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We consider a component of the word statistics known as clstgting from a finite set of words, clumps are
maximal overlapping sets of these occurrences. This oljastfirst been studied by Schbath [22] with the aim
of counting the number of occurrences of words in randomstekiater work with similar probabilistic approach
used the Chen-Stein approximation for a compound Poisstritdition, where the number of clumps follows a law
close to Poisson. Presently there is no combinatorial @spatt to this approach, and we fill the gap here. We also
provide a construction for the yet unsolved problem of clsropan arbitrary finite set of words. In contrast with the
probabilistic approach which only provides asymptotiautes the combinatorial method provides exact results that
are useful when considering short sequences.
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1 Introduction

Counting words and motifs in random texts has provided eledrstudies with theoretical and practical
reasons. Much of the present combinatorial research h#tsoer the work of Guibas and Odlyzko [9,
10] who defined the autocorrelation polynomial of a word. Asapparently surprising consequence of
their work, the mean waiting time for the first occurrence ¢apectation of the number of characters
read until finding the first occurrence) of the wartl in a Bernoulli string with probability/2 for zeroes
and ones is larger than the mean waiting time for the first meoee of the word 00. This is due to the
fact that the wordg 11 occur byclumpsor sets of overlapping occurrencesldfl or, equivalently, inside
runs of at least three ones, the probability of extendinguangl or a run by one position beirige; this
implies that the average numberf1 in a clump is larger than one; in contrast, there is only 0@

in each clump ofl00. Since the probability that the wordd 1 and the wordl00 start at a given position
both arel/s, the expectation of the interarrival time (or of the numbkcharacters needed to find a new
occurrence once a clump has been read) of clumps bfs larger than the expectation of the interarrival
time of clumps of100.

Historically, multiple word counting used different appaes for analysis of the reduced (and easier)
case where no word can be a factor of another word of the cereidset of words and the general (and
harder) case. We analyze first in this article several sizdisonnected to clumps of a pattern, where
the pattern is one word or a reduced set of words. Our apprsdeased on properties of the Régnier-
Szpankowski [18] decomposition of languages along ocoges of the considered word or set of words
and on properties of the prefix codes generating the clumpes.pidvide explicit generating functions
in the Bernoulli model for statistics such as (i) the numbieclamps, (ii) the number of occurrences
of words of the pattern, (iii) the number éfclumps (clumps with exactly occurrences of the words
of the pattern), (iv) the number of positions of the textserad by clumps; these explicit results may
be extended to a Markov model, providing some technicalit/e get also to the same results in the
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Bernoulli model by an algorithmic approach where we corgdttleterministic finite automata recognizing
clumps in the general case. This approach extends directlyet Markov model. We obtain as a direct
consequence a Gaussian limit law for the number of clumpglandize of texts covered by clumps in
random texts in the Bernoulli and Markov model.

Consider a rough first approximation for clumps of one wofdhé probability occurrence of a word
w is small, the number of clumps of this word is likely to be atsnall. Then the number of clumps
in texts of sizen is close to a Poisson law of parameter= n x P(a clump starts at positio), where
1 is a random position. Approximating further, the random temof occurrences of the word in
a clump follows a geometric law with parametey wherew is the probability of self-overlap of the
word. Schbath [22] gave the first moment of the numbet-afumps (clumps where occurs exactly:
times) and of the number of clumps of one word in BernoulliteReinert and Schbath [19] obtained in
the Markov case of any order a compound Poisson limit lawHerdount of number of occurrences of
reduced sets of words by the Chein-Stein method. See Rehalti[20] and Pape [16] for a review of
this approach and Barboat al.[1] for an extensive introduction to the Poisson approxioratRecently,
Stefanowet al. [24] used a stopping time method to compute the distributiociumps; their results are
not explicit and practical application of their method re&ga the inversion of a probability generating
function. Roquain and Schbath [21] provide also a probstiilapproach to the number of clumps. Both
approach are limited to the reduced case. In the contextalfsing the insertion depth in suffix-trees,
Jacquet and Szpankowski [13] computed by combinatoriahaust the generating function of clumps of
suffixes of a word.

