Bounds on the Topology of Tropical Prevarieties

Dima Grigoriev (Lille)

CNRS

9/11/2017, Bures-sur-Yvette

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with

is attained

Dima Grigoriev (CNRS)

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\mathrm{min}, \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\varnothing:=-$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\varnothing:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.
\square

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{j_{j 1}} \otimes \cdots \otimes x_{n}^{i_{j n}}\right)=\min _{j}\left\{Q_{j}\right\} ;$

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{j_{j 1}} \otimes \cdots \otimes x_{n}^{i_{j n}}\right)=\min _{j}\left\{Q_{j}\right\}$; $x=\left(x_{1}, \ldots, x_{n}\right)$ is a tropical zero of f if minimum $\min _{j}\left\{Q_{j}\right\}$ is attained for at least two different values of j.

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring
\square
algebraically closedileld Fis algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations

series the leading exponents i_{j} / q_{j} in $X_{j}=a_{0 j} \cdot t^{j} / q_{j}+\cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms)

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)
The field of Puiseux series
$F\left(\left(t^{1 / \infty}\right)\right) \ni a_{0} \cdot t^{\prime / q}+a_{1} \cdot t^{(i+1) / q}+\cdots, 0<q \in \mathbb{Z}$ over an algebraically closed field F is algebraically closed.

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)
The field of Puiseux series
$F\left(\left(t^{1 / \infty}\right)\right) \ni a_{0} \cdot t^{i / q}+a_{1} \cdot t^{(i+1) / q}+\cdots, 0<q \in \mathbb{Z}$ over an algebraically closed field F is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_{i}\left(X_{1}, \ldots, X_{n}\right)=0,1 \leq i \leq k$ with $f_{i} \in F\left(\left(t^{1 / \infty}\right)\right)\left[X_{1}, \ldots, X_{n}\right]$ in Puiseux series the leading exponents i_{j} / q_{j} in $X_{j}=a_{0 j} \cdot t^{i_{j} / q_{j}}+\cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j.
\square moment of execution of i by j, the latter restriction is expressed as Another sort of restrictions is that a machine

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix $\left(w_{i j}\right)$.

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{i j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i, j} \geq x_{i j}+t_{i j}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_{1}, j} \geq x_{i j}+t_{i j}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_{1}, j} \geq x_{i j}+t_{i j}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.
This approach is employed in scheduling of Dutch and Korean railways.

Tropical Varieties and Prevarieties

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$ is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$,

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$ is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$ is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Tr} o p}(U(f)) \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$. $\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$. $\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety,

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$. $\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$. $\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of l.
$\overline{\operatorname{Tr} o p}(U(f)) \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$. $\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral fan. Moreover, when ideal I is prime the tropical variety $\overline{\operatorname{Trop}(U(I))}$ has at any point the same local dimension equal dim/.

Tropical Basis

$f_{1}, \ldots, f_{k} \in I$ such that
$\operatorname{Trop}(U(I))=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)}$

$$
\overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}
$$

(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis $f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas),

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis $f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{\operatorname{Trop}(U(I))}$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{T r o p}(U(I))$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.
Clearly, $\overline{\operatorname{Trop}(U(I))} \subseteq \overline{\operatorname{Trop}\left(U\left(g_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(g_{m}\right)\right)}$ for any $g_{1}, \ldots, g_{m} \in I$.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{\operatorname{Trop}(U(I))}$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.
Clearly, $\overline{\operatorname{Tr} p(U(I))} \subseteq \overline{\operatorname{Trop}\left(U\left(g_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(g_{m}\right)\right)}$ for any $g_{1}, \ldots, g_{m} \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{\operatorname{Trop}(U(I))}$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.
Clearly, $\overline{\operatorname{Trop}(U(I))} \subseteq \overline{\operatorname{Trop}\left(U\left(g_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(g_{m}\right)\right)}$ for any $g_{1}, \ldots, g_{m} \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal I the number of elements in a tropical basis $k<2 n$,

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{\operatorname{Trop}(U(I))}$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.
Clearly, $\overline{\operatorname{Trop}(U(I))} \subseteq \overline{\operatorname{Trop}\left(U\left(g_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(g_{m}\right)\right)}$ for any $g_{1}, \ldots, g_{m} \in I$.

Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal I the number of elements in a tropical basis $k<2 n$, although apparently the degrees of f_{1}, \ldots, f_{k} can be exponential.

Tropical Basis

For an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ there exists its tropical basis
$f_{1}, \ldots, f_{k} \in I$ such that
$\overline{\operatorname{Trop}(U(I))}=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$
(Bogart, Jensen, Speyer, Sturmfels, Thomas), i. e. any tropical variety is a tropical prevariety.
Given a tropical basis one can test whether a point $v \in \mathbb{R}^{n}$ belongs to the tropical variety $\overline{\operatorname{Tr} o p(U(I))}$ since for tropical hypersurfaces $\overline{\operatorname{Trop}(U(f))}=U(\operatorname{Trop}(f))$ holds (Kapranov) where $\operatorname{Trop}\left(\sum_{J} f_{J} \cdot X^{J}\right):=\min _{J}\left\{\operatorname{Trop}\left(f_{J}\right)+\langle J, X\rangle\right\}, f_{J} \in K$.
Clearly, $\overline{\operatorname{Trop}(U(I))} \subseteq \overline{\operatorname{Trop}\left(U\left(g_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(g_{m}\right)\right)}$ for any $g_{1}, \ldots, g_{m} \in I$.
Hept, Theobald have designed an algorithm which produces a tropical basis. In case of a prime ideal / the number of elements in a tropical basis $k<2 n$, although apparently the degrees of f_{1}, \ldots, f_{k} can be exponential.

Tropical linear systems

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min _{1 \leq i \leq n}\left\{a_{i}+x_{i}\right\}$.

Tropical linear systems

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min _{1 \leq i \leq n}\left\{a_{i}+x_{i}\right\}$.

Tropical linear system

$$
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}, 1 \leq i \leq m
$$

(or $(m \times n)$-matrix $\left.A=\left(a_{i, j}\right)\right)$

Tropical linear systems

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min _{1 \leq i \leq n}\left\{a_{i}+x_{i}\right\}$.

Tropical linear system

$$
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}, 1 \leq i \leq m
$$

(or $\left(m \times n\right.$)-matrix $A=\left(a_{i, j}\right)$) has a tropical solution $x=\left(x_{1} \ldots, x_{n}\right)$ if for every row $1 \leq i \leq m$ there are two columns $1 \leq k<I \leq n$ such that

$$
a_{i, k}+x_{k}=a_{i, l}+x_{l}=\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}
$$

Tropical linear systems

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min _{1 \leq i \leq n}\left\{a_{i}+x_{i}\right\}$.

Tropical linear system

$$
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}, 1 \leq i \leq m
$$

(or $(m \times n)$-matrix $A=\left(a_{i, j}\right)$) has a tropical solution $x=\left(x_{1} \ldots, x_{n}\right)$ if for every row $1 \leq i \leq m$ there are two columns $1 \leq k<I \leq n$ such that

$$
a_{i, k}+x_{k}=a_{i, l}+x_{l}=\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}
$$

Coefficients $a_{i, j} \in \mathbb{Z}_{\infty}:=\mathbb{Z} \cup\{\infty\}$. Not all $x_{j}=\infty$. For $a_{i, j} \in \mathbb{Z}$ we assume $0 \leq a_{i, j} \leq M$.

Tropical linear systems

If a tropical semi-ring T is an ordered semi-group then tropical linear function over T can be written as $\min _{1 \leq i \leq n}\left\{a_{i}+x_{i}\right\}$.

Tropical linear system

$$
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}, 1 \leq i \leq m
$$

(or $(m \times n)$-matrix $A=\left(a_{i, j}\right)$) has a tropical solution $x=\left(x_{1} \ldots, x_{n}\right)$ if for every row $1 \leq i \leq m$ there are two columns $1 \leq k<I \leq n$ such that

$$
a_{i, k}+x_{k}=a_{i, l}+x_{l}=\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}
$$

Coefficients $a_{i, j} \in \mathbb{Z}_{\infty}:=\mathbb{Z} \cup\{\infty\}$. Not all $x_{j}=\infty$. For $a_{i, j} \in \mathbb{Z}$ we assume $0 \leq a_{i, j} \leq M$.
$n \times n$ matrix $\left(a_{i, j}\right)$ is tropically non-singular if the minimum $\min _{\pi \in S_{n}}\left\{a_{1, \pi(1)}+\cdots+a_{n, \pi(n)}\right\}\left(=\operatorname{Trop}\left(\operatorname{det}\left(a_{i, j}\right)\right)\right)$ is attained for a unique permutation π

Complexity of solving tropical linear systems

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.)

Complexity of solving tropical linear systems

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.) Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Complexity of solving tropical linear systems

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.)
Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class NP $\cap \operatorname{coNP}$.

Complexity of solving tropical linear systems

Theorem

One can solve an $m \times n$ tropical linear system A within complexity polynomial in n, m, M. (Akian-Gaubert-Guterman; G.)
Moreover, the algorithm either finds a solution over \mathbb{Z}_{∞} or produces an $n \times n$ tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity class NP $\cap \operatorname{coNP}$.

Open Problem. Can one test solvability of a tropical linear system within the polynomial complexity, so within $(m \cdot n \cdot \log M)^{O(1)}$?

Tropical and Kapranov ranks

Tropical rank trk (A) of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$.

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);
- $\operatorname{trk}(A)=r$ is NP-hard, $\operatorname{trk}(A) \geq r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over R is reducible to
$K_{r k}(A)=3$ (Kim-Roush).
Example $R=\mathbb{Q}$ or $R=G F[p](t)$.

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of
Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero
characteristic such that the tropicalization Trop $\left(f_{i, j}\right)=a_{i, j}$.
Kapranov rank $K r K_{R}(A)=$ minimum of ranks (over $\left.K\right)$ of liftings of A.

has polynomial complexity due to Hungarian algorithm
(Butkovic-Heverv) :

- $\operatorname{trk}(A)=r$ is NP-hard, $\operatorname{trk}(A) \geq r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over R is reducible to
$\operatorname{Krk}_{R}(A)=3$ (Kim-Roush)
Example $R=\mathbb{Q}$ or $R=G F[p](t)$.

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$.

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $K r k_{R}(A)=$ minimum of ranks (over K) of liftings of A.

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $K r k_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $K r k_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $K r k_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $\operatorname{Krk}_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);
- $\operatorname{trk}(A)=r$ is NP-hard, $\operatorname{trk}(A) \geq r$ is NP-complete (Kim-Roush);

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $\operatorname{Krk}_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm (Butkovic-Hevery);
- $\operatorname{trk}(A)=r$ is NP-hard, $\operatorname{trk}(A) \geq r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over R is reducible to $K_{r k}(A)=3($ Kim-Roush $)$.

Tropical and Kapranov ranks

Tropical rank $\operatorname{trk}(A)$ of matrix A is the maximal size of its tropically nonsingular square submatrices.
A lifting of $A=\left(a_{i, j}\right)$ is a matrix $F=\left(f_{i, j}\right)$ over the field of Newton-Puiseux series $K=R\left(\left(t^{1 / \infty}\right)\right)$ for a field R of zero characteristic such that the tropicalization $\operatorname{Trop}\left(f_{i, j}\right)=a_{i, j}$. Kapranov rank $K r k_{R}(A)=$ minimum of ranks (over K) of liftings of A. $\operatorname{trk}(A) \leq K r k_{R}(A)$ and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

- For $n \times n$ matrix B testing $\operatorname{trk}(B)=n$ ($\Leftrightarrow B$ is tropically nonsingular) has polynomial complexity due to Hungarian algorithm
(Butkovic-Hevery);
- $\operatorname{trk}(A)=r$ is NP-hard, $\operatorname{trk}(A) \geq r$ is NP-complete (Kim-Roush);
- Solvability of polynomial equations over R is reducible to $K r k_{R}(A)=3$ (Kim-Roush).
Example $R=\mathbb{Q}$ or $R=G F[p](t)$.

