
Discrete Mathematics and Theoretical Computer Science (subm.), by the authors, 1–rev

Average profiles, from tries to suffix-trees

Pierre Nicodème
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We build upon previous work of Fayolle (2004) and Park and Szpankowski (2005) to study asymptotically the average
internal profile of tries and of suffix-trees. The binary keys and the strings are built from a Bernoulli source (p,q).
We consider the average number pk,P (ν) of internal nodes at depth k of a trie whose number of input keys follows
a Poisson law of parameter ν. The Mellin transform of the corresponding bivariate generating function has a major
singularity at the origin, which implies a phase reversal for the saturation rate pk,P (ν)/2k as k reaches the value
2log(ν)/(log(1/p)+ log(1/q)). We prove that the asymptotic average profiles of random tries and suffix-trees are
mostly similar, up to second order terms, a fact that has been experimentally observed in Nicodème (2003); the proof
follows from comparisons to the profile of tries in the Poisson model.

Keywords: tries, suffix-trees, profile, asymptotics, Mellin transform, saddle-point method.

1 Introduction
We consider tries and suffix-trees built upon binary keys and strings generated by a Bernoulli source
(p,q) with p ≥ 1/2 ≥ q. Park and Szpankowski (2005) recently studied the external profile (or sequence
with index k of number of external nodes at depth k) of random tries. We use the same approach, Mellin
transform and inverse Mellin transform by saddle-point method, in the Poisson model, to study the average
internal profile (that counts internal nodes) of tries. The position of the saddle-point is function of the value
of k/ log(ν) where ν is the (Poisson) number of keys; this implies that, depending upon this position, the
inverse integral counts, up to the sign, the number of present or missing nodes at depth k. Following from
this analysis, and using an approach similar to Fayolle (2004), we bound the distance between the average
number of nodes at depth k in tries in the Poisson model and in suffix-trees in the fixed (number of keys)
model; we relate this to the case of tries in the fixed model. Since we only consider in this article internal
nodes, we generally do not further specify that the nodes that we consider are internal nodes.

2 Average internal profile of tries

We consider the average number of nodes p(T )
k (n) at depth k in a random trie built on exactly n binary

keys (called further n-fixed model). This is equivalent to counting the average number of urns containing
at least two balls in an urn model with 2k urns, where urn ω is indexed by a word ω of size k, and such
that the probability that a ball falls in urn ω is πω = P(ω).

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Poissonization. We use the classical poissonization method, where the number of balls thrown in the

system is not a fixed number n but follows a Poisson law of parameter ν. We note p(T)
k,P (ν) † the average

number of nodes at depth k in this model. We have.

Lemma 1. When the number of keys of a random trie follows a Poisson model of parameter ν the expec-
tation pk,P (ν) of number of nodes at depth k of the trie verifies

pk,P (ν) = ∑
|ω|=k

1− (1+πων)e−πων (ω ∈ {0,1}?) . (1)

Proof. As shown by elementary algebra, the number of balls falling in urn ω follows a Poisson law of
parameter πων, which implies that the urns behave independently of each other. The random variable Yω
counting 1 if there are more than two balls in the urn ω, and 0 elsewhere, has generating function

Yω(u) = e−πων
(

1+πων+u

(

(πων)2

2!
+

(πων)3

3!
+ . . .

))

= u+(1−u)(1+πων)e−πων.

Let Z be the random variable counting the number of urns with at least two balls and FZ(u) be its gener-
ating function. Since the urns are independent of each other, we have

FZ(u) = ∏
|ω|=k

u+(1−u)(1+πων)e−πων ⇒ E(Z) = pk,P (ν) =
∂FZ(u)

∂u

∣

∣

∣

∣

u=1
= ∑

|ω|=k

1− (1+πων)e−πων.

(2)

By algebraic depoissonization, we also obtain

Corollary 1. The expected number of nodes pk(n) in the n-fixed model verifies

pk(n) = ∑
|ω|=k

1− (1−πω)n −nπω(1−πω)n−1. (3)

2.1 Mellin transform of pk,P (ν)

The quantity pk,P (ν) is given in Equation 1 as a sum of 2k terms. By use of direct and inverse Mellin
transform it is possible to obtain asymptotically an expression of pk,P (ν) that is equivalent to νζ/

√
logν

for a ζ < 1 that depends upon k, for a wide range of values of k. This will further allow comparisons with
the profile of tries in the fixed model and with the profile of suffix-trees.

