Bounds on the Topology of Tropical Prevarieties

Dima Grigoriev (Lille)

CNRS

9/11/2017, Bures-sur-Yvette

Dima Grigoriev (CNRS)

Complexity in tropical algebra

9.11.17 1/37

・ 同 ト ・ ヨ ト ・ ヨ

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min$, $\otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields; • $n \ge n$ matrices over \mathbb{Z} form a non-commutative tropical semi-ring.

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. *tropical semi-field*) w.r.t. $\oslash := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1 • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

- If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.
- **Examples** $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

• $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_j_1} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$.

 $x = (x_1, ..., x_n)$ is a **tropical zero** of *f* if minimum min_{*j*}{ Q_j } is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_j/q_j in $X_j = a_{0j} \cdot t^{i_j/q_j} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_j/q_j in $X_j = a_{0j} \cdot t^{i_j/q_j} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Dima Grigoriev (CNRS)

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_i/q_i in $X_i = a_{0i} \cdot t^{i/q_i} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_j/q_j in $X_j = a_{0j} \cdot t^{i_j/q_j} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Dima Grigoriev (CNRS)

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_i)

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

< ロ > < 同 > < 回 > < 回 >

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job *i*₀ should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_i a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_i \{x_{i_1} + t_{i_j}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{i_1} + t_{i_j}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

 $K = \mathbb{C}((t^{1/\infty})) = \{ c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, \ldots, X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

Trop $(U(f)) \subset \mathbb{R}^n$ is a **tropical hypersurface** where $f \in K[X_1, ..., X_n]$.

 $Trop(U(f_1)) \cap \cdots \cap Trop(U(f_k))$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

Trop $(U(f)) \subset \mathbb{R}^n$ is a **tropical hypersurface** where $f \in K[X_1, ..., X_n]$.

 $Trop(U(f_1)) \cap \cdots \cap Trop(U(f_k))$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

< ロ > < 同 > < 回 > < 回 > < - > <

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

(日)

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $\overline{Trop}(U(f_1)) \cap \cdots \cap \overline{Trop}(U(f_k))$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

イロン 不得 とくほ とくほ とうほう

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop}(U(f_1)) \cap \cdots \cap \overline{Trop}(U(f_k))$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

イロン 不得 とくほ とくほ とうほう

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

イロン 不得 とくほ とくほ とうほう

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{\text{Trop}(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

イロト イポト イヨト イヨト 一日

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{\text{Trop}(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $Trop(\overline{U}(I))$ has at any point the same local dimension equal dim*I*.

イロト イポト イヨト イヨト 一日

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $\overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal *I* is prime the tropical variety $\overline{Trop}(U(I))$ has at any point the same local dimension equal dim*I*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tropical Basis

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \dots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop}(U(I))$ since for tropical hypersurfaces $\overline{Trop}(U(f)) = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop}(U(I)) \subseteq \overline{Trop}(U(g_1)) \cap \cdots \cap \overline{Trop}(U(g_m))$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tropical Basis

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

$\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop(U(I))}$ since for tropical hypersurfaces $\overline{Trop(U(f))} = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop(U(I))}$ since for tropical hypersurfaces $\overline{Trop(U(f))} = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop}(U(I)) \subseteq \overline{Trop}(U(g_1)) \cap \cdots \cap \overline{Trop}(U(g_m))$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

イロト イポト イモト イモト 一日

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \dots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop(U(I))}$ since for tropical hypersurfaces $\overline{Trop(U(f))} = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop}(U(I)) \subseteq \overline{Trop}(U(g_1)) \cap \cdots \cap \overline{Trop}(U(g_m))$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

メロト メポト メヨト メヨト 三日

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \dots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop(U(I))}$ since for tropical hypersurfaces $\overline{Trop(U(f))} = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

Dima Grigoriev (CNRS)

メロト メポト メヨト メヨト 三日

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \dots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop(U(I))}$ since for tropical hypersurfaces $\overline{Trop(U(f))} = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \dots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop}(U(I))$ since for tropical hypersurfaces $\overline{Trop}(U(f)) = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop}(U(I))$ since for tropical hypersurfaces $\overline{Trop}(U(f)) = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For an ideal $I \subset K[X_1, ..., X_n]$ there exists its **tropical basis** $f_1, ..., f_k \in I$ such that

 $\overline{Trop(U(I))} = \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Given a tropical basis one can test whether a point $v \in \mathbb{R}^n$ belongs to the tropical variety $\overline{Trop}(U(I))$ since for tropical hypersurfaces $\overline{Trop}(U(f)) = U(Trop(f))$ holds (Kapranov) where

 $Trop(\sum_J f_J \cdot X^J) := \min_J \{ Trop(f_J) + \langle J, X \rangle \}, f_J \in K.$

Clearly, $\overline{Trop(U(I))} \subseteq \overline{Trop(U(g_1))} \cap \cdots \cap \overline{Trop(U(g_m))}$ for any $g_1, \ldots, g_m \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal *I* the number of elements in a tropical basis k < 2n, although apparently the degrees of f_1, \ldots, f_k can be exponential.

Recognizing a tropical variety is NP-hard. Dima Grigoriev (CNRS) Complexity in tropical algebra

9.11.17 6 / 37

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min_{1 \le i \le n} \{a_i + x_i\}$.

Tropical linear system

 $\min_{1\leq j\leq n} \{a_{i,j}+x_j\}, \ 1\leq i\leq m$

(or $(m \times n)$ -matrix $A = (a_{i,j})$) has a *tropical solution* $x = (x_1 \dots, x_n)$ if for every row $1 \le i \le m$ there are two columns $1 \le k < l \le n$ such that

$$a_{i,k} + x_k = a_{i,l} + x_l = \min_{1 \le j \le n} \{a_{i,j} + x_j\}$$

Coefficients $a_{i,j} \in \mathbb{Z}_{\infty} := \mathbb{Z} \cup \{\infty\}$. Not all $x_j = \infty$. For $a_{i,j} \in \mathbb{Z}$ we assume $0 \le a_{i,j} \le M$.

 $n \times n$ matrix $(a_{i,j})$ is **tropically non-singular** if the minimum $\min_{\pi \in S_n} \{a_{1,\pi(1)} + \dots + a_{n,\pi(n)}\} (= Trop(\det(a_{i,j})))$ is attained for a *unique* permutation π

If a tropical semi-ring *T* is an ordered semi-group then tropical linear function over *T* can be written as $\min_{1 \le i \le n} \{a_i + x_i\}$.

Tropical linear system

$$\min_{|\leq j\leq n} \{a_{i,j}+x_j\}, \ 1\leq i\leq m$$

(or $(m \times n)$ -matrix $A = (a_{i,j})$) has a *tropical solution* $x = (x_1 \dots, x_n)$ if for every row $1 \le i \le m$ there are two columns $1 \le k < l \le n$ such that

$$a_{i,k} + x_k = a_{i,l} + x_l = \min_{1 \le j \le n} \{a_{i,j} + x_j\}$$

Coefficients $a_{i,j} \in \mathbb{Z}_{\infty} := \mathbb{Z} \cup \{\infty\}$. Not all $x_j = \infty$. For $a_{i,j} \in \mathbb{Z}$ we assume $0 \le a_{i,j} \le M$.

 $n \times n$ matrix $(a_{i,j})$ is **tropically non-singular** if the minimum $\min_{\pi \in S_n} \{a_{1,\pi(1)} + \dots + a_{n,\pi(n)}\} (= Trop(\det(a_{i,j})))$ is attained for a *unique* permutation π

If a tropical semi-ring *T* is an ordered semi-group then tropical linear function over *T* can be written as $\min_{1 \le i \le n} \{a_i + x_i\}$.

Tropical linear system

$$\min_{1\leq j\leq n} \{a_{i,j}+x_j\}, \ 1\leq i\leq m$$

(or $(m \times n)$ -matrix $A = (a_{i,j})$) has a *tropical solution* $x = (x_1 \dots, x_n)$ if for every row $1 \le i \le m$ there are two columns $1 \le k < l \le n$ such that

$$a_{i,k} + x_k = a_{i,l} + x_l = \min_{1 \le j \le n} \{a_{i,j} + x_j\}$$

Coefficients $a_{i,j} \in \mathbb{Z}_{\infty} := \mathbb{Z} \cup \{\infty\}$. Not all $x_j = \infty$. For $a_{i,j} \in \mathbb{Z}$ we assume $0 \le a_{i,j} \le M$.

 $n \times n$ matrix $(a_{i,j})$ is **tropically non-singular** if the minimum $\min_{\pi \in S_n} \{a_{1,\pi(1)} + \cdots + a_{n,\pi(n)}\} (= Trop(\det(a_{i,j})))$ is attained for a *unique* permutation π

If a tropical semi-ring *T* is an ordered semi-group then tropical linear function over *T* can be written as $\min_{1 \le i \le n} \{a_i + x_i\}$.

Tropical linear system

$$\min_{1\leq j\leq n} \{a_{i,j}+x_j\}, \ 1\leq i\leq m$$

(or $(m \times n)$ -matrix $A = (a_{i,j})$) has a *tropical solution* $x = (x_1 \dots, x_n)$ if for every row $1 \le i \le m$ there are two columns $1 \le k < l \le n$ such that

$$a_{i,k} + x_k = a_{i,l} + x_l = \min_{1 \le j \le n} \{a_{i,j} + x_j\}$$

Coefficients $a_{i,j} \in \mathbb{Z}_{\infty} := \mathbb{Z} \cup \{\infty\}$. Not all $x_j = \infty$. For $a_{i,j} \in \mathbb{Z}$ we assume $0 \le a_{i,j} \le M$.

 $n \times n$ matrix $(a_{i,j})$ is **tropically non-singular** if the minimum $\min_{\pi \in S_n} \{a_{1,\pi(1)} + \cdots + a_{n,\pi(n)}\} (= Trop(\det(a_{i,j})))$ is attained for a *unique* permutation π

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min_{1 \le i \le n} \{a_i + x_i\}$.

Tropical linear system

$$\min_{1\leq j\leq n} \{a_{i,j}+x_j\}, \ 1\leq i\leq m$$

(or $(m \times n)$ -matrix $A = (a_{i,j})$) has a *tropical solution* $x = (x_1 \dots, x_n)$ if for every row $1 \le i \le m$ there are two columns $1 \le k < l \le n$ such that

$$a_{i,k} + x_k = a_{i,l} + x_l = \min_{1 \le j \le n} \{a_{i,j} + x_j\}$$

Coefficients $a_{i,j} \in \mathbb{Z}_{\infty} := \mathbb{Z} \cup \{\infty\}$. Not all $x_j = \infty$. For $a_{i,j} \in \mathbb{Z}$ we assume $0 \le a_{i,j} \le M$.

