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1. A quick review of the Drinfel’d associator

1.a. The KZ equation. The Drinfel’d associator is obtained as the
monodromy of the KZB equation

d

dz
G(z) =

(x
z

+
y

1− z

)
G(z);

more specifically ΦKZ(x, y) = G1(z)−1G0(z), where G0 (resp. G1) is the
solution to the KZ equation that tends to zx as z → 0 (resp. to (1− z)y as
z → 1). It is a group-like power series in non-commutative variables x, y.

Write ΦKZ =
∑
r≥0 ΦnKZ where ΦnKZ denotes the sum of terms of ΦKZ

consisting of monomials of degree (weight) equal to n. Then in principle,
ΦnKZ can be written as the iterated integral

ΦnKZ(x, y) =

∫
0<zn<···<z1<1

( x
z1

+
y

1− z1

)
· · ·
( x
zn

+
y

1− zn

)
dzn · · · dz1,

except of course that the iterated integral that arises as the coefficient of a
word w in x, y converges if and only if w is a convergent word (i.e. of the
form w = xuy).

1.b. Regularization of iterated integrals. The regularization pro-
cess used to determine the coefficients of the non-convergent words consists
in showing that the integral∫

ε<zn<···<z1<1−ε

1

z1 − ν1
· · · 1

zn − νn
dzn · · · dz1

(where νi ∈ {0, 1}) is a power series in ln(ε) whose coefficients are polyno-
mials in ε). The regularized value of the integral is the constant term of
the power series.
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1.c. MZV coefficients. For each sequence (k1, . . . , kr) of strictly positive
integers, k1 ≥ 2, the multiple zeta value is defined by the convergent
series

ζ(k1, . . . , kr) =
∑

n1>···>nr>0

1

nk11 · · ·n
kr
r

.

There is a bijection

{tuples with k1 ≥ 2} ↔ {convergent words xuy}
(k1, . . . , kr)↔ xk1−1y · · ·xkr−1y.

As a notation, we use this to write

ζ(k1, . . . , kr) = ζ(xk1−1y · · ·xkr−1y).

We extend the definition to ζ(w) for any word w = yauxb with u convergent:

ζ(w) =
a∑
r=0

b∑
s=0

(−1)r+sζ
(
sh(yr, ya−ruxb−s, xs)

)
.

The Drinfel’d associator is given explicitly by

ΦKZ(x, y) = 1 +
∑

w∈Q〈x,y〉

(−1)dwζ(w)w

where dw is the number of y’s in the word w.
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1.d. The log (Lie-like) associator. Let mt denote the twisted Magnus
Lie algebra whose underlying vector space is Lie[x, y], but equipped with
the Poisson Lie bracket

{f, g} = Df (g)−Dg(f) + [f, g],

where for each f ∈ Lie[x, y], Df is the derivation of Lie[x, y] defined by
Df (x) = 0, Df (y) = [y, f ].

We equip mt with the pre-Lie law � given by

f � g = Df (g) + fg.

The twisted Magnus exponential exp� maps mt to its Lie group MT via

exp�(f) =
∑
n≥0

1

n!
f�n,

where f�n = f � (f�n−1). Let log� be the inverse map.

In order to explore the relations on ΦKZ (and Aτ ), it is simpler to pass
to the Lie algebra situation and work mod 2πi.

Definition. Let φKZ = log�(ΦKZ) mod ζ(2).
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1.e. Relations on φKZ . The Drinfel’d associator satisfies many relations.
The double shuffle relations (which give two families of algebraic relations
between mzvs) are conjectured to be sufficient.

• The shuffle relation is

∆(φKZ) = φKZ ⊗ 1 + 1⊗ φKZ ,

where ∆(x) = x ⊗ 1 + 1 ⊗ x and ∆(y) = y ⊗ 1 + 1 ⊗ y. This means that
φKZ is Lie-like, i.e. it lies in Lie[x, y].

• The stuffle relation is obtained by considering the modified series

φcorr = πy(φKZ) +
∑
n≥1

(−1)n−1

n
ζ(yn)yn1 ,

where πy(φKZ) is the projection of φKZ onto the words ending in y, rewrit-
ten in the variables yi = xi−1y; the condition is then

∆∗(φcorr) = φcorr ⊗ 1 + 1⊗ φcorr,

where
∆∗(yi) =

∑
k+l=i

yk ⊗ yl.

