
Counting occurrences for a finite set of words:
an inclusion-exclusion approach

F. Bassino1, J. Clément2, J. Fayolle3, and P. Nicodème4

1IGM, Université de Marne la Vallée, 77454 Marne-la-Vallée Cedex 2, France. Frederique.Bassino@univ-mlv.fr
2GREYC, CNRS-UMR 6072, Université de Caen, 14032 Caen, France. Julien.Clement@info.unicaen.fr
3LRI; Univ. Paris-Sud, CNRS ; Bât 490, 91405 Orsay, France. Julien.Fayolle@lri.fr
4LIX, CNRS-UMR 7161, École polytechnique, 91128, Palaiseau, France. nicodeme@lix.polytechnique.fr

In this paper, we give the multivariate generating function counting texts according to their length and to the number
of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due
to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that
the set of words is reduced (i.e., where no two words are factor of one another), the finite set can be chosen arbitrarily.
Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an
expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-
exclusion principle and compare the complexity of the method proposed here with the one using automata for solving
the problem.

Keywords: word statistics, inclusion-exclusion, generating functions

1 Introduction
Enumerating sequences with given combinatorial properties is rigorously formalized since the end of the
seventies and the beginning of the eighties by Goulden and Jackson [8, 9] and by Guibas and Odlyzko [10,
11].

The former [8, 9] introduce a very powerful method of inclusion-exclusion to count occurrences of
words from a reduced set of words (i.e., where no word is factor of another word of the set) in texts; this
method is characterized by counting texts where some occurrences are marked (other terms are pointed
or anchored) and then removing multiple count of the same text (text counted several times with different
markings). We refer later to this by inclusion-exclusion method. Goulden-Jackson counting is typically
multivariate, a formal parameter being associated to each word.

The latter [10, 11] introduce the notion of auto-correlation of a word that generalizes to correlation
between words. Formal non-ambiguous manipulations over languages translates to generating functions.
We refer later to this by formal language method. Unlike Goulden and Jackson, Guibas and Odlyzko
consider univariate cases, like enumerating sequences avoiding a pattern, or sequences terminating with a
first occurrence of a pattern in a text (see also [20]). Régnier and Szpankowski [19] generalize the formal
language approach by a bivariate analysis for counting the number of matches of a word in random texts

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

2 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

(handling also a Markovian source on the symbol emission) and prove a normal limit law. Régnier [18]
extends this further to multivariate analysis and simultaneous counting of several words. See also the
books of Szpankowski [21] and Lothaire [13]. Bourdon and Vallée [3, 4] apply the previous analysis to
dynamical sources. Prum et al. [17] follow a more probabilistic approach.

Noonan and Zeilberger [16] extend the inclusion-exclusion method of Goulden and Jackson and solve
the general non-reduced case (words may be factor of other words), implementing corresponding MAPLE

programs, without however completely publishing the explicit result formulæ. Recently Kong [12] ap-
plies the results of Noonan and Zeilberger for the reduced case to an asymmetrical Bernoulli (also called
memoryless) model for the generation of symbols. He also compares the Goulden and Jackson method to
the Régnier and Szpankowski method, emphasizing the conceptual simplicity of the inclusion-exclusion
approach. It is however useful to note that the formal language approach provides access to informa-
tion that the inclusion-exclusion method does not, such as the waiting time for a first match of a word
or the time separating two matches of the same word or of two different words (in both case eventually
forbidding matches with other words).

A third approach is possible by use of automata. Nicodème et al. [15] use classical algorithms to (1)
build a marked deterministic automaton recognizing a regular expression and (2) translate into generating
function (Chomsky-Schützenberger algorithm [5]); this provides the bivariate generating function count-
ing the matches. A variation of the method extends the results to Markovian sources. This result applies
immediately to a set of words considered as a regular expression. Nicodème [14] extends this to multi-
variate counting by taking the product of marked automata (with an automaton and a mark associated to
a word) and to set of words with possible errors (i). Notice that step (1) of this approach may be directly
done by building the Aho-Corasick automaton, designed for pattern-matching.

Each of the three above-mentioned approaches did develop quite independently and partially unaware
of each other.

Let A be the alphabet on which the words are written andU = {u1, u2, . . . , ur} be a finite set of distinct
words on the alphabet A. We note π(w) the weight of the word w. The weight could be a formal weight
over the commutative monoid A∗ (i.e., π(ababab) = α3β3) or, the probability generating function in the
Bernoulli (also called memoryless) setting, π(w) = Pr(w), or even π(w) = 1 for a uniform weighted
model over all words.

We set some more notations: given a r-row vector x = (x1, . . . , xr) of formal variables and a r-row
vector j = (j1, . . . , jr) of integers, we will denote by xj the product

∏r
i=1 xji

i .
In this article we describe two approaches to compute the multivariate generating function FU counting

texts according to their length and to their number of occurrences of words from the set U :

FU (z,x) = F (z,x) :=
∑

w∈A∗

π(w)z|w|xτ (w), (1)

where τ (w) = (|w|1, . . . , |w|r), and |w|i is the total number of occurrences of ui in w (with possible
overlaps). We focus on methods which solve the problem fully without making any assumption on the set
itself (for instance on its reduction, hence U can contain u1 = abbababa and u2 = baba although u2 is a
factor of u1). We aim at presenting a novel approach and a full proof of results partially in Noonan and
Zeilberger.

