program.
Section 8 shows application of RCGs in building terminatwoofs similar to the Size
Change Termination principle. Finally, Section 9 discsdsew matrix algebra could be
used in program analyses, leading to several possiblesiuditvelopments.
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1.4 Notations

In a directed graphG = (S, A), will write s-% 5’ to say that is an edge betweenands’.
Similarly, we will write so 55,23 ... %3s,, to say that; .. .a, is a path passing through
verticess, - - - , 5,,. Or simplyso—s,, if w =ay ...a,. s — s’ means that there exists an
edgea such thats> s/, and®:, % are the transitive and reflexive-transitive closures-of

A partial order=< is awell partial order if there are no infinite decreasing sequence and
no infinite anti-chain. That is, for every infinite sequenge-: - - , z,,, . . . there are indexes
i < j such thatr; < x;. This means that the order is well-founded (no infinite dasirey
sequence) but also that there is no infinite sequence of jsaiiwcomparable elements.
The order induced by the divisibility relation d¥, for example, is well-founded but is
not a well partial order since the sequence of all prime numisean infinite sequence of
pairwise incomparable elements.

The set of integers (positive and negative)jsandN is the set of integers 0. When
working with infinity, Z = Z|J{+oc}; that is, we do not need oo here. When working
with vectors ofZ*, < denotes the component-wise partial order. Thatis b if and only
if a; < b; forall 1 <i < k. This is a well partial order oi*.

If wis aword and: a letter, we note.w the word that begins with the letterand ends
with w. Similarly, if w is a stack and a value,a.w denotes the stack whose topuisind
whose tail isw.

2. STACK MACHINES
2.1 Syntax

A stack machine consists of a finite numbenregisters each able to store a letter of an
alphabet, and a finite number sthcls, that can be seen as lists of letters. Stacks can only
be modified by usuglush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in & siniglof time.

Definition 2.1 (Stack machine)Stack machines are defined by the following gram-
mar:

(Alphabe} X finite set of symbols

(Program$ pa=1Ibl 1 0. 00l iy

(Instructiong Z > i == if (test) then goto Ibl , else goto Ibl 1]
r := pop (stk) | push (r, stk) [r := op(rq,--- ,rg) | end

(Labels L > Ibl finite set of labels
(Registery R > r finite set of registers
(Stacks S > sk finite set of stacks

(Operators O > op finite set of operators

Each operator has a fixed arikyandn is an integer constant. The syntax of a program
induces a functiomext : £ — L such thatext (Ibl ;) = Ibl ;;; and a mapping

t: L — T suchthat(lbl ;) =1 . Thepop operation removes the top symbol of a stack
and put it in a register. Theush operation copies the symbol in the register onto the top

Iwe will uses € S to designate vertices and € A to designate edges. The choice of using French ini-
tials (“Sommet” and “Aréte”) rather than the usu@f, F) is done to avoid confusion between vertices and the
valuations introduced later.

2We use a bold face font for registers and stacks and a tyvioit for instructions
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of the stack. Thei f-instruction gives control to eithdbl ( orlbl ; depending on the
outcome of the test. Each operator is interpreted with i@gpea given semantic function

[op].

The precise sets of labels, registers and stacks can bedidfieom the program. Hence
if the alphabet is fixed, the machine can be identified withpttogram itself.

The syntaxlbl : if  (test) then goto Ibl  § can be used as a shorthand for
bl :if (test) then goto Ibl , else goto next (Ibl ). Similarly, we can ab-
breviateif true then goto Ibl asgotolbl , that is an unconditional jump to a

given label. The kinds of tests allowed are not specified.h&course, tests must be
computable (for obvious reasons) in constant time and sacthat they do not play an
important part when dealing with complexity properties.n(parisons between letters of
the alphabetd.g. < if they are integers) are typical tests that can be used.

If the alphabet contains a single letter, then the registersiseless and the stacks can be
seen as unary numbers. The machine then becomes a usu&raoachine [Shepherdson
and Sturgis 1963].

Example2.2. The following program reverses a list in stdcénd put the result in
stackl’ (assuming’ is empty at the beginning of the execution). It uses regsterstore
intermediate letters. The empty stack is dendted

0:if I=] then goto end ; 3 : goto O;
1 :a:=pop(l); end : end;
2 : push (a,l');

2.2 Semantics

Definition 2.3 (Stores) A storeis a functiono assigning a symbol (letter of the al-
phabet) to each register and a finite stringgihto each stack. Store update is denoted
o{x — v}.

Definition 2.4 (States) Let p be a stack program. Atateof p is a paird = (IP , o)
where thdnstruction PointerlP is a label andr is a store. Le® be set of all state®*
(©%) be the set of finite (infinite) sequences of states @it be the union of the two.

Definition 2.5 (Executions) The operational semantics of Figure 1 defines a relation
P oL

An executiorof a prograny is a sequence (finite or ngt)— 905913 e 5"9” e

An infinite execution is said to baon-terminating A finite execution igerminating If
the program admits no infinite execution, then itirsformly terminating

We usel to denote runtime error. We may also allow operators to netuif we want
to allow operators that generate errors. It is importantdtice that L is not a state, and
hence, will not be considered when quantifying over allestat

If the instruction is not specified, we will write simply- ¢ — ¢’ and use®, = for the
transitive and reflexive-transitive closures.

3Notice that the label on the edge is technically not an instruction since for tagslso keep the information
of which branch is taken.
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i =u(IP)=r:=o0p(r,---,rp) o =a{r — [op](c(ri),...,o(ri))}

pH (P 7a)i—><next (IP), o)

L(IP) =if (test) then goto Ibl ; else goto Ibl 2 (test) is true

pE P, o) e n )

t(IP) =if (test) then goto Ibl | else goto Ibl 2 (test) is false

pE (P, o) =, o)

i =u(IP)=r:=pop(stk) o(stk) =aw o =o{r « a,stk «— w}

pk (P, o) (next (IP), o)

i =u(IP)=r:=pop(stk)nstrone o(stk) =¢

pF (P, o) 5L

i =u(IP)=push(r,stk) o =o{stk « o(r).oc(stk)}

pH (P 7a)i—><next (IP), o)

Fig. 1. Small steps semantics
Definition 2.6 (Traces) The trace of an executiorp + eoi—%eli—% . i—">9n ... Is the
instructions sequenge, .. .i ...

Definition 2.7 (Length) Letd = (IP ,o) be a state. Itéength|d| is the sum of the
number of elements in each stdcKhat is:

6] =Y Istk]
stkeS
The length of a state corresponds to the usual notion of sgaT@IMption. Since there
is a fixed number of registers and each can only store a finitgbeu of different values,
the space need to store all registers is always bounded. &dpwot take registers into
account while computing space usage.
The notion of length allows to define usual time and space t&xitp classes.

Definition 2.8 (Running time, running space)rhe time usageof an execution is the
length of the corresponding sequence (possibly infinitefor-terminating programs). Let
f be anincreasing function from the non-negative integettsdmon-negative integers. We
say that theunning- timeof a program is bounded hfif the time usage of each execution
is bounded byf (|0|) wheref is the first state of the execution.

The space usagef an execution is the least upper bound of the length of & #tait.
Let f be an increasing function from the non-negative integetisdmon-negative integers.

4Hence, it should more formally bgIP , o)| = > gk, es |o(stki)| . Since explicitly mentioning the store
everywhere would be quite unreadable, we sike instead ofr(stk; ) and, similarly,r instead ofr(r), when the
context is clear.
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Fig. 2. Sequences of states, executions and admissiblersezg.

We say that theunning- spaceof a program is bounded by if the space usage of each
execution is bounded b(|0|) wheref is the first state of the execution.

Definition 2.9 (Complexity) Let f : N — N be an increasing function. The claB§f)
is the set of functions that can be computed by a program whwseng time is bounded
by f. The classS(f) is the set of functions that can be computed by a program whose
running space is bounded by

FPTIME denotes the set of functions computable in polynomial tigna stack machine,
thatisf € FPTIME if and only if f € T'(P) for some polynomiaP.

If we want to define classes such as&SPACE, then we must, as usual, use some read-
only stacks that can only lgoped but notpush ed and some write-only output stacks.
These play no role when computing the length of a state.

2.3 Turing Machines

Stack machines are Turing complete. We quickly describe tier straightforward ways
to simulate one model by the other.

Simulating a stack machine withstacks can be done by a Turing machine with 1
tapes. The first tapes each store one of the stacks while the last one stahe aégisters.
The different instructions are represented by the statdseahachine.

Simulating a TM with a single tape can be done by using twokstag represent the
tape in an usual way (each stack represent half of the tajpg)sters are used to store the
current state as well as the scanned symbol.

3. ATASTE OF RCG

This section describes the idea behind Resource Contr@hSrim order to get a better
grip on the formal definitions later on.

3.1 Admissible sequences

Consider an execution of a program. It can be described agleesee of states. Clearly,
not all sequences of states describe an execution. So walsat®f executiond, which
is a subset of the set of all sequences of states (finite oite)fi®*~.

The undecidability results entail that, given a progranis impossible to say whether
the setV of executions, and the sét¥ of infinite sequences of states, are disjoint. So,
the idea here is to find a set of admissiblesequences that is a superset of the set of all
executions, and whose intersection wiil can be computed. If this intersection is empty,
thena fortiori, there are no infinite executions of the program; but if thersection is not
empty, then we cannot decide whether this is due to somearoniftating execution of the
program or to some of the sequences added for the sake of &hesin This means that
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Resource Control Graphs . 9

depending on the machine considered and the May built, we can be in three different
situations as depicted in Figure 2. We budd > ¥ such that4 () ©“ is decidable. If

it is empty, then the program uniformly terminates; otheeyiwe cannot say anything.
Of course, the undecidability theorem implies that if weuieg.A to be recursive (or at
least recursively separable fro8t’), then there will necessarily be some programs for
which the situation will be the one in the middle (in Figurei. the program uniformly
terminates, but we cannot determine that it does.

One conceptually simple way to represent all the posside@ions (and only these),
is to build astate-transition graph This is a directed graph where each vertex is a state
of the program and there is an edge between two vertices ibalydf it is possible to go
from one state to the other with a single step of the operatisemantics. Of course, since
there are infinitely many different stores, there are irdlgitnany possible states and the
graph is infinite.

3.2 The folding trick

Using the state-transition graph to represent executngticonvenient since handling an
infinite graph can be tedious. To circumvent this, we must ioto states and decompose
them.

