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We consider a component of the word statistics known as clump; starting from a finite set of words, clumps are
maximal overlapping sets of these occurrences. This objecthas first been studied by Schbath [22] with the aim
of counting the number of occurrences of words in random texts. Later work with similar probabilistic approach
used the Chen-Stein approximation for a compound Poisson distribution, where the number of clumps follows a law
close to Poisson. Presently there is no combinatorial counterpart to this approach, and we fill the gap here. We also
provide a construction for the yet unsolved problem of clumps of an arbitrary finite set of words. In contrast with the
probabilistic approach which only provides asymptotic results, the combinatorial method provides exact results that
are useful when considering short sequences.
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1 Introduction
Counting words and motifs in random texts has provided extended studies with theoretical and practical
reasons. Much of the present combinatorial research has built over the work of Guibas and Odlyzko [9,
10] who defined the autocorrelation polynomial of a word. As an apparently surprising consequence of
their work, the mean waiting time for the first occurrence (orexpectation of the number of characters
read until finding the first occurrence) of the word111 in a Bernoulli string with probability1/2 for zeroes
and ones is larger than the mean waiting time for the first occurrence of the word100. This is due to the
fact that the words111 occur byclumpsor sets of overlapping occurrences of111 or, equivalently, inside
runs of at least three ones, the probability of extending a clump or a run by one position being1/2; this
implies that the average number of111 in a clump is larger than one; in contrast, there is only one100
in each clump of100. Since the probability that the word111 and the word100 start at a given position
both are1/8, the expectation of the interarrival time (or of the number of characters needed to find a new
occurrence once a clump has been read) of clumps of111 is larger than the expectation of the interarrival
time of clumps of100.

Historically, multiple word counting used different approaches for analysis of the reduced (and easier)
case where no word can be a factor of another word of the considered set of words and the general (and
harder) case. We analyze first in this article several statistics connected to clumps of a pattern, where
the pattern is one word or a reduced set of words. Our approachis based on properties of the Régnier-
Szpankowski [18] decomposition of languages along occurrences of the considered word or set of words
and on properties of the prefix codes generating the clumps. We provide explicit generating functions
in the Bernoulli model for statistics such as (i) the number of clumps, (ii) the number of occurrences
of words of the pattern, (iii) the number ofk-clumps (clumps with exactlyk occurrences of the words
of the pattern), (iv) the number of positions of the texts covered by clumps; these explicit results may
be extended to a Markov model, providing some technicalities. We get also to the same results in the
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Bernoulli model by an algorithmic approach where we construct deterministic finite automata recognizing
clumps in the general case. This approach extends directly to the Markov model. We obtain as a direct
consequence a Gaussian limit law for the number of clumps andthe size of texts covered by clumps in
random texts in the Bernoulli and Markov model.

Consider a rough first approximation for clumps of one word. If the probability occurrence of a word
w is small, the number of clumps of this word is likely to be alsosmall. Then the number of clumps
in texts of sizen is close to a Poisson law of parameterλ = n × P(a clump starts at positioni), where
i is a random position. Approximating further, the random number of occurrences of the wordw in
a clump follows a geometric law with parameterω, whereω is the probability of self-overlap of the
word. Schbath [22] gave the first moment of the number ofk-clumps (clumps wherew occurs exactlyk
times) and of the number of clumps of one word in Bernoulli texts. Reinert and Schbath [19] obtained in
the Markov case of any order a compound Poisson limit law for the count of number of occurrences of
reduced sets of words by the Chein-Stein method. See Reinertet al. [20] and Pape [16] for a review of
this approach and Barbouret al.[1] for an extensive introduction to the Poisson approximation. Recently,
Stefanovet al. [24] used a stopping time method to compute the distributionof clumps; their results are
not explicit and practical application of their method requires the inversion of a probability generating
function. Roquain and Schbath [21] provide also a probabilistic approach to the number of clumps. Both
approach are limited to the reduced case. In the context of analysing the insertion depth in suffix-trees,
Jacquet and Szpankowski [13] computed by combinatorial methods the generating function of clumps of
suffixes of a word.

We describe in Section 2 our notations. Section 3 describes the formal language approach based on
previous work of Régnier and Szpankowski and Section 4 provides the automaton construction for the
general case. We prove limit laws for the number of clumps andthe size of the texts covered by clumps
in Section 5.

2 Preliminaries
We consider a finite alphabetA. Unless explicitly stated when considering a Markov source, the texts are
generated by a non-uniform Bernoulli source over the alphabetA. Given a set of words, clumps of these
words may be seen as a generalization of runs of one letter.