(i) Algorithms implemented in the package regexpcount of algolib, Algorithms Project, INRIA

Counting words occurrences 3

In Section 2 we present an approach using the Aho-Corasick automaton that solves the general (non-
reduced) problem; we also consider the complexity of this method. We describe and prove our results in
Section 3 using the inclusion-exclusion principle. Algorithmic aspects are also considered in this section.
Appendix A is devoted, as a case study, to the comparison of complexity of the two methods when
computing the covariance of the number of occurrences of two words, the inclusion-exclusion approach
being more efficient both for exact and asymptotic computations than the automaton approach.

2 Automaton approach
We resort in this section to the well-known Aho-Corasick algorithm [1, 6] which builds from a finite set
of words U a deterministic complete automaton (not necessarily minimal) recognizing the language A∗U .
This automaton denoted by AU is the basis of many efficient algorithms on string matching problems and
is often called the string matching automaton. This automaton is usually described by the trie of the set of
words together with a failure function. Let TU be the ordinary trie representing the set U , seen as a finite
deterministic automaton (Q, δ, ε, T) where the set of states is Q = Pref(U) (prefixes of words in U), the
initial state is ε, the set of final states is T = A∗U ∩ Pref(U) and the transition function δ is defined on
Pref(U) ×A by

δ(p, x) =

{

px if px ∈ Pref(U),

Border(px) otherwise,

where the failure function Border is defined by

Border(v) = the longest proper suffix of v which belongs to Pref(U) if defined, or ε otherwise.

In the following we identify a word v ∈ Pref(U) with the node at the end of the branch of the tree
labeled by v, so that Border defines also a map on the nodes of the tree. There are efficient O(|U|)
algorithms [1, 6] linear both in time and space to build such a tree structure and the auxiliary Border
function.

The matrix T(x) (with x a r-vector of formal variables) denotes the transition matrix of the Aho-
Corasick automaton where the variable xi marks the states accepting the word ui. The generating function
is expressed as

F (z,x) =
∑

w∈A∗

π(w)z|w|xτ (w) =
(

1, 0, · · · , 0
)

(I − zT(x))−1

1
...
1

, (2)

where π(w) can be viewed as the weight of word w.

Example 1 Let U = {aab, aa}. We have

T(x1, x2) =

b a 0 0
b 0 ax2 0
0 0 ax2 bx1

b a 0 0

,
ε

a

aa

aaba

a
b

b

a
b

a

b

4 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

and

F (z, x1, x2) =
1 − a(x2 − 1)z

1 − z(ax2 + b − ab(x2 − 1)z + a2bx2(x1 − 1)z2)
.

Complexity. Let L =
∑

u∈U |u| be the sum of the lengths of the words fromU . We first have to compute
the Aho-Corasick automaton and this can be done classically in time O(L) for a finite alphabet. The
automaton can have up to L states. Denoting by N the number of states of the Aho-Corasick automaton,
the transitions matrix T is of size N 2, but in general this matrix is sparse: only N × CardA entries are
non-zero (since the automaton is complete and deterministic with CardA transitions from each state).

So the complexity to obtain the counting multivariate generating function by this approach is basically
the one of inverting a relatively sparse matrix of the form I − zT(x) whose all terms are monomials
of the form α

∏

xεi

i (with α ∈ A and the εi’s in {0, 1}) corresponding to the transition matrix of the
automaton. The limit of this approach is the fact that the size of the transition matrix L2 can grow rapidly
if we consider many rather long words. In the next section, we adopt another approach which leads also
to solve a system of equations, but then the size of the system is r × r (where r is the number of words in
U). We there present a detailed way to compute the generating function of occurrences using the Goulden
and Jackson method.

3 Inclusion-exclusion method applied to word counting
This section presents an approach exactly along the same line as in [9] but extended to the non-reduced
case. In [16] the authors provide the main ideas to treat the non-reduced case and a MAPLE package,
neither giving explicit expressions nor detailed proofs. We consider it important to give a more formal
presentation of the Goulden and Jackson method for an arbitrary finite set of words as it can be of interest
to a broad audience and it is the first step to the generalization of the underlying probabilistic model. The
complexity of such an approach is also examined from a computational point of view. Indeed, statistics on
words occurrences are useful in many fields (in fact each time unusual events in sequences are looked at);
moreover, in many applications, it is necessary to compute the corresponding statistics as fast as possible.

We aim to count texts according to their length and to their number of occurrences of words from a
set U . A text where some occurrences of words from U are marked is decomposed combinatorically
as a sequence of letters from A and clusters (set of overlapping and marked occurrences of U , noted
LU ; see Definitions (2) and (3) in the next section). Each text is counted several times depending on
which occurrences are marked (each text is counted as many times as the number of possible marking of
occurrences). This multiple counting is eliminated by use of the inclusion-exclusion principle (see among
others [9], [21], and [7, III.6.4] for details).