 $n \times n$ matrix $(a_{i,j})$ is **tropically non-singular** if the minimum $\min_{\pi \in S_n} \{a_{1,\pi(1)} + \cdots + a_{n,\pi(n)}\} (= Trop(\det(a_{i,j})))$ is attained for a *unique* permutation π

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.)

Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class NP \cap coNP.

Open Problem. Can one test solvability of a tropical linear system within the polynomial complexity, so within $(m \cdot n \cdot \log M)^{O(1)}$?

<ロ> <同> <同> < 同> < 同>

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.) Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class NP \cap coNP.

Open Problem. Can one test solvability of a tropical linear system within the polynomial complexity, so within $(m \cdot n \cdot \log M)^{O(1)}$?

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.) Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class $NP \cap coNP$.

Open Problem. Can one test solvability of a tropical linear system within the polynomial complexity, so within $(m \cdot n \cdot \log M)^{O(1)}$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.) Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class $NP \cap coNP$.

Open Problem. Can one test solvability of a tropical linear system within the polynomial complexity, so within $(m \cdot n \cdot \log M)^{O(1)}$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field R of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$. **Kapranov rank** $Krk_R(A)$ = minimum of ranks (over K) of lift

 $trk(A) \leq Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t)

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field R of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$. **Kapranov rank** $Krk_R(A) =$ minimum of ranks (over K) of liftings of A. $trk(A) \leq Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t).

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A) =$ minimum of ranks (over K) of liftings of A. $trk(A) \leq Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over R is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A.

 $trk(A) \leq Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t)

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t)

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

 Solvability of polynomial equations over R is reducible to Krk_R(A) = 3 (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t).

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

trk(A) = r is NP-hard, trk(A) ≥ r is NP-complete (Kim-Roush);
Solvability of polynomial equations over R is reducible to Krk_R(A) = 3 (Kim-Roush).

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

• trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);

• Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush). **Example** B = 0 or B = GE[n](t)

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

- trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t).

Tropical rank trk(A) of matrix A is the maximal size of its tropically nonsingular square submatrices.

A lifting of $A = (a_{i,j})$ is a matrix $F = (f_{i,j})$ over the field of Newton-Puiseux series $K = R((t^{1/\infty}))$ for a field *R* of zero characteristic such that the tropicalization $Trop(f_{i,j}) = a_{i,j}$.

Kapranov rank $Krk_R(A)$ = minimum of ranks (over K) of liftings of A. $trk(A) \le Krk_R(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

• For $n \times n$ matrix *B* testing $trk(B) = n \iff B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

- trk(A) = r is NP-hard, $trk(A) \ge r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over *R* is reducible to $Krk_R(A) = 3$ (Kim-Roush).

Example $R = \mathbb{Q}$ or R = GF[p](t).

Barvinok rank

Brk(*A*) is the minimal *q* such that $A = (u_1 \otimes v_1) \oplus \cdots \oplus (u_q \otimes v_q)$ for suitable vectors u_1, \ldots, v_q over *T*

 $Krk_R(A) \leq Brk(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)

・ 同 ト ・ ヨ ト ・ ヨ

Barvinok rank

Brk(*A*) is the minimal *q* such that $A = (u_1 \otimes v_1) \oplus \cdots \oplus (u_q \otimes v_q)$ for suitable vectors u_1, \ldots, v_q over *T*

 $Krk_R(A) \leq Brk(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)

< 同 > < 三 > < 三 >

Barvinok rank

Brk(*A*) is the minimal *q* such that $A = (u_1 \otimes v_1) \oplus \cdots \oplus (u_q \otimes v_q)$ for suitable vectors u_1, \ldots, v_q over *T*

 $Krk_R(A) \leq Brk(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)

・ 同 ト ・ ヨ ト ・ ヨ ト

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

a tropical linear system with m × n matrix A has a solution;
 trk(A) < n;
 Krk_R(A) < n.

Remark

The corollary holds for matrices over ℝ_∞.

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

a tropical linear system with m × n matrix A has a solution;
 trk(A) < n;
 Krk_P(A) < n

Remark

• The corollary holds for matrices over \mathbb{R}_{∞} .

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

2) trk(A) < n;

3) Krk_R(A) < n.

Remark

The corollary holds for matrices over ℝ_∞.

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

2) trk(A) < n;

3) Krk_R(A) < n.

Remark

• The corollary holds for matrices over \mathbb{R}_{∞} .

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

- 2) trk(A) < n;
- 3) $Krk_R(A) < n$.

Remark

• The corollary holds for matrices over \mathbb{R}_{∞} .

• For matrices A with **finite** coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

2) trk(A) < n;

3) $Krk_R(A) < n$.

Remark

• The corollary holds for matrices over \mathbb{R}_{∞} .

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

2) trk(A) < n;

3) $Krk_R(A) < n$.

Remark

• The corollary holds for matrices over \mathbb{R}_{∞} .

• For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

< ロ > < 同 > < 回 > < 回 >

Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system with $m \times n$ matrix A has a solution;

2) trk(A) < n;

3) $Krk_R(A) < n$.

Remark

- The corollary holds for matrices over \mathbb{R}_{∞} .
- For matrices A with finite coefficients from \mathbb{R} it was proved by Develin-Santos-Sturmfels.
- Equivalence of 1) and 2) was established by Izhakian-Rowen.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Computing dimension of a tropical linear system

Proposition

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0) within complexity polynomial in n, m, M.

Theorem

Computing the dimension of a tropical linear prevariety (being a union of polyhedra) is NP-complete (G.-Podol'ski)

Proposition

One can test solvability of a tropical nonhomogeneous linear system $\min_{1 \le j \le n} \{a_{i,j} + x_j, a_i\}, 1 \le i \le m$ within complexity $(n \cdot m \cdot M)^{O(1)}$.

< ロ > < 同 > < 回 > < 回 >

Computing dimension of a tropical linear system

Proposition

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0) within complexity polynomial in n, m, M.

Theorem

Computing the dimension of a tropical linear prevariety (being a union of polyhedra) is NP-complete (G.-Podol'ski)

Proposition

One can test solvability of a tropical nonhomogeneous linear system $\min_{1 \le j \le n} \{a_{i,j} + x_j, a_i\}, 1 \le i \le m$ within complexity $(n \cdot m \cdot M)^{O(1)}$.

Computing dimension of a tropical linear system

Proposition

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0) within complexity polynomial in n, m, M.

Theorem

Computing the dimension of a tropical linear prevariety (being a union of polyhedra) is NP-complete (G.-Podol'ski)

Proposition

One can test solvability of a tropical nonhomogeneous linear system $\min_{1 \le j \le n} \{a_{i,j} + x_j, a_i\}, 1 \le i \le m$ within complexity $(n \cdot m \cdot M)^{O(1)}$.

< ロ > < 同 > < 回 > < 回 >

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

Theorem

One can reduce within polynomial, so $(n \cdot m \cdot \log M)^{O(1)}$ complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. (G.-Podol'ski using Allamigeon-Gaubert-Katz) The inverse reduction is evident.

・ 同 ト ・ ヨ ト ・ ヨ

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

Theorem

One can reduce within polynomial, so $(n \cdot m \cdot \log M)^{O(1)}$ complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. (G.-Podol'ski using Allamigeon-Gaubert-Katz) The inverse reduction is evident.

< 同 > < 三 > < 三 >

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

Theorem

One can reduce within polynomial, so $(n \cdot m \cdot \log M)^{O(1)}$ complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. (*G.-Podol'ski using Allamigeon-Gaubert-Katz*)

The inverse reduction is evident.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

Theorem

One can reduce within polynomial, so $(n \cdot m \cdot \log M)^{O(1)}$ complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. (G.-Podol'ski using Allamigeon-Gaubert-Katz) The inverse reduction is evident.

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

(a part of this theorem answers a question of V.Voevodsky), .

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

(a part of this theorem answers a question of V. Voevodsky),

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

(a part of this theorem answers a question of V.Voevodsky),

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

a part of this theorem answers a question of V.Voevodsky),

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

a part of this theorem answers a question of V.Voevadsky) .

Min-plus linear system has a form

$$\min_{1 \le j \le n} \{a_{i,j} + x_j\} = \min_{1 \le j \le n} \{b_{i,j} + x_j\}, \ 1 \le i \le m$$

Theorem

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

Theorem

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

(a part of this theorem answers a question of V.Voevodsky)

Dima Grigoriev (CNRS)

Complexity in tropical algebra

9.11.17 14/37

Min-plus prevariety is the set of solutions $x \in \mathbb{R}^n$ of a min-plus polynomial system

 $f_i(x) = g_i(x), \ 1 \le i \le k$

where f_i , g_i are tropical (= min-plus) polynomials.

Theorem

(G.-Podolskii)

any tropical prevariety is a min-plus prevariety;

 any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

・ 同 ト ・ ヨ ト ・ ヨ

Min-plus prevariety is the set of solutions $x \in \mathbb{R}^n$ of a min-plus polynomial system

 $f_i(x) = g_i(x), \ 1 \leq i \leq k$

where f_i , g_i are tropical (= min-plus) polynomials.

Theorem

(G.-Podolskii)

any tropical prevariety is a min-plus prevariety;

 any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

・ 同 ト ・ ヨ ト ・ ヨ

Min-plus prevariety is the set of solutions $x \in \mathbb{R}^n$ of a min-plus polynomial system

$$f_i(x) = g_i(x), \ 1 \leq i \leq k$$

where f_i , g_i are tropical (= min-plus) polynomials.

Theorem

(G.-Podolskii)
any tropical prevariety is a min-plus prevariety;
any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Min-plus prevariety is the set of solutions $x \in \mathbb{R}^n$ of a min-plus polynomial system

$$f_i(x) = g_i(x), \ 1 \leq i \leq k$$

where f_i , g_i are tropical (= min-plus) polynomials.

Theorem

(G.-Podolskii)

• any tropical prevariety is a min-plus prevariety;

 any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

Min-plus prevariety is the set of solutions $x \in \mathbb{R}^n$ of a min-plus polynomial system

$$f_i(x) = g_i(x), \ 1 \leq i \leq k$$

where f_i , g_i are tropical (= min-plus) polynomials.

Theorem

(G.-Podolskii)

• any tropical prevariety is a min-plus prevariety;

• any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

< ロ > < 同 > < 回 > < 回 >

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (V, W, E) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from W to V). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after k moves is computed: $(\sum a_{ij})/k$.

If lim $\inf_{k\to\infty}(\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (*V*, *W*, *E*) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from *W* to *V*). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after *k* moves is computed: $(\sum a_{ij})/k$.