Reduced set of words. A set of wordsV = {v1, . . . , vr} is reduced if novi is factor of avj with i
different ofj. For instance the set{aa, aba} is reduced whereas the sets{aa, aab}, {aa, baa}, {aa, baab}
are non-reduced.

Clumps and k-clumps. When considering a set of wordsV = {v1, . . . , vr} where each wordvi has
size at least2, a clump is a maximal set of occurrences of words ofV such that

– any two consecutive letters of the clump belong to (is a factor of) at least one occurrence of a word
from V ,

– either the clump is composed of a single occurrence that overlaps no other occurrence, or each
occurrenceoverlapsat least one other occurrence.

This definition naturally applies also to the case whereV is composed of a single word.
Goulden and Jackson [8] consideredclustersof words. We use as intermediate step the related notion

of clustering-word.

Definition 1 (Clustering words & Clumps) A clustering-wordfor the setV = {v1, . . . , vr} is a word
w = w[1..|w|] ∈ A∗ such that any two consecutive positions inw arecoveredby the same occurrence in
w of a wordv ∈ V . The positioni of the wordw is coveredby a wordv if v = w[(j − |v| + 1) . . . j] for
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somej ∈ {|v|, . . . , |w|} andj − |v| + 1 ≤ i ≤ j. More formally,w is a clustering-word for the setV if
we have

∀i ∈ {1, . . . , |w|−1} ∃ v ∈ V , ∃ p ∈ Posw(v) such that p − |v| + 1 < i + 1 ≤ p,

wherePosw(v) is the set of positions of occurrences ofv in w.
A clump in a textT , generically denoted here byK, is a maximal clustering-word in the sense that

there exists no occurrence of the setV in T that overlaps this clustering-word without being a factor of it.

Note that the clusters in the terminology of Goulden and Jackson are exactly subsets ofPosw(v) in our
settings. As example, considering the setV = {aba, bba} and the textT = bbbabababababbbbabaababb,
we have

T = bbbabababababbbbabaababb

where the clumps are underlined. The wordbbababababa beginning at the second position of the text is
a clump, and so are the wordsbbaba andaba beginning at the 15th and 20th positions. On the contrary,
the wordababa beginning at the sixth position is not a clump since it is not maximal; neither is a clump
the wordbbabaaba beginning at the 15th position, since its two-letters factor aa is neither a factor of an
occurrence ofaba nor of an occurrence ofbba.

We remark that a single word is a clustering-word and that, asmentioned previously, a clump may
be composed of a single word. Ak-clumpof occurrences ofV (denoted byKk) is a clump containing
exactlyk occurrences ofV .

Notations. We consider theresiduallanguageD = L.w− defined asD = {x, x ·w ∈ L}. Considering
two languagesL1 andL2, if we haveL1 ⊂ L2, we writeL2 − L1 = L2 \ L1.

Autocorrelations, correlations and right extension sets of words. We recall here the definition of
Right Extension Setsintroduced in Bassinoet al. [2]. This notion is a generalization of the correlation of
two words to the cases where one word may be factor of the otherone.

The right extension set of a pair of words (v1, v2) is

Ev1,v2
= { e | there existse′ ∈ A+ such that v1e = e′v2 with 0 < |e| < |v2|}.

The “usual” autocorrelation setCw,w of the wordw (denoted further byC when there is no ambiguity) is
defined as usual by

C = Cw,w = { e | there existse′ ∈ A⋆ such that v1e = e′v2 with |e| < |v2|}.

Remark that the empty wordε belongs to the autocorrelation setC. In contrast, we define thestrict
autocorrelation setC◦ by C◦ = C − {ε}.

We remark also thatC◦ is empty if the wordw has no autocorrelation.
If the wordv1 is not factor ofv2 the right extension set fromv1 to v2 is the usual correlation set of

Cv1,v2
of v1 andv2, defined as,

Cv1,v2
= { e | there existse′ ∈ A+ such that v1e = e′v2 with |e| < |v2|}.

Note also that the correlation set of two words may be empty. When we havew = v1 = v2, we get
Ew,w = C◦ = C − ε.

We have as examples

Caabaa,aab = {b, ab}, Cababa,ababa = {ε, ba, baba}, Eaaa,aaaa = {aa, aaa}.