3.1 Preliminaries

First we formally state the generating function in terms of occurrence positions.

Definition 1 (Occurrence positions set) The occurrence positions set of a word u in a word w is the set
of final positions of occurrences of u in w:

Occ(u, w) =
{

p ∈ {1, . . . , |w|}
∣

∣ w[(p−|u|+1) . . . p] = u
}

.

Counting words occurrences 5

With this definition, we can rewrite the counting generating function of Equation (1)

F (z,x) =
∑

w∈A∗

π(w)z|w|
r

∏

i=1

x
Card(Occ(ui,w))
i .

Definition 2 (Clustering-word) A clustering-word for the set U = {u1, . . . , ur} is a word w ∈ A∗ such
that any two consecutive positions in w are covered by the same occurrence in w of a word u ∈ U . The
position i of the word w is covered by a word u if u = w[(j − |u| + 1) . . . j] for some j ∈ {|u|, . . . , n}
and j − |u| + 1 ≤ i ≤ j. The language of all clustering-words for a given set U is noted KU .

Definition 3 (Cluster) A cluster of a clustering-word w in KU is a set of occurrence positions subsets
{ Su ⊂ Occ(u, w) | u ∈ U } which covers exactly w, that is, every two consecutive positions i and i + 1
in w are covered by at least one same occurrence of some u ∈ U . More formally

∀i ∈ {1, . . . , |w|−1} ∃u ∈ U , ∃ p ∈ Su such that p − |u| + 1 < i + 1 ≤ p.

The set of clusters with respect to clustering-words built from some finite set of words U is noted LU . We
note LU (w) the subset of LU corresponding to the clustering-word w ∈ KU . For a cluster C = {Su | u ∈
U}, we also define w(C) the corresponding (unique) clustering-word and |C|u the number of marked
occurrences of the word u in the cluster, i.e.,

|C|u = CardSu.

Example 2 Let U = {baba, ab} and w = abababa, so that w ∈ KU . We have

LU (w) =
{

{

Sab = {2, 4, 6},Sbaba = {5, 7}
}

,
{

Sab = {2, 6},Sbaba = {5, 7}
}

,

{

Sab = {2, 4},Sbaba = {5, 7}
}

,
{

Sab = {2},Sbaba = {5, 7}
}

}

.

In the non-reduced case, a word ui may occur within some other word from U . In order to properly
generate the clusters we introduce the notion of right extension of a pair of words (h1, h2). This notion is
a generalization of the correlation set of two words h1 and h2 but differs in that:

(i) overlapping is not allowed to occur at the beginning of h1.
(ii) extension has to add some letters to the right of h1.

More formally we have

Definition 4 (Right extension set) The right extension set of a pair of words (h1, h2) is

Eh1,h2
= { e | there exists e′ ∈ A+ such that h1e = e′h2 with 0 < |e| < |h2|}.

Note that, when h1 and h2 have no factor relation, the right extension set Eh1,h2
is the correlation set of

h1 to h2. Moreover, when h1 = h2, the set Eh1,h2
is the strict auto-correlation set of h1 (the empty word

does not belong to Eh1,h2
).

One can also define the right extension matrix of a vector of words u = (u1, . . . , ur)

Eu =
(

Eui,uj

)

1≤i,j≤r
.

As examples, we have
u1 = (aba, ab) gives Eu1

=

(

ba b
∅ ∅

)

, and u2 = (aaaa, aaa) gives Eu2
=

(

a + a2 + a3 a + a2

a2 + a3 a + a2

)

.

6 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

baaab
ε

ab

aa

baaab

ab
aa

aaab

a

aaab

b

Fig. 1: Graph G for U = {baaab, aa, ab}.

3.2 Generating function of clusters
We define the generating function ξ(z, t) of the set of clusters LU on U where the length of a cluster is
marked by the formal variable z and each marked occurrence of ui in clusters is marked by the formal
variable ti. The set of all possible clusters is the disjoint union over all clustering-words w of the set of
all the clusters built from w, hence

ξ(z, t) =
∑

w∈KU

∑

C∈LU (w)

z|w|π(w)t
|C|

u1

1 . . . t
|C|

ur
r .

3.2.1 Basic decomposition
We use a bijection between clusters and paths in a graph to derive an expression for the generating function
ξ(z, t) of clusters in LU .

Let G = (V, E) be a directed labeled graph such that:

(a) the set of vertices is V = {ε} ∪ U ;

(b) the set of edges is E = {ε
u

−→ u | u ∈ U} ∪ {u
y

−→ u′ | u, u′ ∈ U and y ∈ E(u, u′)}.

See an example on Figure 1 with U = {baaab, aa, ab}.
If the set U is reduced (i.e., without factor relations) then a cluster is completely described by a path in

this graph starting at ε. When the set is not reduced, this is no longer true. We need to associate along the
path the possible occurrences of U within the last label read.