We describe in Section 2 our notations. Section 3 describe$armal language approach based on
previous work of Régnier and Szpankowski and Section 4iges/the automaton construction for the
general case. We prove limit laws for the number of clumpsthedsize of the texts covered by clumps
in Section 5.

2 Preliminaries

We consider a finite alphabgt. Unless explicitly stated when considering a Markov sopttoe texts are
generated by a non-uniform Bernoulli source over the alphdb Given a set of words, clumps of these
words may be seen as a generalization of runs of one letter.

Reduced set of words. A set of wordsY = {v1,...,v,} is reduced if nov; is factor of av; with ¢
different ofj. Forinstance the sétia, aba} is reduced whereas the séts:, aab}, {aa, baa}, {aa, baadb}
are non-reduced.

Clumps and k-clumps. When considering a set of wordé = {vy,...,v,} where each word; has
size at leas®, a clump is a maximal set of occurrences of word¥afuch that

— any two consecutive letters of the clump belong to (is aofaaf) at least one occurrence of a word
fromV,

— either the clump is composed of a single occurrence thalap&no other occurrence, or each
occurrenceoverlapsat least one other occurrence.

This definition naturally applies also to the case wheiis composed of a single word.
Goulden and Jackson [8] considerddstersof words. We use as intermediate step the related notion
of clustering-word

Definition 1 (Clustering words & Clumps) A clustering-wordor the sety = {vy,...,v,} is a word
w = w[l..]lw|] € A* such that any two consecutive positiongimre coveredby the same occurrence in
w of awordv € V. The position of the wordw is coveredby a wordv if v = w[(j — |v| + 1) ... j] for
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somej € {|v|,...,|w|} andj — |v| + 1 < i < j. More formally,w is a clustering-word for the séf if
we have

Vie{l,...,Jlw|-1} Jv eV, IpePos,(v) suchthat p—|v|+1<i+1<p,

wherePos,, (v) is the set of positions of occurrencesudh w.
A clumpin a textT', generically denoted here b§, is a maximal clustering-word in the sense that
there exists no occurrence of the $&in 7' that overlaps this clustering-word without being a factbito

Note that the clusters in the terminology of Goulden and Saclare exactly subsets s, (v) in our
settings. As example, considering the ¥et {aba, bba} and the texl” = bbbabababababbbbabaababb,
we have

T = bbbabababababbbbaba ababb

where the clumps are underlined. The wébdbabababa beginning at the second position of the text is
a clump, and so are the worélkaba andaba beginning at the 15th and 20th positions. On the contrary,
the wordababa beginning at the sixth position is not a clump since it is naiimal; neither is a clump
the wordbbabaaba beginning at the 15th position, since its two-letters faaiois neither a factor of an
occurrence ofiba nor of an occurrence dfba.

We remark that a single word is a clustering-word and thatnastioned previously, a clump may
be composed of a single word. #&clumpof occurrences oV’ (denoted bygy) is a clump containing
exactlyk occurrences op.

Notations. We consider theesidualanguageD = L.w~ defined a® = {z, x-w € L}. Considering
two language£; andL,, if we havel; C Lo, we write Lo — L1 = L2\ L1.

Autocorrelations, correlations and right extension sets bwords. We recall here the definition of
Right Extension Sefsitroduced in Bassinet al.[2]. This notion is a generalization of the correlation of
two words to the cases where one word may be factor of the otieer

The right extension set of a pair of words (v5) is

Evve ={e | thereexiste’ € AT suchthat vie =¢'vy With0 < |e| < |va]}.

The “usual” autocorrelation sé€, ,, of the wordw (denoted further b when there is no ambiguity) is
defined as usual by

C=Cypw=1{e | thereexists’ € A* suchthat vie=¢c'vy with|e| < |v2]}.

Remark that the empty wored belongs to the autocorrelation st In contrast, we define thstrict
autocorrelation sef, by C, = C — {¢}.

We remark also that, is empty if the wordw has no autocorrelation.

If the word v, is not factor ofv, the right extension set fromy to vs is the usual correlation set of
Cy, v, Of v1 @andvy, defined as,

Covvs ={ € | thereexiste’ € AT suchthat vie =e€'vy  with [e] < |va|}.