Number of occurrences of words and clumps. We note respectivelyOw
n andOK

n the random variables
counting the number of occurrences of a wordw and the number of clumps of this word in random texts
of sizen. The random variableOKk

n counts occurrences ofk-clumps.
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Generating functions. For any languageL, we define its generating function in the Bernoulli model
by

L(z) =
∑

w∈L

πwz|w| =
∑

n≥0

fnzn,

whereπw is the probability of the wordw in the usual Bernoulli model (that is the product of the proba-
bility of the letters composing the word, with their multiplicities) andfn is the probability that a random
word of sizen belongs to the languageL.

We aim here at providing generating functions or explicit formulas for counting the number of clumps,
the total size of text covered by clumps or the number of clumps with exactlyk occurrences. This typically
corresponds when considering the objectu to multivariate generating functions such as

Fu(z, x) =
∑

T∈L

P(T )z|T |x|T |u =
∑

fn,ix
izn (1)

whereP(T ) is the weight (i.e., probability) of the textT among texts of same size,|T |u is the number of
occurrences of the objectu in the textT andfn,i is the probability that a text of sizen hasi occurrences
of this object. This extends naturally for counting more than one object by considering multivariate
generating functions with several parameters.

If the random variableXn counts the number of objects in texts of sizen, we get from Equation (1)

E(Xn) = [zn]
∂F (z, x)

∂x

∣

∣

∣

∣

x=1

, E(X2
n) = [zn]

∂

∂x
x

∂F (z, x)

∂x

∣

∣

∣

∣

x=1

.

Recovering exactly or asymptotically these moments follows then from classical methods.

3 Formal language approach
3.1 Régnier and Szpankowski decomposition

Our work extends the formal language approach of Régnier and Szpankowski [18]. We briefly recall their
approach. Considering one wordw, Régnier and Szpankowski use a natural parsing or decomposition of
texts with at least one occurrence ofw, parsing unambiguously a text with at least one occurrence of w
as follows:

1. the part of text from the beginning to the first occurrence of the word w belongs to theRight
language,

2. if there are any other occurrences of the wordw, each two consecutive occurrences are separated
by a word from theMinimal language,

3. the part of text from the last occurrence ofw to the end belongs to theUltimate language.

Moreover, there is aNot language of texts without any occurrence of the considered wordw. Régnier [17]
further extended this decomposition approach to a reduced set of words.

We follow here the presentation of Lothaire [14] (Chapter 7). Let V = {v1, . . . , vr} be a reduced set
of words. We have, formally

Definition 2 Right, Minimal, Ultimate and Not languages.

– The “Right” languageRi associated to the wordvi is the set of words

Ri = {r | r = e · vi and there is noυ ∈ V such thatr = xυy with |y| > 0}.
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– The “Minimal” languageMij leading from a wordvi to a wordvj is the set of words

Mij = {m | vi · m = e · vj and there is noυ ∈ V such thatvi · m = xυy with |x| > 0, |y| > 0}.

– The “Ultimate” language of words following the last occurrence of the wordvi (such that this
occurrence is the last occurrence ofV in the text) is the set of words

Ui = {u | there is noυ ∈ V such thatvi · u = xυy with |x| > 0}.

– The “Not” language is the set of texts where no word fromV occurs

N = {n | there is noυ ∈ V such thatn = xυy}.

The notationsR,M, U andN refer here to the Right, Minimal, Ultimate and Not languagesof a single
word.

We consider as example the wordw = ababa; in the following texts, the underlined words belong to
the setM; the overlined word does not since the occurrence represented in bold faces is an intermediate
occurrence.

ababaaaaaababa ababababbbababa abababa.

Considering the matrixM such thatMij = Mij and usingCij = Cvi,vj
as a shorthand, we have

⋃

k≥1

(

M
k
)

i,j
= A⋆ · vj + Cij − δijε, Ui · A =

⋃

j

Mij + Ui − ε, (2)

A · Rj − (Rj − vj) =
⋃

i

viMij , N · vj = Rj +
⋃

i

Ri (Cij − δijε) , (3)

where the Kronecker symbolδij is 1 if i = j and0 elsewhere. If the size of the texts is counted by the
variablez and the occurrences of the wordsv1, . . . , vr are counted respectively byx1, . . . , xr , we get the
matrix equation for the generating function of occurrences

F (z, x1, . . . , xr) = N (z) + (x1R1(z), . . . , xrRr(z))
(

I − M(z, x1, . . . , xr)
)−1







U1(z)
...

Ur(z)






.

In this last equation, we haveMij(z, x1, . . . , xr) = xjMij(z) and the generating functionsRi(z),
Mij(z), Uj(z) andN (z) can be computed explicitly from the set of Equations (2-3).