A state is actually a pair of one label and one store. The ledmeésponds to theontrol
of the program while the store represeniesmory A first try to get rid of the infinite
state-transition graph is then to only consider the comtaot of each state.

Thus, there will only be finitely many different nodes in theygh (since there are only
finitely many different labels). By identifying all statesdring the same label, it becomes
possible to “fold” the infinite state-transition graph irgdinite graph, called th€ontrol
Flow Graph(CFG) of the program. The CFG is a usual tool for program asesdyand
transformations and can directly be built from the program.

Definition 3.1 (Control Flow Graph) Let p be a program. ItControl Flow Graph
(CFG) is a directed grapfi = (.5, A) where:
—S = L. There is one vertex for each label.

—If «(Ibl ) = if (test) then goto Ibl ; else goto Ibl 5 then there is one
edge fromlbl tolbl ; labelled (test),. and one frombl tolbl - labelled (test)se

—If «(Ibl ) = end then there is no edge going outlbf
—Otherwise, there is one edge frdbh tonext (Ibl ) labelled:(Ibl ).

Vertices and edges are named after, respectively, thedalrastructior? they represent.
No distinction is made between the vertex and the label oetlge and the instruction as
long as the context is clear.

Example3.2. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one sporedence between executions
of the program and (maximal) paths in the graph. This is ngdéotrue with Control Flow
Graphs. Now, to each execution corresponds a path (finitefimite) in the CFG. The
converse, however, is not true. There are paths in the CR@Gdh@@spond to no execution.

5Again, since the two branches of tests are separated, sagas dd not correspond exactly to an instruction of
the program. We will nonetheless continue to call thesetriresions”.
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goto 0

Fig. 3. CFG of the reverse program.

Let P be the set of paths in the CFG. Since we can associate a padlchicerecution,
we can say thaP is a superset of.

This leads to a first try at building a set of admissitdequences by choosiogy= P.

However, as soon as the graph contains lo@pwijll contain infinite sequences. So this
is quite a poor try at building an admissible set of sequercm@sesponding exactly to the
trivial analysis ‘A program without loops uniformly terminates

In order to do better, we need to plug back the memory into #@.C

3.3 Walks

So, in order to take memory into account but still keep the Cw& will not consider
vertices any more but states again. Clearly, each statedégiased to a vertex of the CFG.
Moreover to each instructian, we can associate a functi@in] such that for all state ¢’
forwhichp - 6 = (IP ,0) (P, ¢') = ¢’, we haves’ = [i [(0).

So, instead of considering paths in the graph, we can nowidemwalks. Walks are
sequences of states following a path where each new stomriputed according to the
semantics functioffi ] of the edge just followed.

The only case where the CFG has out-degree greaterltharior tests. In order to
prevent the wrong branch to be taken, the semantics funfttest..] can be a partial
function only defined for stores where the test is true (amvesely for the false branch
of tests).

But if we do this exactly that way, then there will be a bijectbetween the executions
and the walks and everything will stay undecidable.

So the idea at this point is to keep both branches of the tesilge, that is more or less
replacing a deterministic test by a non-deterministic cedietween the two outcomes.
This leads to a set of walks bigger than the set of executiahshopefully, recursively
separable from the set of infinite sequences of states.

4. MONITORING SPACE USAGE

In order to illustrate the ideas of the previous Section, mteoduce here the notion of
Resource Control Graph for the specific case of monitorimgspsage. In Section 7, this

6P is indeed recursive. By adapting Lemma 5.13, it is possibkhbw thatP is an omega-regular language and
hence can be recognised by a Buchi’'s automaton.
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notion will be fully generalised to define Resource Controhs.

4.1 Space Resource Control Graphs
Definition 4.1 (Weight) For each instruction, we define aveightk; as follows:

—The weight of any instruction that is neithgush norpop is 0.
—The weight of gpush instruction is+1.
—The weight of gpop instruction is—1.

PROPOSITION 4.2. For all statesf such thap 00", we havdd'| = 0] + ki .

It is important here that both andé’ are states. Indeed, this means that when an error
occurs (L), nothing is said about the weight of the instruction cagsive error.

Definition 4.3 (Space Resource Control Graphlet p be a program. Its Space Re-
source Control Graph (Space-RCG) is a weighted directgohgresuch that:

—G@ is the Control Flow Graph agj.
—For each edge, the weightu(i ) is k; .

Definition 4.4 (Configurations, walks) A configurationis a pairn = (s, v) wheres €
Sisavertexand € Z is thevaluation A configuration iadmissiblef and only ifv € N.

A walk is a sequence (finite or not) of configuratio@s, vo)™ . .. %% (sp, v,) "3 ...
A, An 41

such thatsp %5, %3 ... %%s," %" ... and for alli > 0, v; = v;_1 + w(a;). A walk is
admissibldf all configurations in it are admissible.

Definition 4.5 (Traces) Thetrace of a walk is the sequence of all edges followed by
the walk, in order.

PROPOSITION 4.6. Letp be a program(= be its Space-RCG and- 0, = (I Py, 01) —
.. — 0, = (I P,,0,) be an execution with trace then there is an admissible walk ¥,
(I P1,161]) — ... — (1 Py, |60,]), with the same trace

PROOF By construction of the Space-RCG and induction on the leofthe execu-
tion. O

4.2 Characterisation of Space usage

THEOREM 4.7. Let f be a total functiolN — N. Letp be a program and~ be its
Space-RCG.

p € S(f) if and only if for each initial state¢dy = (I Py, o) with executionp +
0,—0,,, the trace of the execution is also the trace of an admissilalkx (I Po, |6o|) —
(I P1,v1) — ... — (I Py, v,) and for eachk, vy, < f(|6o])-

PROOF Proposition 4.6 tells us thai, = |0;|. Then, both implications hold by defini-
tion of space usage [

Definition 4.8 (Resource awarenessf Space-RCG ig-resource award for any ad-
missible walk(so, vo)i>(5n7 Un )y Un < f(v0).

Non-admissible walks are not taken into account becauseniner correspond to real
executions of the program.
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COROLLARY 4.9. Let f : N — N be a total functionp be a program and~ be its
Space-RCG.
If G is f-resource aware, thep € S(f).

Here, the converse is not true because the Space-RCG camadiangsible walks with
uncontrolled valuations that do not correspond to any neatation.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was inticny Hofmann [1999]. For-
mer syntactical restrictions formMvE, such as the safe recurrence of Bellantoni and Cook
[1992], forbid iteration of functions because this cangigliper-polynomial growth. How-
ever, this excludes perfectly regular algorithms such asrtkertion sort where the inser-
tion function is iterated. The idea is then that iteratingdiionsthat do not increase the
size of datds harmless.

Hofmann detects Non Size Increasing programs in a typedifurad language by adding
a special type®, which can be seen as the type of pointers to free memory., Hergalu-
ations of Space RCG will play exactly the same role as Hofrisatinthat is managing the
memory freed by previous de-allocation and reuse it ratiear te-allocating new memory.

Even if this work was inspired by Hofmann'’s, there is curhgno explicit link or equiv-
alence Theorem between the programs detected by one otidre ot

Definition 4.10(Non Size Increasing)A program isNon Size IncreasingNSl) if its
space usage is bounded by.z + « for some constant.

NSI is the class of functions that can be computed by Non Sizeehsing programs.
Thatis,NSI =J, S(\z.x + ).

PROPOSITION 4.11. Letp be a program and~ be its Space-RCG. ¥ is \z.x + a-
resource aware for some constantthenp is NSI.

PROOF This is a direct consequence of Theorem 41

THEOREM 4.12. Letp be a program and- be its Space-RCG is A\x.x + a-resource
aware (for some) if and only if it contains no cycle of strictly positive whig

PROOF Ifthereis no cycle of strictly positive weight, then tebe the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it is llagefined.
Consider a walKso, vg)—(sn, v,) in G. Sincea is the maximum weight of a path, we
havev,, < vy + a. Hence G is A\x.x + a-resource aware.

Conversely, if there is a cycle of strictly positive weigthien it can be followed infinitely
many times and provides an admissible walk with unboundecdhtians. [

Building the Space-RCG can be done in linear time in the sizeeoprogram. Finding
the maximum weight of a path can be done in polynomial timenagize of the graph
(and so in the size of the program) with Bellman-Ford’s alifpon ([Cormen et al. 1990]
chapter25.5). So we can detect NSI programs and find the constantpolynomial time
in the size of the program.

Example4.13. The Space-RCG of the reverse program (from Examplei®.@is-
played on Figure 4. Since it contains no cycle of strictlyifps weight, the program
is Non Size Increasing. Moreover, since the maximum weidlainy path isl, it can be
computed in spacgz.z + 1, that is the constant is 1 for this program.
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o [
(end) W
)
®)

Fig. 4. Space-RCG of the reverse program.

Actually, the reverse program can be computed in space. This is not detected
because we consider here all paths and not only paths gtdrtim 0 (the initial node,
corresponding to the first label of the program). This cowdhbproved, and should be for
any practical use, but the sharp bound is not needed in oardtieal framework.

This result, however, lacks an intensionality statemeat(many of all NSI programs
are caught?) or even an extensional completeness one {tvesekist functions in NSI
that cannot be captured by such a program?) Of course, tbe alallprogramsthat are
Non Size Increasing is undecidable. This means that irdaakty statements are hard to
achieve. However, we can reach an extensional completeness

Definition 4.14(Normalising programs) Let p be a program and be a constant. We
define progranp,, as follows:

—There is an extra stackem (empty at start) and an extra symkwl

—Theua firstinstructions op,, arepush (<&, mem). Thatis,p,, starts by pushing copies
of & onmem.

—The following instructions o, are the instructions gf, except that eacpush is
followed by apop (mem) and eactpop is preceded by push (<, mem).

PROPOSITION 4.15. If p runs in spacé\z.x + «, thenp, computes the same function
asp.

PROOF As long as they do not cause runtime eriicg.(poping an empty stack), the
added instructions do not interfere with the computed fiomchecause they only act on
the new stacknem.

The only runtime error thatnem can cause would be if one tries pop it when its
empty. However, if this happens, thempash on a nonmem stack must have happened
just before whilemem was empty. In the state just reached by fhish , the sum of the
lengths of the nomem stacks would be + o+ 1 wherez is the length of the initial state.
This contradicts the fact thatruns in spacéz.z + a. O

Notice also that such a normalisation could be made for arprogunning in space
f(z) for any computable functiofi. However, in that case the simulation would require
to computef (z) from the input and then push sufficiently matwg. This would be quite
tricky to do and require control over the space used to coenf{ut). Hence, adapting these

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



14 : Jean-Yves Moyen

i Perform instructions

push<> push<>

Fig. 5. Space-RCG of a normalised program.

ideas to classes of programs defined by their space comptakier than NSI cannot be
done in a straightforward way and caution must be exerted.