Note also that the correlation set of two words may be empthel\we haveyr = v, = v, we get
gw,w = Co =C—e.
We have as examples

Caabaa,aab = {bv ab}, Cababa,ababa = {57 ba, baba}, gaaa,aaaa = {CLCL, aaa}~

Number of occurrences of words and clumps. We note respectivel” andO:* the random variables
counting the number of occurrences of a warénd the number of clumps of this word in random texts
of sizen. The random variabl®®* counts occurrences éfclumps.
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Generating functions. For any languag&, we define its generating function in the Bernoulli model

by
L(z) = Z T2l = Z fn2",

weLl n>0

wherer,, is the probability of the word in the usual Bernoulli model (that is the product of the proba
bility of the letters composing the word, with their muliigities) andf,, is the probability that a random
word of sizen belongs to the language

We aim here at providing generating functions or explicitfalas for counting the number of clumps,
the total size of text covered by clumps or the number of clsimiph exactlyk occurrences. This typically
corresponds when considering the objett multivariate generating functions such as

Fu(z,z) = Z P(T)ZlTlllTlu = Z fn,ifl:izn (1)

TeL

whereP(T') is the weight (i.e., probability) of the teft among texts of same siz4,|,, is the number of
occurrences of the objeatin the textI’ andf, ; is the probability that a text of size has: occurrences
of this object. This extends naturally for counting morenthane object by considering multivariate
generating functions with several parameters.

If the random variableX,, counts the number of objects in texts of sizeve get from Equation (1)

OF (z,x)
Oz ’

x=1

B(x2) = [ 2 0 0)

BlXn) = "] or" " oa

x=1

Recovering exactly or asymptotically these moments fadltiven from classical methods.

3 Formal language approach
3.1 Régnier and Szpankowski decomposition

Our work extends the formal language approach of RégnigSapankowski [18]. We briefly recall their
approach. Considering one woud Régnier and Szpankowski use a natural parsing or decatigrosf
texts with at least one occurrencewf parsing unambiguously a text with at least one occurrefhee o
as follows:

1. the part of text from the beginning to the first occurren€¢he wordw belongs to theRight
language,

2. if there are any other occurrences of the wardeach two consecutive occurrences are separated
by a word from theMinimal language,

3. the part of text from the last occurrencewoto the end belongs to thditimatelanguage.

Moreover, there is &lotlanguage of texts without any occurrence of the considerrd w. Régnier [17]
further extended this decomposition approach to a redueteaf svords.

We follow here the presentation of Lothaire [14] (Chapter[3tV = {v4,...,v,} be a reduced set
of words. We have, formally

Definition 2 Right, Minimal, Ultimate and Not languages.

— The “Right” languageR; associated to the word, is the set of words

R; = {r|r =e- v, andthereis na € V such thatr = zvy with |y| > 0}.
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— The “Minimal” languageM;; leading from a word; to a worduv; is the set of words

M;; ={m|v;-m = e-v; and there is n@ € V such that, - m = zvy with |z| > 0, |y| > 0}.

— The “Ultimate” language of words following the last occarnce of the word); (such that this
occurrence is the last occurrence¥fin the text) is the set of words

U; = {u| thereis nov € V such that; - u = zvy with |z| > 0}.

— The “Not” language is the set of texts where no word fidraccurs

N = {n | thereis nov € V such that, = zvy}.

The notationsk, M, U and\ refer here to the Right, Minimal, Ultimate and Not languagga single
word.

We consider as example the ward= ababa; in the following texts, the underlined words belong to
the setM; the overlined word does not since the occurrence repredéntold faces is an intermediate
occurrence.

ababaaaaaababa ababababbbababa abababa.