• It is also known that φKZ satisfies the following property:

φKZ(−x− y, y) is push-invariant,

which means it is invariant under the cyclic push-operator

xa0y · · · yxar−1yxar 7→ xaryxa0y · · · yxar−1 .
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2. A quick look at Écalle’s mould theory

A mould is a tuple (Pr)r≥0 where Pr is a function of r commutative
variables u1, . . . , ur. We work over a fixed field, here Q, so P0 ∈ Q, and we
restrict our attention to rational-function moulds. Let ARI be the vector
space of moulds with constant term 0.

Let ci = adi−1x (y) for i ≥ 1, and let Q〈〈C〉〉 be the power series ring in
the ci and Qr〈〈C〉〉 the subspace of polynomials of degree (depth) r in the
ci.

Theorem. [easy] The linear map

Qr〈〈C〉〉 → ARIpol

given by linearly extending

ma : ca1 · · · car 7→ ua1−11 · · ·uar−1r

is an isomorphism onto the subspace of polynomial moulds concentrated in
depth r.

We define the multiplication law on moulds by

(A×B)(u1, . . . , ur) =
r∑
i=0

A(u1, . . . , ui)B(ui+1, . . . , ur).

If A = ma(a) and B = ma(b) for a, b ∈ Q〈〈C〉〉, then

ma(ab) = A×B.

In other words the mould multiplication generalizes power series multipli-
cation.
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The double shuffle relations satisfied by φKZ translate onto the image
mould as follows.

• A mould in ARI is alternal if for 1 ≤ i ≤ r − 1, we have∑
wsh
(
(u1,...,ui),(ui+1,...,ur)

)P (w) = 0.

A power series p ∈ Q〈〈C〉〉 satisfies the shuffle relation (i.e. lies in Lie[C]) if
and only if ma(p) is alternal.

• A mould in ARI is alternil if it satisfies a set of relations similar to symm-
trality, but where the left-hand side is deduced from the stuffle relations by
replacing every sum ui + uj with the term

1

ui − uj

(
P (. . . , ui, . . .)− P (. . . , uj , . . .)

)
.

For example the stuffle relation in depth 2 is given by

st
(
(u1), (u2)

)
= (u1, u2) + (u2, u1) + (u1 + u2),

and a mould P is symmetril in depth 2 if it satisfies

P (u1, u2) + P (u2, u1) +
1

u1 − u2
(
P (u1)− P (u2)

)
= 0.

A power series p ∈ Q〈〈C〉〉 satisfies the stuffle relation if and only if there
exists a constant mould C such that the mould swap

(
ma(p)

)
+C is alternil,

where the swap is an operation is given by the following change of variables:

swap(A)(u1, . . . , ur) = A(ur, ur−1 − ur, . . . , u1 − u2).

• The push-invariance of a power series p is equivalent to the mould
push-invariance of ma(p) under the mould push operator

push(P )(u1, . . . , ur) = P (−u1 − · · · − ur, u1, . . . , ur−1).

7



Écalle’s amazing untwisting map

Écalle further defines:

• a Lie bracket [ , ] on ARI given by [A,B] = A×B −B ×A generalizing
[p, q] = pq − qp for power series;

• a different Lie bracket ari on ARI generalizing the Poisson bracket { , };
• a pre-Lie law preari generalizing �;

• the corresponding exponential map

expari : ARI → GARI

generalizing exp� (where GARI is the set of moulds with constant term 1
equipped with a group structure coming from ARI);

• a key mould ripal that is not polynomial but is closely related to the
power series

T =
ady

eady − 1
· x =

∑
n≥0

Bn
n!
adny (x).

(Bernoulli numbers!)

Definition. A mould P ∈ ARI is al/il (resp. al/al) if it is alternal with
alternil (resp. alternal) swap, and al*il (resp. al*il) if it is alternal with swap
that is alternil (resp. alternal) up to adding a constant mould.

Key example. φKZ is al*il, with constant mould given by ζ(r)/r in odd
depths r ≥ 3. In particular, if r is even, the depth r part φrKZ is al/il.

Écalle’s Untwisting Theorem. If P ∈ ARI is al/al (resp. al*al), then
Adari(ripal)·P is al/al (resp. al*al), where Adari denotes the adjoint action
of GARI on ARI.
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Racinet’s theorem. [2000] ARIpolal∗il is a Lie algebra under the Poisson
or ari-bracket.

