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In this article, we provide the multivariate generating function counting texts according to their length and
to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle
to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other
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the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package
treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We
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1. INTRODUCTION
Enumerating sequences with given combinatorial properties is rigorously formalized
since the end of the seventies and the beginning of the eighties by Goulden and
Jackson [Goulden and Jackson 1979; 1983] and by Guibas and Odlyzko [Guibas and
Odlyzko 1981a; 1981b].

The former [Goulden and Jackson 1979; 1983] introduce a very powerful method of
inclusion-exclusion to count occurrences of words from a reduced set of words (i.e., a
set where no word is factor of another word of the set) in texts; this method is charac-
terized by counting texts where some occurrences are marked (other terms are pointed
or anchored) and then removing multiple counts of the same text (text counted several
times with different markings). We refer later to this by inclusion-exclusion method.
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Goulden-Jackson counting is typically multivariate, a formal parameter being associ-
ated to each word.

The latter [Guibas and Odlyzko 1981a; 1981b] introduce the notion of autocorre-
lation of a word that generalizes to correlation between words, this notion being im-
plicit in Goulden and Jackson. Formal non-ambiguous manipulations over languages
translate into generating functions; we refer to this later by formal language method.
Unlike Goulden and Jackson, Guibas and Odlyzko consider univariate cases, like enu-
merating sequences avoiding a pattern, or sequences terminating with a first occur-
rence of a pattern in a text (see also [Sedgewick and Flajolet 1996]). Régnier and
Szpankowski [Régnier and Szpankowski 1997] extends this further to multivariate
analysis and simultaneous counting of several words; following up works of these au-
thors consider a Markovian source on the symbol emission [Régnier and Szpankowski
1998; Régnier 2000]. See also the books of Szpankowski [Szpankowski 2001] and
Lothaire [Lothaire 2005]. Bourdon and Vallée [Bourdon and Vallée 2002; 2006] apply
the previous analysis to dynamical sources. Prum et al. [Prum et al. 1995], Reinert and
Schbath [Reinert and Schbath 1998], Reinert et al. [Reinert et al. 2000], and Roquain
and Schbath [Roquain and Schbath 2007] follow a more probabilistic approach.

Noonan and Zeilberger [Noonan and Zeilberger 1999] extend the inclusion-exclu-
sion method of Goulden and Jackson and solve the general non-reduced case (words
may be factor of other words), implementing corresponding MAPLE programs, without
however completely publishing the explicit result formulæ. Recently Kong [Kong 2005]
applies the results of Noonan and Zeilberger for the reduced case to an asymmetrical
Bernoulli (also called memoryless) model for the generation of symbols. He also com-
pares the Goulden and Jackson method to the Régnier and Szpankowski method, em-
phasizing the conceptual simplicity of the inclusion-exclusion approach. It is however
useful to note that the formal language approach provides access to information that
the inclusion-exclusion method does not, such as the waiting time for a first match of
a word or the time separating two matches of the same word or of two different words
(in both cases eventually forbidding matches with other words). There is however no
known solutions to the general problem of words counting by the formal language
method.

A third approach is possible by use of automata. Nicodème et al. [Nicodème et al.
2002] use classical algorithms to (1) build a marked deterministic automaton recogniz-
ing a regular expression and (2) translate into generating function by the Chomsky-
Schützenberger algorithm [Chomsky and Schützenberger 1963]; this provides the bi-
variate generating function counting the matches. A variation of the method extends
the results to Markovian sources. This result applies immediately to a set of words
considered as a regular expression. Nicodème [Nicodème 2003] extends this to mul-
tivariate counting by taking the product of marked automata (with an automaton
and a mark associated to a word) and to sets of words with possible errors1. Notice
that, when handling finite languages, step (1) of the automaton approach may be di-
rectly done by building the Aho-Corasick automaton, which is specifically designed for
pattern-matching.

Each of the three above-mentioned approaches did develop quite independently and
partially unaware of each other.

In this article we focus on a fundamental object, called multivariate generating func-
tion, which allows a concise mathematical description of occurrences statistics in ran-
dom texts. More precisely, we describe two approaches to compute the multivariate
generating function FU counting texts according to their length and to their number of

1Algorithms implemented in the package regexpcount of algolib, Algorithms Project, INRIA
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occurrences of words from a pattern or set U = {u1, . . . , ur} of r words. The resulting
generating function is rational; once computed, it is a simple task to obtain all kind of
statistics (see Section 6 for some examples). The reader is also referred to [Flajolet and
Sedgewick 2009] for a general background on generating functions.

Historically, research on counting occurrences for finite cases considered separately
the so-called “reduced” case, which is easier, and where no word of the pattern is factor
of another word of the pattern; in the opposite or “non-reduced” case, there are no
conditions on the pattern. We focus on methods which solve the problem in this latter
case (as example the pattern U can contain u1 = abbababa and u2 = baba although u2 is
a factor of u1). Note that in the non-reduced case, the count of matches that we consider
here may exceed the count of positions of the texts at which an occurrence terminates;
in contrary, in the reduced case, these two counts are identical. We aim at presenting
for the general counting problem a novel approach and a full proof of results partially
in Noonan and Zeilberger [Noonan and Zeilberger 1999].

This article is organized as follows. We define in Section 2 our notations. In Section
3 we present an approach using the Aho-Corasick automaton that solves the general
(non-reduced) problem; we also consider the complexity of this method. We present in
Section 4 an intuitive approach to the inclusion-exclusion method that [Goulden and
Jackson 1983] applied to reduced sets of words. We describe and prove in Section 5
our results that follow from the analytic inclusion-exclusion principle in the general
case of word counting; algorithmic aspects are also considered in this section. As an
application of our methodology, Section 6 provides precise formula for some statistics
(expectation and variance of any set of finite words, and covariance for number of
occurrences when considering two arbitrary sets of finite words).

2. BASIC NOTATIONS
Let A be the alphabet on which the words are written and U = {u1, u2, . . . , ur} be a
finite set (or pattern) of distinct words on the alphabet A. By convention, in this article,
words in a set U are always indexed in lexicographic order. We will also consider that
in a single word pattern U = {u}, the word u has index 1.

Weights. We denote π(w) the weight of the word w. The weight could be a formal
weight over the commutative monoid A? (i.e., π(ababab) = α3β3), or the probability
generating function in the Bernoulli (also called memoryless) setting, π(w) = Pr(w)
(the probability of w in this model), or even π(w) = 1 for a uniformly weighted model
over all words (enumerative model).

Representing occurrences. This article is focused on statistics of occurrences of words
of U with possible overlaps in texts. A convenient way to represent occurrences,
adopted throughout this article, is to associate to a text w of length n a sequence
O = (Oi)n

i=1 called the occurrence index of the pattern U in the text w, defined, for
1 ≤ i ≤ |w|, Oi ⊂ {1, . . . , r}, where Card(U) = r, as

Oi = {j | uj has an occurrence ending at position i of w}.
For instance let us consider the case of a text w = aababaabbbabaa and a simple pattern
formed with one word u = aba. Then the occurrence index O of the pattern {u} in w
verifies

Oi =
{
{1} if i ∈ {4, 6, 13}
∅ otherwise

Notice that we have selected (what we refer next as distinguished) all occurrences of
u in w. Later on, along our needs, we will select or distinguish only a subset of those
occurrences.
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Generating functions. For any (possibly infinite) set of words H, we denote H(z) =∑
h∈H π(h)z|h| the univariate generating function of H, where z is a formal variable

marking the length of the words. For instance the generating function of the alphabet
A is A(z) =

∑
α∈A π(α)z.

We consider also multivariate generating functions which take into account statistics
of occurrences. When considering a pattern (denoted as a set) {u1, . . . , uj , . . . , ur}, we
will typically use the variables tj and xj to count the number of occurrences of the word
uj ; as we shall see later there will be a need for two variables, although they are in a
very simple relation to each other. If the pattern is composed of a single word U = {u},
we use the variables t and x. Given a r-row vector x = (x1, . . . , xr) of formal variables
and a r-row vector j = (j1, . . . , jr) of integers, we will denote by xj the product

∏r
i=1 xji

i .
To any set of words X , we can associate a formal series or generating function that
gathers the counts statistics

X(z) =
∑
w∈X

π(w)z|w|xτ (w),

where τ (w) = (|w|1, . . . , |w|r), and |w|i is the total number of occurrences of ui in w
(with possible overlaps). For instance, the generating function of the (composed of a
single text) set X = {abaaabaabb} with U = {u1 = aa, u2 = baa} is X(z, x1, x2) =
z10π(a)6π(b)4x3

1x
2
2.

In this article we describe how to compute in the most general case the multivariate
generating function FU (z,x) counting texts from A? according to their length and to
the number of occurrences (with overlap) of words from a set U ,

FU (z,x) = F (z,x) :=
∑

w∈A?

π(w)z|w|xτ (w). (1)

Autocorrelation and correlation of words. We recall here the classical definitions of
autocorrelation of one word and of correlation of a word with another word.
The autocorrelation set Cu of a word u is defined as usual as

Cu = {h, u · h = y · u with |y| < |u|};

note that the empty word ε belongs to Cu. We use the notations Cu(z) or C(z) if there
is no ambiguity about the word considered for the autocorrelation polynomial of the
word u.