Considering the matri# such thatl;; = M;; and using’;; = C,, »; as a shorthand, we have

U (Mk)zj ZA*-Uj—i-Cij—(Sij&, uq.AZUM” +U; — ¢, (2)
k>1 ’ j
ARy =Ry —vj) = JuiMiy, N -vj =Ry +[JRi (Ciy — di5¢) , ©)

where the Kronecker symbé}; is 1 if i = j and0 elsewhere. If the size of the texts is counted by the
variablez and the occurrences of the words . . . , v, are counted respectively by, . . ., z,., we get the
matrix equation for the generating function of occurrences

L{l(z)
F(z,21,.. . 2) = N(2) + (@1 R1(2), - 2R (2)) (T = Mz, 21, ) T :
U (2)
In this last equation, we havil;;(z, z1,...,z,) = z;M,;(z) and the generating functior8;(z),

M;;(z),U;(z) and N (z) can be computed explicitly from the set of Equations (2-3).
In particular, when considering the Bernoulli weightedecagere the probability of the letters sum up
to 1 and a single wordv with 7, = P(w), we have the set of equations

T2l B z—-1 . 1 ) = C(z)
Dy ME=1+ U(z) = N(z) = 5=, @)

R(:) = 5o

whereD(z) = w2/ + (1 — 2)C(z). Finally we get

1
A =N +RMU = F(z,x)= T—= = an,kl‘kzn~
1- w ol — —————— n,
Sy s B

In this last equationf;,  is the probability that a text of size has exactly: occurrences ofv.
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3.2 Clump analysis for one word

The decomposition of Régnier and Szpankowski is based aarsing by the occurrences of the con-
sidered words. We use a similar approach, but parse witreotdp the occurrences of clumps. When
they consider the minimal language separating two occue®rthese two occurrences may overlap; in
contrast, our approach forbids the overlap of clumps.

A clump of the wordw is basically defined as CZ, since any element @f, concatenated to a cluster
extends this cluster. In gene@ is ambiguous as can be seen by considering the wottaaa, where
we haveC, = {a, aa}. We can however generate unambiguow$ias described in the next section.

3.2.1 A prefix code K to generate unambiguously C*

We refer to Berstel and Perrin [4] for an introduction to prefodes. See also Berstel [3] for an analysis
of counts of words of a patteit by semaphore codés — A*V AT,
We will use the following lemma to derive generating funoso

Lemma 1 The prefix codeC = C, \ C../A* generates unambiguously the languagie(i.e., we have
K* = Cy as languages).

Proof: See Figure 1 as illustration of this proof. It is clear tiats prefix. Letw be the word of which
C, is the strict autocorrelation set. Considerc C,. If v does not belong téC, thenv = kv’ with
k1 € K C C, andv’ € A™. Moreover since both and its prefixs; belong toC,, there exist non-empty
wordsp, p’ ands’ such thap = p's’, wv = pw andwk; = p’w. Thereforewv’ = s'w andv’ € C,. As
[v'| < |v|; we may iterate the process on the werd Since|v| is finite, after a finite number of steps,
we get to a decompositian = «; ... k; where each; is in IC. SincelC is a code, the decomposition of

each word of’, over K is unique and so is the decomposition of any word pf O
P w
w v
K1 v’
P’ w
s’ ‘ w

Fig. 1: Proof of Lemma 1.

Moreover, forci,ca € C, and|ci| < |c2l, the wordc; is a proper suffix ofs. From this property
we can deduce that there exists non-empty (and non nedgstiatinct) wordsqs, g2, . . ., gx such that
K ={k1,...,kx} can be writterlC = {q1, q2q1, - - -, @k Q-1 - - - @1 }

Example 1 Letw = abaabaaba. We have

abaabaabale
abaaba|aba
abalabaaba
albaabaaba

= C = {e,aba,abaaba,baabaaba} = K = {aba,baabaaba}.

Constructing the prefix-code/C. We use the following algorithm, that takes the set of peripés, the
lengths of non-empty words ifi)) as input:

1. start with the wordy;

2. shiftw to the right to the first self-overlapping position; ket be the trailing suffix so obtained;
insert it in a trie;
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3. repeat shifting, obtaining new trailing suffixes; for baew suffix generated, try an insertion in
the trie; if you reach a leaf, drop the suffix; elsewhere inger

The worst case complexity for this constructiodifw|), but the average complexity@ (|| x log |K|),
the average path length of a trie built oy&l keys (under the simplifying hypothesis that the word£in
are independent and randomly generated; see SedgewickaalbH23]).