Proof was difficult. Écalle’s proof:

• It is much easier to work with moulds that are alternal with alternal swap
than alternal with alternil swap.

• It is easy to show that ARIal∗al is a Lie algebra under the ari bracket.

• Then by Écalle’s untwisting theorem, ARIal∗il is also a Lie algebra under
the ari bracket.

• Polynomial moulds form a Lie subalgebra of ARI, so ARIpolal∗il is a Lie
algebra.

Done.
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3. The elliptic associator Aτ

3.a. The elliptic KZB equation. The elliptic associator was defined by
B. Enriquez as a genus one analogue. The starting point is the Kronecker
function

Fτ

(u
v

)
=

θ(u+ v; τ)

θ(u; τ)θ(v; τ)

where θ is the (odd) Jacobi theta function and τ runs over the Poincaré

upper half-plane; for fixed τ , Fτ

(
u
v ) is a meromorphic function of u, v.

In analogy with the KZ differential equation, Enriquez considers solu-
tions Rτ (z) to the elliptic KZB equation

d

dz
Rτ (z) = −

(
Fτ

( z

adx

)
· adx(y)

)
Rτ (z).

In analogy with the monodromy of solutions to the KZ equation, set

Aτ = Rτ (z)−1Rτ (z + 1)

where Rτ is the solution that has asymptotic behavior

Rτ (z) ' (−2πiz)[x,y]

as z 7→ 0.

Solutions of the differential equation are group-like, so Aτ (x, y) is
group-like; thus we can write it as a power series in the variables ci.

3.b. Regularization of iterated integrals. Equivalently, we can write
Aτ as the iterated integral of Fτ , or rather a slightly modified (mould)
version of Aτ . Write Aτ (x, y) =

∑
r≥0A

r
τ (x, y) according to the depth of

monomials (number of y’s). For each r ≥ 0, set

IAτ (u1, . . . , ur) =
1

u1 · · ·ur
ma(Arτ ).

Then we want

IAτ (u1, . . . , ur) =

∫
0<vr<···<v1<1

Fτ

(u1
v1

) · · ·Fτ
(ur
vr

)
dvr · · · dv1,
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except that like in genus zero, due to divergent integrals, for each coefficient,
we in fact have to integrate from ε to 1 − ε and then take the regularized
value as for ΦKZ .

3.c. EMZV coefficients. Enriquez defines an automorphism gτ of Q〈〈x, y〉〉
whose coefficients are linear combinations of iterated integrals of Eisenstein
series, and shows that (up to some normalizing factors...), we have

Aτ = gτ ·A

where
A = ΦKZ(T, [x, y])e2πiTΦKZ(T, [x, y])−1.

Let U be the Q-algebra generated by the coefficients of the group-like power
series gτ (x). Then the algebra of EMZVs generated by the coefficients of Aτ
is in fact generated by U (coefficients of gτ (x) and the MZVs (coefficients
of A).

If the coefficients of Aτ are used as generators for the EMZV algebra,
in analogy with the coefficients of ΦKZ , then we want to find relations on
Aτ , or equivalently, on

aτ (x, y) = log
(
Aτ (x, y)

)
.

We saw that Aτ is group-like, so aτ is Lie-like, i.e. satisfies the shuffle
relations.

Other relations arise from the fact that the function Fτ satisfies oddness

Fτ

(−u
−v

)
= −Fτ

(u
v

)
,

periodicity

Fτ

( u

1 + v

)
= Fτ

(u
v

)
,

and above all the famous Fay relation

Fτ

(u1
v1

)
Fτ

(u2
v2

)
= Fτ

(u1 + u2
v1

)
Fτ

( u2
v2 − v1

)
+Fτ

( u1
v1 − v2

)
Fτ

(u1 + u2
v2

)
.
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3.d. Push-neutrality of Aτ (x, y). These properties of Fτ “almost” yield
the push-neutrality of IAτ :

r∑
j=0

pushj
(
IAτ

)
(u1, . . . , ur) ∼ 0. (1)

The argument for general r is illustrated by the case r = 2. Ignoring
questions of regularization, we have:

IAτ (u1, u2) =

∫ 1

0

Fτ

(u1
v1

)
Fτ

(u2
v2

)
dv2 dv1 (2)

=

∫ 1

0

Fτ

(u1 + u2
v1

)
Fτ

( u2
v2 − v1

)
+

∫ 1

0

Fτ

( u1
v1 − v2

)
Fτ

(u1 + u2
v2

)
(3)

= −
∫ 1

0

Fτ

(u1 + u2
v1

)
Fτ

( −u2
v1 − v2

)
+

∫ 1

0

Fτ

( u1
v1 − v2

)
Fτ

(u1 + u2
v2

)
= −

∫ 1

0

Fτ

(u1 + u2
t1

)
Fτ

(−u2
t2

)
+

∫ 1

0

Fτ

( u1
v1 − v2

)
Fτ

(u1 + u2
v2

)
= −Aτ (−u1 − u2, u1)−Aτ (u2,−u1 − u2).