We define similarly the correlation set Cu,v from a word u to a word v as

Cu,v = {h; u · h = y · v, |y| < |u|; } (2)

Note that Cu,u is the autocorrelation set of the word u and that if u 6= v the empty
word ε does not belong to the set Cu,v.

3. AUTOMATON APPROACH
We resort in this section to the well-known Aho-Corasick algorithm [Aho and Corasick
1975; Crochemore and Rytter 2002] which builds from a finite set of words U a (not nec-
essarily minimal) deterministic complete automaton recognizing the language A?U .
This automaton denoted by AU is the basis of many efficient algorithms on string
matching problems and is often called the string matching automaton. It is usually
described by the trie built upon the set of input words together with a failure function.
Let TU be the ordinary trie representing the set U , seen as a finite deterministic au-
tomaton (Q, δ, ε, T ), where the set of states is Q = Pref(U) (prefixes of words in U), the
initial state is ε (denoting ε the empty word), the set of final states is T = Pref(U)∩A?U ,

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Counting occurrences for a finite set of words 39:5

and the transition function δ is defined on Pref(U)×A by

δ(p, x) =
{

px if px ∈ Pref(U),
Border(px) otherwise,

where the failure function Border() is defined by

Border(v) =
{

the longest proper suffix of v in Pref(U) if it is defined,
or ε otherwise.

In the following we identify a word v ∈ Pref(U) with the node reached by reading
the letters of v while following the corresponding transitions on the tree seen as an
automaton, so that Border() defines also a map from the set Pref(U) on the set of nodes
of the tree. There are efficient O(|U|) algorithms [Aho and Corasick 1975; Crochemore
and Rytter 2002] linear both in time and space to build such a tree structure and the
auxiliary Border() function.

The matrix T(x) (with x an r-vector of formal variables) denotes the weighted tran-
sition matrix of the Aho-Corasick automaton where the variable xi marks the states
accepting the word ui. The generating function is expressed as

F (z,x) =
∑

w∈A?

π(w)z|w|xτ (w) = (1, 0, · · · , 0) (I− zT(x))−1

1
...
1

 , (3)

where π(w) can be viewed as the weight of the word w.

Example 3.1. Let U = {aa, aab}. Ordering the states of the automaton following the
lexicographical order, we have, with α = π(a), β = π(b), and x = (x1, x2)

T(x1, x2) =

β α 0 0
β 0 αx1 0
0 0 αx1 βx2

β α 0 0

 ,

ǫ

a

aa

aaba

a
b

b

a
b

a

b

and

F (z, x1, x2) =
1− α(x1 − 1)z

1− z(αx1 + β − αβ(x1 − 1)z + α2βx1(x2 − 1)z2)
.

As mentioned in the introduction, a myriad of information can be extracted from such
a generating function. The next few examples illustrate basic uses of generating func-
tions.

— The coefficient [znxn1
1 xn2

2 ]F (z, x1, x2) is the probability in the Bernoulli model (where
α + β = 1) that a random text of size n has n1 occurrences of aa and n2 occurrences of
aab.

— In the enumerative case (α = β = 1), the coefficient [znxn1
1 xn2

2 ]F (z, x1, x2) counts the
number of words of length n with n1 occurrences of aa and n2 occurrences of aab. Any
computer algebra system can compute the first terms of the Taylor series of a rational
function. In the example above, we have

F (z, x1, x2) =1 + 2z + (x1 + 3)z2 + (x1x2 + x1 + x2
1)z

3

+ (3x1x2 + 2x1 + x2
1 + x2

1x2 + x3
1 + 8)z4 + O(z5);
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this entails for instance that amongst the words of length 4 (corresponding to the
term in z4), we have the following correspondence between the terms of the gener-
ating function, the texts, and the occurrences statistics τ(w) of aa and aab in a text
w.

Term Texts w of length 4 τ(w)
3x1x2 {baab, aabb, aaba} (1, 1)

2x1 {bbaa, abaa} (1, 0)
x2

1 {baaa} (2, 0)
x2

1x2 {aaab} (2, 1)
x3

1 {aaaa} (3, 0)
8 {bbbb, bbba, bbab, babb, baba, abbb, abba, abab} (0, 0)

Complexity. Let L =
∑

u∈U |u| be the sum of the lengths of the words of U . We first
have to compute the Aho-Corasick automaton and this can be done classically in time
O(L) for a finite alphabet. The automaton can have up to L states. Denoting by N the
number of states of the Aho-Corasick automaton, the transitions matrix T is of size
N2, but in general this matrix is sparse: only N × CardA entries are non-zero (since
the automaton is complete and deterministic with CardA transitions from each state).

So the complexity to obtain the counting multivariate generating function by this
approach is basically the one of inverting a relatively sparse matrix of the form I−zT(x)
all terms of which are linear polynomials in z with coefficients that are monomials of
the form α

∏
xεi

i (with α = π(`) for ` ∈ A and εi ∈ {0, 1}); these coefficients correspond
to the transition matrix of the automaton. The limit of this approach is the fact that
the size of the transition matrix can grow rapidly if we consider many rather long
words. In the two next sections, we adopt the analytic inclusion-exclusion approach
which leads also to solve a system of equations, but then the size of the system is r× r
(where r is the number of words in U).

4. REDUCED CASE OF WORD COUNTING BY INCLUSION-EXCLUSION
We give in this section an intuitive introduction to the inclusion-exclusion method for
words counting of [Goulden and Jackson 1983]. This method uses a principle of over-
counting that is later reversed by a simple algebraic substitution; the overall process
is known as analytic inclusion-exclusion. Note that the language approach [Régnier
2000] that follows previous work [Régnier and Szpankowski 1998] provides the same
multivariate generating functions as Goulden and Jackson do. The principle of over-
counting and inclusion-exclusion however has the property of extending nicely to the
general case of non-reduced patterns that we present in the next section.

4.1. Intuitive approach to counting by inclusion-exclusion
The idea behind inclusion-exclusion counting is that it is sometimes harder to specify
a set of objects satisfying simultaneously a collection of conditions than a set of objects
which violates some of these conditions2.

Thus we introduce the notion of decorated text which allows for distinguishing only
a subset of the occurrences of the pattern.

Definition 4.1 (Decorated text). Let U = {u1, . . . , ur} be a pattern. A decorated text
w of length n with respect to U is a pair w = (w,D) where w ∈ A? is a text of length n,
and denoting by O = (Oi)n

i=1 the occurrence index, we have D = (Di)n
i=1 such that Di ⊆

Oi for all 1 ≤ i ≤ n. The occurrences signaled by the n-tuple D are called distinguished.

2An application of the principle “it is easier to forget something than to remember everything”.
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The weight of a decorated text π(w) is inherited from the weight of the underlying text,
i.e., π(w) = π(w). When D = O, we say that the text is fully decorated. The text w is
called the support of w, and we write |w| for the length of w, that we define as |w| = |w|.
A visual and succinct way to represent decorated texts is to represent the text while
adding above the letter at position i the indices from the corresponding set Di. For
instance considering the text w = aababaabbbabaa and the pattern U = {aba} we obtain
as representation when all occurrences are distinguished

aab
Ê
ab

Ê
aabbbab

Ê
aa

This representation readily generalizes to the case of several words for U ; we however
have to label the marks according to the corresponding occurrences. Considering the
text w = abaaabaabb and the pattern U = {u1 = aa, u2 = baa}, we get, when distin-
guishing all occurrences, the following decorated word

aba
Ê
Ë
a

Ê
aba

Ê
Ë
abb, (4)

where Ê and Ë are the indices that signal the end positions of the occurrences of u1 and
u2 respectively; we remark that two words can end at the same position.

CONVENTION 4.2. When considering a word u, the associated decorated word built
upon u, where the only distinguished occurrence is u itself, is denoted by the sans-serif
letter u .

A graphical representation for four examples of decorated texts corresponding to the
text in (4) is depicted below

aba
Ê
aaba

Ê
abb, abaa

Ê
aba

Ê
abb, abaaabaabb, aba

Ê
a

Ê
aba

Ê
Ë
abb.

The last two decorated texts correspond respectively to the respective cases where
no occurrence is distinguished and where all occurrences are distinguished (the fully
decorated case).

Naturally, a text with exactly k occurrences of a pattern will give rise to 2k decorated
texts (each occurrence may be distinguished or not). It is important to note that two
texts decorated differently are considered distinct.

Our initial problem was to count the set of all texts together with all occurrences con-
sidered. We will instead count the set all of decorated texts (considering all ways to dis-
tinguish occurrences). Indeed this appear to be a significantly easier task. Going back
from the counts of decorated texts (where texts are overcounted) to the counts of texts
is done by use of the inclusion-exclusion principle (see among others [Goulden and
Jackson 1983, 2.2.28, 2.2.29], [Szpankowski 2001, 3.2], and [Flajolet and Sedgewick
2009, III.7.4] for details). This gives an elegant solution to the problem.

4.1.1. Toy examples. Let us consider the simple case of a text P = aaaa and a pattern
with a single word U = {u = aaa}. We get the fully decorated text by considering all
occurrences of aaa in aaaa

aa
Ê
a

Ê
a.