3.2.2 The language decomposition

Considering the woréh = aaaaa, we haveC, = {a, aa, aaa, aacaa} andkC = {a}. Moreover, we have
M ={a,b(b+ ab+ aab + aaab + aaaadb)*aaaaa}. We get herdC ¢ M and M — K is a set of words
ending withw. The languaged andK are connected by a simple property that we describe now.

Lemma 2 For any wordw with strict autocorrelation sef,, prefix codelC generatingCy and minimal
languageM, there exists a non-empty languageuch that

KcM and M—-K = Lw.

Proof: We havelC ¢ C, ¢ M. If h € M — I, we can writewh = xw for somez.

Supposing thah| < |w|, we haveh € C,. Since each word of, is decomposable into factors over
K (Lemma 1), ifh is not an element ok, there is a previous match with in w.h, andh is not in M;
elsewheré: is in K, which is impossible since we considered the/sét- K.

If |h| = |w|, we haveh = w € M andh ¢ K and thereforev € M — K. The last possible case is
|z| > |w| which implies that: = y.w with |y| > 0. O

This leads immediately to the fundamental lemma.

Lemma 3 The basic equation for the unambiguous combinatorial dgumition of texts on the alpha-
betA is
A* =N+ Ruw™ (wC*) (M — K)w™ (wC*)) " U. (5)

Proof: The Equation (5) follows from the parsing of any given text.

Either there is no occurrence efwhich means that the text belongs to the “Not” languAge

If there is at least one clump occurrence, we parse as folla@sead until the first occurrence of the
clump (a word ofR). This occurrence may be followed by any number of overlagmiccurrences ab
(corresponding to a word a@* and forming a clump). Then we have to wait again the (possitdet
occurrence ofv, thus reading a word oM — K. Then a new clump is parsed (corresponding to a word
of C*). We repeat the last two steps if there are other occurresfcesFinally we end by reading a word
of U which add no occurrence. O

We can now use the preceding lemma to count several paramelated to the clumps.

3.2.3 Generating functions for the clumps of one word

LetI'(z, x, ) be the generating function where the variableounts the number of occurrenceswefn

a clump, and the variablecounts the total number of letters inside clumps; the végialis used here to
count the total length of the texts. We also use a variatitecount the number of clumps. We have the
following theorem.

Theorem 1 In the weighted model such thdl(z) = z (i.e. where weights of letters of the alphabét
are probabilities in the Bernoulli model), the generatimgétion counting the number of occurrences of
a wordw and the number of positions covered by the clumps eérifies

R(z) 1
maze 0T MG R

7'rw2|w|

F(z,T(z,2,7)) = N(2) + U(z), (6)

Tw? Jw]|
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where the generating function of the clumps verifies

1

1—2K(21)’ 0

D(z,z,7) = xww(ZT)‘w‘

As a consequence, the generating function counting alsouheer of clumps is

G(Z7 x? T? f)/) = F(Z7 fyF(Z7 x? T))'

Proof: This theorem follows from Lemma 1 and from a direct translaif Equation (5) into generating
functions (using the fact that clumpsofcorrespond to termaC* in Equation (5)). O

3.2.4 Occurrences of clumps.
By consideringf’(z,7I'(z, 1, 1)) in Equation (6) and using Equation (7) we obtain the bivargenerat-
ing function counting the number of clumps

TR(2)U(z)
L=y M(z) + (v = DK(2)

OW(z,7) = > P(OF =i)'z" = N(2) + (8)

We get by differentiation and by using the set of Equations (4

_ 00W(z,7)

2)U(2)(1 = K(z Tzl (1 = K(2
ZE(Of)Zn — 8[\/ R( )u( )(1 ,C( )) w (1 ,C( ))

1-M(z)> (-2

=1

We get similarly by differentiating twice the generatingnétion of the second moment 6f%.
We obtain mechanically by Taylor expansions in a neighbodf z = 1 the following result.