The trouble is that while the integral (2) can be given a convergent value
by regularizing as usual (integrating from ε to 1− ε and taking the constant
term), the integrals in (3) can’t because they rotate the truncated simplex.
To make them converge, one has to work with the triangular simplex trun-
cated on all three sides. This yields a complicated correction term on the
right-hand side of (1).
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3.e. Fay relations on Aτ . Let ūi = u1 + · · ·+ ui, and set

F0(P )(u1, . . . , ur) = P (u1, . . . , ur)+

r−1∑
j=1

P (u2, . . . , uj ,−ūj , ūj+1, uj+2, . . . , ur)

and

F(P )(u1, . . . , ur) = F0(P )(u1, . . . , ur) + P (u2, . . . , ur,−ūr).
Then N. Matthes showed that IAτ satisfies

F(IAτ )(u1, . . . , ur) = Unknown correction terms

where the right-hand side consists in products of terms of smaller weight
and depth due to regularization. In depth r = 3 without regularization:∫ 1

0

Fτ

(
u1, v1

)∫ u1

0

Fτ

(
u2, v2

)∫ u2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

becomes the value at z = 1 of

IAτ (u1, u2, u3) =

∫ z

0

Fτ

(
u1 − z, v1

)∫ v1

0

Fτ

(
u2, v2

)∫ v2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

=

∫ z

0

∫ v1

0

Fτ

(
u1, v2 − v1

)
Fτ

(
u2, v2

)∫ v2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

=

∫ z

0

∫ v1

0

Fτ

(
u1, v2 − v1

)
Fτ

(
u2, v1

)∫ v2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

+

∫ z

0

∫ v1

0

Fτ

(
u1 + u2, v2

)
Fτ

(
u2,−v1

)∫ v2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

=

∫ z

0

∫ v1

0

Fτ

(
u1, v2 − v1

)
Fτ

(
u2, v1

)∫ v2

0

Fτ

(
u3, v3

)
dv3 dv2 dv1

− IAτ (−u2, u1 + u2, u3)

=

∫ z

0

∫ v1

0

∫ v2

0

Fτ

(
u2, v1

)
Fτ

(
u1 + u2 + u2, v3 − v2

)
Fτ

(
u3, v2

)
dv3 dv2 dv1

+

∫ z

0

∫ v1

0

∫ v2

0

Fτ

(
u2, v1

)
Fτ

(
u1 + u2,−v2

)
Fτ

(
u1 + u2 + u3, v3

)
dv3 dv2 dv1

− IAτ (−u2, u1 + u2, u3)

= −IAτ (−u1, u1 + u2, u3)− IAτ (u2, u3,−u1 − u2 − u3
− IAτ (u2,−u1 − u2, u1 + u2 + u3).
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4. Determining the relations on Aτ with moulds

The purpose of this part is to show how Écalle’s mould theory can be
used to easily prove the push-neutrality and the Fay relations and explicitly
determine the missing correction terms.

Let ∆ be the mould operator defined by

∆(Q)(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur)Q(u1, . . . , ur).

Theorem. [Baumard-S] Let P be a mould in ARIpolal/il (i.e. a double shuffle

polynomial such as φKZ). Then Q = Adari(ripal)(P ) is a rational mould
such that ∆(Q) is polynomial.

Thanks to this theorem, the mould operator Γ = ∆ ◦Adari(ripal) is a

map from ARIpolal/il to ARIpolal/al.
Let

T = Bery(−x) =
ady

eady − 1
(−x) = −x+

1

2
[y, x]− 1

12
ad2y(x) + · · ·

The associated mould ma(T ) is easily seen to be push-neutral.

Theorem. [S] Let Γφ denote the power series in x, y defined by

ma(Γφ) = Γ
(
ma(φKZ)

)
.