This yields the generating function P (z, x) = π(a)4z4x2 (where x counts the number of
occurrences of the word u, and z the length of the text). The set of the four decorated
texts for this example is accordingly

Q = {aa
Ê
a

Ê
a, aa

Ê
aa, aaa

Ê
a, aaaa};
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this gives the generating function of the decorated texts for aaaa

Q(z, t) =
∑
w∈Q

π(w)z|w|t#distinguished occurrences = π(a)4z4(t2 + t + t + 1),

(where the variable t counts the distinguished occurrences Ê and z the length of the
decorated text). The relation between P (z, x) and Q(z, t) is simply Q(z, t) = P (z, 1 + t)
since the substitution x → t + 1 parallels the fact that an occurrence may (or not) be
distinguished (and then counted by the variable t). This relation can be used the other
way around P (z, x) = Q(z, x− 1).

This variable change t → x − 1 is in fact quite general and is the essence of the
inclusion-exclusion principle for generating functions. It readily extends to the case of
a pattern with several words. Consider the text P = aaaaba and the pattern U = {u1 =
aaa, u2 = aba}; the fully decorated text (signaling all occurrences)

aa
Ê
a

Ê
ab

Ë
a

gives the generating function P (z, x1, x2) = π(a)5π(b)z6x2
1x2 that counts all occur-

rences. There are 23 decorated texts for the word P (each occurrence may be distin-
guished or not), forming the set{

aaaaba, aaa
Ê
aba, aa

Ê
aaba, aa

Ê
a

Ê
aba, aaaab

Ë
a, aaa

Ê
ab

Ë
a, aa

Ê
aab

Ë
a, aa

Ê
a

Ê
ab

Ë
a
}
,

so that the generating function of decorated texts is Q(z, t1, t2) = π(a)5π(b)z6(1 + t1 +
t1 + t21 + t2 + t1t2 + t1t2 + t21t2) = P (z, t1 + 1, t2 + 1).

4.1.2. Combinatorial description of decorated texts. To put into application the inclusion-
exclusion principle, a general construction of all decorated texts has to be derived. We
consider an alphabet A and a set of patterns U = {u1, . . . , ur}, with u1 ≺ · · · ≺ ur for
the lexicographic order.

We define hereafter the fundamental notion of cluster.

Definition 4.3 (Cluster). A cluster c with respect to a pattern U is a decorated text
such that

— all positions are covered by at least a distinguished occurrence,
— and, either there is only one distinguished occurrence, or any distinguished occur-

rence has an overlap with another distinguished occurrence.

Let us denote by CU the class of all clusters for a pattern U (or C when the context is
clear).

Then the set of decorated texts T decomposes as sequences of either arbitrary letters
of the alphabet A or clusters

T = (A+ C)?. (5)

Figure 1 illustrates a particular decorated text that is an element of T. To apply
directly the generating function methodology (see [Flajolet and Sedgewick 2009]), it
is essential that this decomposition is unambiguous: for a given decorated text, there
is a unique way to decompose it along the language Equation (5). This property is
actually true because the expansion of the right member of Equation (5) is composed
of non-intersecting sets: the sets A and C are always distinct (as decorated texts), the
concatenation is a non-commutative product, and finally clusters are well delimited
since C ∩ C · C = ∅. As a remark Figure 1 illustrates the fact that two clusters may
appear one immediately after the other.
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c1 c2 c3

ba aa
Ê
a

Ê
a

Ê
a aa

Ê
aa

Ê
a baaaabaa aa

Ê
a b

aaa aaa aaa
aaa aaa
aaa

Fig. 1. We consider the text w = baaaaaaaaaaabaaaabaaaaab, the pattern U = {aaa}, and a particular dec-
orated text with three clusters ci (i = 1, 2, 3). The alphabet is A = {a, b}. On this graphical representation,
we write below the text the distinguished occurrences to stress out the fact that these occurrences overlap.
Since Card(U) = 1 the symbol Ê signals distinguished occurrences of u (the label is here redundant).

Now, let us assume that we know how to compute the generating function ξ(z, t) of
the set of clusters C,

ξ(z, t) =
∑
w∈C

π(w)z|w|tτ (w), (6)

where τ (w) = (|w|1, . . . , |w|r) and, by analogy with Equation (1) p. 4, the quantity |w|i
denotes the number of distinguished occurrences of ui in w. It then follows from Equa-
tions (5) and (6) and general principles [Flajolet and Sedgewick 2009] that the gener-
ating function T (z, t) of all decorated texts is

T (z, t) = 1 +
(
A(z) + ξ(z, t

)
+
(
A(z) + ξ(z, t)

)2

+ · · · = 1
1−A(z)− ξ(z, t)

. (7)

so that the sought generating function is

FU (z,x) =
1

1−A(z)− ξ(z,x− 1)
. (8)

Therefore, we have reduced the problem of computing the generating function FU (z, t)
to the one of computing the generating function of the set of clusters ξ(z, t). This is
quite simple when the pattern U is reduced, and more difficult in the non-reduced case
as will be shown in Section 5.

4.2. Clusters for one word patterns
Let us explore the case of counting occurrences of one word u in texts over the alphabet
{a, b}. Considering clusters for this case appears first in [Jacquet and Szpankowski
1994]. To build the set of clusters C of u = aaa in the present case, we can write3

C = aa
Ê
a ·
(

Ê
a + a

Ê
a
)?

. (9)

Remark that {a, aa} = Cu − ε where ε is the empty word. Note also that in this ex-
pression the symbol Ê states which occurrences are distinguished in the clusters. The
bivariate generating function ξ(z, t) of C is obtained from this expression by counting
the distinguished occurrences, i.e., symbols Ê, with the variable t. Accordingly, Equa-

3 Strictly speaking, the decorated words Ê
a and a

Ê
a obtained upon the words a and aa are not valid per se

since the word aaa is neither a factor of a nor of aa. We use here a slight abuse of language, as we write
decorated suffixes in the context of a cluster, so that decorations always correspond to valid occurrences.
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tion (9) translates to

ξ(z, t) =
∑
c∈C

π(c)z|c|t# distinguished occurrences in c

=
tu(z)

1− t(C(z)− 1)
=

tπ(a)3z3

1− t(π(a)z + π(a)2z2)
,

where t counts the number of distinguished occurrences and u(z) and C(z) respec-
tively are the generating functions of the word u and of the autocorrelation set C of u.
Then making use of the symbolic exclusion-inclusion principle and of Equation (8) and
denoting by |w|u the number of occurrences of u in w, we directly get

F (z, x) =
∑

w∈A?

π(w)z|w|x|w|u =
1

1−A(z)− ξ(z, x− 1)
,

where A(z) is the generating function of the alphabet A. Considering again the word
u = aaa and the binary alphabet A = {a, b}, and posing π(a) = π(b) = 1 (to get the
enumerative generating function), we have C(z) = 1 + z + z2 and we obtain

F (z, x) =
1

1− 2z − (x− 1)z3

1− (x− 1)(z + z2)

.

4.3. Clusters for several words in the reduced case
When considering the reduced case for several words, the method described in the
preceding section readily applies; the only difference is that we need matrix products
to describe the clusters.

Considering the example U = {u1 = aaab, u2 = baaa}. A typical cluster is

baa
Ë
aa

Ê

baa
Ë
aa

Ê

b
baaa

aaab
baaa

aaab

We see on this example that to extend a cluster to the right in the reduced case, we only
need to consider the last distinguished occurrence (say u1) in the cluster and append a
word from the correlation sets Cu1,u2 or Cu1,u1 defined in Equation (2) p. 4 to obtain the
next distinguished occurrence still overlapping the previous one (by definition of the
correlation sets). Informally we make clusters grow by starting from a seed (a word
of U which is distinguished) and concatenating words of correlations sets, adding each
time a new distinguished occurrence.

Let us consider the set of decorated words {u1, . . . , ur} corresponding to the pattern
U = {u1, . . . , ur} and the matrix of decorated correlation sets Q = (Qi,j) defined for
1 ≤ i, j ≤ r by

Qi,j =
⋃

e∈Ci,j

e 6=ε

{Suff |e|(uj)} where Ci,j = Cui,uj
; (10)

the notation Suff`(u) denotes here the suffix of length ` of a word u and the notation
Suff`(u) is the corresponding decorated word; we use here again an abuse of notation
(see the footnote 3 p.9). Then the matrix formula giving the set of all decorated clusters
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is

C = (u1, . . . , ur) Q?

(
ε
ε

)
, (11)

where, for a matrix M, we write

M? = (I−M)−1 = I + M + M2 + . . . .

For instance with U = {u1 = aaab, u2 = baaa}, the set of clusters C is given by

C = (aaa
Ê

b, baa
Ë
a)

 ∅
{

aa
Ë
a
}{

Ê

b, a
Ê

b, aa
Ê

b

}
∅


?(

ε
ε

)
.

The translation to the generating function ξ(z, t) is extremely easy and mirrors the pre-
vious combinatorial expression. For the last example the generating function ξ(z, t1, t2)
of clusters (setting π(a) = π(b) = 1 for clarity, and applying the map Ê 7→ t1, Ë 7→ t2, α 7→
z with α ∈ A) verifies

ξ(z, t1, t2) = ( z4t1, z4t2 )
(
I−

(
0 z3t2

(z+z2+z3)t1 0

))−1
(

1
1

)
.