If lim $\inf_{k\to\infty}(\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (V, W, E) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from W to V). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after k moves is computed: $(\sum a_{ij})/k$.

mean payoff games is whether the first player has a winning strategy?

Theorem

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (*V*, *W*, *E*) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from *W* to *V*). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after *k* moves is computed: $(\sum a_{ij})/k$. If $\liminf_{k \to \infty} (\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (V, W, E) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from W to V). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after k moves is computed: $(\sum a_{ij})/k$.

If lim $\inf_{k\to\infty}(\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (*V*, *W*, *E*) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from *W* to *V*). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after *k* moves is computed: $(\sum a_{ij})/k$. If $\lim \inf_{k\to\infty} (\sum a_{ij})/k > 0$ then the first player wins. The problem of

mean payoff games is whether the first player has a winning strategy?

Theorem

The following 4 problems are equivalent: mean payoff games, min-atom, min-plus linear systems and tropical linear systems (Bezem-Nieuwenhuis-Rodriguez-Carbonell,

<u> Akian-Gaubert-Guterman)</u>

Dima Grigoriev (CNRS)

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (*V*, *W*, *E*) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from *W* to *V*). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after *k* moves is computed: $(\sum a_{ij})/k$.

If $\liminf_{k\to\infty} (\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

The following 4 problems are equivalent: mean payoff games, min-atom, min-plus linear systems and tropical linear systems (Bezem-Nieuwenhuis-Rodriguez-Carbonell,

<u> Akian-Gaubert-Guterm</u>an)

Dima Grigoriev (CNRS)

Min-atom problem is a system of inequalities of the form $\min\{x, y\} + c \le z, c \in \mathbb{Z}$ (min-plus linear programming).

Mean payoff games

A bipartite graph (*V*, *W*, *E*) with integer weights a_{ij} on edges $e_{ij} \in E$ is given. Two players in turn move a token between nodes $V \cup W$ of the graph. The first player moves from a (current) node $i \in V$ to a node $j \in W$ (respectively, the second player moves from *W* to *V*). Weight a_{ij} is assigned to this move. Mean sum of assigned weights after *k* moves is computed: $(\sum a_{ij})/k$.

If $\liminf_{k\to\infty} (\sum a_{ij})/k > 0$ then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

Theorem

The following 4 problems are equivalent: mean payoff games, min-atom, min-plus linear systems and tropical linear systems (Bezem-Nieuwenhuis-Rodriguez-Carbonell, Akian-Gaubert-Guterman).

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

Theorem

Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem

Solvability of min-plus polynomial systems $f_i = g_i$, $1 \le i \le m$ where f_i , g_i are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1.

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all *J*, *i* with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \ldots, 0)$.

Effective Nullstellensatz: $N \leq (\max_{1 \leq i \leq k} \{ \deg(g_i) \})^{O(n)}$.

(Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of *C* linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \dots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting setting.

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all J, i with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \dots, 0)$.

Effective Nullstellensatz: $N \leq (\max_{1 \leq i \leq k} \{ \deg(g_i) \})^{O(n)}$. (Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of C linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \dots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting setting.

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all J, i with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \dots, 0)$.

Effective Nullstellensatz: $N \le (\max_{1 \le i \le k} \{ \deg(g_i) \})^{O(n)}$. (Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of C linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \ldots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting $g_{\alpha\alpha}$

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all J, i with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \dots, 0)$.

Effective Nullstellensatz: $N \leq (\max_{1 \leq i \leq k} \{ \deg(g_i) \})^{O(n)}$. (Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of C linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \ldots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting $g_{3,3,3,3}$

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all J, i with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \dots, 0)$.

Effective Nullstellensatz: $N \leq (\max_{1 \leq i \leq k} \{ \deg(g_i) \})^{O(n)}$. (Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of C linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \ldots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting $g_{3,3,3,4}$

For polynomials $g_1, \ldots, g_k \in \mathbb{C}[X_1, \ldots, X_n]$ consider an infinite Macauley matrix *C* with the columns indexed by monomials X^I and the rows by shifts $X^J \cdot g_i$ for all *J*, *i* with their coefficients being entries of *C*.

Nullstellensatz: system $g_1 = \cdots = g_k = 0$ has no solution iff a linear combination of the rows of a suitable *finite* submatrix C_N of C (generated by a set of rows $X^J \cdot g_i$, $1 \le i \le k$ of C with degrees of monomials $|J| \le N$) equals vector $(1, 0, \dots, 0)$.

Effective Nullstellensatz: $N \leq (\max_{1 \leq i \leq k} \{ \deg(g_i) \})^{O(n)}$. (Galligo, Heintz, Giusti; Kollar)

Dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff for any finite submatrix C_N of C linear system $C_N \cdot (y_0, \ldots, y_L) = 0$ has a solution with $y_0 \neq 0$.

Infinite dual Nullstellensatz: $g_1 = \cdots = g_k = 0$ has a solution iff infinite linear system $C \cdot (y_0, \ldots) = 0$ has a solution with $y_0 \neq 0$.

Nullstellensatz deals with ideal $\langle g_1, \ldots, g_k \rangle$, while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting setting.

Dima Grigoriev (CNRS)

Let $g_0, \ldots, g_k \in \mathbb{C}[X_0, \ldots, X_n]$ be homogeneous polynomials with $\deg(g_0) \geq \deg(g_1) \geq \cdots$.

Theorem

System $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the ideal generated by g_0, \ldots, g_k does not contain the power $(X_0, \ldots, X_n)^{N_0}$ of the coordinate ideal for $N_0 = \deg(g_0) + \cdots + \deg(g_n) - n$. (Lazard)

In the dual form this means that system $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the homogeneous linear system with submatrix $C_{N_0}^{(hom)}$ of the Macauley matrix *C* generated by the columns with the degrees of monomials equal N_0 , has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees,

Let $g_0, \ldots, g_k \in \mathbb{C}[X_0, \ldots, X_n]$ be homogeneous polynomials with $\deg(g_0) \ge \deg(g_1) \ge \cdots$.

Theorem

System $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the ideal generated by g_0, \ldots, g_k does not contain the power $(X_0, \ldots, X_n)^{N_0}$ of the coordinate ideal for $N_0 = \deg(g_0) + \cdots + \deg(g_n) - n$. (Lazard)

In the dual form this means that system $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the homogeneous linear system with submatrix $C_{N_0}^{(hom)}$ of the Macauley matrix *C* generated by the columns with the degrees of monomials equal N_0 , has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees,

Let $g_0, \ldots, g_k \in \mathbb{C}[X_0, \ldots, X_n]$ be homogeneous polynomials with $\deg(g_0) \ge \deg(g_1) \ge \cdots$.

Theorem

System $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the ideal generated by g_0, \ldots, g_k does not contain the power $(X_0, \ldots, X_n)^{N_0}$ of the coordinate ideal for $N_0 = \deg(g_0) + \cdots + \deg(g_n) - n$. (Lazard)

In the dual form this means that system $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the homogeneous linear system with submatrix $C_{N_0}^{(hom)}$ of the Macauley matrix *C* generated by the columns with the degrees of monomials equal N_0 , has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees,

Let $g_0, \ldots, g_k \in \mathbb{C}[X_0, \ldots, X_n]$ be homogeneous polynomials with $\deg(g_0) \ge \deg(g_1) \ge \cdots$.

Theorem

System $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the ideal generated by g_0, \ldots, g_k does not contain the power $(X_0, \ldots, X_n)^{N_0}$ of the coordinate ideal for $N_0 = \deg(g_0) + \cdots + \deg(g_n) - n$. (Lazard)

In the dual form this means that system $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the homogeneous linear system with submatrix $C_{N_0}^{(hom)}$ of the Macauley matrix *C* generated by the columns with the degrees of monomials equal N_0 , has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees,

Dima Grigoriev (CNRS)

Let $g_0, \ldots, g_k \in \mathbb{C}[X_0, \ldots, X_n]$ be homogeneous polynomials with $\deg(g_0) \ge \deg(g_1) \ge \cdots$.

Theorem

System $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the ideal generated by g_0, \ldots, g_k does not contain the power $(X_0, \ldots, X_n)^{N_0}$ of the coordinate ideal for $N_0 = \deg(g_0) + \cdots + \deg(g_n) - n$. (Lazard)

In the dual form this means that system $g_0 = \cdots = g_k = 0$ has a solution in the projective space iff the homogeneous linear system with submatrix $C_{N_0}^{(hom)}$ of the Macauley matrix *C* generated by the columns with the degrees of monomials equal N_0 , has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes J} \otimes h$ for $L \in \mathbb{Z}^n$ $1 \le i \le k$

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent.

For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix H with the rows indexed by $X^{\otimes l} \otimes h_i$ for $l \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes I} \otimes h_i$ for $I \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes l} \otimes h_i$ for $l \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes l} \otimes h_i$ for $l \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \cdots + trdeg(h_k))$.

In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, ..., x_n]$ it holds: Prevariety(Trop(f)) = Trop(Variety(f))

Dima Grigoriev (CNRS)

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes l} \otimes h_i$ for $l \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Assume w.l.o.g. that for tropical polynomials $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ in *n* variables which we consider, function $J \to a_J$ is concave on \mathbb{R}^n . This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials h_1, \ldots, h_k consider (infinite) Macauley matrix *H* with the rows indexed by $X^{\otimes I} \otimes h_i$ for $I \in \mathbb{Z}^n$, $1 \le i \le k$.

Theorem

Tropical polynomials h_1, \ldots, h_k have a solution over \mathbb{R} iff tropical linear system $H_N \otimes (z_0, \ldots, z_L)$ has a solution over \mathbb{R} where H_N is (finite) submatrix of H generated by its rows $X^{\otimes I} \otimes h_i$, $1 \le i \le k$ for $|I| \le N = (n+2) \cdot (\operatorname{trdeg}(h_1) + \cdots + \operatorname{trdeg}(h_k))$. (**G.-Podolskii**)

Conjecture is that the latter bound is $O(trdeg(h_1) + \dots + trdeg(h_k))$. In case k = 2, n = 1 the bound $trdeg(h_1) + trdeg(h_2)$ was proved by **Tabera** using the classical resultant and **Kapranov's** theorem: for a polynomial $f \in R((t^{1/\infty}))[x_1, \dots, x_n]$ it holds: *Prevariety*(*Trop*(*f*)) = *Trop*(*Variety*(*f*))

Dima Grigoriev (CNRS)

For a tropical polynomial $h = \bigoplus_{J} (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \leq -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let *G_i* correspond to $h_i, 1 \leq i \leq k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over ${\mathbb R}$ is equivalent to the following.

For a tropical polynomial $h = \bigoplus_{J} (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let *G_i* correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over ${\mathbb R}$ is equivalent to the following.