In particular, when considering the Bernoulli weighted case where the probability of the letters sum up
to 1 and a single wordw with πw = P(w), we have the set of equations

R(z) =
πwz|w|

D(z)
, M(z) = 1 +

z − 1

D(z)
, U(z) =

1

D(z)
, N (z) =

C(z)

D(z)
, (4)

whereD(z) = πwz|w| + (1 − z)C(z). Finally we get

A⋆ = N + RM⋆U =⇒ F (z, x) =
1

1 − z + πwz|w|
1 − x

x + (1 − x)C(z)

=
∑

n,k

fn,kxkzn.

In this last equation,fn,k is the probability that a text of sizen has exactlyk occurrences ofw.
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3.2 Clump analysis for one word
The decomposition of Régnier and Szpankowski is based on a parsing by the occurrences of the con-
sidered words. We use a similar approach, but parse with respect to the occurrences of clumps. When
they consider the minimal language separating two occurrences, these two occurrences may overlap; in
contrast, our approach forbids the overlap of clumps.

A clump of the wordw is basically defined asw C⋆
◦ , since any element ofC◦ concatenated to a cluster

extends this cluster. In generalC⋆
◦ is ambiguous as can be seen by considering the wordw = aaa, where

we haveC◦ = {a, aa}. We can however generate unambiguouslyC⋆
◦ as described in the next section.

3.2.1 A prefix code K to generate unambiguously C⋆

◦

We refer to Berstel and Perrin [4] for an introduction to prefix codes. See also Berstel [3] for an analysis
of counts of words of a patternV by semaphore codesV −A⋆VA+.

We will use the following lemma to derive generating functions.

Lemma 1 The prefix codeK = C◦ \ C◦A+ generates unambiguously the languageC⋆
◦ (i.e., we have

K⋆ = C⋆
◦ as languages).

Proof: See Figure 1 as illustration of this proof. It is clear thatK is prefix. Letw be the word of which
C◦ is the strict autocorrelation set. Considerv ∈ C◦. If v does not belong toK, thenv = κ1v

′ with
κ1 ∈ K ⊆ C◦ andv′ ∈ A+. Moreover since bothv and its prefixκ1 belong toC◦, there exist non-empty
wordsp, p′ ands′ such thatp = p′s′, wv = pw andwκ1 = p′w. Thereforewv′ = s′w andv′ ∈ C◦. As
|v′| < |v|; we may iterate the process on the wordv′. Since|v| is finite, after a finite number of steps,
we get to a decompositionw = κ1 . . . κj where eachκi is in K. SinceK is a code, the decomposition of
each word ofC◦ overK is unique and so is the decomposition of any word ofC⋆

◦ . 2

p w

w v

κ1 v′

p′ w

s′ w

Fig. 1: Proof of Lemma 1.

Moreover, forc1, c2 ∈ C◦ and |c1| < |c2|, the wordc1 is a proper suffix ofc2. From this property
we can deduce that there exists non-empty (and non necessarily distinct) wordsq1, q2, . . . , qk such that
K = {κ1, . . . , κk} can be writtenK = {q1, q2q1, . . . , qkqk−1 . . . q1}.

Example 1 Letw = abaabaaba. We have

abaabaaba|ε
abaaba|aba

aba|abaaba
a|baabaaba

=⇒ C = {ε, aba, abaaba, baabaaba} =⇒ K = {aba, baabaaba}.

Constructing the prefix-codeK. We use the following algorithm, that takes the set of periods(i.e., the
lengths of non-empty words inC) as input:

1. start with the wordw;

2. shift w to the right to the first self-overlapping position; letκ1 be the trailing suffix so obtained;
insert it in a trie;
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3. repeat shifting, obtaining new trailing suffixes; for each new suffix generated, try an insertion in
the trie; if you reach a leaf, drop the suffix; elsewhere insert it.

The worst case complexity for this construction isO(|w|), but the average complexity isO (|K| × log |K|),
the average path length of a trie built over|K| keys (under the simplifying hypothesis that the words inK
are independent and randomly generated; see Sedgewick and Flajolet [23]).

3.2.2 The language decomposition
Considering the wordw = aaaaa, we haveC◦ = {a, aa, aaa, aaaa} andK = {a}. Moreover, we have
M = {a, b(b + ab + aab + aaab + aaaab)⋆aaaaa}. We get hereK ⊂ M andM−K is a set of words
ending withw. The languagesM andK are connected by a simple property that we describe now.