The Mellin transform M [g(ν);s] of a function g(ν) is defined by

M [g(ν);s] =
Z ∞

ν=0
g(ν)νs−1dν. (4)

We refer to Flajolet et al. (1995) for an overview about Mellin transform and its applications.
We obtain the following fundamental result (see also Park and Szpankowski (2005)).

† We omit in the rest of this section the notation (T ).
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Theorem 1. The Mellin transform M [pk,P (ν);s] of the number of nodes at depth k of a trie in the Poisson
model verifies

M [pk,P (ν);s] =−(1+ s)Γ(s)
(

p−s +q−s)k
. (5)

The inverse Mellin transform of this function is defined in the strip ℜ(s) ∈]−2,0[.

Proof. We consider the function g(ν) = 1−(1+ν)e−ν. We have g(ν) = O(ν0) as ν→∞ and g(ν) = O(ν2)
as ν → 0. Let |ω|1 and |ω|0 count respectively the number of 1 and 0 of the word ω. Using the basic
properties of the Mellin transform, since πω = P(ω) = p|ω|1q|ω|0 , we find that

M [pk,P (ν);s] =−(1+ s)Γ(s)
k

∑
j=0

(

k
j

)

p− jsq(k− j)s = −(1+ s)Γ(s)
(

p−s +q−s)k

2.2 Inverse Mellin transform and saddle point integration
From Equation 5 we obtain by inverse Mellin transform

pk,P (ν) =
1

2iπ

Z x+i∞

x−i∞
−(1+ s)Γ(s)

(

p−s +q−s)k ν−sds =
1

2iπ

Z x+i∞

x−i∞
F(s)ds with x ∈ ]−2,0 [. (6)

We remark that F(s) is analytic on C−{0,−2,−3,−4, . . .}. We use a saddle-point method (see Flajolet
and Sedgewick (2005) or De Bruijn (1981) for an introduction) to compute the inverse Mellin integral.
We write F(s) = e f (s) in the following. The saddle-point s0 verifies by definition f′(s0) = 0. We have

f ′(s) =
1

1+ s
+ψ(s)− k

p−s log p+q−s logq
p−s +q−s − logν, (7)

where ψ(s) is the logarithmic derivatives of Γ(s). In a first step, we consider the moduli of the terms
1/(1+ s) and ψ(s) as O(1). The variables k and ν tend both to infinity. We therefore consider

k× p−s log1/p+q−s log1/q
p−s +q−s = logν ⇐⇒

(

p
q

)s

=
logν− k log1/p
k log1/q− logν

. (8)

2.2.1 Parametrization of the problem and geometry of the saddle-point
Considering the right member of the last equation of Formula 8, it appears naturally that the saddle-point
will be a function of the ratio k/ logν. This is not surprising, since parameters such as the average depth
of insertion or the height of random tries of n keys are O(logn).

More precisely, we have.

Lemma 2. As ν tends to infinity and k = α logν with
1

log(1/q)
< α <

1
log(1/p)

, the function F(s) =

−(1+ s)Γ(s)(p−s +q−s)
k ν−s has a real saddle-point σ that verifies

σ = σ(α) = log

(

1−α log1/p
α log1/q−1

)/

log(p/q). (9)
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k = α× log ν.

From bottom to top, the plain curves are.

1) α+∞(p,q) =
1

log1/q

2) α0(p,q) =
2

log1/p+ log 1/q

3) α−2(p,q) =
p2 +q2

p2 log1/p+q2 log1/q

4) α−∞(p,q) =
1

log1/p

5) E(H) =
2

log(1/(p2 +q2))

Fig. 1: Range of values of k and corresponding saddle-point σ (index of α). The top curve represents the expectation
of the height H of the trie. The dotted curve plots the values of the lower bound α that is defined in Definition 4
and used in Theorem 5 and 6. It is well known that, when p = q = 1/2, almost all leaves are at depth close to the
fill-up (saturation) level which is well approximated by α+∞. This explains the shape of the region for which the
saddle-point σ is real (α ∈ ]α+∞,α−∞[ ).

Proof. We adopt here a parametrization of the problem inverse to this used in Park and Szpankowski
(2005) and set k = α× logν. We consider the solution s = s′ of the right equation of Formula 8 . By
taking an expansion of f ′(s) in the neighborhood of s′, we find that σ = s′ +o(1) where the development
is easily made more precise. We neglect in the following the o(1) term and consider that σ = s′.