Thus we define a bijection between a cluster C and a pair (c,Fc) where c is a path in G (starting at ε)
and Fc is a k-tuple (k is the length of the path c) of sets of positions of occurrences. Each set in Fc is
made of position occurrences of words from U that end within the label of the corresponding edge of the
path.

Let C = {Su |u ∈ U} be a cluster for a clustering-word w (each set Su is composed of some end
positions of occurrences of u inside the clustering-word w). We partition each occurrence positions set of
C as Su = S ′

u ∪ S ′′
u where S ′

u contains positions of the occurrences of u that are not factor of any another
occurrence of U . We are then assured that C′ = {S ′

u | u ∈ U} is a cluster (with no factor occurrences) for
the same clustering-word w(C). Then we build from C′ a sequence ((ui1 , pi1), (ui2 , pi2), . . . , (uik

, pik
)),

where pij
is the ending position of uij

(a word from U). This sequence is sorted by increasing position:
pi1 = |ui1 | < pi2 < · · · < pik

= |w|. Each word w[1 . . . pij
] for j ∈ {1, . . . , r} is a clustering-word.

Counting words occurrences 7

We set y1 = ui1 ; then each yj for j ∈ {2, . . . , k} is the word such that w[1 . . . pij−1
] · yj = w[1 . . . pij

].
By definition of the right extension sets, yj ∈ Euij−1

,uij
for each j. We therefore get a unique path

c = y1.y2 . . . yk in the graph G

ε
y1

−→ ui1

y2

−→ ui2

y3

−→ . . .
yk−→ uik

.

To take into account the factor occurrences in the cluster, we associate to each step uij−1

yj

−→ uij
of the

path a set F j = {F j
u | u ∈ U − {uij

}} where F j
u is the set of occurrence positions in the word uij

of
words ending within yj , more precisely

Fj
u =

{

p − |y1 . . . yj | +
∣

∣uij

∣

∣

∣

∣ p ∈ S ′′
u and |y1 . . . yj−1| < p ≤ |y1 . . . yj |

}

.

By construction, we have an application mapping a cluster C to a unique pair (c, (F 1, . . . ,Fk)) and this
application is clearly injective.

Conversely, let us consider a path c = ε
y1

−→ ui1

y2

−→ ui2

y3

−→ . . .
yk−→ uik

, a k-tuple (F1, . . . ,Fk)
with F j = {F j

u | u 6= uij
} and

Fj
u ⊂

{

l
∣

∣ l ∈ Occ(u, uij
) and

∣

∣uij

∣

∣ − l < |yj |
}

.

This defines a unique cluster C = {Su | u ∈ U} as follows: we start with Su = ∅ for all u ∈ U ; we then
build the clustering-word w = y1 · y2 . . . · yk by reading the labels along the path and, at step j, we put
position |y1 . . . yj | into Suij

; finally, for all u 6= uij
, we add to Su the factor occurrences, i.e., the set of

positions
{

p + |y1 . . . yj | −
∣

∣uij

∣

∣

∣

∣ p ∈ F j
u

}

.

We hence have built a bijection.
We introduce some notations to translate this construction to generating functions. Let Ni,j(k) count

the number of occurrences of uj in ui ending in the last k positions

Ni,j(k) =
∣

∣ui

∣

∣

j
−

∣

∣ui[1 . . . |ui| − k]
∣

∣

j
. (3)

For a suffix s of ui, we introduce a formal weight 〈s〉i where each possible occurrence of um in ui ending
within s can be marked (or not) by tm (hence marked by 1 + tm)

〈s〉i = π(s)z|s|
∏

m6=i

(tm + 1)Ni,m(|s|). (4)

The notation 〈·〉i extends readily to a set of words S which are suffixes of ui, which gives

〈S〉i =
∑

s∈S

〈s〉i.

Finally we define

〈u〉 = (〈u1〉1, . . . , 〈ur〉r) and 〈Eu〉 =

〈E1,1〉1 〈E1,2〉2 . . . 〈E1,r〉r
〈E2,1〉1 〈E2,2〉2 . . . 〈E2,r〉r

...
...

. . .
...

〈Er,1〉1 〈Er,2〉2 . . . 〈Er,r〉r

. (5)

We get to the following proposition.

8 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

Proposition 1 The generating function ξ(z, t) of clusters built from the set U = {u1, . . . , ur} is given by

ξ(z, t) = 〈u〉∆(t) ·
(

I − 〈Eu〉∆(t)
)−1

·

1
...
1

, (6)

where u = (u1, . . . , ur), t = (t1, . . . , tr), and the matrix ∆(t) is the r × r diagonal matrix with entries
t1, . . . , tr.

Proof: The matrix 〈Eu〉 is the transition matrix of the graph G where the vertex ε and its corresponding
edges have been removed. Some occurrences of the word ui (for each i ∈ {1, . . . , n}) are marked with
the formal variables ti in the labels of G. More precisely, a word occurrence ui obtained when visiting
a vertex ui is marked by the formal variable ti (and appears in the calculus through the diagonal matrix
∆(t) in (6)); in contrary, a factor occurrence can be marked or not (this does not change the path in the
graph), hence providing a term of the form

∏

m6=i(tm + 1)Ni,m(|y|) (see Eq. (4)). The first transition from
ε to any u ∈ U is handled similarly. So the paths with k+1 transitions in G starting from ε have generating
function

〈u〉∆(t) ·
(

〈Eu〉∆(t)
)k

·

1
...
1

.