Barvinok rank

$\operatorname{Brk}(A)$ is the minimal q such that $A=\left(u_{1} \otimes v_{1}\right) \oplus \cdots \oplus\left(u_{q} \otimes v_{q}\right)$ for suitable vectors u_{1}, \ldots, v_{q} over T
$\operatorname{Krk}_{R}(A) \leq \operatorname{Brk}(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)

Barvinok rank

$\operatorname{Brk}(A)$ is the minimal q such that $A=\left(u_{1} \otimes v_{1}\right) \oplus \cdots \oplus\left(u_{q} \otimes v_{q}\right)$ for suitable vectors u_{1}, \ldots, v_{q} over T
$\operatorname{Krk}_{R}(A) \leq \operatorname{Brk}(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Barvinok rank

$\operatorname{Brk}(A)$ is the minimal q such that $A=\left(u_{1} \otimes v_{1}\right) \oplus \cdots \oplus\left(u_{q} \otimes v_{q}\right)$ for suitable vectors u_{1}, \ldots, v_{q} over T
$\operatorname{Krk}_{R}(A) \leq \operatorname{Brk}(A)$ and the equality is not always true (Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)

Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies

```
Corollary
The following statements are equivalent
1) a tropical linear system with m }\timesn\mathrm{ matrix A has a solution;

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent

- For matrices A with finite coefficients from \(\mathbb{R}\) it was proved by Develin-Santos-Sturmfels.
- Equivalence of 1) and 2) was established by Izhakian-Rowen.

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;

> - For matrices \(A\) with finite coefficients from \(\mathbb{R}\) it was proved by
> Develin-Santos-Sturmfels.
> - Equivalence of 1) and 2) was established by Izhakian-Rowen.

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;
2) \(\operatorname{trk}(A)<n\);
\[
\begin{aligned}
& \text { - The corollary holds for matrices over } \mathbb{R}_{\infty} \text {. } \\
& \text { - For matrices } A \text { with finite coefficients from } \mathbb{R} \text { it was proved by } \\
& \text { Develin-Santos-Sturmfels. } \\
& \text { - Equivalence of 1) and 2) was established by Izhakian-Rowen. }
\end{aligned}
\]

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;
2) \(\operatorname{trk}(A)<n\);
3) \(K r k_{R}(A)<n\).
\[
\begin{aligned}
& \text { - The corollary holds for matrices over } \mathbb{R}_{\infty} \text {. } \\
& \text { - For matrices } A \text { with finite coefficients from } \mathbb{R} \text { it was proved by } \\
& \text { Develin-Santos-Sturmfels. } \\
& \text { - Equivalence of 1) and 2) was established by Izhakian-Rowen. }
\end{aligned}
\]

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;
2) \(\operatorname{trk}(A)<n\);
3) \(K r k_{R}(A)<n\).

\section*{Remark}
- The corollary holds for matrices over \(\mathbb{R}_{\infty}\).
\(\square\)

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;
2) \(\operatorname{trk}(A)<n\);
3) \(K r k_{R}(A)<n\).

\section*{Remark}
- The corollary holds for matrices over \(\mathbb{R}_{\infty}\).
- For matrices \(A\) with finite coefficients from \(\mathbb{R}\) it was proved by Develin-Santos-Sturmfels.

\section*{Solvability of a tropical linear system and rank(s)}

The theorem on complexity of solving tropical linear systems implies

\section*{Corollary}

The following statements are equivalent
1) a tropical linear system with \(m \times n\) matrix \(A\) has a solution;
2) \(\operatorname{trk}(A)<n\);
3) \(\operatorname{Krk}_{R}(A)<n\).

\section*{Remark}
- The corollary holds for matrices over \(\mathbb{R}_{\infty}\).
- For matrices \(A\) with finite coefficients from \(\mathbb{R}\) it was proved by Develin-Santos-Sturmfels.
- Equivalence of 1) and 2) was established by Izhakian-Rowen.

\section*{Computing dimension of a tropical linear system}

\section*{Proposition}

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0 ) within complexity polynomial in \(n, m, M\).

\section*{Computing dimension of a tropical linear system}

\section*{Proposition}

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0 ) within complexity polynomial in \(n, m, M\).

\section*{Theorem}

Computing the dimension of a tropical linear prevariety (being a union of polyhedra) is NP-complete (G.-Podol'ski)

\section*{Computing dimension of a tropical linear system}

\section*{Proposition}

One can test uniqueness (in the tropical projective space) of a solution of a tropical linear system (i. e. whether the dimension of a tropical linear prevariety equals 0 ) within complexity polynomial in \(n, m, M\).

\section*{Theorem}

Computing the dimension of a tropical linear prevariety (being a union of polyhedra) is NP-complete (G.-Podol'ski)

\section*{Proposition}

One can test solvability of a tropical nonhomogeneous linear system \(\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}, a_{i}\right\}, 1 \leq i \leq m\)
within complexity \((n \cdot m \cdot M)^{O(1)}\).

\section*{Testing equivalence of tropical linear systems}

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

> Theorem
> One can reduce within polynomial, so \((n \cdot m \cdot \log M)^{O(1)}\) complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. ( G.-Podol'ski using Allamigeon-Gaubert-Katz) The inverse reduction is evident.

\section*{Testing equivalence of tropical linear systems}

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

\section*{Theorem}

One can reduce within polynomial, so \((n \cdot m \cdot \log M)^{O(1)}\) complexity

\section*{Testing equivalence of tropical linear systems}

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

\section*{Theorem}

One can reduce within polynomial, so \((n \cdot m \cdot \log M)^{O(1)}\) complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. ( G.-Podol'ski using Allamigeon-Gaubert-Katz)

\section*{Testing equivalence of tropical linear systems}

Two tropical linear systems are equivalent if their prevarieties of solutions coincide.

\section*{Theorem}

One can reduce within polynomial, so \((n \cdot m \cdot \log M)^{O(1)}\) complexity testing equivalence of a pair of tropical linear systems to solving tropical linear systems. ( G.-Podol'ski using Allamigeon-Gaubert-Katz) The inverse reduction is evident.

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Theorem}

One can test solvability of a min-plus linear system within complexity polynomial in \(M, n, m\). If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Theorem}

One can test solvability of a min-plus linear system within complexity polynomial in M, n, m. If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.
solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Theorem}

One can test solvability of a min-plus linear system within complexity polynomial in \(M, n, m\). If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

\section*{Theorem}

Complexities of the following 4 problems coincide up to a polynomial:

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Theorem}

One can test solvability of a min-plus linear system within complexity polynomial in \(M, n, m\). If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

\section*{Theorem}

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).

\section*{Min-plus linear systems}

Min-plus linear system has a form
\[
\min _{1 \leq j \leq n}\left\{a_{i, j}+x_{j}\right\}=\min _{1 \leq j \leq n}\left\{b_{i, j}+x_{j}\right\}, 1 \leq i \leq m
\]

\section*{Theorem}

One can test solvability of a min-plus linear system within complexity polynomial in \(M, n, m\). If the system is solvable the algorithm yields its solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets of solutions.

\section*{Theorem}

Complexities of the following 4 problems coincide up to a polynomial: solvability, equivalence of min-plus and of tropical linear systems (G.-Podol'ski using Allamigeon-Gaubert-Katz).
(a part of this theorem answers a question of V.Voevodsky)

\section*{Tropical and min-plus prevarieties}

Min-plus prevariety is the set of solutions \(x \in \mathbb{R}^{n}\) of a min-plus polynomial system

where \(f_{i}, g_{i}\) are tropical (= min-plus) polynomials.
- any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

\section*{Tropical and min-plus prevarieties}

Min-plus prevariety is the set of solutions \(x \in \mathbb{R}^{n}\) of a min-plus polynomial system
\[
f_{i}(x)=g_{i}(x), 1 \leq i \leq k
\]
where \(f_{i}, g_{i}\) are tropical (= min-plus) polynomials.
\(\qquad\)
(G.-Podolskii)
- any tropical prevariety is a min-plus prevariety,
- any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

\section*{Tropical and min-plus prevarieties}

Min-plus prevariety is the set of solutions \(x \in \mathbb{R}^{n}\) of a min-plus polynomial system
\[
f_{i}(x)=g_{i}(x), 1 \leq i \leq k
\]
where \(f_{i}, g_{i}\) are tropical (= min-plus) polynomials.
Theorem
(G.-Podolskii)
- any tropical prevariety is a min-plus prevariety;
- any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

\section*{Tropical and min-plus prevarieties}

Min-plus prevariety is the set of solutions \(x \in \mathbb{R}^{n}\) of a min-plus polynomial system
\[
f_{i}(x)=g_{i}(x), 1 \leq i \leq k
\]
where \(f_{i}, g_{i}\) are tropical (= min-plus) polynomials.

\section*{Theorem}
(G.-Podolskii)
- any tropical prevariety is a min-plus prevariety;

\section*{Tropical and min-plus prevarieties}

Min-plus prevariety is the set of solutions \(x \in \mathbb{R}^{n}\) of a min-plus polynomial system
\[
f_{i}(x)=g_{i}(x), 1 \leq i \leq k
\]
where \(f_{i}, g_{i}\) are tropical (= min-plus) polynomials.

\section*{Theorem}
(G.-Podolskii)
- any tropical prevariety is a min-plus prevariety;
- any min-plus prevariety is (linearly) isomorphic to a tropical prevariety.

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).
given. Two players in turn move a token between nodes \(V \cup W\) of the

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given.

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph.

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph. The first player moves from a (current) node \(i \in V\) to a node \(j \in W\) (respectively, the second player moves from \(W\) to \(V\) ). Weight \(a_{i j}\) is assigned to this move.

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph. The first player moves from a (current) node \(i \in V\) to a node \(j \in W\) (respectively, the second player moves from \(W\) to \(V\) ). Weight \(a_{i j}\) is assigned to this move. Mean sum of assigned weights after \(k\) moves is computed: \(\left(\sum a_{i j}\right) / k\).

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph. The first player moves from a (current) node \(i \in V\) to a node \(j \in W\) (respectively, the second player moves from \(W\) to \(V\) ). Weight \(a_{i j}\) is assigned to this move. Mean sum of assigned weights after \(k\) moves is computed: \(\left(\sum a_{i j}\right) / k\).
If lim \(\inf _{k \rightarrow \infty}\left(\sum a_{i j}\right) / k>0\) then the first player wins.

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph. The first player moves from a (current) node \(i \in V\) to a node \(j \in W\) (respectively, the second player moves from \(W\) to \(V\) ). Weight \(a_{i j}\) is assigned to this move. Mean sum of assigned weights after \(k\) moves is computed: \(\left(\sum a_{i j}\right) / k\).
If \(\lim \inf _{k \rightarrow \infty}\left(\sum a_{i j}\right) / k>0\) then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

\section*{Min-atom problem and mean payoff games}

Min-atom problem is a system of inequalities of the form \(\min \{x, y\}+c \leq z, c \in \mathbb{Z}\) (min-plus linear programming).

\section*{Mean payoff games}

A bipartite graph \((V, W, E)\) with integer weights \(a_{i j}\) on edges \(e_{i j} \in E\) is given. Two players in turn move a token between nodes \(V \cup W\) of the graph. The first player moves from a (current) node \(i \in V\) to a node \(j \in W\) (respectively, the second player moves from \(W\) to \(V\) ). Weight \(a_{i j}\) is assigned to this move. Mean sum of assigned weights after \(k\) moves is computed: \(\left(\sum a_{i j}\right) / k\).
If liminf \(\lim _{k \rightarrow \infty}\left(\sum a_{i j}\right) / k>0\) then the first player wins. The problem of mean payoff games is whether the first player has a winning strategy?

\section*{Theorem}

The following 4 problems are equivalent: mean payoff games, min-atom, min-plus linear systems and tropical linear systems (Bezem-Nieuwenhuis-Rodriguez-Carbonell, Akian-Gaubert-Guterman).

\section*{Tropical and min-plus polynomial systems}

Theorem
Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Tropical and min-plus polynomial systems}

Theorem
Solvability of tropical polynomial systems is NP-complete (Theobald)
Theorem
Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz:

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1 .

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones? In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1 .
In the tropical world the direct version of Nullstellensatz is false even for linear univariate polynomials:

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1 .
In the tropical world the direct version of Nullstellensatz is false even for linear univariate polynomials: \(X \oplus 0, X \oplus 1\) do not have a tropical solution,

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1 .
In the tropical world the direct version of Nullstellensatz is false even for linear univariate polynomials: \(X \oplus 0, X \oplus 1\) do not have a tropical solution, while their (tropical) ideal does not contain 0 or any other monomial

\section*{Tropical and min-plus polynomial systems}

\section*{Theorem}

Solvability of tropical polynomial systems is NP-complete (Theobald)

\section*{Theorem}

Solvability of min-plus polynomial systems \(f_{i}=g_{i}, 1 \leq i \leq m\) where \(f_{i}, g_{i}\) are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra for this aim serves Hilbert's Nullstellensatz: a system of polynomials has a common zero iff the ideal generated by these polynomials does not contain 1 .
In the tropical world the direct version of Nullstellensatz is false even for linear univariate polynomials: \(X \oplus 0, X \oplus 1\) do not have a tropical solution, while their (tropical) ideal does not contain 0 or any other monomial (tropical monomials are the only polynomials without tropical zeroes).

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\).

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\). Nullstellensatz: system \(g_{1}=\cdots=g_{k}=0\) has no solution iff a linear combination of the rows of a suitable finite submatrix \(C_{N}\) of \(C\) (generated by a set of rows \(X^{J} \cdot g_{i}, 1 \leq i \leq k\) of \(C\) with degrees of monomials \(|J| \leq N\) ) equals vector ( \(1,0, \ldots, 0\) ).

