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1 Introduction

In this work, we study a general framework for modelising assembly-like programs and study their properties. This
is originally inspired by Lee, Jones and Ben-Amram’s Size Change Principle [LJBA01] but turn out to be also able
to detect memory usage properties similar to Hofmann’s Non Size Increasingness [Hof99] and perform transfor-
mations similar to Wadler’s deforestation [Wad90]. Similar technics exist, using Petri nets [Moy03, MM03] or
matrices [NW].

2 Petri nets

Programs are written in a small assembly-like language. We have counters storing positivce unary numbers.
Those must be thinked about as the size of actual data (e.g.the length of lists). We can increment or decrement
counters values, and perform conditionnal (if a counter’s value is0) and unconditionnal jumps to fixed labels of
the program.

The following program computes iny the addition ofx andy:
0 : if x = 0 jmp 4;
1 : x −− ; 2 : y + +;
3 : jmp 0 ; 4 : end;

The program is then modelised by a Petri net. The control part(in red) consists of one place for each label and
one transition for each instruction (two for conditionnal jumps). The memory part (in blue) consist of one memory
place, with links to increment and decrement transitions and the size-change part (in green) consists of one place
for each variable with links to the corresponding increment/decrement transitions. The Petri net for addition is
shown on the left part of Figure 1.

Now, it is easy to show that for each execution of the program we can put sufficiently enough tokens in the
varaibles and memory places, plus on in0, and have a firing sequence of the petri net simulating the execution of
the program. This leads to a sufficient condition for uniformtermination of the program.

Theorem 1. If, whatever the initial marking, the Petri net has no infinite firing sequence, the the program always
terminates.
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Figure 1: Petri net, VASS and MMSS for the addition.
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A Petri net with transition matrixΓ uniformly terminates if and only if the equationΓX ≥ 0 has no positive
solution. See chapter9.2 of [Moy03] for full details.

In order to deal with memory management, we forget all the variables part. We may then consider the net as a
directed weigthed graph. Vertices are labels, edges are instructions and weight are memory management.

Theorem 2. If the memory graph has no cycle of negative weight, then the program is Non Size Increasing.

3 Matrices Multiplication Systems

The Petri net modelisation is neat but no good enough. Indeed, two main problems subsist. First of all, we need
to insure that only firing sequences with a single token in thecontrol places (the instruction pointer) are taken into
account. In [Moy03], chapter9.3 this condition is enforced with extra equations. We suggesthere a better way to
deal with this problem.

Instead of modelising the progrma with a Petri net, we will modelise it with a Vector Addition System with
States (VASS). That is a directed graph whose edges are weighted by vectors. Then, when taking a path in the
VASS, we will have a vector associated to each vertice and every time an edge is followed, its weight is added to
the current vector. If this brings a negative component on the vector, then it is forbidden to take that edge. The
VASS for addition is shown on the middle part of Figure 1.

Theorem 3. Again, each execution of the program corresponds to a positive path in the VASS. And again, if the
VASS has no such positive path, then the program always terminates.

Uniform termination of VASS is decidable but a bit more tedious. First of all, we need to reduce it to the
inexistance of a cycle of positive weight (in each component), then use the fact that the set of cycles in a graph is a
regular language (think of the graph as an automata) and thus, by commutativity of the addition of vectors, the set
of weight is a rationnal part ofZn which can be expressed as a finite union of semi-linear parts.It is then possible
to check if one of this part intersectsNn, that is if there is a cycle of positive weight. all of this canbe done in
NPTIME.

But even with VASS, a problem subsists. Indeed, we can hardlyhandle permutation of variables that may
happen, typically, when performing a call to a sub-functionor upon return of such call. Keeping the idea of a
graph with a vector associated to each vertice during paths,it is natural, to perform permutation of values in a
vector, to replace vector addition by matrix multiplication. In order to still be able to add or substract a constant,
we just need to add to each vector the constant1 as a new component.

This result in the construction of a Matrices Multiplication System with States (MMSS). The MMSS for
addition is shown on the right part of Figure 1.

Again, if the MMSS uniformly terminates, then the program uniformly terminates. We do not know currently
if uniform termination of MMSS is decidable.

However, we may notice that if we restrict our matrices to be over a finite ring, then uniform termination is
decidable. Among other things, we may see that Size Change Principle [LJBA01] can be seen as a MMSS over the
three-element set{↓, =, ↑} (↑ replace the absence of arrow in SCP). Indeed, each elementary size change graph
will be a single matrice and the graph algorithm explained inthe paper consist of finding an idempotent cycle in
the MMSS.

Since SCP is PSPACE-complete, uniform termination of MMSS will probably be PSPACE-hard.

4 Conclusion

This modelisation of program allow to regroup several analysises in one. Indeed, memory management can easily
be plugged in MMSS by adding a memory component to each vector. Moreover, if we consider that freeing
memory has a weightα and not1, then we will be able to detect programs which consumeα|x| space for inputs
of size|x|, that is characterise LINSPACE.

Moreover, the graph we build are similar to the trees build indeforestation [Wad90]. Thus, this method also
allow to perform a program transformation similar to deforestation, as explained in [Moy03], chapter9.4.

We still have to study uniform termination of MMSS. If it happen to be undecidable in the general case, then
we can still wotlk in the finite case. The possibility to have more than three values should be sufficient to prove
termination of more programs than SCP does.
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