We remark that σ(α) is real and decreases monotonically from +∞ to −∞ as α increases from 1/ log(1/q)
to 1/ log(1/p). We consider α(σ) = ασ = k/ logν with σ ∈ R, where α(σ) follows from Equation 8 and
is the inverse function of σ(α) of Equation 9. The set of poles of F(s) is L = {0,−2,−3,−4, . . .} and
these poles correspond to values α− j of k/ log(ν) given by

α− j =
p j +q j

p j log1/p+q j log1/q
(− j ∈ L), (10)

Restricting σ to the positive axis gives

α+∞(p,q) =
1

log1/q
<

k
logν

<
2

log1/p+ log1/q
= α0(p,q).

See the plots of α+∞,α0,α−2 and α−∞ on Figure 1 and the plots of σ(α) for p = 0.6 and p = 0.9 on
Figure 2.

2.2.2 Probabilistic consequences of the position of the saddle-point
We consider now the meaning of the inverse Mellin integral outside of the fundamental strip ]− 2,0 [.
We note

R

x the value of the inverse Mellin integral of Equation 6 for x ∈ R−L. We consider the Cauchy
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log(ν)
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Fig. 2: The saddle-point σ as a function of β, where β
is a barycentric weight varying from 0 to 1. The curves
correspond to p = 0.6 and p = 0.9

O−2

pk,P (ν)

−mk,P (ν)

Fig. 3: The inverse Mellin integral gives pk,P (ν) when
σ ∈]− 2,0[ (number of nodes present at depth k), and
−mk,P (ν) = −2k + pk,P (ν) when σ ∈]0,+∞] (number
of nodes missing at depth k).

contour shown in Figure 3, and let the ordinates of the horizontal segments of integration tend respectively
to −∞ and +∞. Since the residue of F(s) at s = 0 is −2k and the winding number is −1, we have

Z

x∈]−2,0[
−

Z

σ∈]0,∞[
= 2k =⇒ −

Z

σ∈]0,∞[
= 2k −

Z

x∈]−2,0[
= 2k − pk,P (ν) = mk,P (ν), (11)

where mk,P (ν) is the number of missing nodes at depth k. The validity of Equation 11 follows from the
exponential decrease of the function Γ(s) for large imaginary values of s. By integrating in the strip ]0,∞[
we therefore obtain the number of missing nodes at level k (up to the sign). Using a similar contour with
winding number +1 when σ ∈ S

]− j−1,− j[ with an integer j ≥ 2, we have
Z

x∈]−2,0[
−

Z

σ∈]− j−1,− j[
= ∑

j∈L∩]σ,−2[

Res(F(s); j) =⇒ pk,P (ν) =

Z

σ∈]− j−1,− j[
+ ∑

j∈L∩]σ,−2[

Res(F(s); j),

which provides a way to compute pk,P (ν) when σ ∈ ]−∞,−2[ .

2.2.3 Detailed analysis of the saddle-point integral
We compute in this section the inverse Mellin integral of Equation 6

I(ν) =
1

2iπ

Z x+i∞

x−i∞
−(1+ s)Γ(s)

(

p−s +q−s)k ν−sds =
1

2iπ

Z x+i∞

x−i∞
F(s)ds. (12)

We consider the behavior of F(s) on the vertical line ℜs = σ. We write t = logν and A(s) = (p−s +q−s)α

where α = k/t = k/ logν; this gives

F(s) = −(1+ s)Γ(s)(p−s +q−s)kν−s = φ(s)Θ(s)t with Θ(s) = e−s × (p−s +q−s)α = e−sA(s) (13)
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The function Θ(s) is periodic on the vertical line ℜs = σ, and its first derivative is null at the saddle-point.
On the other side the function φ(s) mostly behaves like the function Gamma, which implies exponential
decrease for large imaginary values. The dominant part of the integral is concentrated upon a small
neighborhood of the saddle-point, where it is approximated by a gaussian integral. This gives in first

approximation I(ν)≈ F(σ)
√

2π| f ′′(σ)|
, with e f (s) = F(s). This is the result of Park and Szpankowski (2005).

We consider also here the perturbation term corresponding to the other maxima of the function Θ(s) and
we bound this perturbation.

We have
Θ(σ+ ir) = e−σ−irA(σ+ ir) = e−σ−ir (p−σ−ir +q−σ−ir)α

(r ∈ R).