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\). Nullstellensatz: system \(g_{1}=\cdots=g_{k}=0\) has no solution iff a linear combination of the rows of a suitable finite submatrix \(C_{N}\) of \(C\) (generated by a set of rows \(X^{J} \cdot g_{i}, 1 \leq i \leq k\) of \(C\) with degrees of monomials \(|J| \leq N\) ) equals vector ( \(1,0, \ldots, 0\) ).
Effective Nullstellensatz: \(N \leq\left(\max _{1 \leq i \leq k}\left\{\operatorname{deg}\left(g_{i}\right)\right\}\right)^{O(n)}\). (Galligo, Heintz, Giusti; Kollar)

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\). Nullstellensatz: system \(g_{1}=\cdots=g_{k}=0\) has no solution iff a linear combination of the rows of a suitable finite submatrix \(C_{N}\) of \(C\) (generated by a set of rows \(X^{J} \cdot g_{i}, 1 \leq i \leq k\) of \(C\) with degrees of monomials \(|J| \leq N\) ) equals vector ( \(1,0, \ldots, 0\) ).
Effective Nullstellensatz: \(N \leq\left(\max _{1 \leq i \leq k}\left\{\operatorname{deg}\left(g_{i}\right)\right\}\right)^{O(n)}\). (Galligo, Heintz, Giusti; Kollar)
Dual Nullstellensatz: \(g_{1}=\cdots=g_{k}=0\) has a solution iff for any finite submatrix \(C_{N}\) of \(C\) linear system \(C_{N} \cdot\left(y_{0}, \ldots, y_{L}\right)=0\) has a solution with \(y_{0} \neq 0\).

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\). Nullstellensatz: system \(g_{1}=\cdots=g_{k}=0\) has no solution iff a linear combination of the rows of a suitable finite submatrix \(C_{N}\) of \(C\) (generated by a set of rows \(X^{J} \cdot g_{i}, 1 \leq i \leq k\) of \(C\) with degrees of monomials \(|J| \leq N\) ) equals vector ( \(1,0, \ldots, 0\) ).
Effective Nullstellensatz: \(N \leq\left(\max _{1 \leq i \leq k}\left\{\operatorname{deg}\left(g_{i}\right)\right\}\right)^{O(n)}\). (Galligo, Heintz, Giusti; Kollar)
Dual Nullstellensatz: \(g_{1}=\cdots=g_{k}=0\) has a solution iff for any finite submatrix \(C_{N}\) of \(C\) linear system \(C_{N} \cdot\left(y_{0}, \ldots, y_{L}\right)=0\) has a solution with \(y_{0} \neq 0\).
Infinite dual Nullstellensatz: \(g_{1}=\cdots=g_{k}=0\) has a solution iff infinite linear system \(C \cdot\left(y_{0}, \ldots\right)=0\) has a solution with \(y_{0} \neq 0\).

\section*{"Dual" (classical) Nullstellensatz}

For polynomials \(g_{1}, \ldots, g_{k} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\) consider an infinite Macauley matrix \(C\) with the columns indexed by monomials \(X^{\prime}\) and the rows by shifts \(X^{J} \cdot g_{i}\) for all \(J\), \(i\) with their coefficients being entries of \(C\). Nullstellensatz: system \(g_{1}=\cdots=g_{k}=0\) has no solution iff a linear combination of the rows of a suitable finite submatrix \(C_{N}\) of \(C\) (generated by a set of rows \(X^{J} \cdot g_{i}, 1 \leq i \leq k\) of \(C\) with degrees of monomials \(|J| \leq N\) ) equals vector \((1,0, \ldots, 0)\).
Effective Nullstellensatz: \(N \leq\left(\max _{1 \leq i \leq k}\left\{\operatorname{deg}\left(g_{i}\right)\right\}\right)^{O(n)}\). (Galligo, Heintz, Giusti; Kollar)
Dual Nullstellensatz: \(g_{1}=\cdots=g_{k}=0\) has a solution iff for any finite submatrix \(C_{N}\) of \(C\) linear system \(C_{N} \cdot\left(y_{0}, \ldots, y_{L}\right)=0\) has a solution with \(y_{0} \neq 0\).
Infinite dual Nullstellensatz: \(g_{1}=\cdots=g_{k}=0\) has a solution iff infinite linear system \(C \cdot\left(y_{0}, \ldots\right)=0\) has a solution with \(y_{0} \neq 0\).
Nullstellensatz deals with ideal \(\left\langle g_{1}, \ldots, g_{k}\right\rangle\), while dual Nullstellensatz forgets the ideal, therefore, gives a hope to hold in the tropical setting

\section*{Classical homogeneous (projective) effective Nullstellensatz}

Let \(g_{0}, \ldots, g_{k} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\) be homogeneous polynomials with \(\operatorname{deg}\left(g_{0}\right) \geq \operatorname{deg}\left(g_{1}\right) \geq \cdots\).

\section*{Classical homogeneous (projective) effective Nullstellensatz}

Let \(g_{0}, \ldots, g_{k} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\) be homogeneous polynomials with \(\operatorname{deg}\left(g_{0}\right) \geq \operatorname{deg}\left(g_{1}\right) \geq \cdots\).

\section*{Theorem}

System \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the ideal generated by \(g_{0}, \ldots, g_{k}\) does not contain the power \(\left(X_{0}, \ldots, X_{n}\right)^{N_{0}}\) of the coordinate ideal for \(N_{0}=\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)-n\). (Lazard)

\section*{Classical homogeneous (projective) effective Nullstellensatz}

Let \(g_{0}, \ldots, g_{k} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\) be homogeneous polynomials with \(\operatorname{deg}\left(g_{0}\right) \geq \operatorname{deg}\left(g_{1}\right) \geq \cdots\).

\section*{Theorem}

System \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the ideal generated by \(g_{0}, \ldots, g_{k}\) does not contain the power \(\left(X_{0}, \ldots, X_{n}\right)^{N_{0}}\) of the coordinate ideal for \(N_{0}=\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)-n\). (Lazard)

In the dual form this means that system \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the homogeneous linear system with submatrix \(C_{N_{0}}^{(\text {hom })}\) of the Macauley matrix \(C\) generated by the columns with the degrees of monomials equal \(N_{0}\), has a non-zero solution.

\section*{Classical homogeneous (projective) effective Nullstellensatz}

Let \(g_{0}, \ldots, g_{k} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\) be homogeneous polynomials with \(\operatorname{deg}\left(g_{0}\right) \geq \operatorname{deg}\left(g_{1}\right) \geq \cdots\).

\section*{Theorem}

System \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the ideal generated by \(g_{0}, \ldots, g_{k}\) does not contain the power \(\left(X_{0}, \ldots, X_{n}\right)^{N_{0}}\) of the coordinate ideal for \(N_{0}=\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)-n\). (Lazard)

In the dual form this means that system \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the homogeneous linear system with submatrix \(C_{N_{0}}^{(\text {hom })}\) of the Macauley matrix \(C\) generated by the columns with the degrees of monomials equal \(N_{0}\), has a non-zero solution.
Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system,

\section*{Classical homogeneous (projective) effective Nullstellensatz}

Let \(g_{0}, \ldots, g_{k} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\) be homogeneous polynomials with \(\operatorname{deg}\left(g_{0}\right) \geq \operatorname{deg}\left(g_{1}\right) \geq \cdots\).

\section*{Theorem}

System \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the ideal generated by \(g_{0}, \ldots, g_{k}\) does not contain the power \(\left(X_{0}, \ldots, X_{n}\right)^{N_{0}}\) of the coordinate ideal for \(N_{0}=\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)-n\). (Lazard)

In the dual form this means that system \(g_{0}=\cdots=g_{k}=0\) has a solution in the projective space iff the homogeneous linear system with submatrix \(C_{N_{0}}^{(\text {hom })}\) of the Macauley matrix \(C\) generated by the columns with the degrees of monomials equal \(N_{0}\), has a non-zero solution.
Thus, the bound on the degrees of monomials in the Macauley matrix in the affine Nullstellensatz is roughly the product of the degrees (Bezout number) of the polynomials in the system, while the bound in the projective Nullstellensatz is roughly the sum of the degrees,

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\).

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent.

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials \(h_{1}, \ldots, h_{k}\) consider (infinite) Macauley matrix \(H\) with the rows indexed by \(X^{\otimes l} \otimes h_{i}\) for \(I \in \mathbb{Z}^{n}, 1 \leq i \leq k\).

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials \(h_{1}, \ldots, h_{k}\) consider (infinite) Macauley matrix \(H\) with the rows indexed by \(X^{\otimes I} \otimes h_{i}\) for \(I \in \mathbb{Z}^{n}, 1 \leq i \leq k\).

\section*{Theorem}

Tropical polynomials \(h_{1}, \ldots, h_{k}\) have a solution over \(\mathbb{R}\) iff tropical linear system \(H_{N} \otimes\left(z_{0}, \ldots, z_{L}\right)\) has a solution over \(\mathbb{R}\) where \(H_{N}\) is (finite) submatrix of \(H\) generated by its rows \(X^{\otimes /} \otimes h_{i}, 1 \leq i \leq k\) for \(|I| \leq N=(n+2) \cdot\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right) \cdot\) (G.-Podolskii)

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials \(h_{1}, \ldots, h_{k}\) consider (infinite) Macauley matrix \(H\) with the rows indexed by \(X^{\otimes I} \otimes h_{i}\) for \(I \in \mathbb{Z}^{n}, 1 \leq i \leq k\).

\section*{Theorem}

Tropical polynomials \(h_{1}, \ldots, h_{k}\) have a solution over \(\mathbb{R}\) iff tropical linear system \(H_{N} \otimes\left(z_{0}, \ldots, z_{L}\right)\) has a solution over \(\mathbb{R}\) where \(H_{N}\) is (finite) submatrix of \(H\) generated by its rows \(X^{\otimes /} \otimes h_{i}, 1 \leq i \leq k\) for \(|I| \leq N=(n+2) \cdot\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right) \cdot\) (G.-Podolskii)

Conjecture is that the latter bound is \(O\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right)\).

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials \(h_{1}, \ldots, h_{k}\) consider (infinite) Macauley matrix \(H\) with the rows indexed by \(X^{\otimes I} \otimes h_{i}\) for \(I \in \mathbb{Z}^{n}, 1 \leq i \leq k\).

\section*{Theorem}

Tropical polynomials \(h_{1}, \ldots, h_{k}\) have a solution over \(\mathbb{R}\) iff tropical linear system \(H_{N} \otimes\left(z_{0}, \ldots, z_{L}\right)\) has a solution over \(\mathbb{R}\) where \(H_{N}\) is (finite) submatrix of \(H\) generated by its rows \(X^{\otimes I} \otimes h_{i}, 1 \leq i \leq k\) for \(|I| \leq N=(n+2) \cdot\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right) \cdot\) (G.-Podolskii)

Conjecture is that the latter bound is \(O\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right)\). In case \(k=2, n=1\) the bound \(\operatorname{trdeg}\left(h_{1}\right)+\operatorname{trdeg}\left(h_{2}\right)\) was proved by Tabera using the classical resultant and Kapranov's theorem:

\section*{Tropical dual effective Nullstellensatz: finite case} Assume w.l.o.g. that for tropical polynomials \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) in \(n\) variables which we consider, function \(J \rightarrow a_{J}\) is concave on \(\mathbb{R}^{n}\). This assumption does not change tropical prevarieties, the results hold without it, but it makes the geometric intuition more transparent. For tropical polynomials \(h_{1}, \ldots, h_{k}\) consider (infinite) Macauley matrix \(H\) with the rows indexed by \(X^{\otimes I} \otimes h_{i}\) for \(I \in \mathbb{Z}^{n}, 1 \leq i \leq k\).

\section*{Theorem}

Tropical polynomials \(h_{1}, \ldots, h_{k}\) have a solution over \(\mathbb{R}\) iff tropical linear system \(H_{N} \otimes\left(z_{0}, \ldots, z_{L}\right)\) has a solution over \(\mathbb{R}\) where \(H_{N}\) is (finite) submatrix of \(H\) generated by its rows \(X^{\otimes l} \otimes h_{i}, 1 \leq i \leq k\) for \(|I| \leq N=(n+2) \cdot\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right) \cdot\) (G.-Podolskii)

Conjecture is that the latter bound is \(O\left(\operatorname{trdeg}\left(h_{1}\right)+\cdots+\operatorname{trdeg}\left(h_{k}\right)\right)\). In case \(k=2, n=1\) the bound \(\operatorname{trdeg}\left(h_{1}\right)+\operatorname{trdeg}\left(h_{2}\right)\) was proved by Tabera using the classical resultant and Kapranov's theorem: for a polynomial \(f \in R\left(\left(t^{1 / \infty}\right)\right)\left[x_{1}, \ldots, x_{n}\right]\) it holds:
\(\operatorname{Prevariety}(\operatorname{Trop}(f))=\operatorname{Trop}(\operatorname{Variety}(f))\)

\section*{(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)}

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\). Solution \(Y:=\left\{\left(J, y_{J}\right)\right\} \subset \mathbb{Z}^{n} \times \mathbb{R}\) of a tropical linear system \(H \otimes Y\) treat also as a graph on \(\mathbb{Z}^{n}\).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\). Solution \(Y:=\left\{\left(J, y_{J}\right)\right\} \subset \mathbb{Z}^{n} \times \mathbb{R}\) of a tropical linear system \(H \otimes Y\) treat also as a graph on \(\mathbb{Z}^{n}\).

The tropical dual (infinite) Nullstellensatz over \(\mathbb{R}\) is equivalent to the following.

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\). Solution \(Y:=\left\{\left(J, y_{J}\right)\right\} \subset \mathbb{Z}^{n} \times \mathbb{R}\) of a tropical linear system \(H \otimes Y\) treat also as a graph on \(\mathbb{Z}^{n}\).

The tropical dual (infinite) Nullstellensatz over \(\mathbb{R}\) is equivalent to the following.
For any \(I, i\) take the maximal \(b:=b_{l, i}\) such that a vertical shift \(G_{i}^{(I)}+(0, b) \leq Y\) (pointwise as graphs on \(\mathbb{Z}^{n}\) ).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
}

For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\). Solution \(Y:=\left\{\left(J, y_{J}\right)\right\} \subset \mathbb{Z}^{n} \times \mathbb{R}\) of a tropical linear system \(H \otimes Y\) treat also as a graph on \(\mathbb{Z}^{n}\).

The tropical dual (infinite) Nullstellensatz over \(\mathbb{R}\) is equivalent to the following.

For any \(I, i\) take the maximal \(b:=b_{l, i}\) such that a vertical shift \(G_{i}^{(I)}+(0, b) \leq Y\) (pointwise as graphs on \(\mathbb{Z}^{n}\) ).
Assume that \(G_{i}^{(I)}+(0, b)\) has at least two common points with \(Y\).

\title{
(Convex)-geometrical rephrasing of the tropical dual Nullstellensatz over \(\mathbb{R}\) (finite case)
} For a tropical polynomial \(h=\bigoplus_{J}\left(a_{J} \otimes X^{\otimes J}\right)\) consider its extended Newton polyhedron \(G\) being the convex hull of the graph \(\left\{(J, a): a \leq-a_{J}\right\} \subset \mathbb{R}^{n+1}\). As vertices of \(G\) consider all the points of the form \((I, c), I \in \mathbb{Z}^{n}\) on the boundary of \(G\). Let \(G_{i}\) correspond to \(h_{i}, 1 \leq i \leq k\). Denote by \(G^{(I)}:=G+(I, 0)\) a horizontal shift of \(G\). Solution \(Y:=\left\{\left(J, y_{J}\right)\right\} \subset \mathbb{Z}^{n} \times \mathbb{R}\) of a tropical linear system \(H \otimes Y\) treat also as a graph on \(\mathbb{Z}^{n}\).

The tropical dual (infinite) Nullstellensatz over \(\mathbb{R}\) is equivalent to the following.

For any \(I, i\) take the maximal \(b:=b_{l, i}\) such that a vertical shift \(G_{i}^{(I)}+(0, b) \leq Y\) (pointwise as graphs on \(\mathbb{Z}^{n}\) ).
Assume that \(G_{i}^{(I)}+(0, b)\) has at least two common points with \(Y\). Then there is a hyperplane in \(\mathbb{R}^{n+1}\) (not containing the vertical line) which supports (after a parallel shift) each \(G_{i}, 1 \leq i \leq k\) at least at two points.

\section*{Tropical dual effective Nullstellensatz over \(\mathbb{R}_{\infty}\)}
```