Lemma 2 For any wordw with strict autocorrelation setC◦, prefix codeK generatingC⋆
◦ and minimal

languageM, there exists a non-empty languageL such that

K ⊂ M and M−K = Lw.

Proof: We haveK ⊂ C◦ ⊂ M. If h ∈ M−K, we can writewh = xw for somex.
Supposing that|h| < |w|, we haveh ∈ C◦. Since each word ofC◦ is decomposable into factors over

K (Lemma 1), ifh is not an element ofK, there is a previous match withw in w.h, andh is not inM;
elsewhereh is in K, which is impossible since we considered the setM−K.

If |h| = |w|, we haveh = w ∈ M andh 6∈ K and thereforew ∈ M − K. The last possible case is
|x| > |w| which implies thath = y.w with |y| > 0. 2

This leads immediately to the fundamental lemma.

Lemma 3 The basic equation for the unambiguous combinatorial decomposition of texts on the alpha-
betA is

A⋆ = N + Rw−(wC⋆)
(

(M−K)w−(wC⋆)
)⋆U . (5)

Proof: The Equation (5) follows from the parsing of any given text.
Either there is no occurrence ofw which means that the text belongs to the “Not” languageN .
If there is at least one clump occurrence, we parse as follows: we read until the first occurrence of the

clump (a word ofR). This occurrence may be followed by any number of overlapping occurrences ofw
(corresponding to a word ofC⋆ and forming a clump). Then we have to wait again the (possible) next
occurrence ofw, thus reading a word ofM−K. Then a new clump is parsed (corresponding to a word
of C⋆). We repeat the last two steps if there are other occurrencesof w. Finally we end by reading a word
of U which add no occurrence. 2

We can now use the preceding lemma to count several parameters related to the clumps.

3.2.3 Generating functions for the clumps of one word
Let Γ(z, x, τ) be the generating function where the variablex counts the number of occurrences ofw in
a clump, and the variableτ counts the total number of letters inside clumps; the variable z is used here to
count the total length of the texts. We also use a variableγ to count the number of clumps. We have the
following theorem.

Theorem 1 In the weighted model such thatA(z) = z (i.e. where weights of letters of the alphabetA
are probabilities in the Bernoulli model), the generating function counting the number of occurrences of
a wordw and the number of positions covered by the clumps ofw verifies

F (z, Γ(z, x, τ)) = N (z) +
R(z)

πwz|w|
Γ(z, x, τ)

1

1 − M(z) −K(z)

πwz|w|
Γ(z, x, τ)

U(z), (6)
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where the generating function of the clumps verifies

Γ(z, x, τ) = xπw(zτ)|w| 1

1 − xK(zτ)
. (7)

As a consequence, the generating function counting also thenumber of clumps is

G(z, x, τ, γ) = F (z, γΓ(z, x, τ)).

Proof: This theorem follows from Lemma 1 and from a direct translation of Equation (5) into generating
functions (using the fact that clumps ofw correspond to termswC⋆ in Equation (5)). 2

3.2.4 Occurrences of clumps.
By consideringF (z, γΓ(z, 1, 1)) in Equation (6) and using Equation (7) we obtain the bivariate generat-
ing function counting the number of clumps

O(K)(z, γ) =
∑

n,i

P(OK

n = i)γizn = N (z) +
γR(z)U(z)

1 − γM(z) + (γ − 1)K(z)
. (8)

We get by differentiation and by using the set of Equations (4)

∑

n

E(OK

n )zn =
∂O(K)(z, γ)

∂γ

∣

∣

∣

∣

γ=1

=
R(z)U(z)(1 −K(z))

(1 −M(z))2
=

πwz|w|(1 −K(z))

(1 − z)2
.

We get similarly by differentiating twice the generating function of the second moment ofOK
n .

We obtain mechanically by Taylor expansions in a neighborhood ofz = 1 the following result.

Proposition 1 (Expectation and variance of the number of clumps – case of one word)In the Bernoulli
model, the expectation and variance of the number of clumps in texts of sizen is given by

E(OK

n ) = (n − |w| + 1)πw(1 −K(1)) − πwK′(1)

Var(OK

n ) = n × (1 −K(1))2Vw − n × πw(1 −K(1))(K(1) − 2πwK′(1)) + O(1),

whereVw = πw

(

2C(1) − 1 − (2|w| − 1)πw

)

andK(z) is the generating function of the prefix code
generatingC⋆

◦ (see Lemma 1).