The function ℑ(F(σ + ir)) is an odd function of r; therefore all imaginary terms cancel in the integral,
which corresponds to the combinatorial origin of the problem. We consider the local maxima of the
function |Θ(σ+ ir)| = e−σ|A(σ+ ir)|.

On the vertical line ℜs = σ, with σ ∈ R−{0}, the function A(s) is periodic, |A(σ + ir)| is an even
function of r, we have

min
∣

∣(p−s +q−s)α∣
∣=

∣

∣

∣

∣

1
qσ − 1

pσ

∣

∣

∣

∣

α
, max

∣

∣(p−s +q−s)α∣
∣=

(

1
qσ +

1
pσ

)α
,

and |A(s)| attains its maximum each time p−s and q−s are in phase. This corresponds for a given θ to

|r| log1/p = θ+2 jpπ and |r| log1/q = θ+2 jqπ with 0 < θ < 2π, jp, jq ∈ N, jp < jq,

=⇒ |r| > ρ = 2π× v(p) (14)

where v(p) is defined as follows.

Definition 2. Let v(p) = 1/ log(p/q) when p ∈ ]1/2, p2[, and v(p) = j/ log(1/q) when p ∈ [p j, p j+1[,
where p j is the real positive root of the equation p j + p− 1 = 0 for any integer j ≥ 2. We define by
ρ(p) = 2π× v(p) the minimum ordinate of perturbation of the inverse Mellin integral.

For r = l×ρ with l ∈ Z−{0} we have |Θ(σ+ ri)|= |Θ(σ)| but the corresponding contributions to the
integral are small, since |Γ(σ+ ir)| decreases exponentially as |r| increases. Figure 4 plots the value of ρ
as function of p.

We remark that |Γ(σ+ ir)| = O(e−|r|) as |r| → ∞ and σ = O(1). (See Andrews et al. (1999), Corollary
1.4.4, for a more precise result). As results from the preceding analysis, on the vertical line ℜ(s) = σ,
the continuous function |Θ(s)/Θ(σ)| attains its maximum value 1 at the saddle-point σ and approach it
at secondary maxima σ+ρ ji where ρ j = jρ and ρ is defined in Equation 14. We consider now a small δ
and the intervals V j =]ρ j −δ,ρ j +δ[.

By the preceding considerations, for r ∈ Rδ = R−S

j∈Z
Vj, there exists κ < 1 such that

∣

∣

∣

∣

Θ(σ+ ir)
Θ(σ)

∣

∣

∣

∣

< κ.

Since |(1+ s)Γ(s)| decreases exponentially as |ℑ(s)| → ∞, the function −(1+ s)Γ(s) is integrable on the
line ℜs = σ. This gives

Hδ =

∣

∣

∣

∣

Z

r∈Rδ
(1+σ+ ir)Γ(σ+ ir)Θ(σ+ ir)tdr

∣

∣

∣

∣

= Θ(σ)t O(κt) (κ < 1), (15)
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Fig. 4: Minimum ordinate of perturbation ρ. See Def-
inition 2 and Theorem 2. The perturbation is at most
O(e−ρ) times the dominant part of the integral. Remark
that e−11 < 2×10−5 .
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ζ = α log(p−σ +q−σ)−σ

min(ι,1− ι) =
{ 1−ι if σ > 0

ι if σ < 0

Fig. 5: Saddle-point σ, exponent ζ and η of ν respec-
tively in I(ν) and I(ν)/2k (see Equation 18) as a function
of β (defined as in Figure 2). We have here p = 0.9.

where κ will be later defined as a function of δ. We consider now

B0 =

∣

∣

∣

∣

Z δ

r=−δ
(1+σ+ ir)Γ(σ+ ir)Θ(σ+ ir)tdr

∣

∣

∣

∣

and B j =

∣

∣

∣

∣

Z

r∈Vj

(1+σ+ ir)Γ(σ+ ir)Θ(σ+ ir)tdr

∣

∣

∣

∣

.

When α is bounded away from 1/ log(1/q) and 1/ log(1/p), we find as approximation for Bj and ∑B j

B j = B0 ×O(e−|ρ j|), with |ρ j| = | j|×ρ =⇒ ∑
j∈Z−{0}

B j = B0 ×O(e−ρ).