LEMMA 4.16. Letp be a program. The Space-RCG @f has no cycle of strictly
positive weight.

PROOF. By construction ofp,,. The first part (pushing: copies of& onmem) is done
without any cycles in the control flow, by actually usingopies of thgpush instruction.
The second part (simulating has eaclpush paired with apop (on another stack) and
hence cannot generate paths of weight other thaml, and, especially, no cycle of weight
different from0. O

THEOREM 4.17 (EXTENSIONAL COMPLETENESS. Let f be a functionirNSI. There
exists a progranp computingf whose Space-RCG has no cycle of strictly positive weight.

PROOF Sincef is in NSI, it is computed by a programrunning in spacé\z.z + «
for some«. By Proposition 4.15 and Lemma 4.16,= q, also computeg’ and has a
Space-RCG without strictly positive cycleld

This result means that this characterisation of NS| by mogrwhose Space-RCG have
no cycle of strictly positive weight is extensionally corag@: each function in NSI can be
computed by a program that fits into the characterisatioat () whose Space-RCG is
Az.x + a-resource aware). Of course, intentional completeneggydag all Non Size
Increasing programs) is far from reached (but is unreaehatih a decidable algorithm):
there exist Non Size Increasing programs whose Space-RE€@ykke of positive weight
(but, due to extensional completeness, the functions ctedpoy these programs can
also be computed bgnotherprogram whose Space-RCG has no cycle of strictly posi-
tive weight).

Example4.18. The following two programs compute the same functiamely push-
ing five Os onto stack. The leftmost one uses a loop whose number of iterationsesl fix
inside the program by the assignment at lahelhile the rightmost one uses five copies
of push .

Since value of variables is not taken into account by theyaiglthe Space-RCG of
the first program will have a loop of strictly positive weigtdrresponding to the loop in
the program. Hence, this first program is Non Size Increabirgnot detected by the
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characterisation. This means that the characterisatinatisitensionally completesome
programs have the wanted property but are left out. Thishgionsly, an unwanted fact
but nonetheless inevitable because the set of Non Sizedsiageprograms is undecidable.

However, because of the extensional completeness, theseaxist programs comput-
ing the same function that fit into the characterisation. 3éend program is an example
of such a program. Indeed, its Control Flow Graph does natatoe@any cycles, hence, the
Space-RCG does not have cycles either (and so, no cycle itif/pageight).

0:a:=5; 0 : push (0,1);

1:if a=0 then goto end ; 1 : push (0,1);

2 : push (0,1); 2 : push (0,1);

3:a:=a—1; 3 : push (0,1);

4 : goto 1; 4 : push (0,1);
end : end end : end

If one applies the normalisation of Definition 4.14 to thetfpgogram, one will obtain:

0 : push (¢, mem); 6 :if a=0 then goto end ;
1 : push (¢, mem); 7 : pop (mem);

2 : push (¢, mem); 8 : push (0,1);

3 : push (¢, mem); 9:a:=a—1;

4 : push (¢, mem); 10 : goto 6;

5:a=05; end : end;

This program computes the same function. The first part &idfimost column) allocates

a constant amount of memory on a “free memory” stack. Sineeathount of memory
needed (the constantin the Lemmas and Theorems above) is known, this can be done
with no loops by using several copiesmish . Then, the program mimics the loop of the
first program. However, before allocating any new memorgt(thy, before performing any
push), it starts by removing some free memory franem (with a pop). This ensures
that no cycle in the Space-RCG will have a strictly positivegint.

4.4 Linear Space

Linear space seems to be closely related to NSI. Indeedirlisgace functions can be
computed in spacgz.Sx + « and so NSl is a special case wjth= 1. Hence we want to
try and adapt our result to detect linear space usage.

Definition 4.19. FLNSPACEdenotes the set of functions computable in linear space by
a stack machine, that jf € FLINSPACE if and only if f € S(I) for some linear function
l:x— B+ .

The idea is quite easy: since we are allowed to use a fact@mobre space than what
is initially allocated, it is sufficient to consider that eygime some of the initial data is
freed,( “tokens” (¢) are released and can later be used to coptdifferent allocations.

In order to do so, the most convenient way is to design cestaicks of the machine as
input stack@ind the others must be initially empty. Theipap operation on an input stack
would have weight- 5 instead of simply—1 to account for this linear factor. However,
doing so we must be careful that newly allocated memory (¢ghétirtherpush ) will only
be counted as when freed again (to avoid a cycle of freeing one slot, atioges, freeing
theses slots and reallocating? and so on). In order to do so, we simply require that the
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input stacks are read-only in the sense that it is not passiberform gush operation
on them.

Notice that any program can be turned into such a program bingawice as many
stacks (one input and one work for each) and starting by ogpgil the input stacks into
the corresponding working stacks and then only dealing thighworking stacks.

With these programs, the invariant will not be the lengthtafess, but something slightly
more complicated, namelytimes the length of input stacks plus the length of work stack
We will call this measurg-size Globally, we will use size to denote some kind of measure
on states that is used by the RCG for analysis. The termigatoglose to the one used
for Size Change Termination [Lee et al. 2001], where valuesaasumed to have some
(well-founded) “size ordering” which is not specified and mecessarily related to the
actual space usage of the data. Typically, termination abgnam working over positive
integers can be proved using the usual orderindi@s size ordering, even if the integers
are all32 bits integers, thus taking exactly the same space in memory.

Definition 4.20(Extended stack machineshn extended stack machimea stack ma-
chine with the following modification:

There are two disjoint sets of stackS; is the set ofinput stacksand S,, is the set
of working stacks There are two instructionsop; andpop,, depending on whether an
input or working stack is considered but only gnesh = push ,, instruction, that is it is
impossible tqpush anything on an input stack.

The g-sizeof a state is5 times the length of input stacks plus the length of working

stacks, that is:
10l =5 [stkal+ > Istkul
stk;€S; Stk ESw
Theweightof pop, is —f3, the weight ofpop ,, is —1, the weight ofpush is +1. The
weight of any other instruction is.
The 3-Space RCG is built as the Space-RCG: the underlying grafiteisontrol flow
graph and the weight of each edge is the weight of the corneBpg instruction.

Proposition 4.6 becomes:

PROPOSITION 4.21. Let p be a program,Gs be its 5-Space RCG ang - 6; =
(1Py,01) — ... — 0, = (I P,,0,) be an execution with tracg then there is an ad-
missible walk(l Py, [|61]|3) — .. — (I Py, ||0x]|3) with the same trace

Then, adapting Theorem 4.7 and Theorem 4.12, we have:

PROPOSITION 4.22. Letp be a program andx s be its-Space RCG. I3 is Az.x +
a-resource aware for some constantthenp € S(\z.fz + «).

THEOREM 4.23. Letp be a program and~3 be its 5-Space RCGGg is Az.x + a-
resource aware (for some) if and only if it contains no cycle of strictly positive whtig

COROLLARY 4.24. Letp be a program. If there exist8 such that its3-Space RCG
contains no cycle of strictly positive weight, thenomputes a function iRLIN SPACE.

This can be checked in NIVE since 3 is polynomially bounded in the size of the
program.

Also for FLINSPACE, the normalisation process of programs can be performeglfifgt
phase of the normalised program consists in first pushing mem « copies of&, then
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@)

Fig. 6. [-Space RCG of the double-reverse program.

repeatedly copying each input stack onto the corresponvdiniging stack and each time a
symbol is copiedi — 1 new<s are pushed ontmem (so that the global space usage from
now on is alwaysiz + «). This means that here also the characterisation is extealty
complete: for each FiNSPACE function, there exists one program computing it that fits
into the characterisation.

Example4.25. The following program “double-reverses” a list. Itsisnilar to the
reverse program but each element is present twice in thé.ré&se listl is an input stack
(and hence cannot lpish ed) whilel’ is a working stack.

0:if 1=] then goto end ; 3 : push ,(al');
1 : a:=pop;(); 4 : goto 0;
2 : push ,(al'); end : end;

Its 5-Space RCG is displayed on Figure 6. Since it contains nceeayfcstrictly positive
weightif 3 > 2, the program is in INSPACE. More precisely, it can be computed in space
A\r.2x

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vector Addition Systems with St&f&S$S) which are known to be
equivalent to Petri Nets [Reutenauer 1989]. Resources@dbitaphs are a generalisation
of VASS.

5.1 Definitions

Definition 5.1 (VASS, configurations, walksp Vector Addition System with Staties
a directed graplis = (S, A) together with aveighting functiono : A — ZF wherek is a
fixed integer.

A configurationis a pairy = (s,v) wheres € S is a vertex and € Z* is thevaluation
A configuration isadmissiblef and only if v € N*,

A walkis a sequence (finite or not) of configuratiqag, vg) % . . . %3 (s,, v, ) such that
5058513 ... s, and for alli > 0, v; = v;_1 + w(a;). A walk is admissibleif all
configurations in it are admissible.
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(0,—-1,+1) (0,0,—1)  (0,+42,+1) (0,0,-1)

(0,+1,-2) (0,0,+1)  (-1,0,+1) (0,-1,0)

Fig. 7. Two VASS

We say that the pathy . .. a,, is theunderlying pathof the walk and the wallollows
this path. Similarly( is theunderlying grapHor the VASS.

As for graphs and paths, we will writg — 7’ if there exists an edge such that)-%7’
and>, % for the closures.

Definition 5.2 (Weight of a path) Let V' be a VASS and; .. .a, be a path init. The
weight of edges is extended to paths canonicall{a; . ..a,) = > w(a;). This means
thatw is a morphism betweefn, -) (the free monoid generated by the edges) (@fd +).

Example5.3. Figure 7 displays two VASS. More formally, the first om@sld be de-
scribed as a grapfl = (S, A) with:

—S ={a,b,c,d}

—A = {a®b,a%c,0%¢, cBd, d%a

—w(ay) = (0,—-1,41), w(az) = (-1,0,0), w(az) = (0,+1,—2), w(ag) = (0,0,+1),
w(as) = (0,0,-1).