This is to compare with the counting of occurrences of a single wordw

E(Ow
n ) = (n − |w| + 1)πw, Var(Ow

n ) = n × Vw + O(1).

We obtain as expected smaller expectation and variance for the number of clumps than for the number of
word occurrences, with a characteristic reduction coefficient(1 −K(1)). We remark here that whenC =
{ε} (no autocorrelation), we haveK(z) = 0 and thereforeE(OK

n ) = E(Ow
n ) andVar(OK

n ) = Var(Ow
n )

as expected.

3.2.5 Occurrences of k-clumps.
By decomposing the equation of a clump of occurrences ofw, we can use a formal variablev and write

wC⋆ = w + wK + wK2 + · · · + wKk−2 + vwKk−1 + wKk + . . .

to count clumps with exactlyk occurrences ofw.
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DenotingΓk(z, v) the generating function which counts with the variablez the number of letters inside
the clumps and where the variablev selectsk-clumps, we have

Γk(z, v) = πwz|w|

(

1

1 −K(z)
+ (v − 1)K(z)k−1

)

.

Substituting this in Equation (6) gives

O(Kk)(z, v) =
∑

P(OKk
n = i)vizn = F (z, Γk(z, v)),

whereF (z, Γ) is given by Equation (6).

3.3 Clumps of a finite set of words
We provide in this section a matricial solution for countingclumps of a reduced finite set of words. For
sake of simplicity we consider a set of two wordsV = {v1, v2} but our approach is amenable to any
reduced finite set.

Similarly to the one word case, we are lead to consider prefix codes generating the correlation of two
words. ConsideringC⋆

ij is not relevant when we havei 6= j. However, we can write as previously
Kij = Cij − CijA+, which defines minimal correlation languages with good properties.

Following a path similar to the proof of Lemma 2, there existsa languageL such that

Mij −Kij = L · vj .

We can therefore define the minimal correlation matrixK, the matrixS = K⋆, and write a clump matrix
G as follows

K =

(

K11 K12

K21 K22

)

, S = K
⋆, G =

(

v1S11 v1S12

v2S21 v2S22

)

.

In this equation,Gij represents the set of clumps starting with the wordvi and finishing with the word
vj . We obtain now a fundamental matricial decomposition that can be used for further analysis,

A⋆ = N + (R1v
−
1 ,R2v

−
2 ) G

(

(M − K)−G

)⋆
(

U1

U2

)

,

where we have(M − K)−ij = (Mij −Kij)v
−
j .

4 Automaton approach
We provide in this section an algorithmic approach by automata for evaluating parameters of clumps for
the case of general arbitrary finite sets of words, a questionthat has never been previously considered in
the literature.

For a setV = {v1, . . . , vr} where the right extension set fromvi to vj is denoted byEi,j we construct
a kind of “Aho-Corasick” automaton on the following set of wordsX

X = {vi · w | 1 ≤ i ≤ r andw ∈ {ε} ∪ Ei,j for somej}.

The considered automatonT is built onX with set of statesQ = Pref(X) and start or initial states = ε.
The transition function is defined (as in the Aho-Corasick construction) by

δ(p, x) = the longest suffix ofpx ∈ Pref(X).

According to what we want to count or recognize as a language we are led to consider several cases for
the set of terminal states:



10 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

– Occurrences ofvi ∈ U . We define the set of terminal statesTi as

Ti = Pref(X) ∩ A⋆vi.

– Occurrences ofU . To count all occurrences, we simply consider the set of terminal states

T = ∪r
i=1Ti = Pref(X) ∩ A⋆V .

– Clumps.We define the set of final statesTclumps in order to accept the language of words ending by
the first occurrence of a word in a clump by

Tclumps = V \ VA+.

Of course this construction does not give in general a minimal automaton. Remark that using different
marks for the different sets of terminal states permits to consider simultaneously the different parameters.
The automaton is complete and deterministic so that the translation to generating function is straightfor-
ward. We can easily derive from this automaton the generating functionF (z, γ, τ, x1, . . . , xr) wherexi

marks an occurrence ofvi, γ marks the number of clumps, andτ the total number of letters inside the
clumps. Indeed, one has to mark some transitions in the adjacency matrixJ according to some simple
rules.

– Any transition, labeled by a letterx ∈ A, is marked byzπ(x) whereπ(x) is a formal weight forx
(usually either the probability ofx or 1 if we are considering enumerative generating functions).

– To count occurrences of thevi’s, we mark with the formal variablexi all transitions going to states
in Ti.

– For counting the number of clumps, we mark byγ the transitions going to states inTclumps =
V \ VA+, that is states corresponding to first occurrences inside a clump.