Proposition 1 (Expectation and variance of the number of clmps — case of one word)in the Bernoulli
model, the expectation and variance of the number of clumpexis of size is given by

E(O}) = (n — w| 4+ 1)mw(1 — K(1)) — m,K' (1)
Var(O;‘f) =nx(1=K(1)?Vy —n x me(1 = K1))(KQ) — 2m,K' (1)) + O(1),
whereV,, = ww(2C(1) —1-=(2lw| - 1)7rw) and KC(z) is the generating function of the prefix code
generatingCy (see Lemma 1).

This is to compare with the counting of occurrences of a singdrdw
E(OY) = (n— |w| + 1)my, Var(O¥) =n x V,, + O(1).

We obtain as expected smaller expectation and varianchdarumber of clumps than for the number of
word occurrences, with a characteristic reduction coeffitil — /C(1)). We remark here that wheh=
{e} (no autocorrelation), we havé(z) = 0 and thereford&(O%) = E(O¥) andVar(O%) = Var(OY)

as expected.

3.2.5 Occurrences of k-clumps.
By decomposing the equation of a clump of occurrences,afie can use a formal variableand write

wC* = w4+ wkK + wk? + - + wKF2 + vwkF 1t 4wk + ...

to count clumps with exactly occurrences ofv.
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Denotingl'x (2, v) the generating function which counts with the variabtbe number of letters inside
the clumps and where the variablselectst-clumps, we have

Li(z,v) = 771113‘“)‘ (%}C(z) + (v — 1)’C(Z)k_1> .

Substituting this in Equation (6) gives
OW) (z,v) = ZP(O;?’“ = iWw'2" = F(z,T(z,v)),
whereF'(z,T") is given by Equation (6).

3.3 Clumps of a finite set of words

We provide in this section a matricial solution for countitigmps of a reduced finite set of words. For
sake of simplicity we consider a set of two wortls= {vy,v2} but our approach is amenable to any
reduced finite set.

Similarly to the one word case, we are lead to consider prefiles generating the correlation of two
words. Considering’; is not relevant when we have# j. However, we can write as previously
Ki; = Ci; — Ci; AT, which defines minimal correlation languages with good prtps.

Following a path similar to the proof of Lemma 2, there exsstanguage’ such that

Mij - ]Cij = ,C . vj.
We can therefore define the minimal correlation mal€ixthe matrixS = K*, and write a clump matrix
G as follows . . S S
K = 11 12 S = K* G = V1911 V1912 .
(’Cm K22 )’ ’ 02821 12522

In this equation(G;; represents the set of clumps starting with the worand finishing with the word
v;. We obtain now a fundamental matricial decomposition tlaatlee used for further analysis,

A* = N + (Ryvy, Ravy) G((M - K)iG)* <Z;> ’

where we havéM — K); = (M;; — KCij)v; .

4 Automaton approach

We provide in this section an algorithmic approach by autiani@a evaluating parameters of clumps for
the case of general arbitrary finite sets of words, a quegiahhas never been previously considered in
the literature.

Foraset = {v1,...,v,} where the right extension set fromto v, is denoted by; ; we construct
a kind of “Aho-Corasick” automaton on the following set of e X

X ={v;-w|1<i<randw e {e} UE; ; for somej}.

The considered automatdnis built on X with set of stateg) = Pref(X') and start or initial state = ¢.
The transition function is defined (as in the Aho-Corasickstouction) by

d(p,x) = thelongest suffix opz € Pref(X).

According to what we want to count or recognize as a languageane led to consider several cases for
the set of terminal states:
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— Occurrences of; € U. We define the set of terminal stat€sas
T; = Pref(X) N A*v;.
— Occurrences ot/. To count all occurrences, we simply consider the set of teafrstates
T =U;_,T; = Pref(X) N A*V.

— Clumps.We define the set of final staté&umpsin order to accept the language of words ending by
the first occurrence of a word in a clump by

Tclumps == V \ VA+

Of course this construction does not give in general a mihangomaton. Remark that using different
marks for the different sets of terminal states permits tostder simultaneously the different parameters.
The automaton is complete and deterministic so that thelation to generating function is straightfor-
ward. We can easily derive from this automaton the genagdtinctionF'(z,~, 7, x1, . . . , ) wherex;
marks an occurrence of, v marks the number of clumps, andthe total number of letters inside the
clumps. Indeed, one has to mark some transitions in the exlggamatrix] according to some simple
rules.