Then there exists a unique power series Γ′φ such that the automorphism Φ

of Q〈〈x, y〉〉 given by x 7→ Γφ, y 7→ (Γ′)φ fixes [x, y]. This automorphism
satisfies

Φ(T ) = a(x, y)

where a = 1
2πi log(A) mod 2πi.
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Using this theorem, mould properties of Γ(φKZ) translate directly onto
aτ (x, y) (and thence to Aτ = exp(aτ ).

The main fact is that Γ(φKZ) is al*al by Écalle’s untwisting theo-
rem.

Explicitly, Γ(φKZ) is alternal and swap(Γ(φKZ)) + C is alternal where C
is the constant mould given by

C(u1, . . . , ur) =

{
0 if r is even
ζ(r)/r if r ≥ 3 is odd.

Theorem. Let Γφτ = gτ ·E. The automorphism gτ preserves the symmetries
of Γφ, i.e. ∆−1(Γφτ ) is al*al with the same correction term as Γφ.

Remark. It is not hard to show that the coefficients of Γφτ generate the
Q-algebra of EMZV’s, which is the algebra generated by the coefficients of
gτ and by all multizetas (mod ζ(2)).

In other words they generate the same Q-algebra as the coefficients of the
elliptic associator Aτ . Thus it would make sense to take the coefficients
of Γφτ as EMZV’s, and they satisfy the elliptic double shuffle relations
expressed by the fact that ∆−1Γφτ is al*al.

Note: the property of being al*al is the linearized double shuffle prop-
erty satisfied by elements of the associated graded of the double shuffle Lie
algebra for the depth filtration.

However, our goal in this talk is to show how moulds are useful for
computing the correction terms of relations on Aτ (mod 2πi) that arise
from regularization problems with iterated integrals, using the identity

Φτ (T ) = aτ

where

aτ =
1

2πi
log(Aτ ) mod 2πi

and Φ(x) = Γφτ and Φ fixes [x, y].
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The properties of aτ arise from properties of Φ (i.e. the symmetries on
Γφτ ) and properties of T . In particular, T is push-neutral, which transports
over to aτ :

aτ satisfies the push-neutrality relations

r∑
j=0

pushj
(
Iaτ
)

= 0.

Note in particular that this proves that the correction terms are zero mod
2πi.
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Similarly, for each r ≥ 2, the first alternality property of swap(Γφτ )
(with correction ζ(r) for odd r) translates directly and easily onto Φ(T ) =
aτ as the Fay relation

F(Iaτ ) =
{−ζ(r)(u2 + · · ·+ ur) if r ≥ 3 is odd

0 if r is even.

It is then immediate (but ugly) to deduce the correction terms on F(IAτ ),
using Aτ = exp(aτ ).

For example in depth 3, we have

IAτ (u1) = Iaτ (u1)

IAτ (u1, u2) = Iaτ (u1, u2) +
1

2
Iaτ (u1)Iaτ (u2)

IAτ (u1, u2, u3) = Iaτ (u1, u2, u3) +
1

2
Iaτ (u1, u2)Iaτ (u3)

+
1

2
Iaτ (u1)Iaτ (u2, u3) +

1

6
Iaτ (u1)Iaτ (u2)Iaτ (u3),

so we compute

F(IAτ )(u1, u2, u3) = IAτ (u1, u2, u3) + IAτ (−u1, u1 + u2, u3)

+ IAτ (u2,−u1 − u2, u1 + u2 + u3) + IAτ (u2, u3,−u1 − u2 − u3)

= −ζ(3)(u2 + u3) +
1

2

(
IAτ (u1, u2)IAτ (u3) + IAτ (−u1, u1 + u2)IAτ (u3)

+ IAτ (u2)IAτ (−u1 − u2)IAτ (u1 + u2 + u3) + IAτ (u2, u3)IAτ (−u1 − u2 − u3)

+ IAτ (u1)IAτ (u2, u3) + IAτ (−u1)IAτ (u1 + u2, u3)

+ IAτ (u2)IAτ (−u1 − u2, u1 + u2 + u3) + IAτ (u2)IAτ (u3,−u1 − u2 − u3)
)

− 5

6

(
IAτ (u1)IAτ (u2)IAτ (u3) + IAτ (−u1)IAτ (u1 + u2)IAτ (u3)

+ IAτ (u2)IAτ (−u1 − u2)IAτ (u1 + u2 + u3)

+ IAτ (u2)IAτ (u3)IAτ (−u1 − u2 − u3)
)
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