LEMMA 5.4. LetV be a VASS and; ... a, be afinite path in it. There exists a valu-
ationv, such that for0 <4 < n, vo +w(a; ...a;) € NF.

This means that every finite path is the underlying path ofdaissible walk.

PROOF Because the path is finite, thith component ofv(a; . . . a;) is bounded from
below by somev; (of course, this bound is not necessarily reached with thees&or
all components, but nonetheless such a bound exists forcemsponent separately). By
putting 5; = max(0, —c;) (that is0 if «; is positive), thervyy = (51, - - - , Bx) Vverifies the
property. I

Example5.5. Let us consider the first VASS of Figure 7 and the pathh<2c. This
path has weight0, 0, —1). If we consider the initial valuatio(®, 0, 0) and the correspond-
ing walk (a, (0,0, 0))%(b, (0, —1,1))%(c, (0,0, —1)), this walk is not admissible because
the second and third valuations have a strictly negativ#ficent. However, following the
same path, it is always possible to take a “big enough” initiuation in order to get
an admissible walk. Here, the walk, (0,1,1))%(b, (0,0, 2))%(c, (0, 1,0)) follows the
same path and is admissible.
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LEMMA 5.6. Let(sg,v9) — ... — (sn,v,) be an admissible walk in a VASS. Then,
for all v{ > vy (component-wise comparisott}g, v(,) — ... — (s, v),) is an admissible
walk (following the same path).

PROOF By monotonicity of the addition. I

Example5.7. Continuing the previous example, this means that atuatian larger
(component-wisely) thafo, 1, 1) leads to an admissible walk when following the same
path. So, among other, the walk startinda@t(17, 14, 42)) and following edges; andas
is admissible.

Definition 5.8 (Uniform termination) A VASS is said to beainiformly terminatingf it
admits no infinite admissible walk. That is, every walk iseitfinite or reaches a non-
admissible configuration.

THEOREM 5.9. A VASS isiot uniformly terminating if and only if there exists a cycle
whose weight is ifN* (that is, is non-negative with respect to each component).

PROOF If such a cycle exists, starting and ending at vestehen by Lemma 5.4 there
existsvy such that the walk starting ét, vo) and following the cycle is admissible. After
following the cycle once, the configurati¢s v, ) is reached. Since the weight of the cycle
is non-negativey; > vy. Then, by Lemma 5.6 the walk can follow the cycle one more
time, reachings, v2), and still be admissible. By iterating this process, it isgble to
build an infinite admissible walk.

Conversely, letsg,vg) — ... — (sn,v,) — ... be an infinite admissible walk. Since
there are only finitely many vertices, there exists at leastvertexs’ appearing infinitely
many times in it. Let(s},v;) be the occurrences of the corresponding configurations in
the walk. Since the component-wise order over vectois’ois a well partial order, there
existsi, j such that; < v7. The cycle followed betwees, ands’ has a non-negative
weight. O

Example5.10. The second VASS of Figure 7 is not uniformly termingtiindeed,
if we consider the cycl& = ajaszasasaiazasasasagas, it has weight(1,1,0). By
Lemma 5.4, there exists a valuatien= (m,n,p) such that the walk which starts at
(a, (m,n,p)) and following this cycle is admissible (it is sufficient toadse(m, n, p) >
(2,0,0)). After following the cycle once, the configuration(ig, (m + 1,n + 1, p)) from
which the cycle can be followed once again, thus reachingn+2,n+2, p)). Repeating
this leads to an infinite admissible walk.

5.2 Decidability of the uniform termination

Definition 5.11(Linear parts, semi-linear parts)Let (M, +) be a commutative mo-
noid’. A linear partof M is a subset of the form + V* wherev € M andV is a finite
subset of\/. Thatis, ifV = {v1,--- ,v,}, alinear part can be expressed as:

i=p
{v + anvzml S N}

=1

"Recall that a commutative monoid is a monoid (a set with ancative internal operation admitting a neutral
element) whose operation is commutative. A typical exaroptmmmutative monoid i§N, x ) (inverse for each
element is not needed).
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A semi-linear partof M is a finite union of linear parts.

Recall that rational parts are built frof, union and Kleene’s stdr When dealing with
words (that is the free monoid generated by a finite alphalé$) word concatenation (not
commutative) and so rational parts are exactly the regatayuages.

LEMMA 5.12. In a commutative monoid, semi-linear parts are exactly thgonal
parts.

PROOF Semi-linear parts are expressed as rational parts.

Conversely, it is sufficient to show that the set of semidinparts contains all finite
parts and is closed by union, sum and

Semi-linear parts contains finite part and are closed undientby definition. Closure
under sum is obtained because+ A*) + (b + B*) = (a +b) + (AU B)* and sum is
distributive over union(A|JB) + C = (A+ C)J(B + ()).

The hard point being the closure undewhich is a consequence of commutativity. It
holds becausév + V*)* = (v + ({v} U V)*) U{0} (the key idea being thdt(b*))* =
a*b* in a commutative monoid). See [Reutenauer 1989] (Proposii5) for details. [

LEMMA 5.13. The set of non-empty cycles in a graph is a rational part (ef filee
monoid generated by the edges).

PROOF Consider the graph as an automaton with each edge labglledibique label.
The set of paths between two given vertices is a regular Egeguspecifically, the set of
cycles that begin and end at verteis regular. The full set of cycles is the union of those
sets over all the (finitely many) vertices, and is consedyaifgo regular. [

Example5.14. Consider again the VASS of Figure 7 or, rather, thedteutying graph.
The set of (possibly empty) cycles fromto itself is described by the regular expression
A = ((a1asaqas)|(azaqas))* and correspond exactly to the rational language recognised
by this expression. Then the set of all (non-empty) cyclebhése VASS is the language
recognised by the regular expression:

(((a1asaqas)|(azaqsas))A)|(asasas Aar)|(asas A(araslaz))|(as A(aras|ag)ay)
where each of the four alternatives correspond to the setaf-émpty) cycles from one
vertex to itself.

COROLLARY 5.15. The set of weights of (non-empty) cycles in a VASS is a se@airli
part of Z*.

PROOF. Since the weighting functiow is a morphism betweefW, -) and (Z*, +), it
preserves rational parts. Hence, the set of weights of sysla rational part oZ.*. Since
-+ is commutative, it is also a semi-linear part]

Notice that the proofs are constructive. Hence the serealirpart can be built effec-
tively.

Example5.16. For concision, we will write here; instead ofv(a;).
First, let us look at the weight of cycles fromto itself. By applying the weighting
morphism @) to A, we obtain the regular expression:
(w1 + w3 + wy + ws) (w2 + wsg + ws))"
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To express this as a semi-linear part, we must change thaatitees () into union of sets.
This leads to:

{wi + w2 + wy + w5, w2 + ws + w5}
which is a semi-linear part 3. For the first VASS, this is:
{(0,0,-1),(-=1,0,0)}* = {(—k,0,—1)|k,l € N}

Next, consider the expression describing cycles fioto itself: asaqas Aa;. When
applying the weight to it, we obtain:

{ws +ws +ws} +{wr +we +ws +ws,we +ws +ws} +{wr}
By commutativity of addition, this can be expressed as tha-$ieear part:
(W1 +ws +ws +ws) + {w1 + w2 +ws +ws, w2 +ws +ws}*
Again, if we consider the first VASS, this is:
(0,0,—1) + {(0,0,-1),(=1,0,0)}* = {(=k,0,=1)|k,l € N, > 0}

Then, we must do the same work for the three other alterrsbggresponding to cycles
from a, c andd). This leads, to the following semi-linear parts:

—for a, candd: (w1 + w3 +wy + ws) + {w1 + wo + wa + ws, wa + wy + w5} J(wae +
wy +ws) + {w1 + we + ws + ws, wo + wy +ws }*

—for b: (w1 + w3 +ws + ws) + {w1 +wa +wy +ws,we +ws +ws }*

The expression fay is different from the others because non-empty cyclésmatist go at
least once through the large cycle while other non-emptjecyan go through the small
cycle only.

The resulting semi-linear part @* describing weight of cycles corresponds to the union
of these semi-linear parts, namely:

{(w +ws+ws+ws)+{ws +ws +wy +ws,wz +ws +ws}" }
U { (w2 +ws +ws) +{wr + w2 +ws +ws,wz +ws +ws}" }
For the first VASS, this is:
((0,0,—1) + {(0,0,-1),(-1,0,0)}") LJ((—l7 0,0)+ {(0,0,—-1),(-1,0,0)}")
={(—k,0,-0)|k,l e N,k +1> 0}
For the second VASS, this is:
(CLL 1) +{(-1.1,1). 3,1, -2} (3. ~1.=2) + {(-1, 1), 3, -1, ~2)}")
={@Bl—k,k—1k—20)]k,l e N k+1>0}
THEOREM 5.17. Uniform termination of VASS is INPTIME.

PROOF By Theorem 5.9, a VASS isot uniformly terminating if and only if there is a
cycle whose weight is itN*. Since the set of weights of cycles is a semi-linear paz/of
itis sufficient to be able to decide whether a linear pat/vintersectsN* (and try this for
each linear part of the union).
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LetU = {uy,--- ,u,} andu + U* be a linear part oZ*. It intersectsN* if and only if
there existuy, - - - ,n, € Nsuch that, + > n;u; > 0.
This can be solved in NRME using usual integer linear programming techniqués.

Since VASS and Petri nets are equivalent, this also showattiform termination of
Petri nets is decidable. Without going through the equivede a direct and simpler proof
can be made for Petri nets. Such a proof can be found in [Mo§6B8]2(theorent0, page
83).

Example5.18. Consider again the two VASS of Figure 7. The set of weddmon-
empty cycles of the first VASS corresponds to the semi-lipaat:

((07 0, _1) + {(Oa 0, _1)7 (_17 0, 0)}*) U((_la 0, 0) + {(07 0, _1)a (_15 0, 0)}*)

The first linear part of the unior), 0, —1) + {(0,0, —1), (—1,0,0)}*, intersectN? if and
only if there exists;, ny € N such that:

(0,0,—1) + ny x (0,0,—1) + ny x (—1,0,0) > (0,0,0)

This is clearly impossible.

Similarly, the second linear part cannot intersgét Hence, the set of weights of non-
empty cycles does not intersé@ét and the VASS is uniformly terminating.