Equation (8) applies then again, yielding the generating function of occurrences.

Short bibliographic note about applications of the Goulden-Jackson method
The inclusion-exclusion method of Goulden-Jackson is extremely powerful. Its applica-
tions go far beyond enumeration of texts. As a direct application of the basic definitions,
[Goulden and Jackson 1983, 2.2.30] provide the number of derangements for permu-
tations of size m. As another application, [Flajolet and Sedgewick 2009, III,7,4] count
rises in permutations.

Among the articles applying the inclusion-exclusion method and the use of clusters
to count texts with forbidden patterns, we mention the following. [Noonan 1998] eval-
uates connective constants of self-avoiding walks. [Edlin and Zeilberger 2000] consider
cyclic words with forbidden patterns and [Zeilberger 2002] words with non-regular in-
finite forbidden patterns. Considering also words with forbidden patterns, [Wen 2005]
uses symmetries of the set of words of the pattern to shrink the size of the matrix or
linear system, while [Kupin and Yuster 2010] handle Markov sources. Finally, which
will be the topic of the next Section, [Noonan and Zeilberger 1999] consider the general
case of words counting. However, we point out that considering forbidden patterns cor-
responds to the case of reduced patterns; none of the articles mentioned here provide
equivalents of the proofs and formulas that we give in the next Sections.

5. GENERAL CASE OF WORD COUNTING BY INCLUSION-EXCLUSION
We remark first that in the general non-reduced case, there is no known method of
language decompositions similar to the approach of [Régnier and Szpankowski 1998],
where a text is “scanned” with respect of all the occurrences of the pattern. Our goal
is therefore to generalize the process of inclusion-exclusion to any finite set of words.
The preceding section provides the main lines of the inclusion-exclusion method for
reduced patterns as given in [Goulden and Jackson 1983].
This section extends this approach to the non-reduced case. See also [Noonan and

Zeilberger 1999] that provides Maple scripts for this non-reduced case. Note also that
if the language decomposition of Régnier and Szpankowski in the reduced case is a
relatively easy combinatorial step, the combinatorial decomposition in the non-reduced
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1
2

3
4

;
2

3
1

4

Fig. 2. The nice property of double staircase shape for reduced patterns. (Left) Random ordering of the
occurrences falling like dominoes in a Tetris game. (Right) Double staircase reordering.

5

1
2

3
4

;
2

3
1

4
5

�6

Fig. 3. Occurrence 5 breaks the double staircase property; There is no reordering of the five occurrences
that do not break the property. A skeleton (or reduced cluster) of the cluster will be built with occurrences 1
to 4. Occurrence 5 is a factor occurrence of occurrence 4 that will be add to the skeleton in a flip-flop manner
that corresponds to the fact that this occurrence can be marked or left unmarked.

case is harder; in both cases a trivial analytic manipulation follows and yields the
sought generating function.

We introduce this section by mentioning an apparently trivial property verified in
the reduced case. In general, this property is violated in the non-reduced case, but
there are subsets of the distinguished occurrences that still verify it; the construction
used in the non-reduced case will built upon one of these subsets that we will call
skeleton of the cluster.

The double staircase property. Assume that we randomly number the occurrences of
a cluster, and that each occurrence is represented by a thin domino, where the horizon-
tal position of each domino is the position of the corresponding occurrence. Let now fall
the dominoes from above, like in a Tetris game (Figure 2 (left)). In the case of reduced
patterns, there is a simple and obvious property; there is a reordering of the occur-
rences such that letting fall the dominoes produces a double staircase shape (where
the steps have unit height), one corresponding to the left side of the dominoes, and the
other to the right side (Figure 2 (right)). Coming back to words, the progression from
a given domino to the next one in this ordering corresponds to append a word belong-
ing from the correlation set from the word whose occurrence corresponds to the given
domino to the word whose occurrence corresponds to the next domino; this appears
clearly in the example U = {u1 = aaba, u2 = baaa} of Section 4.3. This property can be
violated in the case of non-reduced patterns, but as seen in the cluster of Figure (3), it
is possible to build what will be called in the following the skeleton of the cluster that
verifies the staircase property.

5.1. Combinatorial description of clusters in the general case
We exhibit a property of decorated texts which will prove useful for factorizing clusters.

Definition 5.1 (Reduced decorated text). A decorated text is said to be reduced if no
distinguished occurrence is a factor of another distinguished one.
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Note that this property is automatically granted if the pattern U is reduced. We define
a particular class of clusters called skeletons, which have this property.

Definition 5.2 (Skeleton). A skeleton is a cluster such that no distinguished occur-
rence is a factor of another distinguished occurrence.

We introduce also two dual operations, denoted by Skel and Flip which relate clusters
and skeletons.

Definition 5.3 (Skeletization and flip operation). The two dual operations Skel and
Flip are defined as:

— Let c be a cluster, the skeleton Skel(c) (denoted also c) of a decorated text c is obtained
from c by undistinguishing (moving the status of an occurrence from “distinguished”
to “not distinguished”) the factor occurrences in c.

— Let c be a skeleton, the Flip operation associates to c the set Flip(c) of all clusters c
such that Skel(c) = c.

We have the following lemma for clusters.

LEMMA 5.4. The skeleton Skel(c) of a cluster c is uniquely defined. It is a cluster
and the distinguished occurrences in Skel(c) can be increasingly ordered with respect to
their end positions such that each occurrence overlap the following one, when it exists.
This ordering is unique.

PROOF. We omit the proof which is very simple.

Example 5.5. Let us consider the pattern U = {u1 = ab, u2 = ba, u3 = baba} and the
clusters

c1 = a
Ê

ba
Ê

b
Ì
ab

Ì
a, c2 = a

Ê

bab
Ë
Ì
ab

Ë
Ì
a, c3 = a

Ê

b
Ë
a

Ê

b
Ë
ab

Ë
Ì
a

ab baba ab ba ab ba
baba baba ba
ab baba ab

ba baba

We have

Skel(c1) = Skel(c2) = a
Ê

bab
Ì
ab

Ì
a, Skel(c3) = a

Ê

b
Ë
a

Ê

bab
Ì
a.

This example illustrates that two different clusters with same support (here abababa)
can have different skeletons.

Now, the general strategy to describe clusters is to build reduced clusters, and along
this process to identify all factor occurrences (mirroring the Flip operation).

We therefore introduce a notation aimed at representing factor occurrences produced
by the Flip operation for a skeleton.

Definition 5.6 (Bicolored decorated cluster). Let c = (c,D) be a skeleton with re-
spect to a pattern U = {u1, . . . , ur}. We denote by O the occurrence index of U in c, and,
as previously, by D ⊆ O the set of indices of distinguished occurrences in c. The fully
bicolored decorated word c̃ associated to c is a pair c̃ = (c,F) where F ⊂ O\D is the set
of indices of the distinguished factor occurrences within the occurrences indexed by D.

In the graphical representation, we will denote by a different mark (white filled circles)
factor occurrences of distinguished occurrences. Hence for instance, considering the
skeleton c for U = {ab, ba, baba}

c = a
Ê

bab
Ì
ab

Ì
a,
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the set Flip(c) is the set of clusters having c as skeleton and can be identified to the
following bicolored decorated word

c̃ = Flip(c) = a
Ê

b
Á
a

À

b
Á
Ì
a

À

b
Á
Ì
a, (12)

where end positions of occurrences belonging to the skeleton are signaled by black
filled circles, and factor occurrences are signaled by white filled circles. This notation
gives us a way to represent all the clusters sharing the same skeleton. As a matter of
facts, there is no conceptual difference between bicolored decorated words and the set
of decorated words with the same skeleton obtained by examining all ways of distin-
guishing factor occurrences. For instance the fully bicolored decorated cluster of (12)
is strictly equivalent to the set containing 25 = 32 (there are five factor occurrences)
differently decorated clusters.

Remark 5.7 (Integrity rule for Flips of skeletons). In Definition 5.6 we flip only oc-
currences which are factors of the distinguished occurrences of the skeleton. So, by
Definition 5.6, for two different skeletons c1 and c2, we have

Flip(c1) ∩ Flip(c2) = ∅.
We provide an example for the last remark by considering the pattern U = {u1 = aaa,
u2 = aaaaaaa}, a skeleton c1, and the corresponding Flip(c1). In order to improve the
readability here we decompose clusters according to their skeletons.

c1 = aa
Ê
aaaaaa

Ë
a

aaa
aaaaaaa

∣∣∣∣∣∣ =⇒ Flip(c1) = aa
Ê
a · aÀ

a
À
a

À
a

À
a

Ë
À
a. (13)

We remark here that the fourth position has no label À signaling a factor occurrence
aaa; indeeds considering a factor occurrence aaa at this position would break the in-
tegrity rule and correspond to a skeleton c2 different of c1, namely,

c2 = aa
Ê
a

Ê
aaaaa

Ë
a

aaa
aaa
aaaaaaa

∣∣∣∣∣∣∣ =⇒ Flip(c2) = aa
Ê
a · Ê

a · À
a

À
a

À
a

À
a

Ë
À
a. (14)

Right extensions. The skeletons will basically be built on a matrix construction simi-
lar to the one of the reduced case (see Equation (10)). Next, in a second step, the factor
occurrences are added to the skeleton. As shown in the following example, the classical
definition of correlations of words is not compatible with the definition of skeletons.

