Termination and Non Size Increasingness of assembly pmgyra

Jean-Yves Marion & Jean-Yves Moyen

1 Introduction

In this work, we study a general framework for modelisingeasly-like programs and study their properties. This
is originally inspired by Lee, Jones and Ben-Amram’s Sizar@je Principle [LIBAO1] but turn out to be also able
to detect memory usage properties similar to Hofmann’'s Nea Bicreasingness [Hof99] and perform transfor-
mations similar to Wadler’s deforestation [Wad90]. Similechnics exist, using Petri nets [Moy03, MMO03] or

matrices [NW].

2 Petri nets

Programs are written in a small assembly-like language. e ftounters storing positivce unary numbers.
Those must be thinked about as the size of actual @aggatlie length of lists). We can increment or decrement
counters values, and perform conditionnal (if a counteaisi@ is0) and unconditionnal jumps to fixed labels of
the program.
0 : if z=0jnmp 4
The following program computes inthe additionofc andy: 1 : =z ——; 2 : y+ +;
3 : jmp 0;4 : end;

The program is then modelised by a Petri net. The control(paréd) consists of one place for each label and
one transition for each instruction (two for conditionnatjps). The memory part (in blue) consist of one memory
place, with links to increment and decrement transitiorgstae size-change part (in green) consists of one place
for each variable with links to the corresponding incrensigdrement transitions. The Petri net for addition is
shown on the left part of Figure 1.

Now, it is easy to show that for each execution of the progracan put sufficiently enough tokens in the
varaibles and memory places, plus orbjrand have a firing sequence of the petri net simulating theugian of
the program. This leads to a sufficient condition for unifaemmination of the program.

Theorem 1. If, whatever the initial marking, the Petri net has no infenfiring sequence, the the program always
terminates.

(1,2,9)

Figure 1: Petri net, VASS and MMSS for the addition.

A Petri net with transition matriX’ uniformly terminates if and only if the equatidhX > 0 has no positive
solution. See chapté&r2 of [Moy03] for full details.

In order to deal with memory management, we forget all thetdes part. We may then consider the netas a
directed weigthed graph. Vertices are labels, edges areiations and weight are memory management.

Theorem 2. If the memory graph has no cycle of negative weight, thenrbgram is Non Size Increasing.

3 Matrices Multiplication Systems

The Petri net modelisation is neat but no good enough. Indesdmain problems subsist. First of all, we need
to insure that only firing sequences with a single token ircth&rol places (the instruction pointer) are taken into
account. In [Moy03], chapter.3 this condition is enforced with extra equations. We sugbest a better way to
deal with this problem.

Instead of modelising the progrma with a Petri net, we willdelise it with a Vector Addition System with
States (VASS). That is a directed graph whose edges are tgdiply vectors. Then, when taking a path in the
VASS, we will have a vector associated to each vertice and/e¢iree an edge is followed, its weight is added to
the current vector. If this brings a negative component envéector, then it is forbidden to take that edge. The
VASS for addition is shown on the middle part of Figure 1.

Theorem 3. Again, each execution of the program corresponds to a pesitath in the VASS. And again, if the
VASS has no such positive path, then the program alwaysrtates.

Uniform termination of VASS is decidable but a bit more tedio First of all, we need to reduce it to the
inexistance of a cycle of positive weight (in each compoje¢hén use the fact that the set of cyclesin agraphis a
regular language (think of the graph as an automata) andhliicommutativity of the addition of vectors, the set
of weight is a rationnal part 6£™ which can be expressed as a finite union of semi-linear parssthen possible
to check if one of this part intersed¥?, that is if there is a cycle of positive weight. all of this cla@ done in
NPTIME.

But even with VASS, a problem subsists. Indeed, we can hdrahdle permutation of variables that may
happen, typically, when performing a call to a sub-functiwrupon return of such call. Keeping the idea of a
graph with a vector associated to each vertice during pétispatural, to perform permutation of values in a
vector, to replace vector addition by matrix multiplicatidn order to still be able to add or substract a constant,
we just need to add to each vector the constaad a new component.

This result in the construction of a Matrices Multiplicati®ystem with States (MMSS). The MMSS for
addition is shown on the right part of Figure 1.

Again, if the MMSS uniformly terminates, then the progranifommly terminates. We do not know currently
if uniform termination of MMSS is decidable.

However, we may notice that if we restrict our matrices to bera finite ring, then uniform termination is
decidable. Among other things, we may see that Size Chamggefte [LIJBAO1] can be seen as a MMSS over the
three-element set|, =, 1} (1 replace the absence of arrow in SCP). Indeed, each elemeizarchange graph
will be a single matrice and the graph algorithm explainethepaper consist of finding an idempotent cycle in
the MMSS.

Since SCP is Bpacecomplete, uniform termination of MMSS will probably besPacehard.

4 Conclusion

This modelisation of program allow to regroup several asiaBs in one. Indeed, memory management can easily
be plugged in MMSS by adding a memory component to each vedfimreover, if we consider that freeing
memory has a weight and notl, then we will be able to detect programs which consurfg space for inputs
of size|z|, that is characteriselN SPACE.

Moreover, the graph we build are similar to the trees buildeforestation [Wad90]. Thus, this method also
allow to perform a program transformation similar to deftation, as explained in [Moy03], chapted.

We still have to study uniform termination of MMSS. If it hagpto be undecidable in the general case, then
we can still wotlk in the finite case. The possibility to haveramthan three values should be sufficient to prove
termination of more programs than SCP does.

References

[Hof99] Martin Hofmann. Linear types and Non-Size Increagdolynomial time computation. lRroceedings
of the Fourteenth IEEE Symposium on Logic in Computer Seidd€S’99) pages 464—-473, 1999.

[LJIBAO1] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amrafhe Size-Change Principle for Program
Termination. InNSymposium on Principles of Programming Languagekime 28, pages 81-92. ACM
press, January 2001.

[MMO03] Jean-Yves Marion and Jean-Yves Moyen. Terminatiod eessource analysis of assembly programs
by Petri Nets. Technical report, Loria, 2003.

[Moy03] Jean-Yves MoyenAnalyse de la complexité et transformation de programnigsse d’universite,
Nancy 2, Dec 2003.

[NW] K.-H. Niggl and H. Wunderlich. Certifying polynomiairhe and linear/polynomial space for impera-
tive programs SIAM Journal on ComputingA apparaitre.

[Wad90] Philip Wadler. Deforestation: transforming pragns to eliminate tree3heoretical Computer Science
73(2):231-248, 1990.