For the second VASS, the weights correspond to the sematlipart:

((-1,1,1)+ {(-1,1,1), (3,71,72)}*)U((3,71,72)+ {(-1,1,1),(3,—-1,-2)}")
There, for the first linear-part, the system becomes:
(=1,1,1) +ny x (—=1,1,1) + ny x (3,—1,—-2) > (0,0,0)

Usual Integer Linear Programming techniques show thattstesi has solution, for exam-
ple withn; = 1,1y = 1, corresponding to the cycle; asasas)?(azasa;) whose weight
is (1,1, 0). Hence, the VASS is not uniformly terminating.

However, any infinite walk starting from, for example, thenfiguration(a, (0, 14, 0))
is not admissible. Deciding whether a given configurati@dteto an infinite admissible
walk or not is a different problem from uniform termination.

It is worth noticing that in the second case, the cycle detkignota simple cycle. So
the problem is different from the one of detecting simplelegdn graphs and requires a
specific solution.

5.3 VASS as Resource Control Graphs

Before the formal definition of Resource Control Graphs, h@wshere how VASS can be
used to build proofs of uniform termination of programs.
In the rest of this section, we consider the following sizedftion:

[P o) = (Istkal, - .., [stKs[)sk,es

that is, the vector whose components are the lengths of fferatit stacks of a given
program. Moreover, we uge;) to denote the canonical basis#f, that ise; is the vector
whosejth componentis; ;.

Definition 5.19(Weights) To each instruction, we assign the followiwgight
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Fig. 8. The Resource Control VASS for the reverse program

—w(r == pop (stki)) = —e;
—w(push (r,stk;)) =e;
—uw(i ) = 0 for all other instructions.

Definition 5.20(Resource Control VASS) et p be a program. ItRkesource Control
VASSs a VASS whose underlying graph is the Control Flow Graplp ahd edge has
weightw(i ) as defined above.

PROPOSITION 5.21. Letp be a program andx be its Resource Control VASSO{f =
(I Py, 00)=(l P,,0,) = 6, is an execution op, then(l Py, ||6o|])=(1 P,., [|0,]|) is an
admissible walk of7 with the same trace.

PrROOF By induction on the length of the execution. Notice thateetm®ns leading to
errors (L) are not taken into account here.]

THEOREM 5.22. Let p be a program and~ be its Resource Control VASS.df is
uniformly terminating, thep is uniformly terminating.

PROOF If p is not uniformly terminating, then by the previous propiositthere exists
an infinitely long execution that can be mapped onto an irfiadmissible walk. O

Since uniform termination of VASS is decidable, this allowsdetect uniform termi-
nation of a broad class of programs. Of course, the conversetitrue since uniform
termination of programs is not decidable.

Example5.23. The Resource Control VASS of the reverse program jgalied on
Figure 8. Since it is uniformly terminating, so is the reegpsogram.

Weighted graphs, as used in Section 4 to prove Non-Sizedsitrgness of programs are
the special case of VASS when the dimension is one.

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisatiba WASS seen in the previous
Section. For VASS, the only information kept is a vector dkgers, and only addition
of vectors can be performed. When modelling programs, ¢hiwt sufficient. Indeed, if
one wants to closely represent the memory of a stack macainegtor is not sufficient.
Moreover, vector addition is not powerful enough to repnesemmon operations such as
copy of a variable := ).
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Hence, we will now relax the constraints on valuations anihiats. We will allow
valuations to be drawn from any set and allow as weight angtion mapping valuations
to valuations. Notice that in the case of VASS, each weightldition of a vectop, which
could be represented as the functianz + v.

For the sake of generality, we will even allow the sets of atitins to be different for
each vertex. This may seem strange, but a typical use of shiat have vectors with
different numbers of components as valuations (that is ¢h@fkvaluations for vertex;
would beZ*") and matrix multiplications as weights (where the matricage the correct
number of rows and columns). Of course, it is always possidbteke the (disjoint) union
of these sets, but it usually clutters needlessly the rostati See Example 9.3 for more
details.

6.1 Graphs and States

Definition 6.1 (RSS, configurations, walksp Resource System with Sta{&SS) is a
tuple (G, V,V*, W, w) where

—G = (S,A) is a directed graph$ = {s1,---,s,} is the set of vertices and =
{a1,--- ,an} is the set of edges.

—Vi,---,V, are the sets ofaluations V' is the union of all of them.

—V;* C V; are the sets adddmissible valuations/* is the union of them.

—W, ; : V; — V; are the sets ofreights W is the union of them.

—w : A — W is theweighting functiorsuch thatv(a) € W; ; if siﬁsj.

When it is clear what both the valuations and weights setsngeavill name the RSS after
the underlying grapl.

A configurationis a pairn = (s,v) wheres = s; € S is a vertex of the graph and
v € V; is a valuation. A configuration iadmissiblef v € V, is admissible.

A walk is a sequence (finite or not) of configuratia@g, vo)= . .. %3(s,,, vp
such thatsg 2551 % ... %35,“3" .. and for alli > 0, v; = w(a;)(vi_1). A walk is admis-
sibleif all configurations in it are admissible.

The walkfollows pathp which is called eitheunderlying pattor trace of the walk.

As earlier, we write; — 7/ if the relation holds for an unspecified edge and - for
the transitive and reflexive-transitive closures.

The idea behind having both valuations and admissible tiahsis that this allowd”
to have some nice algebraic properties not sharddbyMoreover, this also allows the set
of valuations to be the closure of the admissible valuatiorder the weighting functions,
thus removing the deadlock problem of reaching somethiagwiould not be a valuation
(and replacing it by the more semantical problem of detgation admissible valuations).
Typically with VASS, V is the ringZ*, andV* is N*. Since weights can add any vector,
with positive or negative components, to a valuatibnis the closure o’ * under this
operation. Moreover, VASS do not suffer from the deadlodbems that appear in Petri
nets (but this is done by introducing the problem of decidiungther a walk is admissible).

Notice that either unions (fo¥’, V+ or W) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Weight of a path) Let G be an RSS. The weighting function can be
canonically extended over all paths@hby choosingv(ab) = w(b) o w(a).
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(W, o) is amagma. Itis not a monoid because the identity is not @ni@bere is a finite
set of neutral elements, the identities over edch

Notice that we do not actually need the wholé Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We vétlaad the notation and
call it W as well.

In the following, to improve readability, we will write ® w(a) instead ofw(a)(v)
andw(a) § w(b) instead ofw(b) o w(a). When following paths, we now have:(ab) =
w(b) ow(a) = w(a) gw(b). So, this allows for a more natural expression of weights of
paths.

Example 6.3. For the VASS of the previous Section, we haye= Z* andV;" = N*
for all i, andw(a;) = A\z.x + u; for some vector; € Z*. Or, we could describe VASS by
sayingthat/ = W = ZF, Vt = NF and® = § = +.

The notation with® andg is much more convenient, especially to easily handle wesight
of paths, as is done in the Lemmas and Theorems of the preSexton.

If we considerV; as objects and € W as arrows, we have a category. Indeed, identity
exists for eactV; and composition of two arrows is properly defined.

6.2 Properties of RSS
6.2.1 Order

Definition 6.4 (Ordered RSS)An ordered RS$s an RSSG = (G, V, VT, W,w) to-
gether with a partial ordering over valuations such that the restriction-efto V' is a
well partial order.

For VASS, the component-wise order on vectors of the sangthen the well partial
order (ovelV+ = N¥) that was used in the previous Section.

Definition 6.5 (Monotonicity, positivity) Let(G,V,V*, W,w) be an ordered RSS. We
say that it isincreasingif all weighting functionsw(a;) are increasing with respect te.
Since the composition of increasing functions is still gesing, the weighting function of
any path will be increasing.

We say thatG, V, VT, W, w) is positiveif for eachv € V* andv’ € V, v < v/ implies
v eV,

VASS are both increasing and positive. Monotonicity is tleg kbf Lemma 5.6 while
positivity is implicitly used in the proof of Theorem 5.9 taysthat the valuation reached
after one cycle is still admissible.

Definition 6.6 (Resource awareness)et G be an ordered RSS arnfd: V' — V be a
function. G is f-resource awaréf for any walk (so, vo)— (s, v, ) We havev, < f(vo)

6.2.2 Uniform termination
Definition 6.7 (Uniform termination) Let G be an RSSG is uniformly terminatingf
there is no infinite admissible walk ovéf.

8From an algebraic point of view, this means thats considered as a morphism betweeh, -) and (W, 5),
and® is a right-action ofi’ on V. Moreover,(, 5) often appears to be isomorphic to a well known structure
(usually a group, such &&*, +) for VASS).
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Notice that if an RSS is not uniformly terminating, then #hexists an infinite admis-
sible walk that stays entirely within one strongly conndatemponent of the underlying
graph. In the following, when dealing with infinite walks weppose without loss of gen-
erality that the RSS is strongly connected.

Theorem 5.9 can be generalised to RSS:

THEOREM 6.8. If G doesnot uniformly terminate, then there is an admissible cycle
(s,v)5(s,u) with v < u. If G is increasing and positive, then this is an equivalence.

PROOF If an infinite admissible walk exists, then we can extraonfrit an infinite
sequence of admissible configuratiar§ vy;) with fixed s/, since there is only a finite
number of vertices. Since the order is a well partial ordeVdn there exists a < j with
v; = v;, thus leading to an admissible cycle.

If such a cycle exists, then it is sufficient to follow it infialy many time to have an
infinite admissible walk. Monotonicity is needed to ensurattevery time one follows
the cycle, the valuation does indeed not decrease. Posiswieeded to ensure that when
going through never decreasing valuations one will notddav. O

PROPOSITION 6.9. LetG = (G, V, V't W,w) be an RSS.

(1) If V isfinite, thenlV is finite.
(2) If V is finite, then uniform termination @¥ is decidable.

(3) IfbothV andW are enumerable, then it uniform termination for an ordere®Ser is
semi-decidable.

PrROOFR

(1) Because the set of functiofl§V, V) is finite and containgV’.

(2) If there are only finitely many valuations, any infinitellwaventually comes back to
exactly the same configuration, hence the cycle of Theor8ine&:omess, U)L(s, v).
Then itis possible to compute all the possible weights ofey/there are only finitely
many of them) and check with each valuation whether the ¢mmdis met. Notice
that this does not require the RSS to be ordered.

(3) By enumerating the cycles and the valuations simultasigpcomputing the new val-
uation after going through the cycle and checking with tridedng whether this sat-
isfies Theorem 6.8.

O
Corollary 5.15 can be generalised:

PropPoOsSITION 6.10. If (W, 3) is commutative, then the set of weights of cycles of an
RSS is semi-linear.