For a tropical polynomial $h = \bigoplus_{J} (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \leq -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \leq i \leq k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ trea also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over ${\mathbb R}$ is equivalent to the following.

For a tropical polynomial $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ trea also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over $\mathbb R$ is equivalent to the following.

For a tropical polynomial $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over $\mathbb R$ is equivalent to the following.

For any *I*, *i* take the maximal $b := b_{I,i}$ such that a vertical shift $G_i^{(I)} + (0, b) \le Y$ (pointwise as graphs on \mathbb{Z}^n). Assume that $G_i^{(I)} + (0, b)$ has at least two common points with *Y*. Then there is a hyperplane in \mathbb{R}^{n+1} (not containing the vertical line) which supports (after a parallel shift) each G_i , $1 \le i \le k$ at least at two points.

Dima Grigoriev (CNRS)

For a tropical polynomial $h = \bigoplus_{J} (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \leq -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \leq i \leq k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over \mathbb{R} is equivalent to the following.

For a tropical polynomial $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over \mathbb{R} is equivalent to the following.

For any *I*, *i* take the maximal $b := b_{I,i}$ such that a vertical shift $G_i^{(I)} + (0, b) \le Y$ (pointwise as graphs on \mathbb{Z}^n).

Assume that $G_i^{(I)} + (0, b)$ has at least two common points with Y. Then there is a hyperplane in \mathbb{R}^{n+1} (not containing the vertical line) which supports (after a parallel shift) each G_i , $1 \le i \le k$ at least at two points.

For a tropical polynomial $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over \mathbb{R} is equivalent to the following.

For a tropical polynomial $h = \bigoplus_J (a_J \otimes X^{\otimes J})$ consider its extended Newton polyhedron *G* being the convex hull of the graph $\{(J, a) : a \le -a_J\} \subset \mathbb{R}^{n+1}$. As vertices of *G* consider all the points of the form $(I, c), I \in \mathbb{Z}^n$ on the boundary of *G*. Let G_i correspond to $h_i, 1 \le i \le k$. Denote by $G^{(I)} := G + (I, 0)$ a horizontal shift of *G*. Solution $Y := \{(J, y_J)\} \subset \mathbb{Z}^n \times \mathbb{R}$ of a tropical linear system $H \otimes Y$ treat also as a graph on \mathbb{Z}^n .

The tropical dual (infinite) Nullstellensatz over \mathbb{R} is equivalent to the following.

For any *I*, *i* take the maximal $b := b_{I,i}$ such that a vertical shift $G_i^{(I)} + (0, b) \le Y$ (pointwise as graphs on \mathbb{Z}^n). Assume that $G_i^{(I)} + (0, b)$ has at least two common points with *Y*. Then there is a hyperplane in \mathbb{R}^{n+1} (not containing the vertical line) which supports (after a parallel shift) each G_i , $1 \le i \le k$ at least at two points.

Dima Grigoriev (CNRS)

Theorem

A system of tropical polynomials h_1, \ldots, h_k has a zero over \mathbb{R}_{∞} iff the tropical non-homogeneous linear system with a finite submatrix H_N of the Macauley matrix H generated by its rows $X^{\otimes l} \otimes h_i$, $1 \le i \le k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I| < N = O(kn^2(2\max_{1 \le j \le k} \{\operatorname{trdeg}(h_j)\})^{O(\min\{n,k\})})$ (**G.-Podolskii**)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

Theorem

A system of tropical polynomials h_1, \ldots, h_k has a zero over \mathbb{R}_{∞} iff the tropical non-homogeneous linear system with a finite submatrix H_N of the Macauley matrix H generated by its rows $X^{\otimes l} \otimes h_i$, $1 \le i \le k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I| < N = O(kn^2(2\max_{1 \le j \le k} {\operatorname{trdeg}(h_j)})^{O(\min\{n,k\})})$ (**G.-Podolskii**)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

Tropical	

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Theorem

A system of tropical polynomials h_1, \ldots, h_k has a zero over \mathbb{R}_{∞} iff the tropical non-homogeneous linear system with a finite submatrix H_N of the Macauley matrix H generated by its rows $X^{\otimes l} \otimes h_i$, $1 \le i \le k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I| < N = O(kn^2(2\max_{1 \le j \le k} \{\operatorname{trdeg}(h_j)\})^{O(\min\{n,k\})})$ (**G.-Podolskii**)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

Tropical	

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

A system of tropical polynomials h_1, \ldots, h_k has a zero over \mathbb{R}_{∞} iff the tropical non-homogeneous linear system with a finite submatrix H_N of the Macauley matrix H generated by its rows $X^{\otimes l} \otimes h_i$, $1 \le i \le k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I| < N = O(kn^2(2\max_{1 \le j \le k} \{\operatorname{trdeg}(h_j)\})^{O(\min\{n,k\})})$ (**G.-Podolskii**)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

Classical	Projective	Affine
Tropical	Finite (\mathbb{R})	Infinite (\mathbb{R}_{∞})
Bound	Sum of degrees	Product of degrees

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

A system of tropical polynomials h_1, \ldots, h_k has a zero over \mathbb{R}_{∞} iff the tropical non-homogeneous linear system with a finite submatrix H_N of the Macauley matrix H generated by its rows $X^{\otimes l} \otimes h_i$, $1 \le i \le k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I| < N = O(kn^2(2\max_{1 \le j \le k} {\operatorname{trdeg}(h_j)})^{O(\min\{n,k\})})$ (**G.-Podolskii**)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

Classical	Projective	Affine
Tropical	Finite (\mathbb{R})	Infinite (\mathbb{R}_{∞})
Bound	Sum of degrees	Product of degrees

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite case

System of n + 1 tropical (quadratic) polynomials

 $0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

Finite case

System of n + 1 tropical (quadratic) polynomials

 $0 \oplus X_1$, $X_i^{\otimes 2} \oplus X_{i+1}$, $1 \le i < n$, $1 \oplus X_n$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1, \quad X_i^{\otimes d} \oplus X_{i+1}, \ 1 \le i < n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$

has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials

 $0 \oplus Y \otimes X_1, \quad X_i^{\otimes d} \oplus X_{i+1}, \ 1 \le i < n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$

has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

イロト イポト イヨト イヨト

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus V \otimes X_i = X^{\otimes d} \oplus X_i = 1 \le i \le n = X^{\otimes d} \oplus X_i$

has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n.$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

Finite case

System of n + 1 tropical (quadratic) polynomials

$$0 \oplus X_1, \quad X_i^{\otimes 2} \oplus X_{i+1}, \ 1 \le i < n, \quad 1 \oplus X_n$$

has no tropical zeroes. On the other hand, submatrix H_{n-1} of the Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of the tropical degrees equals 2n).

Infinite case

System of n + 1 tropical polynomials $0 \oplus Y \otimes X_1$, $X_i^{\otimes d} \oplus X_{i+1}$, $1 \le i < n$, $X_{n-1}^{\otimes d} \oplus 1 \otimes X_n$ has no tropical zeroes. On the other hand, submatrix H_{d^n-1} has an infinite (over \mathbb{R}_{∞}) tropical solution (the product of the tropical degrees equals $2d^{n-1}$).

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+2n}{3n} \cdot d^{3n}$ (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_{a} , a_{a} , a_{b} , a_{b

Dima Grigoriev (CNRS)

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (**Davydow-G.**)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_{a} , a_{a} , a_{b} , a_{b

Dima Grigoriev (CNRS)

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (**Davydow-G.**)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_{a} , a_{a} , a_{b} , a_{b

Dima Grigoriev (CNRS)

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (**Davydow-G.**)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_{a} , a_{a} , a_{b} , a_{b

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (Davydow-G.)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_n , a_n ,

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (**Davydow-G.**)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k_n , a_n ,

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Theorem

The number of connected components of a tropical prevariety given by tropical polynomials f_1, \ldots, f_k in n variables of degrees d is bounded by $\binom{k+7n}{3n} \cdot d^{3n}$ (**Davydow-G.**)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (**Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy**).

This shows a similarity between the tropical and real geometries.

Theorem (*Bezout inequality for tropical prevarieties*) The number of isolated points of a tropical prevariety does not exceed $\binom{k}{n} \frac{d^n}{k-n+1}$ (**Davydow-G.**)

For (complex) algebraic varieties the number of isolated points is bounded by d^n (Bezout number) regardless of k.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

9.11.17 24 / 37

For a system *A* of tropical polynomials $f_i = \bigoplus_J f_{iJ} \otimes X^{\otimes J}$, $1 \le i \le k$ of degrees $|J| \le d$ in *n* variables denote by $V := V(A) \subset \mathbb{R}^n$ the tropical prevariety of its finite solutions.

With a point $x \in \mathbb{R}^n$ we associate $k \times \binom{n+d-1}{n}$ table A^{*x} in which rows correspond to f_1, \ldots, f_k and columns correspond to monomials of degrees at most *d*. Entry $(i, J), 1 \le i \le k$, where $J \in \mathbb{Z}^n, |J| \le d$, is marked in the table by * iff tropical monomial $f_{iJ} \otimes X^{\otimes J}$ (treated as a classical linear function) of f_i attains the minimal value at *x* among all tropical monomials of f_i . Thus, $x \in V$ iff each row of A^{*x} contains at least two *.

Lemma

For $x, y \in V$ if tables $A^{*x} = A^{*y}$ then some neighborhoods of V at x and at y are homeomorphic.

For a system *A* of tropical polynomials $f_i = \bigoplus_J f_{iJ} \otimes X^{\otimes J}$, $1 \le i \le k$ of degrees $|J| \le d$ in *n* variables denote by $V := V(A) \subset \mathbb{R}^n$ the tropical prevariety of its finite solutions.

With a point $x \in \mathbb{R}^n$ we associate $k \times {\binom{n+d-1}{n}}$ table A^{*x} in which rows correspond to f_1, \ldots, f_k and columns correspond to monomials of degrees at most d. Entry $(i, J), 1 \le i \le k$, where $J \in \mathbb{Z}^n, |J| \le d$, is marked in the table by * iff tropical monomial $f_{i,j} \otimes X^{\otimes J}$ (treated as a classical linear function) of f_i attains the minimal value at x among all tropical monomials of f_i . Thus, $x \in V$ iff each row of A^{*x} contains at least two *.

Lemma

For $x, y \in V$ if tables $A^{*x} = A^{*y}$ then some neighborhoods of V at x and at y are homeomorphic.

For a system *A* of tropical polynomials $f_i = \bigoplus_J f_{iJ} \otimes X^{\otimes J}$, $1 \le i \le k$ of degrees $|J| \le d$ in *n* variables denote by $V := V(A) \subset \mathbb{R}^n$ the tropical prevariety of its finite solutions.