— Any transition, labeled by a letter€ A, is marked by:7(z) wherer(x) is a formal weight forz
(usually either the probability of or 1 if we are considering enumerative generating funcions

— To count occurrences of thg's, we mark with the formal variable; all transitions going to states
inT;.

— For counting the number of clumps, we mark pyhe transitions going to states Fiumps =
VY \ VAT, that is states corresponding to first occurrences insidera

— Finally, for the total length covered by clumps, we put arfat weight on the transitions going to
a statep € T by taking into account the number of symbols between theolemiirrence of a word
of V and the new one at the endafLet us define for a state (corresponding to a word with an
occurrence of some word of at the end) the functiof(p) as the maximal proper prefixof p in
Pref(X) N A*V if it exists ore if there is no such prefix. Then we mark all transitions goiog t
such a statp € T with 7/PI=1¢@)1,

We notezJ (v, 7, z1, ..., zr) = 2(J; ;) 1<s,5<n the transition matrix of the automaton with the previously
defined formal labels on transitions, whée¥eis the total number of states of the automaton. Assuming
that the initial state has index 1, we get to the generatingtfan that counts the number of clumps and
the size of covered positions

1 1
F(Z,’Y,T,{Z,‘l,...,ll,‘r):(1,0,...,0)(1—ZJ("/,T,LCl,...,LCT)> () (9)

1

A formal proof of this result (omitted here) relies on theldwling properties. For a path LN pinthe
automaton starting at the initial stat@nd ending on stateafter reading a word, we have: (ap € T; if
and only ifh ends with an occurrence of; (b) p € Tcumpsif and only if » ends with the first occurrence
of V inside a clump. Additionally, to properly consider the lémgf a clump, we have to prove thatinside
a clump, the increase in length of the clump between two @eages o’ only depends on the state we
are reaching.

Note that the multivariate generating function can be ol®diby a generalization of the Chomsky-
Scitzenberger algorithm [5] and that it is possible togfarm the automaton constructed for a Bernoulli
source to an automaton handling a Markov source of any osgerlicodemet al.[15]).
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Examples. Two automata are depicted in Figure 2. The first one (top)esponds to the sét =
{bababa}, which givesE,, = {ba,baba} andX = {bababa,babababa,bababababa}. The second one
(bottom) corresponds to the Set= {u; = aabaa,us = baab}, for which the matrix of right extension
sets€ and setX are respectively

£— (baa +abaa b

wa aab) , andX = {aabaa, aabaab, aabaabaa, aabaaabaa, baadb, baabaa, baabaab}.

Fig. 2: Two examples of automata, for (top) = {bababa} and (bottom)V = {vi = aabaa,v2 = baab}.
The automata are complete and deterministic; howeverake sf clarity, all transitions labeled kyandb ending
respectively on statel and B are omitted (which corresponds to the initial state on the figure). The sign+’
indicates that the corresponding prefix (or, equivalergtgte) ends with some occurrencelaf The double oval
attribute indicates the states where we know that we hawrezht new clump. The formal weights on transitions (
for the number of clumps; for the total length of clumps, ang;’s for occurrences of;’s) are displayed between
parenthesis.

5 Limit laws
We consider here two cases of practical importance.

(a) Forclumps of a finite set of words [Bty, 7) be the matrix associated to the automdfodescribed
in the preceding section whefiecounts the number of clumps andhe total size of texts covered
by clumps. Since each stadec T¢umpsthat recognizes the beginning of a clump is recurrent (that
is, here, the final states are always attainable whatevetate we start from), the number of times
each of these states is reached in pathes of len@tfich is equivalent to take theth power of]))
is ©(n); we have a finite number of such states and therefore the muhbecurrences of clumps
is ©(n). The corresponding asymptotic normal limit law is a goodragpnation in the central
regime when the size of texts is large.