This allows us to easily find candidates for a generalisaifarheorem 5.17 if the set of
“positive” weights is easily expressible (as it was the das&/ASS). Among other prop-
erties: if itis itself semi-linear, then uniform terminati is decidable (because intersection
between two semi-linear parts is decidable).
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6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functioresning that ifs—s’, for
each valuation there is only one valuation’ such that(s, v)-%(s’,v'). Sometimes, it
is more convenient to have several possible results be@meximations of the values
leads to a loss of information. In this case, the weights ickemed will be relations rather
than functions and we requité € &(a)(v) rather than’ = w(a)(v).

6.3.1 Constraints RSS

Definition 6.11(Constraints RSS, configurations, walks)
A Constraints RS8 a tuple(G, V, VT, W,w) where

—G = (S, A) is a directed graph.

—V;* C V; are, respectively, the setsafimissible valuationandvaluations
—W;,; : Vi — P(V}) are the sets akeights

—u : A — W is theweighting functiorsuch thati(a) € W; ; if siﬂsj.

Configurations and admissible configurations are definedidigie
A walk is a sequence (finite or not) of configuratio@s, vo)= . .. % (sp, v,) 3 ...

Qp, QAn 41

such thatsg 25,23 ... %5, %' ... and foralli > 0, v; € @(a;)(v;_1). A walk is admis-
sibleif all configurations in it are admissible.

It is important to notice that even if weighting functionguen sets (that is, they are
relations rather than functions), each walk has to chooseetement from this set as a
new valuation. That is, we do not consider configuration$\giéts as valuations, but
rather introduce some kind of non-determinism in the RS® lin use for this will be
when some valuations are in no way related to the previous ané can be anything @.
if a value is provided via some external mechanism suchsgsaf instruction).

Definition 6.12(Weight of a path) Let G be an RSS. The weighting function can be
canonically extended over all pathsGhby choosings(ab)(z) = U, cz(a) () ©(0)(y)-

As earlier, uniform termination means that there existsifinite admissible walk. How-
ever, monotonicity becomes= y = Vz' € ©(z), 3y’ € (y)/z’' < y'.
Then, Theorem 6.8 becomes:

THEOREM 6.13. Let G be a positive increasing Constraints R&Sis not uniformly
terminating if and only if there is an admissible cy¢evy) (s, v1) such that < v;.

ProOF If an admissible infinite walk exists, then we can extraetririt an admissible
cycle in exactly the same way as with Theorem 6.8.

Conversely, if a non-decreasing admissible cyctists, let(s, vg)-= (s, v))—(s, v1)
be the first, second and last configurations when followirgcftle. By hypothesisy <
V1.

Then, there exists; € &(a)(vy) such thats, v;)-%(s’,v}) andv)), < v}. By positivity
of the VASS,v] is still admissible.

By iterating this process, we build the admissible cy@ler; )= (s, v2) with v; < vs.
Then, this can be dore infinitumthus leading to an admissible infinite walkd
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(_1a+1)

(57 Dy

Fig. 9. Constraints VASS for Ackermann'’s function

6.3.2 Constraints VASS.
Let us show how this concept applies to VASS and why it can eéulisrhen studying
programs. Remember that= Z | J{+oc}.

Definition 6.14(Constraints VASS)A Constraints VASE a directed grapty = (S, A)

together with aveighting functionv : A — 7" wherek is a fixed integer.
A configurationis a pairm = (s, v) wheres € S andv € ZF. Itis admissiblef v € N*.
A walkis a sequence (finite or not) of configuratiqag, vg)% . .. “3(s,, v, ) such that
s0B51 %3 ... Bs, and for alli > 0, v; < vi_1 + w(a;). A walk is admissibleif all
configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we stmnsitler the weighting
function(a) : Z* — P(Z*) such thati(a)(v) = {v'|v' < v +w(a)}. Then, the relation
between valuations in a walk will be the generale &(a;)(v;—1). Since, all constraints
have the same shape, we can express this in a more readabl€warastraints VASS are
positive and increasing. When there is-Aco in the weights, it is always “best” to choose
the greatest possible valuation, that is use the (regul§S/with the same underlying
graph and weighting function.

Example6.15. Consider the following functional program computiésgkermann’s
function:

Ack(0,n) —n +1
Ack (m +1,0) —Ack(m, 1)
Ack (m +1,n+ 1) —Ack (m,Ack (m + 1,n))

For functional programs, an equivalent of the CFG it ¢tladl graph There is one vertex
for each function symbol (here only one) and one edge for ealtifhere,3). Since there
are two positive integers in the program, it is natural toasegm, n) as valuation.

The first line does not perform any call, hence there is no edgesponding to it in the
graph (since termination is studied here, the first line carenlead to non-termination,
hence it is safe to have nothing corresponding to it in thelgra

The second line performs one call where the arguments ofuthetibn go from(m +
1,0) to (m, 1), this corresponds to addirfg-1, 1) to the valuation.

The third line performs two calls. The inner call is frékok (m +1,n+1) to Ack (m +
1,n) (embedded in some context). That is, in this call, the arqusef the function go
from (m + 1,n+ 1) to (m + 1,n), so the corresponding edge is label{6d—1).
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However, when considering the outer call in the last lineseond argument becomes
Ack (m + 1,n) which cannot be related to the parametdn any easy way. So, using a
regular VASS, this call would not be representable.

With a Constraints VASS, we can represent this last calleéal not knowing anything
on the result simply means that we can relax all constraimtswhich will be represented
by the vector—1, +o0). The constraints VASS for Ackermann’s function is displaye
Figure 9.

Since this Constraints VASS is uniformly terminating, sé\ckermann’s function.

This both illustrates why Constraints VASS can be useful e & hints how to apply
the ideas behind RCGs to functional programs.

7. RESOURCE CONTROL GRAPHS

Instead of the weighted graphs or VASS used before, we will nge any RSS to model
programs. A set of admissible valuations will be given tohestate and weighting func-
tions simulate the corresponding instruction.

Since we can now have any approximation of the memory (thestdor valuations,
we cannot simply use the length of a state to abstract it.e&aktwe consider given a
size functiorthat associates to each state (or to each store) some sigesiZzEhfunction
is unspecified in general. Of course, when using RCG to maagjrams, the first thing
to do is usually to determine a suitable size function (adicgy to the studied property).
Notice that depending on the size function, weights of irdtons can or cannot be defined
properly (that is, some sizes are either too restrictiveoorlbose and no function can
accurately reproduce on the size the effect of a given iotnu on actual data). In this
case, the RCG cannot be defined and another size function basconsidered.

7.1 Resource Control Graphs

Definition 7.1 (RCG) Letp be a program and be its control flow graph. Let'+ be
a set of admissible valuations (ardbe a well partial order onit). Lete || : © — VT
be a size function from states to valuations afji be the image by o || of all states
(Ibl o) for all storeso.

For eachi , edge ofG, let w(i ) be a function such that for all statésverifying p -
00", w(i )(||0]]) = ||¢’|]. LetV be the closure of/* by all the weighting functions
w(i).

The Resource Control GrapfRCG) of p is the RSS build ori7 with weightsw(i) for
each edge, valuationsl and admissible valuatiori§™ (ordered by<). Vi being the
admissible valuations for vertetsl

As stated before, we will write ® w(i ) instead ofw(i )(v) andw(i ) sw(j ) instead of
w(j)ow(i).
LEMMA 7.2. Let p be a program,G be its RCG angp + 6y — ... — 6, be an

execution with trace. There exists an admissible wall, [|6o]|) — ... — (s, [|04]])
with the same trace

THEOREM 7.3. Letp be a program and~ be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

Example7.4. A Space-RCG as defined in Section 4 is a special case ef@dRCG.
In this case/|0|| = ||, this leads toVj;; = VT = N for each labelbl . Similarly,
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w(i) = Ar.x + ki with k; as in definition 4.1. Sincé € Z, the closure of/+ by the
weighting functions i/ = Z.

In this case, resource awareness of the Space-RC@E $pace-RCG) guarantees a re-
source bound on the program execution.

Example7.5. For a better representation of programs, the size ctirebeector where
each component is the length of a sta¢dkiP ,o)|| = (|stkq],...,|stks|)sk;es. This
corresponds exactly to what is done with the Resource Clov®S of Section 5.3. As
shown, this allows to decide uniform termination of severaigrams.

This termination analysis is close to the Size Change Teation [Lee et al. 2001] in
the sense that the size of data is monitored and a well oglerinit ensure that it can-
not decrease forever. It is sufficient to prove uniform teration of most common lists
programs such as reversing a list or insertion sort. It is,dts some way, slightly more
efficient than the original SCT because it can take into actoat only the decreasing in
size, but also the increasing. In this way, a program thatldvimop on something like
pop pop push (2 pops andl push) is not caught by SCT but is proved uniformly ter-
minating with this analysis. In this sense, it is closer ®8CT with difference constraints
(6SCT) [Ben-Amram 2006].

This method is in NPIME, as we have shown, uniform termination of VASS is in
NPTIME. The original SCT, as well as fan-in fré&CT, is BSPACEcomplete. However,
this simple method does not allow for data duplication orycdee, Jones and Ben-Amram
already claimed in the original SCT that there exists a fimhe algorithm for SCT dealing
with “programs whose size-change graphs have in- and ayeds bounded by’". It is
easy to check that VASS can only model such kind of programsrately, hence the NP
bound is not a big surprise.

Moreover, this method has a fixed definition of size and heritaet detect termination
of programs whose termination argument does not depenceatettrease of the length of
a list. Among other, any program working solely on integeepfesented as letters of the
alphabet) will not be analysed correctly.

Example7.6. However, this representation can be improved. Tylicaking Re-
source Control VASS it is impossible to detect anything leayipg to registers. If we
have a suitable size functighe || : ¥ — N for registers®, we can choosé(IP ,o)|| =
(Ir1lls- -5 lIrrlDr,e=- In this case, depending on the operators, weight could therei
vector addition or matrix multiplication (to allow the cop§ a register).

Remark7.7. Taking exactly the image (fe || as the set of admissible valuatioris
might be a bit too harsh. Indeed, this set might have any saag@és probably not really
easy to handle. So, it is sometimes more convenient to cenaiduperset of it in order
to easily decide if a valuation is admissible or not. The extwull (in V') of the image
of || e || is typically such a superset. Notice that it is very similathe idea of trying to
find an admissible set of sequences of states which will bemanageable than the set of
executions. Here, we try to find an admissible set of valuatighich is more manageable
than the actual set of sizes. For more details on how to buaidnaanage such a superset,
see the work of Avery [2006].