Finally we use the quasi-inverse notation
∑∞

j=0 〈Eu〉
j
∆(t) =

(

I − 〈Eu〉∆(t)
)−1

to get the result. 2

3.2.2 Applications
Reduced set. When the set U is reduced, that is, no word of U is factor of another, the clusters are
uniquely defined by a path in the previous graph G. So 〈u〉 and 〈Eu〉 do not depend on any of the variables
ti’s. Hence in Eq. (6), variables ti’s are gathered inside ∆(t). This is another formulation of the result of
Goulden and Jackson [9].

One word. For U = {u}, we get

ξ(z, t) =
t〈u〉

1 − t〈Eu〉
=

tπ(u)z|u|

1 − tĉ(z)
=

tπ(u)z|u|

1 − t(c(z) − 1)
, (7)

where ĉ(z) is the generating function of the strict autocorrelation set of word u (empty word ε omitted),
and c(z) is the auto-correlation polynomial of u.

Two words. For a set of two words {u1, u2}, one can compute explicitly ξ(z, t1, t2) by the Cramer’s
rule

ξ(z, t1, t2) =
t1〈u1〉1 + t2〈u2〉2 − t1t2

(

〈u1〉1
[

〈E2,2〉2 − 〈E1,2〉2
]

+ 〈u2〉2
[

〈E1,1〉1 − 〈E2,1〉1
])

1 − t2〈E2,2〉2 − t1〈E1,1〉1 + t1t2
(

〈E1,1〉1〈E2,2〉2 − 〈E2,1〉1〈E1,2〉2
) , (8)

and this expression is computable from the right extension matrix of {u1, u2}.

Counting words occurrences 9

Example 3 Let u = (a7, a3). The right extension matrix is:

Eu =

(

a + a2 + a3 + a4 + a5 + a6 a + a2

a5 + a6 a + a2

)

.

We have 〈u〉 =
(

(1 + t2)
5z7π(a7), zπ(a3)

)

, if we note p = π(a) and use the property pk = π(ak), then

〈E1,1〉1 = (1 + t2)zp + (1 + t2)
2(zp)2 + (1 + t2)

3(zp)3 + (1 + t2)
4(zp)4 + (1 + t2)

5
(

(zp)5 + (zp)6
)

,

〈E1,2〉2 = zp + (zp)2, 〈E2,1〉1 = (1 + t2)
5((zp)5 + (zp)6), 〈E2,2〉2 = zp + (zp)2.

By substituting these values in Eq. (8) we get

ξ(z, t1, t2) = −(pz)7t1(t2+1)4+(pz)6t2t1(t2+1)3+(pz)5t2t1(t2+1)2+(pz)4t2t1(t2+1)−(pz)3t2

−1+t1(pz)6(t2+1)4+t1(pz)5(t2+1)3+(pz)4t1(t2+1)2+(pz)3t1(t2+1)+(pz)2(t1+t2+t1t2)+pz(t1+t2+t1t2)
.

3.3 Generating function of texts

A text is decomposed combinatorically as a sequence of letters from A (of generating function A(z)) and
clusters (or more rigorously clustering words) from LU (of generating function ξ(z, t)). The multivariate
generating function F of Equation (1) is derived by substituting ti 7→ xi − 1 for i ∈ {1, . . . , r} in each
(A(z) + ξ(z, t))k, where k is the number of combinatorial objects in the decomposition.

To summarize, we have the following proposition:

Proposition 2 Let u = (u1, . . . , ur) be a finite vector of words in A∗ and Eu the associated right exten-
sion matrix. The multivariate generating function F counting texts where length is marked by the variable
z and occurrences of ui are marked by the vector of formal variables x = (x1, . . . , xr) is

F (z,x) =
1

1 − A(z) − ξ(z,x− 1)
, (9)

where A(z) =
∑

σ∈A π(σ)z is the generating function of the alphabet and ξ(z, t) is defined in Eq. (6).

Proof: The proof relies on two main points. On one hand, the generating function ξ(z, t) counts all the
clusters (see Proposition 1 in Section 3.2.1). On the other hand, the inclusion-exclusion principle yields
the final result by the substitutions ti 7→ xi − 1. 2

The application of the standard techniques of analytic combinatorics (see [7]) to the multivariate gen-
erating function F gives access to many statistics (e.g. mean, variance, covariance,. . .).

3.4 Algorithmic point of view

We present here an general method in order to compute the generating function ξ(z, t). This is a two-step
approach:

(i) we compute the r × r matrix 〈Eu〉 (where r is the number of words in U); coefficients are polyno-
mials whose degree (in any variable) is bounded by maxu∈U |u| − 1; we provide next an algorithm
computing the extension sets with the help of the Aho-Corasick automaton AU ;

(ii) we have to invert this matrix.