Considering the words u = a3 and v = a7, following the definition of correlation
(Equation (2) p. 4), we have Ca3,a7 = {a4, a5, a6}. How however can we go from an
occurrence of a3 to an occurrence of a7 in a skeleton? We have the three cases

(i)
aaa|

|aaaa (ii)
aaa|

|aaaaa (iii)
aaa|

|aaaaaa

where the black rules underline the positions of the last occurrence of a7. As seen
in case (i), it is not possible to progress in a skeleton from an occurrence of a3 to an
occurrence a7 by the word a4; in this case the first occurrence of a3 is a factor of the
underlined occurrence of a7, which is contradictory to the definition of skeletons. On
the contrary, cases (ii) and (iii) correspond to valid extensions.

In order to properly generate the skeletons we therefore introduce the notion of right
extension of a pair of words (u, v). This notion is a generalization of the correlation set
of two words u and v but differs in that:
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(i) overlapping is not allowed to start at the beginning of u.
(ii) extension has to add some letters to the right of u.

These two conditions ensure that, while scanning a text from left to right, going from
one distinguished occurrence to another in a skeleton, both ending and beginning po-
sitions are changing, hence preventing from considering factor occurrences.

More formally we have

Definition 5.8 (Right extension set). The right extension set of a pair of words (u, v)
is

Eu,v = { e | there exists e′ ∈ A+ such that ue = e′v with 0 < |e| < |v|}.

Note that, when u and v have no factor relation, the right extension set Eu,v is the
correlation set of u to v. Moreover, when u = v, the set Eu,v is the strict autocorrelation
set of u (the empty word does not belong to Eu,u). We can also define a decorated variant.

Definition 5.9 (Bicolored decorated right extension set). Let u and v be two words,
and u and v be defined by Convention 4.2 p. 7. The bicolored decorated right extension
set of the pair of words (u, v) is

Eu,v =
⋃

e∈Eu,v

Suff |e|(Flip(v)),

where for a set V of bicolored decorated words, Suff`(V) is the set of (bicolored deco-
rated) suffixes of length ` from V.

We use again here the abuse of notation mentioned in footnote 3 p. 9.
We apply the last definition in the following example.

Example 5.10. We consider the pattern U = {u1, u2} = {aa, aaa} together with two
particular clusters c1 and c2 as an illustration. We have

c1 = a
À
a

À
Ë
a

À
Ë
a

aaa
aaa

, c2 = a
À
a

À
Ë
a

À
a

À
Ë
a

aaa
aaa

.

We observe that

Suff |a|(Flip(u2)) = {
À
Ë
a},Suff |aa|(Flip(u2)) = {À

a
À
Ë
a}, and Ea3,a3 = {

À
Ë
a,

À
a

À
Ë
a}.

As for correlation matrices, we define right extension matrices with respect to a pattern
U = {u1, . . . , ur} with indices of words dictated by the lexicographical order

E =
(
Eui,uj

)
1≤i,j≤r

.

We define also accordingly the decorated variant E of the right extension matrix E of
dimension r × r .

Example 5.11. We give some examples of patterns and their right extension matri-
ces (non-decorated and decorated).

(1) For U = {ab, aba}, we have E =
(
∅ ∅
b ba

)
. This gives, by Convention 4.2 p. 7,

u1 = a
Ê

b and u2 = ab
Ë
a, so that Flip(u1) = {a

Ê

b} and Flip(u2) = {a
À

b
Ë
a}, when using
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the bicolored decorated notation4, while the decorated right extension matrix veri-
fies

E =

(
∅ ∅

{
Ê

b} {
À

b
Ë
a}

)
.

(2) For U = {a3, a7}, we have5

u1 = aa
Ê
a, u2 = aaaaaa

Ë
a so that Flip(u1) = {aa

Ê
a}, Flip(u2) = {aa

À
a

À
a

À
a

À
a

Ë
À
a},

and E =
(

a + aa a5 + a6

a + aa a + a2 + a3 + a4 + a5 + a6

)
, so that

E =

{Ê
a, a

Ê
a} {À

a
À
a

À
a

À
a

Ë
À
a, a

À
a

À
a

À
a

À
a

Ë
À
a}

{Ê
a, a

Ê
a} {

Ë
À
a,

À
a

Ë
À
a,

À
a

À
a

Ë
À
a,

À
a

À
a

À
a

Ë
À
a,

À
a

À
a

À
a

À
a

Ë
À
a, a

À
a

À
a

À
a

À
a

Ë
À
a}

 .

(3) As a slightly more complicated example the pattern U = {aa, ab, ba, baaab} gives

u1 = a
Ê
a, u2 = a

Ë

b, u3 = b
Ì
a, u4 = baaa

Í

b,

Flip(u1) = {aÊ
a}, Flip(u2) = {a

Ë

b}, Flip(u3) = {bÌ
a}, Flip(u4) = {bÂ

a
À
a

À
a

Á
Í
b},

E =

a b ∅ ∅
∅ ∅ a aaab
a b ∅ ∅
∅ ∅ a aaab

 and E =



{Ê
a} {

Ë

b} ∅ ∅

∅ ∅ {Ì
a} {Â

a
À
a

À
a

Á
Í
b}

{Ê
a} {

Ë

b} ∅ ∅

∅ ∅ {Ì
a} {Â

a
À
a

À
a

Á
Í
b}


.

We introduce here the notion of (k + 1)-skeleton.

Definition 5.12 ((k + 1)-skeleton). We denote by (k + 1)-skeleton a skeleton that is
composed of k + 1 occurrences and by (k + 1)-cluster a cluster whose skeleton is a
(k + 1)-skeleton.

We state now the link between clusters and bicolored decorated right extensions.

PROPOSITION 5.13. The set C of all clusters verifies

C = (Flip(u1), . . . ,Flip(ur)) · E? ·

ε
...
ε

 . (15)

PROOF. We recall that,

(1) given any cluster c, undistinguishing the factor occurrences leads to a skeleton c
such that c ∈ Flip(c),

(2) and, given two different6 skeletons c and c′, we have Flip(c) ∩ Flip(c′) = ∅.

4For instance {a
À
b
Ë
a} is equivalent to {ab

Ë
a, a

Ê
b
Ë
a}.

5See the Remark 5.7 p. 14 and the example that follows the remark.
6See (13) and (14) p. 14 illustrating the integrity rule for Flips of skeletons (Remark 5.7).
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These two properties imply that taking the Flip of all possible skeletons generates all
possible clusters in a way where each cluster is generated exactly once.

Given a pattern U = {u1, . . . , ur} and any (k+1)-skeleton c, the definition of skeletons
yields that there are a unique sequence (i1, . . . , ik+1) and a unique decomposition

c =(u · w1 · w2 · . . . · wk, (Dd)1≤d≤|c|), (16)

where


u = ui1 ∈ U and, for 1 ≤ j ≤ k, wi ∈ Euij

,uij+1
,

D|u| = i1,
D|u·w1· ... ·we| = ij+1 if we = Euij

,uij+1
,

Dd = ∅ if not defined previously.

In this last equation, the sequence (Dd) records the distinguished positions of the
skeleton c and the corresponding indices.

For 1 ≤ j ≤ r we denote uj (resp. Ei,j) the monocolor words where there is only a
label uj upon the last position (factor positions have been undistinguished). We also
denote E = (Ei,j). Considering the set Ck+1 of (k + 1)-skeletons, Equation (16) yields by
considering all possible (k + 1)-skeletons

Ck+1 = (u1, . . . , ur) · E
k ·

ε
...
ε

 , which implies that C = (u1, . . . , ur) · E
? ·

ε
...
ε

 , (17)

where C is the set of all skeletons.
Now we need to lift up Equation (17) to clusters, i.e., we consider factor occurrences.

This is done thanks to the Flip operation. Indeed, applying the Flip operator on the
words ui and using Definition 5.9 to compute the entries Ei,j of the matrix E do not
modify the skeleton. Moreover no factor occurrence can be missed in the resulting
bicolored words. This implies that the set of clusters C = Flip(C) verifies Equation
(15).

5.2. Generating functions of clusters
We need now to compute the multivariate generating functions Ui(z, t) of the bicolored
words Flip(ui) and Ei,j(z, t) of the bicolored right extensions Ei,j to get the generat-
ing function ξ(z, t). The following lemma gives the correspondence between bicolored
decorated texts and their generating functions.

LEMMA 5.14. We consider a pattern U = {u1, . . . , ur} and a fully bicolored deco-
rated cluster c̃ = (c,D,F) with skeleton c and length |c| = `, such that c = α1α2 . . . α`

with αi ∈ A, and where D = (Di)1≤i≤` (resp. F = (Fi)1≤i≤`) is the occurrence index of
the distinguished occurrences defining the skeleton (resp. occurrence index of the factor
occurrences), the positions being relative to the beginning of the cluster as in Equation
(16). The generating function c̃(z, t) of the set of clusters Flip(c) built upon the skeleton
c is computed thanks to the bicolored representation c̃ and verifies

c̃(z, t) =
∏̀
i=1

π(αi)z ×

∏
j∈Di

tj

×

(∏
s∈Fi

(1 + ts)

) , (18)

where the variable ti counts the occurrences of the word ui.
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PROOF. Indeed, distinguished occurrences which define the skeleton are signaled
thanks toD whereas, once the skeleton is fixed, factor occurrences can be distinguished
or not, giving for each i, if s ∈ Fi, a term7 (1 + ts).