9And cannot even model all those programs due to the restrict copying variables.
10Note that thesizefunction used here is in no way related to tieagth of a state. It plays no role when
computing the space usage of a state and may also be seenrdemimgoover the alphabet.
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Remark7.8. The size function is not specified and may depend on theepty one
wants to study. We do not address here the problem of findingabde size function for a
given program. As hinted, it might be a simple vector of fims over stacks and registers
but it can also be a more complicated function such as a lie@abination or so. Hence,
with a proper size function, one is able not only to check thgiven register (seen as an
integer) is always positive but also that a given registedisys bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Example7.9. Let us consider the following program, working on irgegy(that is the
alphabet is the semnsigned of 32 bits positive integers):

0:i:=0; 4 :if i<n then goto 2
1:if i>n then goto 5; 5:i=1i41;
2 =041 end : end;

3 : some instructions modifying neithenorn

This is simply a loogor(i=0;i<n;i++) (in a C-like syntax). If we consider a size
function that simply takes the vector of the registers, tht{IP , o)|| = (i, n), then the
loop will have weight(+1,0) and thus lead to a cycle of positive weight. However, a
clever analysis of the program could detect that insidedbg e must necessarily have
n —1i > 0 and thus suggest the sigélP , o)|| = n —i. Using this, the loop has weightl
and we can prove uniform termination of the program.

As stated, we do not address here the problem of finding aaosize function for
a given program. This problem is undecidable in general. iBudriants can often be
automatically generated, usually by looking at the pre-@o&t-conditions of the loops.

Notice also that this inequality must hold only in the loopdéed, at labeb or after,
we may have > n. Hence using this size function everywhere would causétessince
then||(5, o)|| will not be admissible.

Having different sets of valuations for each labels, thaa isize function operating
differently on each label, can solve this problem. By chog$j({IP ,c)|| = (i,n) for
IP =0,1,5,end and|[{IP ,o)|| = (i,n,n — i) otherwise, we can ensure that the “natu-
ral” sets of admissible valuation®f andN?) indeed correspond to the image of the size
function (or at least a manageable superset of it).

In this case, of course, we need the weight between labaial2 to take into account
the apparition of a new component in the valuation. Hers,¢hn be done using a matrix
multiplication since the new component in the valuation iénaar combination of the
existing ones. See Example 9.3 for the complete constiuofithe RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to modeépregind build RCG as was
done with the Ackermann’s function of Example 6.15. In thade; the relation required
between weights and sizes is:

for all statesd verifyingp - 60", ||0/|| € &(i )(||0]]).

Then, the simulation Lemma and uniform termination Theoagenstill true:

LEMMA 7.10. Letp be a programG be its Constraints RCG angd - 6y — ... —
6,, be an execution with trace There exists an admissible walk, ||0]]) — ... —
(Sn, ||0,]|) with the same trace
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PROOF Because|d;|| belongs tas(a)(#;—1) and can thus always be chosen as the new
valuation. O

THEOREM 7.11. Letp be a program and~ be its RCG. I is uniformly terminating,
thenp is also uniformly terminating.

8. §-SIZE CHANGE TERMINATION

In Section 4, we have used RCG in order to have an analysisnofing space similar
to the Non Size Increasing approach of Hofmann. Here, wewg# RCG to analyse
termination of programs in a way similar to the Size Changenimation of Lee, Jones
and Ben-Amram and, more precisely, to th8ize Change Termination of Ben-Amram.
We consider here th€Z, min, +) semi-ring and denoteain as® and+ as®. These
operations are canonically extended to define multipleatf matrices' from M (7).

8.1 Matrices and graphs

Definition 8.1 (Constraint graph) Let M be a square matrix of dimensien Its con-
straint graphis a weighted directed graph such that:

—There aren verticesX;, 1 < i < n plus an extra verteX'.
—If M; ; # +o0, there is an edge of weighit; ; betweenX; and X ;.
—There is an edge of weightbetweeny” and X, for all 7.

Definition 8.2 (I-weight) LetG be a directed weighted graph. Theeight between
andb is the minimum weight of all paths of lengtthetweern: andb and+c if there is
no such path.

The coefficientZV[j‘fj is thek-weight betweenX; and.X; in the constraint graph af/.

LEMMA 8.3. The systenX < X ® M has a solution if and only if there is no strictly
negative coefficient in the diagonal df*, for all k. In that case, it admits a non-negative
solution.

It is possible to decide in polynomial time whether such géesgsadmits a solution.

PrROOF The matrix inequality corresponds to the set of inequeitiX; < min, (X, +
M; ;)} which can, without modifying the set of solutions, be expessas{ X; < X, +
M, ;}.

If there is no strictly negative coefficient in the diagonéld”, that means that the
constraints grapli has no cycle of strictly negative weight. In this case, we dapose
for X; the value of the shortest path to reach it frdfm This is well defined because
there is no cycle of strictly negative weight and provideslation for the system because
X; < X; + M, ; by definition of shortest paths.

Conversely, if there is a path of strictly negative weighgn it is easy to see that by
adding the inequations corresponding to the edges in tlisgree will eventually reach an
inequationX; < X; and the system has no solution.

If there is a solution, theX + (1, ..., 1) is also a solution. Hence, there exists a solution
where all values are positive.

HThat is, given two matricest and B, (A & B); ; = A; ; ® B; ; = min(A; ;, B; ;) and(A ® B); ;
P, Aix ® By,j = ming(A; ; + By ;). Similarly, if X is a vector andV/ a matrix, then(X ® M);
@k Vk X Mk,j = mlnk(Vk + Mk,j)-
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The system admits a solution if and only if the constrainpgrhas no cycle of strictly
negative weight. This can be decided in polynomial time byrBan-Ford’s algorithm. O

8.2 Size Change Termination

We explain here how to build RCG in order to perform the sanmel kif analysis as the
Size-Change Termination with difference constrain®{T) of Ben-Amram [2006]. Here,
we use matrices rather than Size Change Graphs thus fotidiwawork of Abel and Al-
tenkirch [2002] where similar SCT matrices are used (but esvalued set, thus mim-
icking the initial SCT and not the work with difference caménts).

In this whole section, we consider a fixed prograrand for each labdbl , in it a fixed
integerk,. LetV, = Z*« andV,* = N*« be sets of (admissible) valuations associated with
each label and we consider given a size functjan|| such that for each labél , and
for each storer, ||(Ibl ,,0)|| € V,t.

Definition 8.4 (Size Change Matrix)Leti be an instruction i corresponding to an
edge betweelbl , andlbl ; in G. TheSize Change MatrigSCT matrix) ofi is a matrix
M) of My, 1, (Z) such that for all state®, with p - 6,6y, ||0]] < [|0a]] @ M.

This means that iflt, || = (x1,- -+, zx,) and||0y|| = (y1,--- , yx,), we have for each

g y; < ming{zy + M,E'])} where the coefficients af/() can be any integer cf .

Definition 8.5 (Size Change RCG)TheSize Change RCGBCT-RCG) ofp is the Con-
straints RCG forp build with admissible valuation&*=, and valuation&* for vertex
Ibl . The weight for edge is such thati(i )(v) = {¢/|v' < v® M)} whereM () is
the SCT matrix foi .

As for Constraints VASS, the common shape of constraintsvalito use a weighting
functionw(i ) = M) instead of the weighting relatiod and ask along a walk that
v; < w(ai)(vi_l) rather thami S @(ai)(vi_l).

The uniform termination Theorem for Constraints RCG (Tleeoi7.11) tells us that if
the SCT-RCG is uniformly terminating then sapis

SCT-RCG are both increasing and positive, so it will be dnesb apply Theorem 6.13.

THEOREM 8.6. Let G be the SCT-RCG of. It is uniformly terminating if and only if
it does not contains a cycteof weight)/(¢) such thatX < X @ M(¢) admits a solution.

PROOF. If the systemX < X ® M(®) admits a solution, then it admits an arbitrarily
large solution. Hence, there exists an admissible cyel&)-5(s, X ® M) and by
Theorem 6.13, the SCT-RCG is not uniformly terminating.

Conversely, if the SCT-RCG is not uniformely terminatingrthby Theorem 6.13 there
exists a cycle of weight/ such thatX < X ® M has a solution. O

Remark8.7. The readers familiar with the original works of Lee ef2001] or Ben-
Amram [2006] may wonder why there is no idempotence conditioTheorem 8.6. As
a matter of fact, it happens that any square matfixon the(Z, min, +) semi-ring has a
power M’ = MP* which is strongly sign idempotenthat is the coefficientd/;”;, for all
n > 0 all have the same sign. '

The matrices we use here, as well as the Size Change Graptes athier works, rep-
resent the flow of data. The idea behind idempotence is thatam to detect a cycle in
the program such that the corresponding flow of data is atsalair, that is each variable
flows to itself.
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Fig. 10. A Size Change Termination RCG.

The dangerous cycles (with respect to termination) arestivd® (i) have an idempotent
flow of data and (ii) do not have a decrease in one of the datieelah, these cycles could
be repeated infinitely many time, leading to an infinite exiecu

However, as stated for matrices at the beginning of the Riereach flow of data even-
tually becomes idempotent if repeated several times. Hdimcing a cycle whose weight
M is such thatX < X ® M admits a solution is sufficient to get a cycle with idempotent
flow of data by repeating this cycle.

With RCG, the notion of valuation makes the inequalfy< X ® M pretty natural,
since it exactly correspond to what happen to valuatiores gfting through the cycle. The
original RCG works, however, did not have this notion of \aian but only the matrices
(or graphs), seen as a description of the modification onizkee$ variables (independently
to the actual value of variable, that is the valuations). ¢¢gerthe idempotence condition
was natural in this framework but the notion of RCG shows tima&t can actually get rid of
it.

Notice that the flow of data is somewhat taken into accountédmina 8.3 where we
consider the sign of the coefficients of the diagonalf. The coefficients on the diagonal
of M* explain how the data flows from; to itself after repeating the cycletimes.