Theorem
\Delta systom ni tropical polynomials h_ hk has a zero over Ros iff the
tropical non-homogeneous linear system with a finite submatrix H}\mp@subsup{H}{N}{}\mathrm{ of
the Macauley matrix H generated by its rows X\otimes1\otimeshi,1\leqi\leqk has a
tropical solution over }\mp@subsup{\mathbb{R}}{\infty}{}\mathrm{ where tropical deqrees
||<N=O(kn2}(2\mp@subsup{\operatorname{max}}{1\leqj\leqk{trdeg}{\prime}(\mp@subsup{h}{j}{})}\mp@subsup{)}{}{O(min{n,k})})\mathrm{ (G.-Podolskii)

```
Thus, the following table of bounds for effective Nullstellensätze
demonstrates a similarity of tropical aeometry with the complex ore

\section*{Tropical dual effective Nullstellensatz over \(\mathbb{R}_{\infty}\)}
```

Theorem
A system of tropical polynomials }\mp@subsup{h}{1}{},···,\mp@subsup{h}{k}{}\mathrm{ has a zero over }\mp@subsup{\mathbb{R}}{\infty}{}\mathrm{ iff the tropical non-homogeneous linear system with a finite submatrix H_{N} of the Macauley matrix H generated by its rows $X^{\otimes I} \otimes h_{i}, 1 \leq i \leq k$ has a tropical solution over \mathbb{R}_{∞} where tropical degrees $|I|<N=O\left(k n^{2}\left(2 \max _{1 \leq j \leq k}\left\{\operatorname{trdeg}\left(h_{j}\right)\right\}\right)^{O(\min \{n, k\})}\right)$ (G.-Podolskii)

```
\(\square\)

\section*{Tropical dual effective Nullstellensatz over \(\mathbb{R}_{\infty}\)}

\section*{Theorem}

A system of tropical polynomials \(h_{1}, \ldots, h_{k}\) has a zero over \(\mathbb{R}_{\infty}\) iff the tropical non-homogeneous linear system with a finite submatrix \(H_{N}\) of the Macauley matrix \(H\) generated by its rows \(X^{\otimes I} \otimes h_{i}, 1 \leq i \leq k\) has a tropical solution over \(\mathbb{R}_{\infty}\) where tropical degrees \(|l|<N=O\left(k n^{2}\left(2 \max _{1 \leq j \leq k}\left\{\operatorname{trdeg}\left(h_{j}\right)\right\}\right)^{O(\min \{n, k\})}\right)\) (G.-Podolskii)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one

\section*{Tropical dual effective Nullstellensatz over \(\mathbb{R}_{\infty}\)}

\section*{Theorem}

A system of tropical polynomials \(h_{1}, \ldots, h_{k}\) has a zero over \(\mathbb{R}_{\infty}\) iff the tropical non-homogeneous linear system with a finite submatrix \(H_{N}\) of the Macauley matrix \(H\) generated by its rows \(X^{\otimes I} \otimes h_{i}, 1 \leq i \leq k\) has a tropical solution over \(\mathbb{R}_{\infty}\) where tropical degrees \(|l|<N=O\left(k n^{2}\left(2 \max _{1 \leq j \leq k}\left\{\operatorname{trdeg}\left(h_{j}\right)\right\}\right)^{O(\min \{n, k\})}\right)\) (G.-Podolskii)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one
\begin{tabular}{lcc} 
Classical & Projective & Affine \\
Tropical & Finite \((\mathbb{R})\) & Infinite \(\left(\mathbb{R}_{\infty}\right)\) \\
Bound & Sum of degrees & Product of degrees
\end{tabular}

\section*{Tropical dual effective Nullstellensatz over \(\mathbb{R}_{\infty}\)}

\section*{Theorem}

A system of tropical polynomials \(h_{1}, \ldots, h_{k}\) has a zero over \(\mathbb{R}_{\infty}\) iff the tropical non-homogeneous linear system with a finite submatrix \(H_{N}\) of the Macauley matrix \(H\) generated by its rows \(X^{\otimes I} \otimes h_{i}, 1 \leq i \leq k\) has a tropical solution over \(\mathbb{R}_{\infty}\) where tropical degrees \(|l|<N=O\left(k n^{2}\left(2 \max _{1 \leq j \leq k}\left\{\operatorname{trdeg}\left(h_{j}\right)\right\}\right)^{O(\min \{n, k\})}\right)\) (G.-Podolskii)

Thus, the following table of bounds for effective Nullstellensätze demonstrates a similarity of tropical geometry with the complex one
\begin{tabular}{lcc} 
Classical & Projective & Affine \\
Tropical & Finite \((\mathbb{R})\) & Infinite \(\left(\mathbb{R}_{\infty}\right)\) \\
Bound & Sum of degrees & Product of degrees
\end{tabular}

What is the reason of this analogy between projective vs. affine and finite vs. infinite?

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}
```