Using the notations defined in the proof of Proposition 5.13, to compute the sequence
(Ui(z, t))1≤i≤r and the matrix E(z, t) = (Ei,j(z, t))1≤i,j≤r, we apply the last lemma and
Equation (18) successively to the clusters Flip(ui) and Flip(ui · Ei,j); these last expres-
sions give access to the multivariate generating functions of the bicolored sets Ei,j

deriving from the sets Ei,j ; (it is not possible to apply directly the lemma on Ei,j since
it is neither a cluster nor a skeleton). We then have

Ei,j(z, t) =
e(z, t)
Ui(z, t)

, where e(z, t) is the generating function of Flip(ui · Ei,j).

Example 5.15. We develop further the Example 5.11 from p. 15 by taking π(a) =
π(b) = 1.

(1) For (u1, u2) = (ab, aba), we have

Flip(u1) = {a
Ê

b} 7→ U1(z, t1, t2) = z2t1

Flip(u2) = {a
À

b
Ë
a} 7→ U2(z, t1, t2) = z3t2(1 + t1)

E =

 ∅ ∅{
Ë
a
} {À

b
Ë
a

} 7→ E(z, t1, t2) =
(

0 0
zt2 z2t2(1 + t1)

)
.

(2) For (u1, u2) = (a3, a7), from Example 5.11 again, we have

Flip(u1) 7→ U1(z, t1, t2) = z3t1, Flip(u2) 7→ U2(z, t1, t2) = z7t2(1 + t1)5,

E(z, t1, t2) =
(

t1(z+z2) t2(1+t1)
5(z5+z6)

t1(z+z2) t2((1+t1)z+(1+t1)
2z2+(1+t1)

3z3+(1+t1)
4z4+(1+t1)

5(z5+z6))

)
.

(3) Finally, for (u1, u2, u3, u4) = (aa, ab, ba, baaab), the last pattern of Example 5.11, we
get

E(z, t1, t2, t3, t4) =

t1z t2z 0 0
0 0 t3z t4z

4(1 + t1)2(1 + t2)(1 + t3)
t1z t2z 0 0
0 0 t3z t4z

4(1 + t1)2(1 + t2)(1 + t3)

 .

With these notations, we get to the following proposition.

PROPOSITION 5.16. The generating function ξ(z, t) of clusters built from the set
U = {u1, . . . , ur} is given by

ξ(z, t) = (U1(z, t), . . . , Ur(z, t)) ·
(
I− E(z, t)

)−1

·
( 1...

1

)
, (19)

where Ui(z, t) is the generating function for the (bicolored) decorated word Flip(ui), and
E(z, t) is the matrix of generating functions for the (bicolored) right extension sets.

PROOF. This expression follows from general principles on generating functions ap-
plied to the combinatorial description of clusters from (15).

7We remark that with this methodology it would be easy to get the generating functions of clusters counting
separately occurrences forming the skeleton and factor occurrences with two sets of formal variables t and
s for instance.
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5.3. Particular cases
We examine for special cases of interest the generating functions of clusters.

One word. For U = {u}, we get

ξ(z, t) =
tπ(u)z|u|

1− tĈ(z)
=

tπ(u)z|u|

1− t(C(z)− 1)
, (20)

where C(z) and Ĉ(z) respectively are the autocorrelation polynomial and the strict
autocorrelation polynomial (empty word ε omitted) of u.

Two words. For a general set of two words {u1, u2}, we can compute explicitly
ξ(z, t1, t2) by the Cramer’s rule,

ξ(z, t1, t2) =
U1 + U2 −

(
U1

[
E2,2 − E1,2

]
+ U2

[
E1,1 − E2,1

])
1− E2,2 − E1,1 +

(
E1,1E2,2 − E2,1E1,2

) , (21)

where U1, U2, (Ei,j)1≤i,j≤j respectively are the generating functions in (z, t1, t2) ob-
tained by application of Lemma 5.14 for (bicolored) decorated words u1, u2 and the
(bicolored) decorated matrix of right extensions (Ei,j)1≤i,j≤j .

Example 5.17. Let us consider again the pattern U = {a3, a7} from Example 5.15(2)
p. 18 and π(a) = π(b) = 1; we therefore have π(w) = 1 for all words w (the unweighted
“enumerative” model where each word has weight 1). Evaluating Equation (21) with
these weights, the generating function of clusters ξ(z, t1, t2) verifies

ξ(z, t1, t2) =

z3
“

t2(1+t1)4z4−t2t1(1+t1)z3−t2t1(1+t1)2z2−t2t1(1+t1)z+t1
”

“
1−z3t2(1+t1)

“
(1+t1)3z3+

“
t13+3 t12+2 t1+1

”
z2+

“
t13+2 t12+t1+1

”
z+1−t12−2 t1

”
−(t2t1+t2+t1)(z2+z)

”
Reduced set. When the set U is reduced, that is, no word of U is factor of another,

we do not need to consider the Flip operation as clusters are always reduced. The
distinguished occurrences are implicitly specified. So that the generating function can
be stated with the help of the generating function of the correlation set

ξ(z, t) = ∆(t)(π(u1)z|u1|, . . . , π(ur)z|ur|)
(
I−∆(t)Ĉ(z)

)−1
( 1...

1

)
,

where ∆(t) is a square matrix with diagonal t = (t1, . . . , tr) and Ĉ(z) is the matrix
of generating functions for strict (i.e., empty word omitted) correlation sets. This is
another formulation of the result of Goulden and Jackson [Goulden and Jackson 1983].

Generating function of texts. As mentioned in Section 4.1.2, a text is decomposed as a
sequence of letters from A (with generating function A(z)) and clusters from CU (with
generating function ξ(z, t) from Equation (6)). The multivariate generating function
F (z,x) given by Equation (1) is derived by substituting ti 7→ xi − 1 for i ∈ {1, . . . , r}. To
summarize, we have the following theorem.

THEOREM 5.18. Let u = (u1, . . . , ur) be a finite vector of words in A? and E the
associated right extension matrix. The multivariate generating function F (z,x) count-
ing texts whose length is counted by the variable z and where the occurrences of ui are
counted by the vector of formal variables x = (x1, . . . , xr) is

F (z,x) =
1

1−A(z)− ξ(z,x− 1)
, (22)

where A(z) =
∑

α∈A π(α)z is the generating function of the alphabet and ξ(z, t) is de-
fined in Equation (19).
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Fig. 4. Illustration of the Aho-Corasick construction, considering the pattern U = {aa, aaa, ab, ba, baaab}
of Example 5.15(3). Nodes are labeled with words from Pref(U). Indices are to be understood (following the
convention used in all this article) as indices of words in U ordered in the lexicographical order. Double
circled terminal nodes correspond to states where an occurrence of U is found. However, for our particular
purpose, we need a more precise information and associate to each node w the set Sw which is the set of
labels of words from U accepted at state w. These sets are represented next to each state. Suffix links are
represented with dashed lines.

PROOF. The proof relies on two main points. On one hand, the generating function
ξ(z, t) counts all the clusters (see Proposition 5.16). On the other hand, the inclusion-
exclusion principle yields the final result by the substitutions ti 7→ xi − 1.

The application of the standard techniques of analytic combinatorics (see [Flajolet
and Sedgewick 2009]) to the multivariate generating function F (z,x) gives access to
statistics such as mean, variance, covariance. (See Section 6).

5.4. An algorithmic construction based on the Aho-Corasick automaton
We consider a pattern U = {u1, . . . , ur}. We recall that we assumed previously that
ui ≺ ui+1 with respect to the lexicographical order for i from 1 to r − 1; therefore k is
the index of the word uk in the pattern considered as a list.

We want an efficient way to compute the generating function ξ(z, t) of the clusters
of U . In particular, we have to compute the r-tuple (U1(z, t), . . . , Ur(z, t)) and the r × r
elements Ei,j(z, t) of the right extension matrix from Proposition 5.16.

As mentioned in Section 3 the Aho-Corasick algorithm upon which we work first
constructs a trie TU on the words of the pattern U . We denote Ω the Aho-Corasick
automaton constructed upon the trie TU .

We label and name in the following any state of the automaton Ω by the word that
leads to this state when starting from the root ε and progressing in the trie TU by suc-
cessively reading the letters of w; see an example of such labeling in Figure 4. There-
fore the term w will refer in a parallel manner to a word w and to the corresponding
state in the automaton Ω.

We use the following definitions.

— We denote Pref(w) the set of prefixes of a word w.
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— We denote Sw the set of indices of words from U that are suffixes of w; this is consid-
ered in a wide sense: we accept the word w as a suffix of itself, although it is not a
proper suffix.

— We denote λ(w) the suffix link starting from state w, where

λ(w) = Border(w),

and the function Border(w) is defined as in Section 3 by

Border(w) =
{

the longest proper suffix of w in Pref(U) if it is defined,
or ε otherwise.

As an example, considering Figure 4, there is a suffix link from the state (baaab) to
the state (ab).