Notice that by Lemma 8.3, the individual condition on cygkedecidable in polynomial
time. The general condition, however, is undecidable. Kbetess, if the matrices afen-
in free thatis in each column of each SCT matrix, there is at moshonet oo coefficient,
then the problem is $PaAcEcomplete. See [Ben-Amram 2006] for details. Notice that in
this paper, Ben-Amram uses mostly SCT graphs and not SCTicestrThe translation
from one to the other is, however, quite obvious. Similarly present here directly a
condition on the cycles of the SCT-RCG without introducihg tultipaths. This is close
to the “graph algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can ba as an approximation of
the §SCT principle where only labels if—1, 0, +oc0} are used. Since this only gives way
to finitely many different SCT matrices, this is decidablgeneral (BPACEcomplete).

Example8.8. Consider the following program (adapted from [Lee et2@01] fifth
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example):
0:if y=0 then goto end ; 5 : goto 0;
1:if x=0 then goto 6; 6 :X:=Y;
2 :a:=Xx; 7Try=y—1
3 X:=Y; 8 : goto 0;
4 :y:=a—1; end : end;

It can be proved terminating by choosing the size funcfiéin = (x,y, a). With this size,
its SCT-RCG is displayed on Figure 10. For convenience regsostruction® — 4, as
well as6 — 7 have been represented as a single edge (with a single mattig allows
to completely forget registex and so us€x,y) as size. Similarly, the other SCT matri-
ces are not depicted since they are the identity matrix. éSihe SCT-RCG is uniformly
terminating, so is the program.

When working with this simple Size Change Principle (or atiyeo restriction where
there can be only finitely many different weights), Theoregdves an algorithmic way
of detecting uniform termination of the SCT-RCG. Indeed:réhare only finitely many
different weights, hence there are only finitely many tugkes\/, r) such that there exists
a path froms to » whose weight is\/. Then, it is possible to build all these tuples in an
incremental way by starting with tuplés, M, ) corresponding to each edge of the SCT-
RCG and add new tuples by composing existing ones with nmagobilges. This is the
core idea of the “graph algorithm” of Lee et al. [2001].

9. MORE ON MATRICES
9.1 Matrices Multiplication System with States

If we use vectors as valuations and (usual) matrices migiifibn as weights, we can
define Matrices Multiplication Systems with States (MMS&)ai way similar to VASS.
Admissible valuations will still be the ones N but & is not fixed for the RSS and may
depend on the current vertex.

Definition 9.1 (Matrices Multiplication System with Statesh Matrices Multiplication
System with Stat¢®MSS) is an RSS7 = (G, V, VT, W, w) where:

—V; = 7ZF, V;* = N*i for some constant; (depending on the vertex).
—Weights are matrices with integer coefficients.
—; = @ = X.

Using this, it is quite easy to model copy instructions of meus machinesx(:= vy)
simply by using the correct permutation matrix as a weight. r@present increment or
decrement of a counter, an operation which was quite natitalVASS, we now need
a small trick known asiomogeneous coordinatés Simply represent the counters as a
n+1 components vector whose first componentis alwiaychen, increment or decrement
of a variable just becomes a linear combination of companehthe vector which can

12Homogeneous coordinates were originally introduced by.AM®bius. They are used, among other, in com-
puter graphics for exactly the same purposes as we do hatés ttepresenting a translation by means of matrix
multiplication.
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Fig. 11. MMSS as a RCG.

perfectly be done with matrices multiplication. For exaefiere is how one can model
the copy & :=y) and the incremenk(:= x + 1).

110
(Lz,y)x [000] =(1yy) (Layx|010|=(12z+1y)
011 001

Example9.2. Using homogeneous coordinates, the program of Exa&pléas the
MMSS depicted on Figure 11. Here, matrices multiplicatidaone on the usuék, +, x)
ring and not on théZ, min, +) semi-ring as for SCT-RCG.

Example9.3. Similarly, use of homogeneous coordinates allows tll lBUMMSS to
prove uniform termination of the program of Example 7.9sltepicted on the left part of
Figure 12 (where labe) has been omitted). The interesting thing here is the useatbre
of different lengths at different labels, thus allowing tidethe constraint — i > 0 only
inside the loop. This example shows both the use of disjeit# sf valuations and how to
work with the functional inequalities of Avery [2006].

Butthere is even more. VASS are able to forbid & 0 branch of a test being taken in an
admissible walk ifx is 0 simply by decrementing and then incrementing it immediately
after. The net effect is null but it is 0, the intermediate valuation is not admissible.
This can still be done with MMSS. VASS, like Petri nets, arevheer not able to test if a
component is empty, that is forbid the= 0 branch of a test to be takenuifis not0.

With MMSS, we can perform this test @ It is indeed sufficient to multiply the correct
component of the valuation by1. If it was different from0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model antens machine by a MMSS:
each execution of the machine will correspond to exactlyasheissible walk in the MMSS
and each admissible walk in the MMSS will correspond to dyamtie execution of the
machine.

This leads to the following theorem:

THEOREM 9.4. Uniform termination of MMSS is not decidable.
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Fig. 12. MMSS for loop and unary addition.

Example9.5. Consider the following program, performing additionuinary (that is,
repeatedly decrementingand incrementing until X is 0).

0 :if x=0 then goto end ; 3 : goto O;
1:x:=x—-1; end : end;
2:y:=y+1;

Right side of Figure 12 depicts a MMSS for this program suctt there is a one-to-one
correspondence between executions of the program and sidieisvalks of the MMSS.
The size used i1, X, y), the 1 being here because of homogeneous coordinates. Notice
that we need to add an intermediate label for xhez 0 branch of the test in order to
generate the temporary valuation containing 1, only used to force admissible walks
with x = 0 to take the other branch.

On the other branch of the test, the in the center of the matrice ensures that i 0in
the valuation at vertes, then following this edge will lead to a non-admissible \aian.
That is, this edge can only be followedif= 0.

Since such a construction can be done for any counter maéthiaeunary addition
program uses all possible instructions for counter maafiaad since counter machines
are Turing-complete, this shows why uniform terminationMi¥1SS is not decidable in
general.

This simulation of programs by matrices multiplicatiorses a surprising question. In-
deed, matrices multiplications are only able to perfornedinoperations on data. While
obviously some programs can perform non-linear operations
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This apparent contradiction is solved when we think morsapon how RSS work.
Each walk in a MMSS corresponds to a matrix multiplicatioaqiausev is a morphism),
hence to a linear transformation on data. However, two iffewalks give rise to two
different matrices, hence two different linear transfotiorzs.

When simulating a program, each different data will go tlgtoa different (admissible)
walk in the MMSS. Hence, each different value will pass tigioa different linear trans-
formation. Of course, the other walks (that is, the othegdintransformations) also exist
and are considered on this data when looking at the set ofswhlkt non-admissibility
allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSSa®t of linear trans-
formations and the admissibility mechanism selects thpgrtransformation to apply on
each piece of data.

For example, if we consider a program performing multigima of two integers: and
y, it will likely be a loop onz, addingy to the result each time. The corresponding MMSS
will have several paths (infinitely many) that can each beltate for a walk once actual
data is provided. Different paths correspond to following boop1,2,3, ..., k, ... times.
Then, the walk corresponding to each of these paths wilbperthe linear transformation
(1,z,y) — (1,2 — k, ky) representable by the matrix:

1 -k0
010
0 0 k

However, when performing all these transformations onalatata, only those witk < x
have an admissible result and only the one wkita- = has all its intermediate valuations
admissible. So, the admissibility mechanism selects tite tinear transformation to ap-
ply.

That means that when simulating a program computing a (im&aul) function by a
MMSS, the simulation actually consider the function as bgiiecewise linearcomputes
the result of all the possible linear transformations iregland selects the one correspond-
ing to current data. In general, it is possible that eactalineansformation is only valid
for a single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matri¢enairices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wdoenponenti, j) is the
coefficient of the edge between verticeand j). That is, a first order program can be
represented as such kind of tensors. However, it may theodssalpe to uses these tensors
(and tensors multiplication) in order to study second-optegrams. In turn, the second
order programs would probably be representable by a temstr ihore dimensions) and
SO one.

This could lead to a tensor algebra representing high ondgrams.

Example9.6. Here is a tensor representing the MMSS of the unary iaddjas de-
picted in Figure 12). This is simply the connectivity matoithe graph where each edge
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is itself weighted by a matrix.

1-10 100
0 010 0 0 0 0-10
00 1 00 1
110
0 0 010 0 0 0
001
1-10
0 0 0 010 0 0
00 1
101
0 0 0 0 010 0
001
100
010 0 0 0 0 0
001
0 0 0 0 0 o |

9.3 Polynomial time

Another interesting approach of program analysis usingiogst is the one done by Nigg|
and Wunderlich [2006] and Kristiansen and Jones [2005]. drograms they study are
similar to our stack machines except that the (conditiojpuaf)p is replaced by a fixed
iteration structurel¢op ) where the number of iterations is bounded by the length of a
given stack.

Then, they assign to each basic instruction a matrix, callesttificatewhich contains
information on how to polynomially bound the size of the stgis (or stacks) after the
instruction by their size before executing the instructidrappears that when sequencing
instructions, the certificate for the sequence turns ouetthk product of the certificates
for each instruction. Certificates for loops are some kindhattiplicative closure of the
certificate for the body and certificate fibr statements are the least upper bound of the
two branches.

Building the certificate of a program thus leads to a polyradrhbund on the result
depending on the inputs which can then be turned into a palyaldound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMS$awhe valuation would
give information on the size of registers (depending on the sf the inputs of the pro-
gram) and the weights of instructions will be these certiisa This will exactly be a
Resources Control Graph for the program. If the programrisfieel, then this RCG wiill
be polynomially resource aware.

10. CONCLUSION

We have introduced a new generic framework for studying mg. This framework is
highly adaptable via the size function and can thus studgreéproperties of programs
with the same global tool. Analyses apparently quite différsuch as the study of Non
Size Increasing programs or the Size Change Terminatioquidéenaturally be expressed
in terms of Resource Control Graphs, thus showing the ab#iptaf the tool.
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Moreover, other analyses look like they can also be expdessthis way, thus giving
hopes for a truly generic tool to express and study prograoysgpties such as termination
or complexity. It is even likely that high order could be dedithat way, thus giving
insights for a better comprehension of high order compjexit

Theory of algorithms is not well established. This work ialle on the study of pro-
grams and not of functions. Further works in this directidlhstied some light on the very
nature of algorithms and hopefully give one day rise to arbeal framework as solid
as our knowledge of functions. Here, the study of MMSS andé¢heors multiplication
hints that a tensors algebra might be used as a mathemadidedtound for a theory of
algorithms and must then be pursued.
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