With a point $x \in \mathbb{R}^n$ we associate $k \times {\binom{n+d-1}{n}}$ table A^{*x} in which rows correspond to f_1, \ldots, f_k and columns correspond to monomials of degrees at most d. Entry $(i, J), 1 \le i \le k$, where $J \in \mathbb{Z}^n, |J| \le d$, is marked in the table by * iff tropical monomial $f_{iJ} \otimes X^{\otimes J}$ (treated as a classical linear function) of f_i attains the minimal value at x among all tropical monomials of f_i . Thus, $x \in V$ iff each row of A^{*x} contains at least two *.

Lemma

For $x, y \in V$ if tables $A^{*x} = A^{*y}$ then some neighborhoods of V at x and at y are homeomorphic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a system *A* of tropical polynomials $f_i = \bigoplus_J f_{iJ} \otimes X^{\otimes J}$, $1 \le i \le k$ of degrees $|J| \le d$ in *n* variables denote by $V := V(A) \subset \mathbb{R}^n$ the tropical prevariety of its finite solutions.

With a point $x \in \mathbb{R}^n$ we associate $k \times {\binom{n+d-1}{n}}$ table A^{*x} in which rows correspond to f_1, \ldots, f_k and columns correspond to monomials of degrees at most d. Entry $(i, J), 1 \le i \le k$, where $J \in \mathbb{Z}^n, |J| \le d$, is marked in the table by * iff tropical monomial $f_{iJ} \otimes X^{\otimes J}$ (treated as a classical linear function) of f_i attains the minimal value at x among all tropical monomials of f_i . Thus, $x \in V$ iff each row of A^{*x} contains at least two *.

Lemma

For $x, y \in V$ if tables $A^{*x} = A^{*y}$ then some neighborhoods of V at x and at y are homeomorphic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a system *A* of tropical polynomials $f_i = \bigoplus_J f_{iJ} \otimes X^{\otimes J}$, $1 \le i \le k$ of degrees $|J| \le d$ in *n* variables denote by $V := V(A) \subset \mathbb{R}^n$ the tropical prevariety of its finite solutions.

With a point $x \in \mathbb{R}^n$ we associate $k \times {\binom{n+d-1}{n}}$ table A^{*x} in which rows correspond to f_1, \ldots, f_k and columns correspond to monomials of degrees at most d. Entry $(i, J), 1 \le i \le k$, where $J \in \mathbb{Z}^n, |J| \le d$, is marked in the table by * iff tropical monomial $f_{iJ} \otimes X^{\otimes J}$ (treated as a classical linear function) of f_i attains the minimal value at x among all tropical monomials of f_i . Thus, $x \in V$ iff each row of A^{*x} contains at least two *.

Lemma

For $x, y \in V$ if tables $A^{*x} = A^{*y}$ then some neighborhoods of V at x and at y are homeomorphic.

(日)

We call $x \in V$ a generalized vertex of a tropical system A if for any other $\mathbb{R}^n \ni y \neq x$ table A^{*y} does not contain A^{*x} , in other words A^{*x} is strictly maximal wrt inclusion among the tables for all the points.

Let entries (i, J_1) , (i, J_2) , $1 \le i \le k$ be marked by * in A^{*x} . Denote by $S \subset \mathbb{R}^n$ the linear subspace generated by vectors $J_1 - J_2 \in \mathbb{Z}^n$ for all such pairs (i, J_1) , (i, J_2) , $1 \le i \le k$.

Lemma

 $x \in V$ is a generalized vertex of A iff $S = \mathbb{R}^n$.

Lemma

Any vertex of a tropical prevariety V(A) is a generalized vertex of A.

< ロ > < 同 > < 回 > < 回 >

We call $x \in V$ a generalized vertex of a tropical system A if for any other $\mathbb{R}^n \ni y \neq x$ table A^{*y} does not contain A^{*x} , in other words A^{*x} is strictly maximal wrt inclusion among the tables for all the points. Let entries $(i, J_1), (i, J_2), 1 \leq i \leq k$ be marked by * in A^{*x} . Denote by $S \subset \mathbb{R}^n$ the linear subspace generated by vectors $J_1 - J_2 \in \mathbb{Z}^n$ for all such pairs $(i, J_1), (i, J_2), 1 \leq i \leq k$.

Lemma

 $x \in V$ is a generalized vertex of A iff $S = \mathbb{R}^n$.

Lemma

Any vertex of a tropical prevariety V(A) is a generalized vertex of A.

< ロ > < 同 > < 回 > < 回 >

We call $x \in V$ a generalized vertex of a tropical system A if for any other $\mathbb{R}^n \ni y \neq x$ table A^{*y} does not contain A^{*x} , in other words A^{*x} is strictly maximal wrt inclusion among the tables for all the points. Let entries $(i, J_1), (i, J_2), 1 \leq i \leq k$ be marked by * in A^{*x} . Denote by

 $S \subset \mathbb{R}^n$ the linear subspace generated by vectors $J_1 - J_2 \in \mathbb{Z}^n$ for all such pairs $(i, J_1), (i, J_2), 1 \leq i \leq k$.

Lemma

 $x \in V$ is a generalized vertex of A iff $S = \mathbb{R}^n$.

Lemma

Any vertex of a tropical prevariety V(A) is a generalized vertex of A.

We call $x \in V$ a generalized vertex of a tropical system A if for any other $\mathbb{R}^n \ni y \neq x$ table A^{*y} does not contain A^{*x} , in other words A^{*x} is strictly maximal wrt inclusion among the tables for all the points.

Let entries (i, J_1) , (i, J_2) , $1 \le i \le k$ be marked by * in A^{*x} . Denote by $S \subset \mathbb{R}^n$ the linear subspace generated by vectors $J_1 - J_2 \in \mathbb{Z}^n$ for all such pairs (i, J_1) , (i, J_2) , $1 \le i \le k$.

Lemma

 $x \in V$ is a generalized vertex of A iff $S = \mathbb{R}^n$.

Lemma

Any vertex of a tropical prevariety V(A) is a generalized vertex of A.

We call $x \in V$ a generalized vertex of a tropical system A if for any other $\mathbb{R}^n \ni y \neq x$ table A^{*y} does not contain A^{*x} , in other words A^{*x} is strictly maximal wrt inclusion among the tables for all the points.

Let entries (i, J_1) , (i, J_2) , $1 \le i \le k$ be marked by * in A^{*x} . Denote by $S \subset \mathbb{R}^n$ the linear subspace generated by vectors $J_1 - J_2 \in \mathbb{Z}^n$ for all such pairs (i, J_1) , (i, J_2) , $1 \le i \le k$.

Lemma

 $x \in V$ is a generalized vertex of A iff $S = \mathbb{R}^n$.

Lemma

Any vertex of a tropical prevariety V(A) is a generalized vertex of A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$

 $(equivalent to <math>\lambda_p \geq n)$ and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p > -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials $X_p \oplus Y_p$, $X_p \oplus Y_p \oplus R$, $1 \le p \le n$ (equivalent to $X_p \le R$) and $(-R) \oplus Z_p$, $(-R) \oplus Z_p \oplus X_p$, $1 \le p \le n$ (equivalent to $X_p \ge -R$). Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R)\oplus Z_{p},\,(-R)\oplus Z_{p}\oplus X_{p},\,1\leq p\leq n$$

(equivalent to $X_p \ge -R$

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables $Y_p,\,Z_p,\,1\leq p\leq n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

There exists *R* such that the intersection *W* of V := V(A) with cube $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_p| \le R, 1 \le p \le n\}$ is homotopy equivalent to *V*.

Lemma

Introduce new variables Y_p , Z_p , $1 \le p \le n$ and add to A tropical linear polynomials

 $X_p \oplus Y_p, X_p \oplus Y_p \oplus R, 1 \le p \le n$ (equivalent to $X_p \le R$) and

$$(-R) \oplus Z_p, (-R) \oplus Z_p \oplus X_p, 1 \le p \le n$$

(equivalent to $X_p \ge -R$).

Then the resulting system B defines a tropical prevariety homeomorphic to W.

Any connected component of compact W contains a vertex, hence

Corollary

The number of connected components of V does not exceed the number of generalized vertices of system B.

Dima Grigoriev (CNRS)

Stable solutions and tropical Bezout theorem

For system *C* of *n* tropical polynomials h_1, \ldots, h_n in *n* variables of degrees d_1, \ldots, d_n defining a tropical prevariety *V* a point $x \in V$ is called a *stable solution of C* if for any sufficiently small perturbation of the coefficients of *C* there exists a point in the perturbed tropical prevariety in a neighborhood of *x*. If for a generic perturbation there are exactly *e* points in a neighborhood of *x* one says that the stable solution *x* has the multiplicity *e*.

Theorem

(Tropical Bezout theorem) The sum of multiplicities of all stable solutions of C equals $d_1 \cdots d_n$ (Sturmfels).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stable solutions and tropical Bezout theorem

For system *C* of *n* tropical polynomials h_1, \ldots, h_n in *n* variables of degrees d_1, \ldots, d_n defining a tropical prevariety *V* a point $x \in V$ is called a *stable solution of C* if for any sufficiently small perturbation of the coefficients of *C* there exists a point in the perturbed tropical prevariety in a neighborhood of *x*. If for a generic perturbation there are exactly *e* points in a neighborhood of *x* one says that the stable solution *x* has the multiplicity *e*.

Theorem

(Tropical Bezout theorem) The sum of multiplicities of all stable solutions of C equals $d_1 \cdots d_n$ (Sturmfels).

Stable solutions and tropical Bezout theorem

For system *C* of *n* tropical polynomials h_1, \ldots, h_n in *n* variables of degrees d_1, \ldots, d_n defining a tropical prevariety *V* a point $x \in V$ is called a *stable solution of C* if for any sufficiently small perturbation of the coefficients of *C* there exists a point in the perturbed tropical prevariety in a neighborhood of *x*. If for a generic perturbation there are exactly *e* points in a neighborhood of *x* one says that the stable solution *x* has the multiplicity *e*.

Theorem

(Tropical Bezout theorem) The sum of multiplicities of all stable solutions of C equals $d_1 \cdots d_n$ (**Sturmfels**).

(日)

Criterion of stability of a solution

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, \ldots, h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \leq l_1, \ldots, l_n \leq k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of V(A).

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, \ldots, h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1, \ldots, l_n \le k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of V(A).

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, ..., h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1, \ldots, l_n \le k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of V(A).

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, ..., h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1, \ldots, l_n \le k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of V(A).

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, ..., h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1, \ldots, l_n \le k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of V(A).