— We denote σ(w) the length of the suffix chain8 starting at a state w.

We proceed in the following by steps.

— Step (i). We construct the Aho-Corasick automaton Ω recognizing the pattern U .
— Step (ii). We associate to each state w of the automaton the set Sw containing the

indices of words u from U that are recognized at state w (so that these words are
also suffixes of w); beware that along the cases, these words may be or may be not
factor occurrences.

— Step (iii). By using the suffix links and the information stored in Step (ii), we com-
pute all the needed generating functions.

We detail now each step of the algorithmic computation.
Step (i). This step is a classical construction for text analysis (see for instance

[Crochemore et al. 2007; Crochemore and Rytter 2002]). Note that the construction
provides the suffix links for the pattern.

Step (ii). We add now more information to the automaton Ω.
The set Sw can be obtained while building the automaton, since when a state w is

terminal, we know which of the words of the pattern U is accepted. This is a classical
modification of the basic Aho-Corasick algorithm (see [Crochemore et al. 2007] for in-
stance). The complexity of this modification is O(r ×

∑
u∈U |u|) if we naively manage

subsets Sw of {1, . . . , r} for each state w of the automaton.
Step (iii). Using the suffix links, we get an alternative way to express the right ex-

tension set from a word ui to a word uj (see Definition 5.8); we have

Ei,j =
{

e | h · e = uj and h ∈ {λc(ui), 1 ≤ c < σ(ui)}
}

. (23)

Note that h · e = uj ⇒ h ∈ Pref(uj); this leads to consider the sets Hi,j such that

Hi,j =
{

h 6= ε
∣∣ h ∈ Pref(uj) ∩

{
λc(ui) | 1 ≤ c < σ(ui)

}}
. (24)

Each word h in this equation is simultaneously a prefix of uj and a suffix of ui (by the
definition of the suffix link function λ(w)); moreover the set Hi,j is in bijection with the
right extension set Ei,j .

8The suffix chain of a word u is the sequence (u1 = u, u2 = Border(u1), u3 = Border(u2), . . . , us =
Border(us−1) = ε). The length of this chain is σ(u) = s− 1.
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We now define, for states w ∈ Pref(uj) ∪ {ε} such that there exists v ∈ A∗ that
verifies w · v = uj , the auxiliary functions Φ(w)

j (z, t) = v(z, t), where v is the decorated
text associated to the word v. We have immediately

Uj(z, t) = Φ(ε)
j (z, t), and Ei,j(z, t) =

∑
h∈Hi,j

Φ(h)
j (z, t). (25)

The generating functions Φ(w)
j (z, t) can be defined recursively,

Φ(w)
j (z, t) =

{
tj if w = uj

Φ(w·α)
j (z, t)× π(α)z

∏
s∈Sw·α\{j}(1 + ts) if w·α ∈ Pref(uj) (α ∈ A).

(26)

Thus all the functions Φ(w)
j (z, t) for j ∈ {1, . . . , r} and w ∈ Pref(U) are computed from

the leaves to the root by a postorder traversal of the trie TU ;

Example 5.19. We consider the example given in Figure 4 where we have U =
{aa, aaa, ab, ba, baaab}. Following the recurrence defined in Equation (26), we have, re-
calling that 2 is the index of the word aaa in the pattern U , and since H2,2 = {aa, a},

Φ
(aaa)
2 (z, t) = t2, Φ

(aa)
2 (z, t) = t2π(a)z(1+t1),

Φ
(a)
2 (z, t) = t2π

2(a)z2(1+t1)
2, Φ

(ε)
2 (z, t) = t2π

3(a)z3(1+t1)
2

U2(z, t) = t2π
3(a)z3(1+t1)

2, E2,2(z, t) = t2
“
π(a)z(1+t1)+π2(a)z2(1+t1)

2
”
.

Similarly, starting from Φ(baaab)
5 = t5, we obtain by using the recurrence

E3,5(z, t) = Φ(a)
5 (z, t) = π(a)3π(b)z4(1 + t1)2(1 + t2)(1 + t3)(1 + t4)t5,

which follows from the fact that the set H3,5 = {b} has a single element.
Starting now from Φ(ba)

4 (z, t) = t4, we get E3,4(z, t) = Φ(b)
4 (z, t) = π(a)zt4.

Complexity. The classical construction of the Aho-Corasick automaton yields a
time complexity O(

∑
u∈U |u|). However we need more information on terminal nodes

(namely the set of indices of words accepted), and this gives a complexity O(r ×∑
u∈U |u|) since we manipulate subsets of {1, . . . , r}.
We denote by S the size of the longest suffix chain of a word u ∈ U . The number of

the sets Hi,j defined in Equation (23) is typically less than r × r. To compute them, we
can use sets Pw associated to each state w of TU that record the indices of the words
u ∈ U such that w ∈ Pref(u); for instance, considering Figure 4, we have Pa = {1, 2, 3}.
The computation of the sets Pw can be done by a postorder traversal of the tree in time
O(r× |Ω|) = O(r×

∑
u∈U |u|). Using these sets and the suffix links, all the sets Hi,j can

be computed in a largely overestimated overall cost r×r×S. It is then straightforward
to compute Ei,j(z, t) by Equation (25).

The auxiliary functions Φ(w)
j (z, t) for 1 ≤ j ≤ r and w a prefix of uj are com-

puted, considering here operations on polynomials (mostly multiplications), in total
time O(r ×

∑
u∈U |u|).

As a conclusion of this section, assuming that the size of the alphabet is a constant,
the “time complexity”, considering elementary operations on automata and operations
on polynomials in z and t, is O(r×

∑
u∈U |u|+ S× r2) in order to compute the sequence

(Ui(z, t))r
i=1) and the matrix E(z, t). We remark that the coefficients of the matrix are

polynomials whose degrees (in any variable) are bounded by maxu∈U |u| − 1. Also we
note that the r × r matrix E(z, t) is smaller and more compact than the linear system
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obtained by applying the Chomsky-Schützenberger algorithm on the Aho-Corasick au-
tomaton of Section 3 which has size O((

∑
u∈U |u|)2) since there are O

(∑
u∈U |u|

)
states

in the automaton. Inverting the corresponding sparse matrix in z would imply han-
dling possibly large coefficients that are multivariate polynomials over the counting
variables x1, . . . , xr; see Section 3 for an example.

6. MOMENTS
Bender and Kochman [Bender and Kochman 1993] consider generalized words where
a generalized word W is a set of words of same length. Considering two generalized
wordsW1 andW2, they compute the dominant term of the asymptotic covariance of the
number of occurrences of W1 and W2 in random texts of size n as n tends to infinity. We
consider as previously patterns U that are any finite sets of finite words, disregarding
their lengths. We compute here in random texts of size n the dominant asymptotic
term of:

— the expectation of the number of occurrences of a pattern U ;
— the variance of this number;
— the covariance of the number of occurrences of a pattern U and of a pattern V.

Bender and Kochman also state limit laws in several cases for sets of generalized
words, their proofs relying importantly on previous works of Bender et al in a series
of articles [Bender 1973; Bender and Richmond 1983; Bender et al. 1983]. Although
it is very likely that these results still hold in the case of more general patterns, the
corresponding study is beyond the scope of the present article.

6.1. Number of occurrences for a non-reduced pattern
We consider here a Bernoulli model and extend the probability measure π defined for
words to sets of words in the following way

π(U) =
∑
u∈U

π(u).

We provide for the case of a pattern U = {u1, . . . , uk} expressions for the expected value
and variance of the random variable Xn counting the number of occurrences of U in
a text of size n. Section 5 gives a mean to obtain the generating function for clusters
ξ(z, t1, . . . , tk) where the occurrences of the word ui ∈ U are counted by the variable ti.
The cluster generating function Υ(z, t) related to occurrences of U is then defined9 by

Υ(z, t) = ξ(z, t, . . . , t). (27)

Finally the generating function of occurrences is by Equation (22)

F (z, x) =
1

1− z −Υ(z, x− 1)
,

9Doing the substitutions ti → t, we do not count the number of positions where there is a match, but add
up the number of matches with words of U at each matching position.
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and, since F (z, 1) = 1/(1 − z), we have Υ(z, 0) = 0. Setting Υt(z) = ∂
∂tΥ(z, t)

∣∣
t=0

and

Υtt(z) = ∂2

∂t2 Υ(z, t)
∣∣∣
t=0

and using basic algebra, we have

∑
n≥0

E[Xn]zn =
∂

∂x
F (z, x)

∣∣∣∣
x=1

=
Υt(z)

(1− z)2∑
n≥0

E[X2
n]zn =

∂2

∂x2
F (z, x)

∣∣∣∣
x=1

+
∂

∂x
F (z, x)

∣∣∣∣
x=1

=
2Υt(z)2

(1− z)3
+

Υtt(z) + Υt(z)
(1− z)2

.

It is easy to see that Υt(z) =
∑

u∈U π(u)z|u| (the clusters with one and only one marked
occurrence). The expression for Υtt(z) takes into account that some words of U are
factor of other ones

Υtt(z) = 2
∑

u,v∈U
u 6=v

π(u)|u|vz|u| + 2
∑

u,v∈U

∑
e∈Eu,v

π(ue)z|ue|.

After some algebra, we get the following result.