– Finally, for the total length covered by clumps, we put a formal weight on the transitions going to
a statep ∈ T by taking into account the number of symbols between the lastoccurrence of a word
of V and the new one at the end ofp. Let us define for a statep (corresponding to a word with an
occurrence of some word ofV at the end) the functionℓ(p) as the maximal proper prefixq of p in
Pref(X) ∩ A⋆V if it exists orε if there is no such prefix. Then we mark all transitions going to
such a statep ∈ T with τ |p|−|ℓ(p)|.

We notezJ(γ, τ, x1, . . . , xr) = z(Ji,j)1≤i,j≤N the transition matrix of the automaton with the previously
defined formal labels on transitions, whereN is the total number of states of the automaton. Assuming
that the initial state has index 1, we get to the generating function that counts the number of clumps and
the size of covered positions

F (z, γ, τ, x1, . . . , xr) = (1, 0, . . . , 0)

(

I − zJ(γ, τ, x1, . . . , xr)

)−1
( 1

...
1

)

. (9)

A formal proof of this result (omitted here) relies on the following properties. For a paths
h−→ p in the

automaton starting at the initial states and ending on statep after reading a wordh, we have: (a)p ∈ Ti if
and only ifh ends with an occurrence ofvi; (b) p ∈ Tclumps if and only if h ends with the first occurrence
of V inside a clump. Additionally, to properly consider the length of a clump, we have to prove that inside
a clump, the increase in length of the clump between two occurrences ofV only depends on the state we
are reaching.

Note that the multivariate generating function can be obtained by a generalization of the Chomsky-
Scützenberger algorithm [5] and that it is possible to transform the automaton constructed for a Bernoulli
source to an automaton handling a Markov source of any order (see Nicodèmeet al. [15]).
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Examples. Two automata are depicted in Figure 2. The first one (top) corresponds to the setV =
{bababa}, which givesEu = {ba, baba} andX = {bababa, babababa, bababababa}. The second one
(bottom) corresponds to the setV = {u1 = aabaa, u2 = baab}, for which the matrix of right extension
setsE and setX are respectively

E =

(

baa + abaa b
aa aab

)

, andX = {aabaa, aabaab, aabaabaa, aabaaabaa, baab, baabaa, baabaab}.

A/B + + +
b a b a b a(γτ6x) b a(τ2x) b a(τ2x)

b

A +
+

+

+a

a b a a(γτ5x1)

a
b

a a(τ4x1)

b(τx2)

a
a(τ2x1)

B + +

+
b

a a b(γτ4x2) a a(τ2x1)
b(τx2)

a

b(τx2) b(τx2)

a

a
a

Fig. 2: Two examples of automata, for (top)V = {bababa} and (bottom)V = {v1 = aabaa, v2 = baab}.
The automata are complete and deterministic; however, for sake of clarity, all transitions labeled bya andb ending
respectively on stateA andB are omitted (which corresponds to the initial state on the first figure). The sign ‘+’
indicates that the corresponding prefix (or, equivalently,state) ends with some occurrence ofV. The double oval
attribute indicates the states where we know that we have entered a new clump. The formal weights on transitions (γ

for the number of clumps,τ for the total length of clumps, andxi’s for occurrences ofvi’s) are displayed between
parenthesis.

5 Limit laws
We consider here two cases of practical importance.

(a) For clumps of a finite set of words letJ(γ, τ) be the matrix associated to the automatonT described
in the preceding section whereγ counts the number of clumps andτ the total size of texts covered
by clumps. Since each states ∈ Tclumps that recognizes the beginning of a clump is recurrent (that
is, here, the final states are always attainable whatever thestate we start from), the number of times
each of these states is reached in pathes of lengthn (which is equivalent to take thenth power ofJ)
is Θ(n); we have a finite number of such states and therefore the number of occurrences of clumps
is Θ(n). The corresponding asymptotic normal limit law is a good approximation in the central
regime when the size of texts is large.

(b) When the size of the texts is relatively small in comparisons with the size of the words of the
pattern, we expect a Poisson law. We give in this section a precise and computable asymptotic
Poisson-like approximation for this case when consideringclumps of a single word.
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The matrixJ(γ, τ) is definite and positive, which entails the existence of a unique positive dominant
eigenvalueλ(γ, τ) for the matrix (see Gantmacher [7]). We write hereλγ(r) = λ(r, 1) andλτ (s) =
λ(1, s) (according to the variable we fix to one).