Lemma

 $x \in V$ is a stable solution of system $C = \{h_1, ..., h_n\}$ in n variables iff for each $1 \le i \le n$ there exist marked by * in the table C^{*x} entries $(i, J_1), (i, J_2)$ such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Corollary

If x is a generalized vertex of a system A of tropical polynomials f_1, \ldots, f_k in n variables then x is a stable solution of a suitable multisubset $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1, \ldots, l_n \le k$ of A.

Let f_1, \ldots, f_k be of degrees $\leq d$. The number of *n*-multisubsets of *A* is $\binom{k+n-1}{n}$, due to Tropical Bezout theorem each multisubset has at most d^n stable solutions. This implies the bound $\binom{k+7n-1}{3n} \cdot d^{3n}$ on the number of generalized vertices of system *B*, and thereby, the bound on the number of connected components of *V*(*A*).

イロト イポト イヨト イヨト 一日

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*×} such that n vectors $J_1 = J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, x is a stable solution of system f_h, \ldots, f_{l_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of A has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of A.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*x} such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, *x* is a stable solution of system f_{h_1}, \ldots, f_{h_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of *A* has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of *A*.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*x} such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, *x* is a stable solution of system f_{l_1}, \ldots, f_{l_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of *A* has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of *A*.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*x} such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, *x* is a stable solution of system f_{l_1}, \ldots, f_{l_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of *A* has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of *A*.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*x} such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, *x* is a stable solution of system f_{l_1}, \ldots, f_{l_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of *A* has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of *A*.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

(日)

Lemma

If x is an isolated solution of system A of tropical polynomials f_1, \ldots, f_k then one can pick out a subset of n tropical polynomials $f_{l_1}, \ldots, f_{l_n}, 1 \le l_1 < \cdots l_n \le n$ of A and for each $1 \le i \le n$ entries $(l_i, J_1), (l_i, J_2)$ marked by * in the table A^{*x} such that n vectors $J_1 - J_2 \in \mathbb{Z}^n$ are linearly independent.

Therefore, *x* is a stable solution of system f_{l_1}, \ldots, f_{l_n} . Thus, each of $\binom{k}{n}$ *n*-elements subsets of *A* has at most d^n stable solutions due to Tropical Bezout theorem, which entails the bound $\binom{k}{n} \cdot d^n$ on the number of isolated solutions of *A*.

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among *k*) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $\left(\binom{k+n-1}{n} \cdot d^n\right)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $\left(\binom{k+n-1}{n} \cdot d^n\right)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among *k*) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $\left(\binom{k+n-1}{n} \cdot d^n\right)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement.

Question. Does the bound $\binom{k+n-1}{n} \cdot d^n$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

Complexity in tropical algebra

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among *k*) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $(\binom{k+n-1}{n} \cdot d^n)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

Complexity in tropical algebra

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among *k*) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $(\binom{k+n-1}{n} \cdot d^n)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens, Theobald).

Dima Grigoriev (CNRS)

Complexity in tropical algebra

The following bound is sometimes (say, for a small d) better.

Proposition

The sum of Betti numbers is less than $3^n + 2^n \cdot {\binom{k \cdot {\binom{n+d}{n}}^2}{n}} + o((k \cdot {\binom{n+d}{n}}^2)^n)$

To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among *k*) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement. **Question**. Does the bound $(\binom{k+n-1}{n} \cdot d^n)$ hold for Betti numbers?

Proposition

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (**Bertran-Bihan, Steffens-Theobald**).

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Construction of a tropical polynomial system with many isolated points

Theorem

One can construct a tropical system with k(n - 1), $k \ge 3$ polynomials in $n \ge 2$ variables of degrees 4d, $d \ge 1$ with $2(k - 1)^{n-1}d^n$ isolated solutions.

・ 同 ト ・ 三 ト ・ 三

Construction of a tropical polynomial system with many isolated points

Theorem

One can construct a tropical system with k(n-1), $k \ge 3$ polynomials in $n \ge 2$ variables of degrees 4d, $d \ge 1$ with $2(k-1)^{n-1}d^n$ isolated solutions.

projection of N=2 Newton polytope Tropical curve (d, B+3) $(\mathcal{A}, \mathcal{B})$ System A: k tropical curves shifted down by 3,6, ..., 3(k-1); isolated points of A•: (x,β-3j),0≤j≤K-2

Projection of n=2 Newton polytope Tropical curve (8,5) (4,5-3) 20 (Y, æ) $(\chi, \alpha - 3)$ $5 - \alpha > 3k$ (y, æ-6) System B: the curve is shifted down by 3,6,..., 3(K-1). The resulting k curves have 2(k-1) d² isolated intersection points.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Construction for an arbitrary number *n* of variables

Take n - 1 copies of system *B* in variables x_1 , y, and in *i*-th copy, $1 \le i \le n - 1$ replace y by x_{i+1} . The resulting tropical system has desired $2(k - 1)^{n-1}d^n$ isolated solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Construction for an arbitrary number *n* **of variables**

Take n - 1 copies of system *B* in variables x_1, y , and in *i*-th copy, $1 \le i \le n - 1$ replace *y* by x_{i+1} . The resulting tropical system has desired $2(k-1)^{n-1}d^n$ isolated solutions.

Construction for an arbitrary number *n* of variables

Take n-1 copies of system *B* in variables x_1 , y, and in *i*-th copy, $1 \le i \le n-1$ replace y by x_{i+1} . The resulting tropical system has desired $2(k-1)^{n-1}d^n$ isolated solutions.

First assume that the coefficients of a tropical linear system $A = (a_{i,j})$ are finite: $0 \le a_{i,j} \le M$, $1 \le i \le n$, $1 \le j \le m$.

Induction on *m*. Suppose that (tropical) vector $x := (x_1, ..., x_n)$ fulfils m - 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of A or finds $n \times n$ tropically nonsingular submatrix of A (in the latter case A has no solution).

After each step of modification a vector is produced (we keep for it the same notation *x*) such that it still fulfils m - 1 equations, and $m \times n$ matrix $B := (a_{i,j} + x_j)$ (after suitable permutations of rows and columns) has a form below.

If $a_{i,j} + x_j = \min_{1 \le l \le n} \{a_{i,l} + x_l\}$ mark entry *i*, *j* with *. The first row contains a single * (otherwise, x is a solution of A and every other row contains at least two *.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

First assume that the coefficients of a tropical linear system $A = (a_{i,j})$ are finite: $0 \le a_{i,j} \le M$, $1 \le i \le n$, $1 \le j \le m$. Induction on *m*. Suppose that (tropical) vector $x := (x_1, \ldots, x_n)$ fulfils m - 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of A or finds $n \times n$ tropically nonsingular submatrix of A (in the latter case A has no solution).

After each step of modification a vector is produced (we keep for it the same notation *x*) such that it still fulfils m - 1 equations, and $m \times n$ matrix $B := (a_{i,j} + x_j)$ (after suitable permutations of rows and columns) has a form below.

If $a_{i,j} + x_j = \min_{1 \le l \le n} \{a_{i,l} + x_l\}$ mark entry *i*, *j* with *. The first row contains a single * (otherwise, x is a solution of A and every other row contains at least two *.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

First assume that the coefficients of a tropical linear system $A = (a_{i,j})$ are finite: $0 \le a_{i,j} \le M$, $1 \le i \le n$, $1 \le j \le m$. Induction on *m*. Suppose that (tropical) vector $x := (x_1, \ldots, x_n)$ fulfils m - 1 equations (except, perhaps, the first one).

The algorithm modifies *x* and either produces a solution of *A* or finds $n \times n$ tropically nonsingular submatrix of *A* (in the latter case *A* has no solution).

After each step of modification a vector is produced (we keep for it the same notation *x*) such that it still fulfils m - 1 equations, and $m \times n$ matrix $B := (a_{i,j} + x_j)$ (after suitable permutations of rows and columns) has a form below.

If $a_{i,j} + x_j = \min_{1 \le l \le n} \{a_{i,l} + x_l\}$ mark entry *i*, *j* with *. The first row contains a single * (otherwise, *x* is a solution of *A* and every other row contains at least two *.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

First assume that the coefficients of a tropical linear system $A = (a_{i,j})$ are finite: $0 \le a_{i,j} \le M$, $1 \le i \le n$, $1 \le j \le m$. Induction on *m*. Suppose that (tropical) vector $x := (x_1, \ldots, x_n)$ fulfils m - 1 equations (except, perhaps, the first one).

The algorithm modifies *x* and either produces a solution of *A* or finds $n \times n$ tropically nonsingular submatrix of *A* (in the latter case *A* has no solution).

After each step of modification a vector is produced (we keep for it the same notation *x*) such that it still fulfils m - 1 equations, and $m \times n$ matrix $B := (a_{i,j} + x_j)$ (after suitable permutations of rows and columns) has a form below.

If $a_{i,j} + x_j = \min_{1 \le l \le n} \{a_{i,l} + x_l\}$ mark entry *i*, *j* with *. The first row contains a single * (otherwise, *x* is a solution of *A* and every other row contains at least two *.

(日)

First assume that the coefficients of a tropical linear system $A = (a_{i,j})$ are finite: $0 \le a_{i,j} \le M$, $1 \le i \le n$, $1 \le j \le m$. Induction on *m*. Suppose that (tropical) vector $x := (x_1, \ldots, x_n)$ fulfils m - 1 equations (except, perhaps, the first one).

The algorithm modifies *x* and either produces a solution of *A* or finds $n \times n$ tropically nonsingular submatrix of *A* (in the latter case *A* has no solution).

After each step of modification a vector is produced (we keep for it the same notation *x*) such that it still fulfils m - 1 equations, and $m \times n$ matrix $B := (a_{i,j} + x_j)$ (after suitable permutations of rows and columns) has a form below.

If $a_{i,j} + x_j = \min_{1 \le l \le n} \{a_{i,l} + x_l\}$ mark entry *i*, *j* with *. The first row contains a single * (otherwise, *x* is a solution of *A* and every other row contains at least two *.

$$B = \left(\begin{array}{cc} B_1 & B_2 \\ B_3 & B_4 \\ B_5 & B_6 \end{array}\right)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation x) still fulfils m-1 equations and $b \ge 1$.

Otherwise bring modified matrix *R* to a similar freem et follow

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

```
• B_2, B_4 contain no *.
```

• Each row of *B*₃ and of *B*₆ contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector

runs right columns, *I* runs left columns, *i* runs rows from matrices (B_1, B_2) and (B_3, B_4) .

The modified vector (keeping for it the notation x) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

ev (CNRS) Complexity in tropical algebra

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

• B₂, B₄ contain no *.

• Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation x) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

a cimilar form at failout

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation x) still fulfils m-1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

cimilar form or follow

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where *j* runs right columns, *l* runs left columns, *i* runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation x) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

similar frem 🖉 fblat

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation *x*) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

a cimilar form at failow

Continuation: producing a candidate for solution

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation *x*) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

eimilar fram de

9.11.17 37 / 37

Continuation: producing a candidate for solution

$$\mathsf{B}=\left(egin{array}{cc} B_1 & B_2\ B_3 & B_4\ B_5 & B_6\end{array}
ight)$$

• a square matrix B_1 contains * on the diagonal and no * above the diagonal. Hence B_1 is tropically nonsingular.

- B₂, B₄ contain no *.
- Each row of B_3 and of B_6 contains at least two *.

Modify vector x_1, \ldots, x_n adding (classically) to it a vector $(b, \ldots, b, 0, \ldots, 0)$ for integer $b = \max_i \{a_{i,j} + x_j - a_{i,l} - x_l\}$ where j runs right columns, l runs left columns, i runs rows from matrices $(B_1 B_2)$ and $(B_3 B_4)$.

The modified vector (keeping for it the notation *x*) still fulfils m - 1 equations and $b \ge 1$.

If the first row of the modified matrix B contains at least two *, x is a solution of A.

Otherwise, bring modified matrix *B* to a similar form as follows.

Construct recursively a set L of the left columns by augmenting. As a base of recursion the first column belongs to L.

For current *L* if there exists a row with single * in a column off *L*, join this column to *L*. These rows and columns form matrix B_1 .

If *L* coincides with the set of all the columns then B_1 is $n \times n$ tropically nonsingular submatrix of *B* and therefore, *A* has no solution. This completes the description of the algorithm.

Tropical norm and complexity bound

To estimate the number of steps of the algorithm define a *tropical norm* of a vector (in the tropical projective space) (y_1, \ldots, y_n) as

$$\sum_{1\leq i\leq n} (y_i - \min_{1\leq j\leq n} \{y_j\}).$$

After every modification step the tropical norm of vector $(a_{1,1} + x_1, \ldots, a_{1,n} + x_n)$ (corresponding to the first row) drops.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Construct recursively a set *L* of the left columns by augmenting. As a base of recursion the first column belongs to *L*. For current *L* if there exists a row with single * in a column off *L*, join this column to *L*. These rows and columns form matrix B_1 .

If *L* coincides with the set of all the columns then B_1 is $n \times n$ tropically nonsingular submatrix of *B* and therefore, *A* has no solution. This completes the description of the algorithm.

Tropical norm and complexity bound

To estimate the number of steps of the algorithm define a *tropical norm* of a vector (in the tropical projective space) (y_1, \ldots, y_n) as

$$\sum_{1\leq i\leq n} (y_i - \min_{1\leq j\leq n} \{y_j\}).$$

After every modification step the tropical norm of vector $(a_{1,1} + x_1, \ldots, a_{1,n} + x_n)$ (corresponding to the first row) drops.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Construct recursively a set L of the left columns by augmenting. As a base of recursion the first column belongs to L.

For current *L* if there exists a row with single * in a column off *L*, join this column to *L*. These rows and columns form matrix B_1 .

If *L* coincides with the set of all the columns then B_1 is $n \times n$ tropically nonsingular submatrix of *B* and therefore, *A* has no solution. This completes the description of the algorithm.

Tropical norm and complexity bound

To estimate the number of steps of the algorithm define a *tropical norm* of a vector (in the tropical projective space) (y_1, \ldots, y_n) as

$$\sum_{1\leq i\leq n} (y_i - \min_{1\leq j\leq n} \{y_j\}).$$

After every modification step the tropical norm of vector $(a_{1,1} + x_1, ..., a_{1,n} + x_n)$ (corresponding to the first row) drops.

Dima Grigoriev (CNRS)

Complexity in tropical algebra

Construct recursively a set L of the left columns by augmenting. As a base of recursion the first column belongs to L.

For current *L* if there exists a row with single * in a column off *L*, join this column to *L*. These rows and columns form matrix B_1 .

If *L* coincides with the set of all the columns then B_1 is $n \times n$ tropically nonsingular submatrix of *B* and therefore, *A* has no solution. This completes the description of the algorithm.

Tropical norm and complexity bound

To estimate the number of steps of the algorithm define a *tropical norm* of a vector (in the tropical projective space) (y_1, \ldots, y_n) as

$$\sum_{1\leq i\leq n} (y_i - \min_{1\leq j\leq n} \{y_j\}).$$

After every modification step the tropical norm of vector $(a_{1,1} + x_1, \ldots, a_{1,n} + x_n)$ (corresponding to the first row) drops.

Construct recursively a set L of the left columns by augmenting. As a base of recursion the first column belongs to L.

For current *L* if there exists a row with single * in a column off *L*, join this column to *L*. These rows and columns form matrix B_1 .

If *L* coincides with the set of all the columns then B_1 is $n \times n$ tropically nonsingular submatrix of *B* and therefore, *A* has no solution. This completes the description of the algorithm.

Tropical norm and complexity bound

To estimate the number of steps of the algorithm define a *tropical norm* of a vector (in the tropical projective space) (y_1, \ldots, y_n) as

$$\sum_{1\leq i\leq n} (y_i - \min_{1\leq j\leq n} \{y_j\}).$$

After every modification step the tropical norm of vector $(a_{1,1} + x_1, ..., a_{1,n} + x_n)$ (corresponding to the first row) drops.

For the inductive (again on *m*) hypothesis assume that $(m - 1) \times n$ matrix *A*' (obtained from *A* by removing its first row) has a block form (after permuting its rows and columns)

$$\begin{pmatrix} A_{1,1} & \infty & \cdots & \infty & \infty \\ A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\ \cdots & \cdots & \cdots & \cdots \\ A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1,t-1} & \infty \\ \overline{A_{t,1}} & \overline{A_{t,2}} & \cdots & \overline{A_{t,t-1}} & \overline{A_{t,t}} \end{pmatrix}$$

where each entry of upper-triangular blocks equals ∞ .

A finite vector $y = (y_1, \ldots, y_n) =: (y^{(1)}, \ldots, y^{(t)}) \in \mathbb{Z}^n$ is produced (where $y^{(1)}, \ldots, y^{(t)}$ is its partition corresponding to the block structure) such that each diagonal block $A_{p,p}$, $1 \le p \le t - 1$ has * (with respect to vector $y^{(p)}$) everywhere on its diagonal and no * above the diagonal. Matrix $A_{p,p}$ is of size $u_p \times v_p$ with $u_P \ge v_p$. Vector $(\infty, \ldots, \infty, y^{(t)})$ is a (tropical) solution of matrix A', and $y^{(t)}$ is a solution of $\overline{A_{t,t}}$.

For the inductive (again on *m*) hypothesis assume that $(m - 1) \times n$ matrix *A*' (obtained from *A* by removing its first row) has a block form (after permuting its rows and columns)

$$\begin{pmatrix} A_{1,1} & \infty & \cdots & \infty & \infty \\ A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1,t-1} & \infty \\ \hline A_{t,1} & \overline{A_{t,2}} & \cdots & \overline{A_{t,t-1}} & \overline{A_{t,t}} \end{pmatrix}$$

where each entry of upper-triangular blocks equals ∞ .

A finite vector $y = (y_1, \ldots, y_n) =: (y^{(1)}, \ldots, y^{(t)}) \in \mathbb{Z}^n$ is produced (where $y^{(1)}, \ldots, y^{(t)}$ is its partition corresponding to the block structure) such that each diagonal block $A_{p,p}$, $1 \le p \le t - 1$ has * (with respect to vector $y^{(p)}$) everywhere on its diagonal and no * above the diagonal. Matrix $A_{p,p}$ is of size $u_p \times v_p$ with $u_P \ge v_p$. Vector $(\infty, \ldots, \infty, y^{(t)})$ is a (tropical) solution of matrix A', and $y^{(t)}$ is a solution of $\overline{A_{t,t}}$.

For the inductive (again on *m*) hypothesis assume that $(m - 1) \times n$ matrix *A*' (obtained from *A* by removing its first row) has a block form (after permuting its rows and columns)

$$\begin{pmatrix} A_{1,1} & \infty & \cdots & \infty & \infty \\ A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1,t-1} & \infty \\ \overline{A_{t,1}} & \overline{A_{t,2}} & \cdots & \overline{A_{t,t-1}} & \overline{A_{t,t}} \end{pmatrix}$$

where each entry of upper-triangular blocks equals ∞ .

A finite vector $y = (y_1, \ldots, y_n) =: (y^{(1)}, \ldots, y^{(t)}) \in \mathbb{Z}^n$ is produced (where $y^{(1)}, \ldots, y^{(t)}$ is its partition corresponding to the block structure) such that each diagonal block $A_{p,p}$, $1 \le p \le t - 1$ has * (with respect to vector $y^{(p)}$) everywhere on its diagonal and no * above the diagonal. Matrix $A_{p,p}$ is of size $u_p \times v_p$ with $u_P \ge v_p$. Vector $(\infty, \ldots, \infty, y^{(t)})$ is a (tropical) solution of matrix A', and $y^{(t)}$ is a solution of $\overline{A_{t,t}}$.

For the inductive (again on *m*) hypothesis assume that $(m - 1) \times n$ matrix *A*' (obtained from *A* by removing its first row) has a block form (after permuting its rows and columns)

$$\begin{pmatrix} A_{1,1} & \infty & \cdots & \infty & \infty \\ A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1,t-1} & \infty \\ \overline{A_{t,1}} & \overline{A_{t,2}} & \cdots & \overline{A_{t,t-1}} & \overline{A_{t,t}} \end{pmatrix}$$

where each entry of upper-triangular blocks equals ∞ .

A finite vector $y = (y_1, \ldots, y_n) =: (y^{(1)}, \ldots, y^{(t)}) \in \mathbb{Z}^n$ is produced (where $y^{(1)}, \ldots, y^{(t)}$ is its partition corresponding to the block structure) such that each diagonal block $A_{p,p}$, $1 \le p \le t - 1$ has * (with respect to vector $y^{(p)}$) everywhere on its diagonal and no * above the diagonal. Matrix $A_{p,p}$ is of size $u_p \times v_p$ with $u_P \ge v_p$. Vector $(\infty, \ldots, \infty, y^{(t)})$ is a (tropical) solution of matrix A', and $y^{(t)}$ is a

Dima Grigoriev (CNRS)

・ロット (雪) (日) (日) (日)

For the inductive (again on *m*) hypothesis assume that $(m - 1) \times n$ matrix *A*' (obtained from *A* by removing its first row) has a block form (after permuting its rows and columns)

$$\begin{pmatrix} A_{1,1} & \infty & \cdots & \infty & \infty \\ A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1,t-1} & \infty \\ \overline{A_{t,1}} & \overline{A_{t,2}} & \cdots & \overline{A_{t,t-1}} & \overline{A_{t,t}} \end{pmatrix}$$

where each entry of upper-triangular blocks equals ∞ .