Finite case
Svstem of n+1 tropical (quadratic) polynomials
has no tropical zeroes. On the other hand, submatrix }\mp@subsup{H}{n-1}{}\mathrm{ of the
Macauley matrix H has a finite (over \mathbb{R}) tropical solution (the sum of
the tropical degrees equals 2n).

```
has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an
infinite (over \(\mathbb{R}_{\infty}\) ) tropical solution (the product of the tropical degrees
equals \(2 d^{n-1}\) ).

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an infinite (over \(\mathbb{R}_{\infty}\) ) tropical solution (the product of the tropical degrees equals \(2 d^{n-1}\) ).

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\) has no tropical zeroes.
has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an infinite (over \(\mathbb{R}_{\ldots}\) ) tronical solution (the nroduct of the tronical degrees

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution (the sum of the tropical degrees equals \(2 n\) ).
has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution (the sum of the tropical degrees equals \(2 n\) ).

\section*{Infinite case}

System of \(n+1\) tropical polynomials
\(0 \oplus Y \otimes X_{1}, \quad X_{i}^{\otimes d} \oplus X_{i+1}, 1 \leq i<n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_{n}\)

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution (the sum of the tropical degrees equals \(2 n\) ).

\section*{Infinite case}

System of \(n+1\) tropical polynomials
\(0 \oplus Y \otimes X_{1}, \quad X_{i}^{\otimes d} \oplus X_{i+1}, 1 \leq i<n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_{n}\) has no tropical zeroes.

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution (the sum of the tropical degrees equals \(2 n\) ).

\section*{Infinite case}

System of \(n+1\) tropical polynomials
\(0 \oplus Y \otimes X_{1}, \quad X_{i}^{\otimes d} \oplus X_{i+1}, 1 \leq i<n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_{n}\) has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an infinite (over \(\mathbb{R}_{\infty}\) ) tropical solution

\section*{Sharpness of the bounds in tropical effective Nullstellensätze}

\section*{Finite case}

System of \(n+1\) tropical (quadratic) polynomials
\(0 \oplus X_{1}, \quad X_{i}^{\otimes 2} \oplus X_{i+1}, 1 \leq i<n, \quad 1 \oplus X_{n}\)
has no tropical zeroes. On the other hand, submatrix \(H_{n-1}\) of the Macauley matrix \(H\) has a finite (over \(\mathbb{R}\) ) tropical solution (the sum of the tropical degrees equals \(2 n\) ).

\section*{Infinite case}

System of \(n+1\) tropical polynomials
\(0 \oplus Y \otimes X_{1}, \quad X_{i}^{\otimes d} \oplus X_{i+1}, 1 \leq i<n, \quad X_{n-1}^{\otimes d} \oplus 1 \otimes X_{n}\) has no tropical zeroes. On the other hand, submatrix \(H_{d^{n}-1}\) has an infinite (over \(\mathbb{R}_{\infty}\) ) tropical solution (the product of the tropical degrees equals \(2 d^{n-1}\) ).

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy).

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy).
This shows a similarity between the tropical and real geometries.

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy).
This shows a similarity between the tropical and real geometries.
Theorem (Bezout inequality for tropical prevarieties)
The number of isolated points of a tropical prevariety does not exceed

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy).
This shows a similarity between the tropical and real geometries.
Theorem (Bezout inequality for tropical prevarieties)
The number of isolated points of a tropical prevariety does not exceed \(\binom{k}{n} \frac{d^{n}}{k-n+1}\) (Davydow-G.)

\section*{Bound on the number of connected components of a tropical prevariety}

\section*{Theorem}

The number of connected components of a tropical prevariety given by tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables of degrees \(d\) is bounded by \(\binom{k+7 n}{3 n} \cdot d^{3 n}\) (Davydow-G.)

Recall that a similar bound was proved on the number of connected components (moreover, of Betti numbers) of a semi-algebraic set (Oleinik-Petrovskii-Milnor-Thom, Basu-Pollack-Roy).
This shows a similarity between the tropical and real geometries.
Theorem (Bezout inequality for tropical prevarieties)
The number of isolated points of a tropical prevariety does not exceed \(\binom{k}{n} \frac{d^{n}}{k-n+1}\) (Davydow-G.)

For (complex) algebraic varieties the number of isolated points is bounded by \(d^{n}\) (Bezout number) regardless of \(k\).

\section*{Table of minima of a tropical system at a point}

For a system \(A\) of tropical polynomials \(f_{i}=\oplus_{J} f_{i J} \otimes X^{\otimes J}, 1 \leq i \leq k\) of degrees \(|J| \leq d\) in \(n\) variables denote by \(V:=V(A) \subset \mathbb{R}^{n}\) the tropical prevariety of its finite solutions.

\section*{Table of minima of a tropical system at a point}

For a system \(A\) of tropical polynomials \(f_{i}=\oplus_{J} f_{i J} \otimes X^{\otimes J}, 1 \leq i \leq k\) of degrees \(|J| \leq d\) in \(n\) variables denote by \(V:=V(A) \subset \mathbb{R}^{n}\) the tropical prevariety of its finite solutions.
With a point \(x \in \mathbb{R}^{n}\) we associate \(k \times\binom{ n+d-1}{n}\) table \(A^{* x}\) in which rows correspond to \(f_{1}, \ldots, f_{k}\) and columns correspond to monomials of degrees at most \(d\).

\section*{Table of minima of a tropical system at a point}

For a system \(A\) of tropical polynomials \(f_{i}=\oplus f_{i J} \otimes X^{\otimes J}, 1 \leq i \leq k\) of degrees \(|J| \leq d\) in \(n\) variables denote by \(V:=V(A) \subset \mathbb{R}^{n}\) the tropical prevariety of its finite solutions.
With a point \(x \in \mathbb{R}^{n}\) we associate \(k \times\binom{ n+d-1}{n}\) table \(A^{* x}\) in which rows correspond to \(f_{1}, \ldots, f_{k}\) and columns correspond to monomials of degrees at most \(d\). Entry \((i, J), 1 \leq i \leq k\), where \(J \in \mathbb{Z}^{n},|J| \leq d\), is marked in the table by \(*\) iff tropical monomial \(f_{i J} \otimes X^{\otimes J}\) (treated as a classical linear function) of \(f_{i}\) attains the minimal value at \(x\) among all tropical monomials of \(f_{i}\).

\section*{Table of minima of a tropical system at a point}

For a system \(A\) of tropical polynomials \(f_{i}=\oplus f_{i J} \otimes X^{\otimes J}, 1 \leq i \leq k\) of degrees \(|J| \leq d\) in \(n\) variables denote by \(V:=V(A) \subset \mathbb{R}^{n}\) the tropical prevariety of its finite solutions.
With a point \(x \in \mathbb{R}^{n}\) we associate \(k \times\binom{ n+d-1}{n}\) table \(A^{* x}\) in which rows correspond to \(f_{1}, \ldots, f_{k}\) and columns correspond to monomials of degrees at most \(d\). Entry \((i, J), 1 \leq i \leq k\), where \(J \in \mathbb{Z}^{n},|J| \leq d\), is marked in the table by \(*\) iff tropical monomial \(f_{i J} \otimes X^{\otimes J}\) (treated as a classical linear function) of \(f_{i}\) attains the minimal value at \(x\) among all tropical monomials of \(f_{i}\). Thus, \(x \in V\) iff each row of \(A^{* x}\) contains at least two *.

\section*{Table of minima of a tropical system at a point}

For a system \(A\) of tropical polynomials \(f_{i}=\oplus f_{i J} \otimes X^{\otimes J}, 1 \leq i \leq k\) of degrees \(|J| \leq d\) in \(n\) variables denote by \(V:=V(A) \subset \mathbb{R}^{n}\) the tropical prevariety of its finite solutions.
With a point \(x \in \mathbb{R}^{n}\) we associate \(k \times\binom{ n+d-1}{n}\) table \(A^{* x}\) in which rows correspond to \(f_{1}, \ldots, f_{k}\) and columns correspond to monomials of degrees at most \(d\). Entry \((i, J), 1 \leq i \leq k\), where \(J \in \mathbb{Z}^{n},|J| \leq d\), is marked in the table by \(*\) iff tropical monomial \(f_{i J} \otimes X^{\otimes J}\) (treated as a classical linear function) of \(f_{i}\) attains the minimal value at \(x\) among all tropical monomials of \(f_{i}\). Thus, \(x \in V\) iff each row of \(A^{* x}\) contains at least two *.

\section*{Lemma}

For \(x, y \in V\) if tables \(A^{* x}=A^{* y}\) then some neighborhoods of \(V\) at \(x\) and at \(y\) are homeomorphic.

\section*{Generalized vertices of a tropical system}

We call \(x \in V\) a generalized vertex of a tropical system \(A\) if for any other \(\mathbb{R}^{n} \ni y \neq x\) table \(A^{* y}\) does not contain \(A^{* x}\), in other words \(A^{* x}\) is strictly maximal wrt inclusion among the tables for all the points.

\section*{Generalized vertices of a tropical system}

We call \(x \in V\) a generalized vertex of a tropical system \(A\) if for any other \(\mathbb{R}^{n} \ni y \neq x\) table \(A^{* y}\) does not contain \(A^{* x}\), in other words \(A^{* x}\) is strictly maximal wrt inclusion among the tables for all the points.
Let entries \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\) be marked by \(*\) in \(A^{* x}\).

\section*{Generalized vertices of a tropical system}

We call \(x \in V\) a generalized vertex of a tropical system \(A\) if for any other \(\mathbb{R}^{n} \ni y \neq x\) table \(A^{* y}\) does not contain \(A^{* x}\), in other words \(A^{* x}\) is strictly maximal wrt inclusion among the tables for all the points.
Let entries \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\) be marked by \(*\) in \(A^{* x}\). Denote by \(S \subset \mathbb{R}^{n}\) the linear subspace generated by vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) for all such pairs \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\).

\section*{Generalized vertices of a tropical system}

We call \(x \in V\) a generalized vertex of a tropical system \(A\) if for any other \(\mathbb{R}^{n} \ni y \neq x\) table \(A^{* y}\) does not contain \(A^{* x}\), in other words \(A^{* x}\) is strictly maximal wrt inclusion among the tables for all the points.
Let entries \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\) be marked by \(*\) in \(A^{* x}\). Denote by \(S \subset \mathbb{R}^{n}\) the linear subspace generated by vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) for all such pairs \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\).

\section*{Lemma}
\(x \in V\) is a generalized vertex of \(A\) iff \(S=\mathbb{R}^{n}\).

\section*{Generalized vertices of a tropical system}

We call \(x \in V\) a generalized vertex of a tropical system \(A\) if for any other \(\mathbb{R}^{n} \ni y \neq x\) table \(A^{* y}\) does not contain \(A^{* x}\), in other words \(A^{* x}\) is strictly maximal wrt inclusion among the tables for all the points.
Let entries \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\) be marked by \(*\) in \(A^{* x}\). Denote by \(S \subset \mathbb{R}^{n}\) the linear subspace generated by vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) for all such pairs \(\left(i, J_{1}\right),\left(i, J_{2}\right), 1 \leq i \leq k\).

\section*{Lemma}
\(x \in V\) is a generalized vertex of \(A\) iff \(S=\mathbb{R}^{n}\).

\section*{Lemma}

Any vertex of a tropical prevariety \(V(A)\) is a generalized vertex of \(A\).

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\[
X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n
\]

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials \(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\) (equivalent to \(X_{p} \leq R\) ) and

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\)
(equivalent to \(X_{p} \leq R\) ) and
\((-R) \oplus Z_{p},(-R) \oplus Z_{p} \oplus X_{p}, 1 \leq p \leq n\)

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\)
(equivalent to \(X_{p} \leq R\) ) and