PROPOSITION 6.1. Let U = {u1, . . . , uk} be a pattern. The expected value and the
variance of the variable Xn counting the number of occurrences of U in a random text
of size n satisfy

E[Xn] =
∑
u∈U

π(u)(n− |u|+ 1),

1
n
Var[Xn] = π(U)−

∑
u,v∈U

π(u)π(v)(|u|+ |v| − 1)

+ 2
∑

u,v∈U
π(u)π(Eu,v) + 2

∑
u,v∈U
u 6=v

π(u)|u|v + o(1).

We point out that the last sum is a correcting factor and is non zero only if the set is
non reduced.

If the set contains only one word u, recalling that Eu,u is the strict autocorrelation
set of u, we obtain (as we should!) the classical result for the variance (see by instance
Theorem 7.14 in [Szpankowski 2001] book)

lim
n→∞

1
n
Var(Xn) = π(u) + 2π(u)π(Eu,u)− (2|u| − 1)π(u)2. (28)

6.2. Covariance of two patterns
We consider again a Bernoulli model and two patterns U and V. We use again the
notion of right extensions sets introduced in this article. The following theorem extends
the case handled by [Bender and Kochman 1993] where U and V are generalized words.

THEOREM 6.2. Let U = {u1, . . . , uk} and V = {v1, . . . , vj} be two patterns. The co-
variance of the variables Xn and Yn counting respectively the number of occurrences of
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U and V in a random text of size n verifies

1
n

Cov(Xn, Yn) = π(U ∩ V)−
∑

u∈U,v∈V
π(u)π(v)

(
|u|+ |v| − 1

)
+

∑
u∈U,v∈V

(
π(u)π(Eu,v) + π(v)π(Ev,u)

)

+
∑

u∈U,v∈V
u 6=v

(
|u|vπ(u) + |v|uπ(v)

)
+ o(1). (29)

PROOF. We consider here the weighted case where A(z) = z. Let U and V be two
sets of words. We first decompose as a direct sum the set U ∪ V:

U ∪ V = (U \ V)⊕ (V \ U)⊕ (U ∩ V).

In order to ease the notations, we index the variables in the generating function ξ(z, t)
by words, i.e., the variable tu corresponds to the word u. Then we consider the generat-
ing function of clusters for the three disjoint sets U ′ = U \V, V ′ = V \U , and W = U ∩V,
with t = (tu)u∈U∪V and the respective variables t1, t2 and t3 such that

Υ(z, t1, t2, t3) = ξ(z, t)|tu = t1 for u ∈ U \ V
tu = t2 for u ∈ V \ U
tu = t3 for u ∈ U ∩ V

; (30)

that is we simply substitute variables for words appearing in each of the three sets
with t1, t2 and t3.

Let F (z, x, y) be the corresponding generating function counting occurrences. We
have by Equation (22) and since occurrences in U ∩ V are marked two times (one x
for belonging to U and one y for belonging to V)

F (z, x, y) =
1

1− z −Υ(z, x− 1, y − 1, xy − 1)
. (31)

By construction, since F (z, 1, 1) = 1
1−z , one has Υ(z, 0, 0, 0) = 0. To simplify the nota-

tions, we set

Υi(z) = ∂
∂ti

Υ(z, t1, t2, t3)
∣∣∣
(t1,t2,t3)=(0,0,0)

for i ∈ {1, 2, 3}

Υij(z) = ∂2

∂ti∂tj
Υ(z, t1, t2, t3)

∣∣∣
(t1,t2,t3)=(0,0,0)

for i, j ∈ {1, 2, 3}.

By general mechanisms [Flajolet and Sedgewick 2009] we get from Equation (31)∑
n≥0

E(Xn)zn = ∂
∂xF (z, x, y)

∣∣
x=y=1

=
1

(1− z)2
(Υ1(z) + Υ3(z))

∑
n≥0

E(Yn)zn = ∂
∂y F (z, x, y)

∣∣∣
x=y=1

=
1

(1− z)2
(Υ2(z) + Υ3(z)) ,

which gives

E(Xn) =
∑
u∈U

(n− |u|+ 1)π(u), E(Yn) =
∑
u∈V

(n− |u|+ 1)π(u).
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We have also easy access to the covariance since∑
n≥0

E(XnYn)zn = ∂2

∂x∂y F (z, x, y)
∣∣∣
x=y=1

= 2 (Υ1(z)+Υ3(z))(Υ2(z)+Υ3(z))

(1−z)3
+ Υ12(z)+Υ13(z)+Υ23(z)+Υ33(z)+Υ3(z)

(1−z)2

= 2Υ1(z)Υ2(z)

(1−z)3
+ Υ12(z)

(1−z)2
+ 2Υ3(z)2

(1−z)3
+ Υ33(z)+Υ3(z)

(1−z)2

+ 2Υ3(z)(Υ1(z)+Υ2(z))

(1−z)3
+ Υ13(z)+Υ23(z)

(1−z)2
.

A Taylor expansion at z = 1 gives for i = 1, 2, 3 (with f ′(z) = ∂
∂z f(z))

Υi(z) = Υi(1)− (1− z)Υ′
i(1) + o(1− z).

Hence we get

E(XnYn) = (n + 1)(n + 2)
(
Υ1(1) + Υ3(1)

)(
Υ2(1) + Υ3(1)

)
+ (n + 1)

((
Υ′

1(1) + Υ′
3(1)

)(
Υ2(1) + Υ3(1)

)
+
(
Υ1(1) + Υ3(1)

)(
Υ′

2(1) + Υ′
3(1)

)
+ Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
+ o(n).

Now we can interpret each of the coefficients: we have for instance

Υ1(1) + Υ3(1) =
∑
u∈U

π(u),

Υ13(1) =
∑

u∈U\V

∑
v∈V∩U

(
π(u)|u|v + π(u)π(Eu,v) + π(v)|v|u + π(v)π(Ev,u)

)
.

Summarizing and after some computations, we get to Equation (29).

Example: variance-covariance matrix of a3 and a7. We apply the results of this sec-
tion to U = a3 and V = a7 in a Bernoulli model with p = π(a).

Let Xn and Yn count the number of occurrences of a3 and a7 in a random text of size
n. We denote

B11 = lim
n→∞

1
n
Var(Xn), B22 = lim

n→∞

1
n
Var(Yn), B12 = B21 = lim

n→∞

1
n

Cov(Xn, Yn).

We get by Equation (29),
π(a3)π(Ea3,a7) = p3(p5 + p6),
π(a7)π(Ea7,a3) = p7(p + p2),∣∣a7
∣∣
a3π(a7) = 5p7,∣∣a3
∣∣
a7π(a3) = 0,

(
∣∣a7
∣∣+ ∣∣a3

∣∣− 1)π(a7)π(a3) = 9p10

∣∣∣∣∣∣∣∣∣∣
=⇒ B12 = 5p7 + 2p8 + 2p9 − 9p10.
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Computing the variance-covariance matrix B(a3,a7) = (Bij) for i, j ∈ {1, 2}, and the
corresponding determinant ∆, we get

B(a3,a7) =

(
p3+2p3(p+p2)−5p6 p7(5+2p+2p2−9p3)

p7(5+2p+2p2−9p3) p7+2p7(p+p2+p3+p4+p5+p6)−13p14

)
,

∆ = |B(a3,a7)| = p10 + 4p11 + 8p12 + 5p13 − 25p14 − 20p15 − 24p16 + 67p17 − 16p20.

Let us remark that ∆ is zero if p = 0 or p = 1 and nowhere else. This corresponds to
a degeneracy of the system that can also be observed by using [Bender and Kochman
1993] constructions;

— if p = 0 the background texts have no letters a and both counts of a3 and a7 are zero.
— if p = 1 the texts are sequences of a. In such texts of length larger than 7, the number

of counts of a3 exceeds exactly by 4 the number of counts of a7.

In all other cases (p 6= 0 and p 6= 1), the results of [Bender and Kochman 1993] imply
as limit a Gaussian law of dimension 2 for the two joint counts.

Conclusion and perspectives
We obtained a detailed proof and an explicit expression of the multivariate generating
function counting texts according to their length and to their number of occurrences of
words from a finite set. This result facilitates access to various moments and may lead
to limiting distributions. From Bender and Kochman [Bender and Kochman 1993], we
expect to find mostly a multivariate normal law for word counts. Our approach can
possibly provide simpler criteria to decide if such a limiting law holds or not. Another
nice aspect of the inclusion-exclusion approach is that it provides explicit formulæ like
Equation (21) p. 19, whereas the Aho-Corasick construction does not give immediate
access to the structure of correlations of the words; this can be a crucial advantage
when looking for second moments of structures such as suffix-trees.

Ongoing work is more concerned with the complexity of the diverse approaches pre-
sented in this article. Also we plan to extend the analysis to more complex sources,
such as Markovian or dynamical sources (see Vallée [Vallée 2001]).
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and comparison with Régnier Szpankowski method. J. of Difference Equations and Applications 11, 15,
1265–1271.

KUPIN, E. AND YUSTER, D. 2010. Generalizations of the Goulden-Jackson method. Journal of Difference
Equations and Applications 16, 12, 1463–1480.

LOTHAIRE, M. 2005. Applied Combinatorics on Words. Encyclopedia of Mathematics. Cambridge University
Press.
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