10 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

With the inclusion-exclusion approach, the r×r matrix is smaller and more compact than the linear system
obtained by applying Chomsky-Schützenberger on the Aho-Corasick automaton of Section 2 which has
size O((

∑

u∈U |u|)2)) since there are O
(
∑

u∈U |u|
)

states in the automaton.
We exhibit an algorithm computing from the Aho-Corasick automaton (represented by a failure func-

tion) the multivariate matrix 〈E〉 and the vector 〈u〉 in time O(r2×s+
∑

u∈U |u|) where r is the cardinality
of U and s is the size of the longest suffix chain(ii) of a word u ∈ U .

First we compute an auxiliary function which associates to any prefix w of the set U a vector (fi(w))r
i=1

defined by
fi(w) = 〈v〉i, for v ∈ A∗ and w · v = ui

We remark that 〈u〉 = (f1(ε), . . . , fr(ε)). The “time complexity” (measured as the number of updates of
the fi(w)’s) of the following algorithm is O(r ×

∑

u∈U |u|).

INIT(AU)

1 for i← 1 to r do
2 fi(ui)← 1
3 for w ∈ Pref(U) by a postorder traversal of the tree do
4 for i← 1 to r do
5 for α ∈ A such that w · α ∈ Pref(ui) do
6 fi(w)← π(α)zfi(w · α)

Q

j 6=i
(1 + tj)

Juj suffix of w · αK

7 return (fi)1≤i≤r

The matrix 〈Eu〉 is computed by the following algorithm. The time complexity of the main loop is
O(s × r2) where r is the number of words and s is the length of the longest suffix chain.

BUILD-EXTENSION-MATRIX(AU)

1 . Initialize the matrix (Ei,j)1≤i,j≤r

2 for i← 1 to r do
3 for j ← 1 to r do
4 Ei,j ← 0
5 . Compute the maps (fi(w)) for i = 1..r and w ∈ Pref(U)
6 (fi)1≤i≤r ← INIT(AU)
7 . Main loop
8 for i← 1 to r do
9 v ← ui

10 do for j ← 1 to r do
11 Ei,j ← Ei,j + fj(v)
12 v ← Border(v)
13 while v 6= ε

14 return E

From an algorithmic perspective we point the reader to Appendix A for a comparison of the automaton
construction and the inclusion-exclusion method on a specific example: the covariance of the number of
occurrences of two words.

(ii) The suffix chain of u ∈ U is the sequence (u1 = u, u2 = Border(u1), u3 = Border(u2), . . . , us = Border(us−1) = ε).

Counting words occurrences 11

Conclusion and perspectives
We obtained a detailed proof and an explicit expression of the multivariate generating function counting
texts according to their length and to their number of occurrences of words from a finite set. This result
facilitates access to various moments and and may facilitate access to limiting distributions. From Bender
and Kochman [2], we expect to find mostly a multivariate normal law for word counts. Our approach can
possibly provide simpler criteria to decide if such a limiting law holds or not. Another nice aspect to the
inclusion-exclusion approach is that it provides explicit formulae like Eq. (8), whereas the Aho-Corasick
construction does not preserve the structure: even for a single pattern the autocorrelation polynomial does
not come out easily and visibly.

We plan to extend the analysis to more complex sources, such as Markovian or dynamical sources (see
Vallée [22]). We can probably improve on the complexity of computing the auxiliary functions fi.

Acknowledgements
The authors thank Jérémie Bourdon and Bruno Salvy for fruitful discussions and for providing important
feedback to this paper.

References
[1] AHO, A., AND CORASICK, M. Efficient String Matching: An Aid to Bibliographic Search. Communications

of the ACM 18 (1975), 333–340.

[2] BENDER, E., AND KOCHMAN, F. The distribution of subword counts is usually normal. European Journal of
Combinatorics 14 (1993), 265–275.

[3] BOURDON, J., AND VALLÉE, B. Generalized pattern matching statistics. In Proc. Colloquium on Mathemat-
ics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities (2002), Birkhauser, Trends in
Mathematics, pp. 249–265.

[4] BOURDON, J., AND VALLÉE, B. Pattern matching statistics on correlated sources. In Proc. of LATIN’06
(2006), vol. 3887 of LNCS, pp. 224–237.

[5] CHOMSKY, N., AND SCHÜTZENBERGER, M. The algebraic theory of context-free languages. Computer
Programming and Formal Languages, (1963), 118–161. P. Braffort and D. Hirschberg, eds, North Holland.

[6] CROCHEMORE, M., AND RYTTER, W. Jewels of Stringology. World Scientific Publishing, Hong-Kong, 2002.
310 pages.

[7] FLAJOLET, P., AND SEDGEWICK, R. Analytic Combinatorics. 2007. In preparation
(http://algo.inria.fr/flajolet/Publications/books.html).

[8] GOULDEN, I., AND JACKSON, D. An inversion theorem for clusters decompositions of sequences with distin-
guished subsequences. J. London Math. Soc. 2, 20 (1979), 567–576.

[9] GOULDEN, I., AND JACKSON, D. Combinatorial Enumeration. John Wiley, 1983. New-York.