\((-R) \oplus Z_{p},(-R) \oplus Z_{p} \oplus X_{p}, 1 \leq p \leq n\)
(equivalent to \(X_{p} \geq-R\) ).

Any connected component of compact \(W\) contains a vertex, hence

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\)
(equivalent to \(X_{p} \leq R\) ) and
\((-R) \oplus Z_{p},(-R) \oplus Z_{p} \oplus X_{p}, 1 \leq p \leq n\)
(equivalent to \(X_{p} \geq-R\) ).
Then the resulting system \(B\) defines a tropical prevariety homeomorphic to \(W\).

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\)
(equivalent to \(X_{p} \leq R\) ) and
\((-R) \oplus Z_{p},(-R) \oplus Z_{p} \oplus X_{p}, 1 \leq p \leq n\)
(equivalent to \(X_{p} \geq-R\) ).
Then the resulting system \(B\) defines a tropical prevariety homeomorphic to \(W\).

Any connected component of compact \(W\) contains a vertex, hence

\section*{Connected components and generalized vertices}

There exists \(R\) such that the intersection \(W\) of \(V:=V(A)\) with cube \(\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{p}\right| \leq R, 1 \leq p \leq n\right\}\) is homotopy equivalent to \(V\).

\section*{Lemma}

Introduce new variables \(Y_{p}, Z_{p}, 1 \leq p \leq n\) and add to \(A\) tropical linear polynomials
\(X_{p} \oplus Y_{p}, X_{p} \oplus Y_{p} \oplus R, 1 \leq p \leq n\)
(equivalent to \(X_{p} \leq R\) ) and
\((-R) \oplus Z_{p},(-R) \oplus Z_{p} \oplus X_{p}, 1 \leq p \leq n\)
(equivalent to \(X_{p} \geq-R\) ).
Then the resulting system \(B\) defines a tropical prevariety homeomorphic to \(W\).

Any connected component of compact \(W\) contains a vertex, hence

\section*{Corollary}

The number of connected components of \(V\) does not exceed the number of generalized vertices of system \(B\).

\section*{Stable solutions and tropical Bezout theorem}

For system \(C\) of \(n\) tropical polynomials \(h_{1}, \ldots, h_{n}\) in \(n\) variables of degrees \(d_{1}, \ldots, d_{n}\) defining a tropical prevariety \(V\) a point \(x \in V\) is called a stable solution of \(C\) if for any sufficiently small perturbation of the coefficients of \(C\) there exists a point in the perturbed tropical prevariety in a neighborhood of \(x\).

\section*{Stable solutions and tropical Bezout theorem}

For system \(C\) of \(n\) tropical polynomials \(h_{1}, \ldots, h_{n}\) in \(n\) variables of degrees \(d_{1}, \ldots, d_{n}\) defining a tropical prevariety \(V\) a point \(x \in V\) is called a stable solution of \(C\) if for any sufficiently small perturbation of the coefficients of \(C\) there exists a point in the perturbed tropical prevariety in a neighborhood of \(x\). If for a generic perturbation there are exactly e points in a neighborhood of \(x\) one says that the stable solution \(x\) has the multiplicity \(e\).

\section*{Stable solutions and tropical Bezout theorem}

For system \(C\) of \(n\) tropical polynomials \(h_{1}, \ldots, h_{n}\) in \(n\) variables of degrees \(d_{1}, \ldots, d_{n}\) defining a tropical prevariety \(V\) a point \(x \in V\) is called a stable solution of \(C\) if for any sufficiently small perturbation of the coefficients of \(C\) there exists a point in the perturbed tropical prevariety in a neighborhood of \(x\). If for a generic perturbation there are exactly e points in a neighborhood of \(x\) one says that the stable solution \(x\) has the multiplicity \(e\).

\section*{Theorem}
(Tropical Bezout theorem)
The sum of multiplicities of all stable solutions of \(C\) equals \(d_{1} \cdots d_{n}\) (Sturmfels).

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Corollary}

If \(x\) is a generalized vertex of a system A of tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables then \(x\) is a stable solution of a suitable multisubset \(f_{l_{1}}, \ldots, f_{I_{n}}, 1 \leq I_{1}, \ldots, I_{n} \leq k\) of \(A\).

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Corollary}

If \(x\) is a generalized vertex of a system A of tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables then \(x\) is a stable solution of a suitable multisubset \(f_{l_{1}}, \ldots, f_{I_{n}}, 1 \leq I_{1}, \ldots, I_{n} \leq k\) of \(A\).

Let \(f_{1}, \ldots, f_{k}\) be of degrees \(\leq d\).

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Corollary}

If \(x\) is a generalized vertex of a system A of tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables then \(x\) is a stable solution of a suitable multisubset \(f_{l_{1}}, \ldots, f_{I_{n}}, 1 \leq I_{1}, \ldots, I_{n} \leq k\) of \(A\).

Let \(f_{1}, \ldots, f_{k}\) be of degrees \(\leq d\). The number of \(n\)-multisubsets of \(A\) is \(\binom{k+n-1}{n}\), due to Tropical Bezout theorem each multisubset has at most \(d^{n}\) stable solutions.
the number of connected components of

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Corollary}

If \(x\) is a generalized vertex of a system A of tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables then \(x\) is a stable solution of a suitable multisubset \(f_{l_{1}}, \ldots, f_{I_{n}}, 1 \leq I_{1}, \ldots, I_{n} \leq k\) of \(A\).

Let \(f_{1}, \ldots, f_{k}\) be of degrees \(\leq d\). The number of \(n\)-multisubsets of \(A\) is \(\binom{k+n-1}{n}\), due to Tropical Bezout theorem each multisubset has at most \(d^{n}\) stable solutions. This implies the bound \(\binom{k+7 n-1}{3 n} \cdot d^{3 n}\) on the number of generalized vertices of system \(B\),

\section*{Criterion of stability of a solution}

\section*{Lemma}
\(x \in V\) is a stable solution of system \(C=\left\{h_{1}, \ldots, h_{n}\right\}\) in \(n\) variables iff for each \(1 \leq i \leq n\) there exist marked by \(*\) in the table \(C^{* x}\) entries \(\left(i, J_{1}\right),\left(i, J_{2}\right)\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Corollary}

If \(x\) is a generalized vertex of a system A of tropical polynomials \(f_{1}, \ldots, f_{k}\) in \(n\) variables then \(x\) is a stable solution of a suitable multisubset \(f_{l_{1}}, \ldots, f_{I_{n}}, 1 \leq I_{1}, \ldots, I_{n} \leq k\) of \(A\).

Let \(f_{1}, \ldots, f_{k}\) be of degrees \(\leq d\). The number of \(n\)-multisubsets of \(A\) is \(\binom{k+n-1}{n}\), due to Tropical Bezout theorem each multisubset has at most \(d^{n}\) stable solutions. This implies the bound \(\binom{k+7 n-1}{3 n} \cdot d^{3 n}\) on the number of generalized vertices of system \(B\), and thereby, the bound on the number of connected components of \(V(A)\).

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{h_{1}}, \ldots, f_{l_{n}}, 1 \leq l_{1}<\cdots I_{n} \leq n\) of \(A\)

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{f_{1}}, \ldots, f_{f_{n}}, 1 \leq I_{1}<\cdots I_{n} \leq n\) of \(A\) and for each \(1 \leq i \leq n\) entries
\(\left(l_{i}, J_{1}\right),\left(l_{i}, J_{2}\right)\) marked by \(*\) in the table \(A^{* x}\)

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{f_{1}}, \ldots, f_{f_{n}}, 1 \leq I_{1}<\cdots I_{n} \leq n\) of \(A\) and for each \(1 \leq i \leq n\) entries \(\left(i_{i}, J_{1}\right),\left(l_{i}, J_{2}\right)\) marked by \(*\) in the table \(A^{* x}\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{f_{1}}, \ldots, f_{f_{n}}, 1 \leq I_{1}<\cdots I_{n} \leq n\) of \(A\) and for each \(1 \leq i \leq n\) entries \(\left(i_{i}, J_{1}\right),\left(l_{i}, J_{2}\right)\) marked by \(*\) in the table \(A^{* x}\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

Therefore, \(x\) is a stable solution of system \(f_{h_{1}}, \ldots, f_{l_{n}}\).

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{f_{1}}, \ldots, f_{f_{n}}, 1 \leq I_{1}<\cdots I_{n} \leq n\) of \(A\) and for each \(1 \leq i \leq n\) entries \(\left(i_{i}, J_{1}\right),\left(l_{i}, J_{2}\right)\) marked by \(*\) in the table \(A^{* x}\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

Therefore, \(x\) is a stable solution of system \(f_{f_{1}}, \ldots, f_{l_{n}}\). Thus, each of \(\binom{k}{n}\) \(n\)-elements subsets of \(A\) has at most \(d^{n}\) stable solutions due to Tropical Bezout theorem, which entails the bound \(\binom{k}{n} \cdot d^{n}\) on the number of isolated solutions of \(A\).

\section*{Bezout inequality for tropical prevarieties}

\section*{Lemma}

If \(x\) is an isolated solution of system \(A\) of tropical polynomials \(f_{1}, \ldots, f_{k}\) then one can pick out a subset of \(n\) tropical polynomials \(f_{f_{1}}, \ldots, f_{l_{n}}, 1 \leq I_{1}<\cdots I_{n} \leq n\) of \(A\) and for each \(1 \leq i \leq n\) entries \(\left(I_{i}, J_{1}\right),\left(l_{i}, J_{2}\right)\) marked by \(*\) in the table \(A^{* x}\) such that \(n\) vectors \(J_{1}-J_{2} \in \mathbb{Z}^{n}\) are linearly independent.

Therefore, \(x\) is a stable solution of system \(f_{l_{1}}, \ldots, f_{l_{n}}\). Thus, each of \(\binom{k}{n}\) \(n\)-elements subsets of \(A\) has at most \(d^{n}\) stable solutions due to Tropical Bezout theorem, which entails the bound \(\binom{k}{n} \cdot d^{n}\) on the number of isolated solutions of \(A\).

This bound in the Bezout inequality for tropical prevarieties is close to sharp.

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small \(d\) ) better.

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small \(d\) ) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+\alpha}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small d) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+d}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)
To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions).

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small d) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+d}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)
To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement.

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small d) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+d}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)
To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement.
Question. Does the bound \(\left.\binom{k+n-1}{n} \cdot d^{n}\right)\) hold for Betti numbers?

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small \(d\) ) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+d}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)
To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement.
Question. Does the bound \(\left.\binom{k+n-1}{n} \cdot d^{n}\right)\) hold for Betti numbers?

\section*{Proposition}

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

\section*{Sharp bound on Betti numbers?}

The following bound is sometimes (say, for a small \(d\) ) better.

\section*{Proposition}

The sum of Betti numbers is less than
\(3^{n}+2^{n} \cdot\left(\begin{array}{c}k \cdot\binom{n+d}{n}^{2}\end{array}\right)+o\left(\left(k \cdot\binom{n+d}{n}^{2}\right)^{n}\right)\)
To prove consider an arrangement of hyperplanes, where for each pair of monomials from the same (among k) polynomial take a hyperplane on which these two monomials equal (as linear functions). Faces of the tropical prevariety form a subset of faces of this arrangement.
Question. Does the bound \(\left.\binom{k+n-1}{n} \cdot d^{n}\right)\) hold for Betti numbers?

\section*{Proposition}

The latter bound holds on the number of linear hulls of all the faces of the tropical prevariety.

The proof involves the general Tropical Bezout Theorem in terms of mixed Minkowski volumes (Bertran-Bihan, Steffens-Theobald).

\section*{Construction of a tropical polynomial system with many isolated points} solutions.