As a consequence, we have the following theorem.

Theorem 2 Let OK
n andT K

n be the variables counting respectively the number of clumpsand the total
number of positions covered by the clumps in random texts of sizen. We have asn → ∞.

– For clumps of any finite set of words, ifOK
n = Θ(n), in the Bernoulli and Markov models, we have

P

(

OK
n − µn

σ
√

n
≤ y

)

→ 1√
2π

∫ y

−∞

e−t2/2dt,

where

µ = E(OK

n ) = nλ′
γ(1) + O(1) and σ2 = Var(OK

n ) = n(λ′′
γ(1) + λ′

γ(1) − λ′
γ(1)2) + O(1).

A similar law occurs for the number of covered positionsT K
n by replacingλγ byλτ .

– For clumps of one word (which are not powers of a letter), ifOK
n = O(1), in the Bernoulli model,

there existsρ > 1 and two polynomialsP (z) andQ(z), whereρ, P (z) andQ(z) are computable,
such that,

P(OK

n = k) =
πwρ|w|

Q(ρ)
× 1

k!

(

ρP (ρ) × n

(1 −K(ρ))Q(ρ)

)k

× ρ−n

(

1 + O

(

1

n

))

. (10)

Proof: (sketch)
Normal limit law.We consider the random variableOK

n . We have from Equation (9)

O(K)(z, r) = F (z, r, 1, . . . , 1) =
∑

n,i

P(OK

n = i)rizn.

Since the matrixJ is definite positive, there is a positive real dominant eigenvalueλγ(r). This eigenvalue
corresponds to a dominant real positive singularity of order one1/λγ(r) of modulus strictly smaller than
the moduli of the other singularities. Applying a Cauchy integral along a circle of radiusR > 1/λγ(r)
and with anR smaller than the moduli of the other singularities providesan expression

φn(r) = [zn]O(K)(z, r) = c(r)
(

λγ(r)
)n

.

Using next asn tends to infinity the large powers Theorem of Hwang [11, 12] onφn(r) provides the
asymptotic normal law. See Nicodèmeet al. [15] for details.
Poisson law for rare words.We consider a long enough wordw (typically of sizeΘ(log n)) so that
the number of occurrences isO(1). Let p be the maximal probability of letters of the alphabet. Taking
a Taylor expansion ofO(K)(z, γ) in Equation (8) atγ = 0, and considering thekth Taylor coefficient
provide a rational generating functionHk(z) = [γk]O(K)(z, γ) given by the equation

Hk(z) =
R(z)U(z)(M(z) −K(z))k−1

(1 −K(z))k
=

πwz|w|
(

z − 1 + (1 −K(z))D(z)
)k−1

(1 −K(z))k(D(z))k+1
. (11)

Following Fayolle [6] and using Rouché theorem, there is a single rootρ of D(z) = πwz|w|+(1−z)C(z)
inside the disk|z| < 1/p. We claim that(1 − K(z)) has no roots inside this disk. Ifw 6= αi for α ∈ A,
we haveD(1/p) < 0 for all values ofp. We also haveD(0) = πw > 0; thereforeρ is real positive.

Writing D(z) = Q(z)(1 − z/ρ) andP (z) = z − 1 + (1 −K(z))D(z) provides Equation (10). 2

This Poisson-like limit has been observed for occurrences of one word by Régnier and Szpankowski [18]
in the Bernoulli and Markov models; we conjecture the same result for the count of clumps of one word
for rare words in the Markov model.
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6 Conclusion
We provided in this article explicit formulas for the generating function counting simultaneously param-
eters of clumps of reduced set of words; these parameters arethe number of occurrences of the clumps,
the total size or number of positions of the texts covered by the clumps and the number of occurrences
of words of the considered set. We also provide an algorithmic construction by automata that allows the
computation of this generating function in the general caseof non-reduced sets of words.

An extension of our analysis could lead to a combinatorial analysis of tandem repeatsor multiple
repeats that occur in genomes; large variations of such repeats are characteristic of some genetic diseases.

As mentioned previously, providing explicit expressions in the Markov case for reduced sets requires
only some technicalities. On the contrary, finding explicitexpressions for parameters of clumps in the
non-reduced case remains unsolved.

How does our approach extends to clumps of regular expressions? In this challenging case the star-
height theorem implies that we cannot in general find a finite set of wordsvi and a finite set of prefix
codesKi with 1 ≤ i ≤ ℓ such that the language

⋃

1≤i≤ℓ vi(Ki)
⋆ describes the clumps.
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