[10] GUIBAS, L., AND ODLYZKO, A. Periods in strings. J. Combin. Theory A, 30 (1981), 19–42.

[11] GUIBAS, L., AND ODLYZKO, A. Strings overlaps, pattern matching, and non-transitive games. J. Combin.
Theory A, 30 (1981), 108–203.

[12] KONG, Y. Extension of Goulden-Jackson cluster method on pattern occurrences in random sequences and
comparison with R égnier Szpankowski method. J. of Difference Equations and Applications 11, 15 (2005),
1265–1271.

12 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

[13] LOTHAIRE, M. Applied Combinatorics on Words. Encyclopedia of Mathematics. Cambridge University Press,
2005.

[14] NICODÈME, P. Regexpcount, a symbolic package for counting problems on regular expressions and words.
Fundamenta Informaticae 56, 1-2 (2003), 71–88.

[15] NICODÈME, P., SALVY, B., AND FLAJOLET, P. Motif statistics. Theoretical Computer Science 287, 2 (2002),
593–618.

[16] NOONAN, J., AND ZEILBERGER, D. The Goulden-Jackson Method: Extensions, Applications and Implemen-
tations. J. of Difference Equations and Applications 5, 4-5 (1999), 355–377.

[17] PRUM, B., RODOLPHE, F., AND DE TURCKHEIM, E. Finding words with unexpected frequencies in deoxyri-
bonucleic acid sequences. J. R. Statist. Soc. B 57, 1 (1995), 205–220.

[18] RÉGNIER, M. A unified approach to word occurrences probabilities. Discrete Applied Mathematics 104, 1
(2000), 259–280. Special issue on Computational Biology.

[19] RÉGNIER, M., AND SZPANKOWSKI, W. On Pattern Frequency Occurrences in a Markovian Sequence. Algo-
rithmica 22, 4 (1998), 631–649.

[20] SEDGEWICK, R., AND FLAJOLET, P. An Introduction to the Analysis of Algorithms. Addison-Wesley Publish-
ing Company, 1996.

[21] SZPANKOWSKI, W. Average Case Analysis of Algorithms on Sequences. Series in Discrete Mathematics and
Optimization. John Wiley & Sons, 2001.

[22] VALLÉE, B. Dynamical sources in information theory: Fundamental intervals and word prefixes. Algorithmica
29, 1 (2001), 262–306.

[23] VON ZUR GATHEN, J. Modern Computer Algebra. Cambridge University Press, 1999. 768 pages.

[24] WIEDEMANN, D. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory
32, 1 (January 1986), 54–62.

A Complexity of computing the covariance of number of occur-
rences of two words

We provide in this appendix a case study, focusing on the computation of the covariance of the number of
occurrences of two words. We place ourselves in the Bernoulli model so that the weight π(w) given to a
word is the product of probabilities of individual letters. This entails for instance for the alphabet A that
A(z) =

∑

i∈A piz = z.

We consider here two words u1 and u2 with |u1| = |u2| = `, and two random variables X
(n)
1 and X

(n)
2

counting the number of occurrences of u1 and u2 in random texts of size n. Since this covariance is equal
to

Cov
(

X
(n)
1 , X

(n)
2

)

= E
(

X
(n)
1 X

(n)
2

)

−E
(

X
(n)
1

)

E
(

X
(n)
2

)

,

and since we have easy access to E
(

X
(n)
1

)

and E
(

X
(n)
2

)

, it remains to evaluate the joint moment

M
(n)
1,2 = E

(

X
(n)
1 X

(n)
2

)

of the number of occurrences of two words. We compare both for the inclusion-

exclusion method and for the automaton method the complexity of computing M
(n)
1,2 . The complexity is

expressed in terms of number of operations on real or rational numbers.

Counting words occurrences 13

Some possible following steps of computation are summarized in Tables 1 and 2 (with the option to
compute the joint moment either asymptotically or exactly). We refer to von zur Gathen and Gerhard [23]
for algorithms used in this section.

We have basically the same complexity for Step 1 for both methods, which requires O(`) operations.
We give in the following two paragraphs some elements to justify the complexities stated in Tables 1

and 2.

Inclusion-Exclusion approach. By Equation (8), we write 1/(1−z−ξ(z, x1−1, x2−1)) as a rational
function P (z, x1, x2)/Q(z, x1, x2) where P (z, x1, x2) and Q(z, x1, x2) are polynomials. This leads to
consider

M1,2(z) =
∑

n≥0

M
(n)
1,2 zn =

∂2

∂x1∂x2

P (z, x1, x2)

Q(z, x1, x2)

∣

∣

∣

∣

x1=x2=1

. (10)

Introducing some polynomials to alleviate notations, i.e, P (z) = P (z, 1, 1), Q(z) = Q(z, 1, 1) and for
any polynomial U(z, x1, x2), we define

Uj(z) = ∂
∂xj

U(z, x1, x2)
∣

∣

∣

x1=x2=1
for j = 1, 2, and U1,2(z) = ∂2

∂x1∂x2

U(z, x1, x2)
∣

∣

∣

x1=x2=1
.