(b) When the size of the texts is relatively small in companis with the size of the words of the
pattern, we expect a Poisson law. We give in this section eiggeand computable asymptotic
Poisson-like approximation for this case when consideciogps of a single word.
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The matrixJ (v, 7) is definite and positive, which entails the existence of @jueipositive dominant
eigenvalue\(vy, 7) for the matrix (see Gantmacher [7]). We write hexg(r) = A(r,1) and A (s) =
A(1, s) (according to the variable we fix to one).

As a consequence, we have the following theorem.

Theorem 2 Let O and T'# be the variables counting respectively the number of cluamgsthe total
number of positions covered by the clumps in random texigefis We have as — co.

— For clumps of any finite set of wordsatf = O(n), in the Bernoulli and Markov models, we have
)L
P n 7t /th
( a\/ﬁ =V) " Vo
where

p=EO7) =nX,(1)+0(1) and o® = Var(O}) =n(\/(1) + X, (1) = X,(1)%) + O(1).

A similar law occurs for the number of covered positi@is by replacing), by A-.

— For clumps of one word (which are not powers of a letterf);ff = O(1), in the Bernoulli model,
there existp > 1 and two polynomial$(z) andQ(z), wherep, P(z) andQ(z) are computable,
such that,

Proof: (sketch)
Normal limit law. We consider the random variakl®®. We have from Equation (9)

OW(z,r) = F(z,1,1,...,1) = Z PO} =i)riz™.

Since the matrix is definite positive, there is a positive real dominant eigdue )., (). This eigenvalue
corresponds to a dominant real positive singularity of oatee1/\, () of modulus strictly smaller than
the moduli of the other singularities. Applying a Cauchyeiyrtal along a circle of radiuB > 1/, (r)
and with anRk smaller than the moduli of the other singularities provide®xpression

on(r) = (210 (z,7) = c(r) (A ()"
Using next as tends to infinity the large powers Theorem of Hwang [11, 12)¢giir) provides the
asymptotic normal law. See Nicodéreeal.[15] for details.
Poisson law for rare words.We consider a long enough woud (typically of size©(logn)) so that
the number of occurrences@¥(1). Letp be the maximal probability of letters of the alphabet. Takin
a Taylor expansion o®® (z,~) in Equation (8) aty = 0, and considering théth Taylor coefficient
provide a rational generating functiddy,(z) = [v*]O(z, ) given by the equation
Hy () = ROUGME) — KD moal(z =14 - KE)DE)™ ),
e (1—K(2))* a (1= K(2))F(D(2))k+ '

Following Fayolle [6] and using Rouché theorem, there imgle rootp of D(z) = m,,2/*!+(1—2)C(z)
inside the diskz| < 1/p. We claim that1 — X(z)) has no roots inside this disk. 4f # o' for o € A,
we haveD(1/p) < 0 for all values ofp. We also haveD(0) = m,, > 0; thereforep is real positive.

Writing D(z) = Q(z)(1 — z/p) andP(z) = z — 1 + (1 — K(z))D(z) provides Equation (10). O

This Poisson-like limit has been observed for occurren€ea@word by Régnier and Szpankowski [18]
in the Bernoulli and Markov models; we conjecture the samsaltdor the count of clumps of one word
for rare words in the Markov model.
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6 Conclusion

We provided in this article explicit formulas for the gentémg function counting simultaneously param-
eters of clumps of reduced set of words; these parameteth@arumber of occurrences of the clumps,
the total size or number of positions of the texts coveredigydlumps and the number of occurrences
of words of the considered set. We also provide an algorittoanstruction by automata that allows the
computation of this generating function in the general cdsen-reduced sets of words.

An extension of our analysis could lead to a combinatoriallysis of tandem repeatsr multiple
repeats that occur in genomes; large variations of suclatepee characteristic of some genetic diseases.

As mentioned previously, providing explicit expressionghe Markov case for reduced sets requires
only some technicalities. On the contrary, finding expleipressions for parameters of clumps in the
non-reduced case remains unsolved.

How does our approach extends to clumps of regular expmressidn this challenging case the star-
height theorem implies that we cannot in general find a firgteo$ wordsv; and a finite set of prefix
codeslC; with 1 < i < ¢ such that the languagé, ., ., vi(K;)* describes the clumps.
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