\section*{Construction of a tropical polynomial system with many isolated points}

\section*{Theorem}

One can construct a tropical system with \(k(n-1), k \geq 3\) polynomials in \(n \geq 2\) variables of degrees \(4 d, d \geq 1\) with \(2(k-1)^{n-1} d^{n}\) isolated solutions.
projection of \(n=2\)
Newton polytope Tropical curve


System A: \(k\) tropical curves shifted down by 3,6,.., \(3(k-1)\); isolated points of \(A\) :
\[
\alpha, \beta-3 j), 0 \leq j \leq k-2
\]

projection of
\[
n=2
\]
pret of \(n=2\)

\[
\delta-x>3 k
\]


System B: the curve is shifted down by \(3,6, \ldots, 3(k-1)\). The resulting \(k\) curves have \(2(k-1) d^{2}\) isolated intersection points.

\section*{Construction for an arbitrary number \(n\) of variables}

\section*{Take \(n-1\) copies of system \(B\) in variables \(x_{1}, y\), and in \(i\)-th copy, \(1 \leq i \leq n-1\) replace \(y\) by \(x_{i+1}\). The resulting tropical system has desired \(2(k-1)^{n-1} d^{n}\) isolated solutions.}

\section*{Construction for an arbitrary number \(n\) of variables}

Take \(n-1\) copies of system \(B\) in variables \(x_{1}, y\), and in \(i\)-th copy, \(1 \leq i \leq n-1\) replace \(y\) by \(x_{i+1}\).

\section*{Construction for an arbitrary number \(n\) of variables}

Take \(n-1\) copies of system \(B\) in variables \(x_{1}, y\), and in \(i\)-th copy, \(1 \leq i \leq n-1\) replace \(y\) by \(x_{i+1}\). The resulting tropical system has desired \(2(k-1)^{n-1} d^{n}\) isolated solutions.

\section*{Algorithm for solving tropical linear systems: finite coefficients}

First assume that the coefficients of a tropical linear system \(A=\left(a_{i, j}\right)\) are finite: \(0 \leq a_{i, j} \leq M, 1 \leq i \leq n, 1 \leq j \leq m\).

\section*{Algorithm for solving tropical linear systems: finite coefficients}

First assume that the coefficients of a tropical linear system \(A=\left(a_{i, j}\right)\) are finite: \(0 \leq a_{i, j} \leq M, 1 \leq i \leq n, 1 \leq j \leq m\). Induction on \(m\). Suppose that (tropical) vector \(x:=\left(x_{1}, \ldots, x_{n}\right)\) fulfils \(m-1\) equations (except, perhaps, the first one).

\section*{Algorithm for solving tropical linear systems: finite coefficients}

First assume that the coefficients of a tropical linear system \(A=\left(a_{i, j}\right)\) are finite: \(0 \leq a_{i, j} \leq M, 1 \leq i \leq n, 1 \leq j \leq m\). Induction on \(m\). Suppose that (tropical) vector \(x:=\left(x_{1}, \ldots, x_{n}\right)\) fulfils \(m-1\) equations (except, perhaps, the first one).

The algorithm modifies \(x\) and either produces a solution of \(A\) or finds \(n \times n\) tropically nonsingular submatrix of \(A\) (in the latter case \(A\) has no solution).

\section*{Algorithm for solving tropical linear systems: finite coefficients}

First assume that the coefficients of a tropical linear system \(A=\left(a_{i, j}\right)\) are finite: \(0 \leq a_{i, j} \leq M, 1 \leq i \leq n, 1 \leq j \leq m\). Induction on \(m\). Suppose that (tropical) vector \(x:=\left(x_{1}, \ldots, x_{n}\right)\) fulfils \(m-1\) equations (except, perhaps, the first one).

The algorithm modifies \(x\) and either produces a solution of \(A\) or finds \(n \times n\) tropically nonsingular submatrix of \(A\) (in the latter case \(A\) has no solution).
After each step of modification a vector is produced (we keep for it the same notation \(x\) ) such that it still fulfils \(m-1\) equations, and \(m \times n\) matrix \(B:=\left(a_{i, j}+x_{j}\right)\) (after suitable permutations of rows and columns) has a form below.

\section*{Algorithm for solving tropical linear systems: finite coefficients}

First assume that the coefficients of a tropical linear system \(A=\left(a_{i, j}\right)\) are finite: \(0 \leq a_{i, j} \leq M, 1 \leq i \leq n, 1 \leq j \leq m\). Induction on \(m\). Suppose that (tropical) vector \(x:=\left(x_{1}, \ldots, x_{n}\right)\) fulfils \(m-1\) equations (except, perhaps, the first one).

The algorithm modifies \(x\) and either produces a solution of \(A\) or finds \(n \times n\) tropically nonsingular submatrix of \(A\) (in the latter case \(A\) has no solution).
After each step of modification a vector is produced (we keep for it the same notation \(x\) ) such that it still fulfils \(m-1\) equations, and \(m \times n\) matrix \(B:=\left(a_{i, j}+x_{j}\right)\) (after suitable permutations of rows and columns) has a form below.
If \(a_{i, j}+x_{j}=\min _{1 \leq 1 \leq n}\left\{a_{i, l}+x_{l}\right\}\) mark entry \(i, j\) with \(*\). The first row contains a single \(*\) (otherwise, \(x\) is a solution of \(A\) and every other row contains at least two *.

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]

\section*{- a square matrix B1 contains * on the diagonal and no * above the} diagonal. Hence \(B_{1}\) is tropically nonsingular.

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two \(*\).

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two \(*\).

Modify vector \(x_{1}, \ldots, x_{n}\) adding (classically) to it a vector \((b, \ldots, b, 0, \ldots, 0)\) for integer \(b=\max _{i}\left\{a_{i, j}+x_{j}-a_{i, l}-x_{l}\right\}\) where \(j\) runs right columns, \(I\) runs left columns, \(i\) runs rows from matrices \(\left(B_{1} B_{2}\right)\) and \(\left(B_{3} B_{4}\right)\).

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two \(*\).

Modify vector \(x_{1}, \ldots, x_{n}\) adding (classically) to it a vector \((b, \ldots, b, 0, \ldots, 0)\) for integer \(b=\max _{i}\left\{a_{i, j}+x_{j}-a_{i, l}-x_{l}\right\}\) where \(j\) runs right columns, \(I\) runs left columns, \(i\) runs rows from matrices \(\left(B_{1} B_{2}\right)\) and \(\left(B_{3} B_{4}\right)\).
The modified vector (keeping for it the notation \(x\) ) still fulfils \(m-1\) equations and \(b \geq 1\).

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two \(*\).

Modify vector \(x_{1}, \ldots, x_{n}\) adding (classically) to it a vector \((b, \ldots, b, 0, \ldots, 0)\) for integer \(b=\max _{i}\left\{a_{i, j}+x_{j}-a_{i, l}-x_{l}\right\}\) where \(j\) runs right columns, \(I\) runs left columns, \(i\) runs rows from matrices \(\left(B_{1} B_{2}\right)\) and \(\left(B_{3} B_{4}\right)\).
The modified vector (keeping for it the notation \(x\) ) still fulfils \(m-1\) equations and \(b \geq 1\).

If the first row of the modified matrix \(B\) contains at least two \(*, x\) is a solution of \(A\).

\section*{Continuation: producing a candidate for solution}
\[
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4} \\
B_{5} & B_{6}
\end{array}\right)
\]
- a square matrix \(B_{1}\) contains \(*\) on the diagonal and no \(*\) above the diagonal. Hence \(B_{1}\) is tropically nonsingular.
- \(B_{2}, B_{4}\) contain no \(*\).
- Each row of \(B_{3}\) and of \(B_{6}\) contains at least two \(*\).

Modify vector \(x_{1}, \ldots, x_{n}\) adding (classically) to it a vector
\((b, \ldots, b, 0, \ldots, 0)\) for integer \(b=\max _{i}\left\{a_{i, j}+x_{j}-a_{i, l}-x_{l}\right\}\) where \(j\) runs right columns, \(I\) runs left columns, \(i\) runs rows from matrices \(\left(B_{1} B_{2}\right)\) and \(\left(B_{3} B_{4}\right)\).
The modified vector (keeping for it the notation \(x\) ) still fulfils \(m-1\) equations and \(b \geq 1\).
If the first row of the modified matrix \(B\) contains at least two \({ }^{*}, x\) is a solution of \(A\).
Otherwise brina modified matrix \(B\) to a similar form als follows.

\section*{Termination of the algorithm}

Construct recursively a set \(L\) of the left columns by augmenting. As a base of recursion the first column belongs to \(L\).


After every modification step the tropical norm of vector

\section*{Termination of the algorithm}

Construct recursively a set \(L\) of the left columns by augmenting. As a base of recursion the first column belongs to \(L\). For current \(L\) if there exists a row with single \(*\) in a column off \(L\), join this column to \(L\). These rows and columns form matrix \(B_{1}\).

After every modification step the tropical norm of vector

\section*{Termination of the algorithm}

Construct recursively a set \(L\) of the left columns by augmenting. As a base of recursion the first column belongs to \(L\). For current \(L\) if there exists a row with single \(*\) in a column off \(L\), join this column to \(L\). These rows and columns form matrix \(B_{1}\).

If \(L\) coincides with the set of all the columns then \(B_{1}\) is \(n \times n\) tropically nonsingular submatrix of \(B\) and therefore, \(A\) has no solution. This completes the description of the algorithm.

After every modification step the tropical norm of vector
\(\left(a_{1,1}+x_{1}, \ldots, a_{1, n}+x_{n}\right)\) (corresponding to the first row) drops.

\section*{Termination of the algorithm}

Construct recursively a set \(L\) of the left columns by augmenting. As a base of recursion the first column belongs to \(L\). For current \(L\) if there exists a row with single \(*\) in a column off \(L\), join this column to \(L\). These rows and columns form matrix \(B_{1}\).

If \(L\) coincides with the set of all the columns then \(B_{1}\) is \(n \times n\) tropically nonsingular submatrix of \(B\) and therefore, \(A\) has no solution. This completes the description of the algorithm.

\section*{Tropical norm and complexity bound}

To estimate the number of steps of the algorithm define a tropical norm of a vector (in the tropical projective space) \(\left(y_{1}, \ldots, y_{n}\right)\) as
\[
\sum_{1 \leq i \leq n}\left(y_{i}-\min _{1 \leq j \leq n}\left\{y_{j}\right\}\right)
\]

\section*{Termination of the algorithm}

Construct recursively a set \(L\) of the left columns by augmenting. As a base of recursion the first column belongs to \(L\). For current \(L\) if there exists a row with single \(*\) in a column off \(L\), join this column to \(L\). These rows and columns form matrix \(B_{1}\).

If \(L\) coincides with the set of all the columns then \(B_{1}\) is \(n \times n\) tropically nonsingular submatrix of \(B\) and therefore, \(A\) has no solution. This completes the description of the algorithm.

\section*{Tropical norm and complexity bound}

To estimate the number of steps of the algorithm define a tropical norm of a vector (in the tropical projective space) \(\left(y_{1}, \ldots, y_{n}\right)\) as
\[
\sum_{1 \leq i \leq n}\left(y_{i}-\min _{1 \leq j \leq n}\left\{y_{j}\right\}\right)
\]

After every modification step the tropical norm of vector \(\left(a_{1,1}+x_{1}, \ldots, a_{1, n}+x_{n}\right)\) (corresponding to the first row) drops.

\section*{Solving tropical linear systems over \(\mathbb{Z}_{\infty}\)}

For the inductive (again on \(m\) ) hypothesis assume that ( \(m-1\) ) \(\times n\) matrix \(A^{\prime}\) (obtained from \(A\) by removing its first row) has a block form (after permuting its rows and columns)


\section*{Solving tropical linear systems over \(\mathbb{Z}_{\infty}\)}

For the inductive (again on \(m\) ) hypothesis assume that ( \(m-1\) ) \(\times n\) matrix \(A^{\prime}\) (obtained from \(A\) by removing its first row) has a block form (after permuting its rows and columns)
\[
\left(\begin{array}{ccccc}
A_{1,1} & \infty & \cdots & \infty & \infty \\
A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1, t-1} & \infty \\
A_{t, 1} & \frac{A_{t, 2}}{A_{t, t-1}} & \cdots & \frac{A_{t, t}}{l}
\end{array}\right)
\]

\section*{Solving tropical linear systems over \(\mathbb{Z}_{\infty}\)}

For the inductive (again on \(m\) ) hypothesis assume that \((m-1) \times n\) matrix \(A^{\prime}\) (obtained from \(A\) by removing its first row) has a block form (after permuting its rows and columns)