Then one has the exact expression

M1,2(z) =
P1,2

Q(z)
−

P1(z)Q2(z) + P (z)Q1,2(z) + P2(z)Q1(z)

Q(z)2
+ 2

P (z)Q1(z)Q2(z)

Q(z)3
.

We claim that P (z, x1, x2) and Q(z, x1, x2) have at most 2` + 1 terms (see Example 3 to be con-
vinced). Therefore the formal differentiations of Step 2 require O(`) operations on monomials. By
Perron-Frobenius, we have a dominant pole for x1 and x2 real in a neighborhood of 1. Moreover we have
P (z, 1, 1)/Q(z, 1, 1) = 1/(1− z). This implies that Equation (10) can be expanded locally as a Laurent
series

M1,2(z) =
a3

(1 − z)3
+

a2

(1 − z)2
+

a1

1 − z
+ a0 + O(1 − z),

giving access to an asymptotic expression for M
(n)
1,2 = [zn]M1,2(z). Therefore computing the joint mo-

ment E(X
(n)
1 X

(n)
2) asymptotically requires only to perform a finite number of product of polynomials in

the variable z the degrees of which is O(`); this corresponds to a complexity of order O(` log(`) log log(`))
by using Fast Fourier Transforms for the polynomials multiplications.

Automaton approach. As noticed in Nicodème et al. [15], when considering asymptotic computation
of M

(n)
1,2 , it is possible to avoid the inversion of a linear system of size ` with polynomial entries by

expanding the system in a neighborhood of the dominant singularity z = 1 after differentiating with
respect to x1 and x2 and substituting x1 = x2 = 1. Doing this avoids the computation of the multivariate
generating function F (z, x1, x2). This leads to handle a finite set of sparse linear systems of size `, where
the number of non-zero terms is O(`). Using the Wiedemann algorithm [24] it is therefore possible to
compute the moment M

(n)
1,2 in O(`2) operations.

When exact computation is needed, it is necessary to compute the rational generating function P (z,x1,x2)
Q(z,x1,x2)

.
Note that to get to the result, the Aho-Corasick automaton may be minimized in (here negligible) time
O(` log(`)).

14 F. Bassino, J. Clément, J. Fayolle, and P. Nicodème

Starting from Equation (2), we remark that F (z, x1, x2) = (I − zT(x1, x2))
−11, where 1 is the vector

(1, . . . , 1)t, is a vector of rational functions in z, x1 and x2. We write the 2` + 1 first terms of the Taylor
expansion of F (z, x1, x2) in the neighborhood of z = 0, which gives

F (z, x1, x2) = I1 + zT1 + z2
TT1 + · · · + zi+1

TT
i1 + · · · + z2l+1

TT
2l1 + . . .

The principle is to benefit from the fact that T is a sparse matrix with O(`) non null entries. Each T
i1

is a vector, entries of which are polynomials in x1 and x2 of at most i2 terms. The cost of computing
the 2` + 1 first terms of the expansion is therefore O(`4). Multiplying to the left this expansion by the
vector (1, 0, . . . , 0) provide the 2` + 1 first terms of the expansion of the rational function F (z, x1, x2)
which can be computed by using a Padé approximant with a cost O(`2) × O(`2 log(`) log log(`)) =
O(`4 log(`) log log(`)) where the first term corresponds to the number of operations of computation of
the Padé approximant and the second term to the multiplication of polynomials of the variable x1 and x2

of degree at most 2` + 1 in the two variables (univariate polynomials are multiplied by FFT).

Binary Powering. For both approaches, the exact computation of M
(n)
1,2 follows by computing the recur-

rence associated to the rational fraction M1,2(z) (computed exactly), rewriting it as a matricial equation
and using binary powering to compute the relevant powers of the matrix in O(log(n)) operations.

Automaton approach (asympt.) Complexity

1) Build the Aho Corasick automaton O(`)
2) Inverse a linear system with con-
stant coefficients

O(`2)

Overall Cost O(`2)

Inclusion-exclusion (asympt.) Complexity

1) Compute the right extension sets O(`)
2) Differentiate and get first terms
of Laurent series

O(` log(`) log log(`))

Overall Cost O(` log(`) log log(`))

Tab. 1: Asymptotic computation of M
(n)
1,2 with the automaton approach (left) and inclusion-exclusion method (right)

for two words of length ` and a text of length n.

Automaton approach
(exact)

Complexity

1) Build the Aho Cora-
sick automaton

O(`)

2a) Inverse a linear
system with polyno-
mial coefficients

O(`4 log(`) log log(`))

2b) Differentiate O(` log(`) log log(`))
3) Binary powering O(log(n))

Overall Cost O(log(n) + `4 log(`) log log(`))

Inclusion-exclusion
(exact)

Complexity

1) Compute the right
extension sets

O(`)

2) Differentiate O(` log(`) log log(`))
3) Binary powering O(log(n))

Overall Cost O(log(n) + ` log(`) log log(`))

Tab. 2: Exact computation of M
(n)
1,2 with the automaton approach (left) and inclusion-exclusion method (right) for

two words of length ` and a text of length n.