A finite vector $y = (y_1, \ldots, y_n) =: (y^{(1)}, \ldots, y^{(t)}) \in \mathbb{Z}^n$ is produced (where $y^{(1)}, \ldots, y^{(t)}$ is its partition corresponding to the block structure) such that each diagonal block $A_{p,p}$, $1 \le p \le t - 1$ has * (with respect to vector $y^{(p)}$) everywhere on its diagonal and no * above the diagonal. Matrix $A_{p,p}$ is of size $u_p \times v_p$ with $u_P \ge v_p$. Vector $(\infty, \ldots, \infty, y^{(t)})$ is a (tropical) solution of matrix A', and $y^{(t)}$ is a solution of $\overline{A_{t,t}}$.

To be closer to the finite case \mathbb{Z} extend the lowest block $\overline{A_{t,1}} \overline{A_{t,2}} \cdots \overline{A_{t,t-1}} \overline{A_{t,t}}$ of A' by joining to it the first row of A as its first row. The resulting extension of matrix $\overline{A_{t,t}}$ denote by C.

Again as in the finite case assume (after a permutation of the columns) that a single * (with respect to vector $y^{(t)}$) in the first row of *C* is located in the first column.

The algorithm modifies vector $y^{(t)}$ keeping it to be a solution of $\overline{A_{t,t}}$ and keeping the same notation for the modified vectors.

If $y^{(t)}$ is a solution of *C* then vector $(\infty, ..., \infty, y^{(t)})$ is a solution of *A* and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set *L* of the left columns of *C* and accordingly modifies vector $y^{(t)}$.

・ロット (雪) (日) (日)

To be closer to the finite case \mathbb{Z} extend the lowest block $\overline{A_{t,1}} \overline{A_{t,2}} \cdots \overline{A_{t,t-1}} \overline{A_{t,t}}$ of A' by joining to it the first row of A as its first row. The resulting extension of matrix $\overline{A_{t,t}}$ denote by C. Again as in the finite case assume (after a permutation of the columns) that a single * (with respect to vector $y^{(t)}$) in the first row of C is located in the first column.

The algorithm modifies vector $y^{(t)}$ keeping it to be a solution of $\overline{A_{t,t}}$ and keeping the same notation for the modified vectors. If $y^{(t)}$ is a solution of *C* then vector $(\infty, \ldots, \infty, y^{(t)})$ is a solution of *A* and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set *L* of the left columns of *C* and accordingly modifies vector $y^{(t)}$.

To be closer to the finite case \mathbb{Z} extend the lowest block $\overline{A_{t,1}} \overline{A_{t,2}} \cdots \overline{A_{t,t-1}} \overline{A_{t,t}}$ of A' by joining to it the first row of A as its first row. The resulting extension of matrix $\overline{A_{t,t}}$ denote by C. Again as in the finite case assume (after a permutation of the columns) that a single * (with respect to vector $y^{(t)}$) in the first row of C is located in the first column.

The algorithm modifies vector $y^{(t)}$ keeping it to be a solution of $\overline{A_{t,t}}$ and keeping the same notation for the modified vectors.

If $y^{(t)}$ is a solution of *C* then vector $(\infty, ..., \infty, y^{(t)})$ is a solution of *A* and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set *L* of the left columns of *C* and accordingly modifies vector $y^{(t)}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

To be closer to the finite case \mathbb{Z} extend the lowest block $\overline{A_{t,1}} \overline{A_{t,2}} \cdots \overline{A_{t,t-1}} \overline{A_{t,t}}$ of A' by joining to it the first row of A as its first row. The resulting extension of matrix $\overline{A_{t,t}}$ denote by C. Again as in the finite case assume (after a permutation of the columns) that a single * (with respect to vector $y^{(t)}$) in the first row of C is located in the first column.

The algorithm modifies vector $y^{(t)}$ keeping it to be a solution of $\overline{A_{t,t}}$ and keeping the same notation for the modified vectors. If $y^{(t)}$ is a solution of *C* then vector $(\infty, \dots, \infty, y^{(t)})$ is a solution of *A* and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set *L* of the left columns of *C* and accordingly modifies vector $y^{(t)}$.

To be closer to the finite case \mathbb{Z} extend the lowest block $\overline{A_{t,1}} \overline{A_{t,2}} \cdots \overline{A_{t,t-1}} \overline{A_{t,t}}$ of A' by joining to it the first row of A as its first row. The resulting extension of matrix $\overline{A_{t,t}}$ denote by C. Again as in the finite case assume (after a permutation of the columns) that a single * (with respect to vector $y^{(t)}$) in the first row of C is located in the first column.

The algorithm modifies vector $y^{(t)}$ keeping it to be a solution of $\overline{A_{t,t}}$ and keeping the same notation for the modified vectors.

If $y^{(t)}$ is a solution of *C* then vector $(\infty, ..., \infty, y^{(t)})$ is a solution of *A* and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set *L* of the left columns of *C* and accordingly modifies vector $y^{(t)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector $y^{(t)} =: (y_1^{(t)}, \ldots, y_s^{(t)})$ and with an edge from node $y_j^{(t)}$ to $y_l^{(t)}$ when $y_j^{(t)} - y_l^{(t)} \le M$ (remind that all finite coefficients of matrix *A* satisfy $0 \le a_{i,j} \le M$). Denote by *S* the set of nodes of the graph reachable from the first

node y_1^{\prime} .

Lemma

 $L \subset S$ and in the course of the algorithm while modifying S, the next S is a subset of the previous one.

The algorithm modifies $y^{(t)}$ while $L \neq S$.

If L = S then (after suitable permutations of the rows and columns)

< ロ > < 同 > < 回 > < 回 > < 回 > <

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector $y^{(t)} =: (y_1^{(t)}, \ldots, y_s^{(t)})$ and with an edge from node $y_j^{(t)}$ to $y_l^{(t)}$ when $y_j^{(t)} - y_l^{(t)} \le M$ (remind that all finite coefficients of matrix *A* satisfy $0 \le a_{i,j} \le M$). Denote by *S* the set of nodes of the graph reachable from the first node $y_1^{(t)}$.

Lemma

 $L \subset S$ and in the course of the algorithm while modifying S, the next S is a subset of the previous one.

The algorithm modifies $y^{(t)}$ while $L \neq S$.

If L = S then (after suitable permutations of the rows and columns)

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector $y^{(t)} =: (y_1^{(t)}, \ldots, y_s^{(t)})$ and with an edge from node $y_j^{(t)}$ to $y_l^{(t)}$ when $y_j^{(t)} - y_l^{(t)} \le M$ (remind that all finite coefficients of matrix *A* satisfy $0 \le a_{i,j} \le M$). Denote by *S* the set of nodes of the graph reachable from the first node $y_1^{(t)}$.

Lemma

 $L \subset S$ and in the course of the algorithm while modifying S, the next S is a subset of the previous one.

The algorithm modifies $y^{(t)}$ while $L \neq S$.

If L = S then (after suitable permutations of the rows and columns)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector $y^{(t)} =: (y_1^{(t)}, \ldots, y_s^{(t)})$ and with an edge from node $y_j^{(t)}$ to $y_l^{(t)}$ when $y_j^{(t)} - y_l^{(t)} \le M$ (remind that all finite coefficients of matrix *A* satisfy $0 \le a_{i,j} \le M$). Denote by *S* the set of nodes of the graph reachable from the first node $y_1^{(t)}$.

Lemma

 $L \subset S$ and in the course of the algorithm while modifying S, the next S is a subset of the previous one.

The algorithm modifies $y^{(t)}$ while $L \neq S$.

If L = S then (after suitable permutations of the rows and columns)

(日)

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector $y^{(t)} =: (y_1^{(t)}, \ldots, y_s^{(t)})$ and with an edge from node $y_j^{(t)}$ to $y_l^{(t)}$ when $y_j^{(t)} - y_l^{(t)} \le M$ (remind that all finite coefficients of matrix *A* satisfy $0 \le a_{i,j} \le M$). Denote by *S* the set of nodes of the graph reachable from the first node $y_1^{(t)}$.

Lemma

 $L \subset S$ and in the course of the algorithm while modifying S, the next S is a subset of the previous one.

The algorithm modifies $y^{(t)}$ while $L \neq S$.

If L = S then (after suitable permutations of the rows and columns)

$$C = \left(\begin{array}{cc} C_1 & \infty \\ C_2 & \infty \\ C_3 & C_4 \end{array} \right)$$

• *L* are columns of a square matrix C_1 ;

• (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;

each row of C₂ and of C₄ contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*.

Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \dots, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then A has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of A.

$$C=\left(egin{array}{cc} C_1 & \infty \ C_2 & \infty \ C_3 & C_4 \end{array}
ight)$$

• *L* are columns of a square matrix C_1 ;

• (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;

each row of C₂ and of C₄ contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*. Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then A has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of A.

$$\mathcal{C} = \left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;

each row of C₂ and of C₄ contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*. Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector

 $(\infty, \ldots, \infty, y^{(t+1)})$ is a solution of A.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then A has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of A.

$$\mathcal{C} = \left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;
- each row of C₂ and of C₄ contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*. Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, ..., \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then A has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of A.

$$\mathcal{C} = \left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;
- each row of C_2 and of C_4 contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*.

Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \dots, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then *A* has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of *A*.

$$\mathcal{C} = \left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;
- each row of C_2 and of C_4 contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix A.

Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \dots, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then *A* has no solution. Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of *A*.

$$\mathcal{C} = \left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;
- each row of C_2 and of C_4 contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*.

Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \dots, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then *A* has no solution.

Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of *A*.

$$\mathcal{C}=\left(egin{array}{cc} \mathcal{C}_1 & \infty \ \mathcal{C}_2 & \infty \ \mathcal{C}_3 & \mathcal{C}_4 \end{array}
ight)$$

- *L* are columns of a square matrix C_1 ;
- (tropically nonsingular) C_1 contains * everywhere on the diagonal and no * above it;
- each row of C_2 and of C_4 contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix *A*.

Vector $y^{(t)} =: (y^{(t)}, y^{(t+1)})$ (abusing the notations) and vector $(\infty, \dots, \infty, y^{(t+1)})$ is a solution of *A*.

The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then *A* has no solution.

Otherwise, if first all the rows are exhausted then $(\infty, ..., \infty, y^{(t+1)})$ is a solution of *A*.