\[
\left(\begin{array}{ccccc}
A_{1,1} & \infty & \cdots & \infty & \infty \\
A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1, t-1} & \infty \\
\frac{A_{t, 1}}{A_{t, 2}} & \cdots & \frac{\infty}{A_{t, t-1}}
\end{array}\right)
\]
where each entry of upper-triangular blocks equals \(\infty\).

\section*{Solving tropical linear systems over \(\mathbb{Z}_{\infty}\)}

For the inductive (again on \(m\) ) hypothesis assume that \((m-1) \times n\) matrix \(A^{\prime}\) (obtained from \(A\) by removing its first row) has a block form (after permuting its rows and columns)
\[
\left(\begin{array}{ccccc}
A_{1,1} & \infty & \cdots & \infty & \infty \\
A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1, t-1} & \infty \\
\frac{A_{t, 1}}{A_{t, 2}} & \cdots & \frac{\infty}{A_{t, t-1}} & A_{t, t}
\end{array}\right)
\]
where each entry of upper-triangular blocks equals \(\infty\).
A finite vector \(y=\left(y_{1}, \ldots, y_{n}\right)=:\left(y^{(1)}, \ldots, y^{(t)}\right) \in \mathbb{Z}^{n}\) is produced (where \(y^{(1)}, \ldots, y^{(t)}\) is its partition corresponding to the block structure) such that each diagonal block \(A_{p, p}, 1 \leq p \leq t-1\) has * (with respect to vector \(y^{(p)}\) ) everywhere on its diagonal and no \(*\) above the diagonal. Matrix \(A_{p, p}\) is of size \(u_{p} \times v_{p}\) with \(u_{P} \geq v_{p}\).

\section*{Solving tropical linear systems over \(\mathbb{Z}_{\infty}\)}

For the inductive (again on \(m\) ) hypothesis assume that \((m-1) \times n\) matrix \(A^{\prime}\) (obtained from \(A\) by removing its first row) has a block form (after permuting its rows and columns)
\[
\left(\begin{array}{ccccc}
A_{1,1} & \infty & \cdots & \infty & \infty \\
A_{2,1} & A_{2,2} & \cdots & \infty & \infty \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
A_{t-1,1} & A_{t-1,2} & \cdots & A_{t-1, t-1} & \infty \\
\frac{A_{t, 1}}{A_{t, 2}} & \cdots & \frac{\infty}{A_{t, t-1}}
\end{array}\right)
\]
where each entry of upper-triangular blocks equals \(\infty\).
A finite vector \(y=\left(y_{1}, \ldots, y_{n}\right)=:\left(y^{(1)}, \ldots, y^{(t)}\right) \in \mathbb{Z}^{n}\) is produced (where \(y^{(1)}, \ldots, y^{(t)}\) is its partition corresponding to the block structure) such that each diagonal block \(A_{p, p}, 1 \leq p \leq t-1\) has * (with respect to vector \(y^{(p)}\) ) everywhere on its diagonal and no \(*\) above the diagonal. Matrix \(A_{p, p}\) is of size \(u_{p} \times v_{p}\) with \(u_{P} \geq v_{p}\). Vector \(\left(\infty, \ldots, \infty, y^{(t)}\right)\) is a (tropical) solution of matrix \(A^{\prime}\), and \(y^{(t)}\) is a solution of \(\overline{A_{t, t}}\).

\section*{Continuation: modifying candidate for a solution}

To be closer to the finite case \(\mathbb{Z}\) extend the lowest block \(\overline{A_{t, 1}} \overline{A_{t, 2}} \cdots \overline{A_{t, t-1}} \overline{A_{t, t}}\) of \(A^{\prime}\) by joining to it the first row of \(A\) as its first row. The resulting extension of matrix \(\overline{A_{t, t}}\) denote by \(C\).

\section*{Continuation: modifying candidate for a solution}

To be closer to the finite case \(\mathbb{Z}\) extend the lowest block \(\overline{A_{t, 1}} \overline{A_{t, 2}} \cdots \overline{A_{t, t-1}} \overline{A_{t, t}}\) of \(A^{\prime}\) by joining to it the first row of \(A\) as its first row. The resulting extension of matrix \(\overline{A_{t, t}}\) denote by \(C\). Again as in the finite case assume (after a permutation of the columns) that a single \(*\) (with respect to vector \(y^{(t)}\) ) in the first row of \(C\) is located in the first column.

\section*{Continuation: modifying candidate for a solution}

To be closer to the finite case \(\mathbb{Z}\) extend the lowest block \(\overline{A_{t, 1}} \overline{A_{t, 2}} \cdots \overline{A_{t, t-1}} \overline{A_{t, t}}\) of \(A^{\prime}\) by joining to it the first row of \(A\) as its first row. The resulting extension of matrix \(\overline{A_{t, t}}\) denote by \(C\). Again as in the finite case assume (after a permutation of the columns) that a single \(*\) (with respect to vector \(y^{(t)}\) ) in the first row of \(C\) is located in the first column.

The algorithm modifies vector \(y^{(t)}\) keeping it to be a solution of \(\overline{A_{t, t}}\) and keeping the same notation for the modified vectors.

\section*{Continuation: modifying candidate for a solution}

To be closer to the finite case \(\mathbb{Z}\) extend the lowest block \(\overline{A_{t, 1}} \overline{A_{t, 2}} \cdots \overline{A_{t, t-1}} \overline{A_{t, t}}\) of \(A^{\prime}\) by joining to it the first row of \(A\) as its first row. The resulting extension of matrix \(\overline{A_{t, t}}\) denote by \(C\). Again as in the finite case assume (after a permutation of the columns) that a single \(*\) (with respect to vector \(y^{(t)}\) ) in the first row of \(C\) is located in the first column.

The algorithm modifies vector \(y^{(t)}\) keeping it to be a solution of \(\overline{A_{t, t}}\) and keeping the same notation for the modified vectors. If \(y^{(t)}\) is a solution of \(C\) then vector \(\left(\infty, \ldots, \infty, y^{(t)}\right)\) is a solution of \(A\) and the algorithm terminates the inductive step.

\section*{Continuation: modifying candidate for a solution}

To be closer to the finite case \(\mathbb{Z}\) extend the lowest block
\(\overline{A_{t, 1}} \overline{A_{t, 2}} \cdots \overline{A_{t, t-1}} \overline{A_{t, t}}\) of \(A^{\prime}\) by joining to it the first row of \(A\) as its first row. The resulting extension of matrix \(\overline{A_{t, t}}\) denote by \(C\).
Again as in the finite case assume (after a permutation of the columns) that a single \(*\) (with respect to vector \(y^{(t)}\) ) in the first row of \(C\) is located in the first column.

The algorithm modifies vector \(y^{(t)}\) keeping it to be a solution of \(\overline{A_{t, t}}\) and keeping the same notation for the modified vectors.
If \(y^{(t)}\) is a solution of \(C\) then vector \(\left(\infty, \ldots, \infty, y^{(t)}\right)\) is a solution of \(A\) and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively constructs a set \(L\) of the left columns of \(C\) and accordingly modifies vector \(y^{(t)}\).

\section*{Continuation of modifying a candidate: graph of possibly infinite coordinates}

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector \(y^{(t)}=:\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right)\) and with an edge from node \(y_{j}^{(t)}\) to \(y_{l}^{(t)}\) when \(y_{j}^{(t)}-y_{l}^{(t)} \leq M\) (remind that all finite coefficients of matrix \(A\) satisfy \(0 \leq a_{i, j} \leq M\) ).

\section*{Continuation of modifying a candidate: graph of possibly infinite coordinates}

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector \(y^{(t)}=:\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right)\) and with an edge from node \(y_{j}^{(t)}\) to \(y_{l}^{(t)}\) when \(y_{j}^{(t)}-y_{l}^{(t)} \leq M\) (remind that all finite coefficients of matrix \(A\) satisfy \(0 \leq a_{i, j} \leq M\) ).
Denote by \(S\) the set of nodes of the graph reachable from the first node \(y_{1}^{(t)}\).

\section*{Continuation of modifying a candidate: graph of possibly infinite coordinates}

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector \(y^{(t)}=:\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right)\) and with an edge from node \(y_{j}^{(t)}\) to \(y_{l}^{(t)}\) when \(y_{j}^{(t)}-y_{l}^{(t)} \leq M\) (remind that all finite coefficients of matrix \(A\) satisfy \(0 \leq a_{i, j} \leq M\) ).
Denote by \(S\) the set of nodes of the graph reachable from the first node \(y_{1}^{(t)}\).

\section*{Lemma}
\(L \subset S\) and in the course of the algorithm while modifying \(S\), the next \(S\) is a subset of the previous one.

\section*{Continuation of modifying a candidate: graph of possibly infinite coordinates}

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector \(y^{(t)}=:\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right)\) and with an edge from node \(y_{j}^{(t)}\) to \(y_{l}^{(t)}\) when \(y_{j}^{(t)}-y_{l}^{(t)} \leq M\) (remind that all finite coefficients of matrix \(A\) satisfy \(\left.0 \leq a_{i, j} \leq M\right)\).
Denote by \(S\) the set of nodes of the graph reachable from the first node \(y_{1}^{(t)}\).

\section*{Lemma}
\(L \subset S\) and in the course of the algorithm while modifying \(S\), the next \(S\) is a subset of the previous one.

The algorithm modifies \(y^{(t)}\) while \(L \neq S\).

\section*{Continuation of modifying a candidate: graph of possibly infinite coordinates}

In addition, the algorithm considers an oriented graph with the nodes being the coordinates of vector \(y^{(t)}=:\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right)\) and with an edge from node \(y_{j}^{(t)}\) to \(y_{l}^{(t)}\) when \(y_{j}^{(t)}-y_{l}^{(t)} \leq M\) (remind that all finite coefficients of matrix \(A\) satisfy \(\left.0 \leq a_{i, j} \leq M\right)\).
Denote by \(S\) the set of nodes of the graph reachable from the first node \(y_{1}^{(t)}\).

\section*{Lemma}
\(L \subset S\) and in the course of the algorithm while modifying \(S\), the next \(S\) is a subset of the previous one.

The algorithm modifies \(y^{(t)}\) while \(L \neq S\).
If \(L=S\) then (after suitable permutations of the rows and columns)

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]

\section*{- Lare columns of a square matrix C. - (tropically nonsingular) \(C_{1}\) contains * everywhere on the diagonal}

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no * above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no * above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two *

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no \(*\) above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix \(A\).

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no \(*\) above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix \(A\).
Vector \(y^{(t)}=:\left(y^{(t)}, y^{(t+1)}\right)\) (abusing the notations) and vector \(\left(\infty, \ldots, \infty, y^{(t+1)}\right)\) is a solution of \(A\).

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no \(*\) above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix \(A\).
Vector \(y^{(t)}=:\left(y^{(t)}, y^{(t+1)}\right)\) (abusing the notations) and vector \(\left(\infty, \ldots, \infty, y^{(t+1)}\right)\) is a solution of \(A\).
The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then \(A\) has no solution.

\section*{Termination of the algorithm}
\[
C=\left(\begin{array}{ll}
C_{1} & \infty \\
C_{2} & \infty \\
C_{3} & C_{4}
\end{array}\right)
\]
- \(L\) are columns of a square matrix \(C_{1}\);
- (tropically nonsingular) \(C_{1}\) contains \(*\) everywhere on the diagonal and no * above it;
- each row of \(C_{2}\) and of \(C_{4}\) contains at least two *

This completes the inductive step of the algorithm and constructing a new block structure of matrix \(A\).
Vector \(y^{(t)}=:\left(y^{(t)}, y^{(t+1)}\right)\) (abusing the notations) and vector \(\left(\infty, \ldots, \infty, y^{(t+1)}\right)\) is a solution of \(A\).
The algorithm terminates if either all the columns or all the rows are exhausted. If all the columns are exhausted then \(A\) has no solution.
Otherwise, if first all the rows are exhausted then \(\left(\infty, \ldots, \infty, y^{(t+1)}\right)\) is a solution of \(A\).```