We consider now the dominant term B0 of the integral. By a Taylor expansion in the neighborhood of σ,
we have

B0 =
F(σ)

2π

Z δ

r=−δ
e−tr2 f ′′(σ)/2−tr3i f (3)(σ+iλ(r)δ)/3! with |λ(r)| < 1. (16)

We use the classical analysis described in Flajolet and Sedgewick (2005) and choose δ such that tδ2 is large
and tδ3 is small; by completing the tails of the Gaussian integral and using the asymptotic approximation
Erf(x) < x−1n(x), where n(x) is the density of the Gaussian distribution, we have

t−1/2 << δ << t−1/3 =⇒ B0 =
F(σ)

2π

(

Z δ

r=−δ
e−tr2 f ′′(σ)/2

)

(

1+O(tδ3)
)

=
F(σ)

√

2π| f ′′(σ)|

(

1+O(tδ3)
)

.

In Equation 15 we now have κ = O(e−δ2
); we obtain therefore Hδ = B0 ×O(t1/2e−δ2t) since | f ′′(σ)| =

O(t). We obtain

M(ν) =
1

2iπ

Z σ+∞

s=σ−∞
F(s)ds =

F(σ)
√

2π| f ′′(σ)|

(

1+O(tδ3)+O(e−ρ)+O(t1/2e−δ2t)
)

. (17)
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The following theorem summarizes the results obtained in the Poisson model. It is expressed in a different
manner and without perturbation term in Park and Szpankowski (2005).

Theorem 2. Considering the function ρ(p) of Definition 2 and k = α logν, where α∈]1/ log(1/q),1/ log(1/p)[ ,

let σ (saddle-point) verifies σ = log

(

1−α log(1/p)

α log(1/q)−1

)/

log(p/q).

We have asymptotically, as ν tends to infinity, for a random trie in the Poisson model of parameter ν.

• The dominant part of the inverse Mellin integral verifies

J(ν) =
F(σ)

√

2π| f ′′(σ)|
=

−(1+σ)Γ(σ)να log(p−σ+q−σ)−σ
√

2πα log(ν)×U(σ)
(18)

where U(σ) =
p−σ log2 p+q−σ log2 q

p−σ +q−σ −
(

p−σ log p+q−σ logq
p−σ +q−σ

)2

.

• mk,P (ν) = −J(ν)(1+O(e−ρ(p))) when α ∈
]

1
log(1/q)

,
2

log(1/p)+ log(1/q)

[

,

where mk,P (ν) is the average number of missing nodes at depth k.

• pk,P (ν) = J(ν)(1+O(e−ρ(p))) when α ∈
]

2
log(1/p)+ log(1/q)

,
p2 log(1/p)+q2 log(1/q)

p2 +q2

[

,

where pk,P (ν) is the average number of present nodes at depth k.

We obtain as corollary.

Corollary 3. Let us consider the rate of saturation ι = ι(ν,α) = pk,P (ν)/2k = pk,P (ν)/να log2. We have

α → α−
0 ⇒ ι → 1− 1√

2π
and α → α+

0 ⇒ ι → 1√
2π

(

α0 =
2

log(1/p)+ log(1/q)

)

. (19)

Proof. This follows from the following equations,
Γ(σ)
√

f ′′(σ)
= 1+o(1) and α(σ) log(p−σ +q−σ)−σ = ξσ+O(σ2) as ν → ∞,

where we have σ = o(1/ logν), the constant ξ depends only on p and q, and α(σ) is the inverse function
of σ = σ(α).

We observe therefore a phase reversal of ι when α goes from α−
0 to α+

0 .

Shape of the exponents. Considering Figure 5 we observe that the exponent η of ν in min(1− ι, ι)
attains its maximum 0 at σ = 0, which is the point of phase reversal. We also observe, in the range
σ ∈]− 2,0[ that the exponent ζ of ν in pk,P (ν) attains its maximum 1 at σ = −1, which corresponds to
k = log(ν)/h(p,q) where h(p,q) is the entropy of the alphabet. This has been previously observed by Park
and Szpankowski (2005).

Similarly, it is possible to make a detailed study of the value of pk,P (ν) when α < α−2 by taking in
account the residues of F(s) at the negative integers smaller than −2. These points correspond to minor
discontinuities of the function pk(ν,α).
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2.3 Average profile of tries, exact model versus Poisson model
We use here a simplify version of entry 10 of Ramanujan’s notebook, Part I (see Berndt (1985) page 57).

Theorem 3. Let h(x) denote a function of at most polynomial growth as x (real) tends to ∞. Suppose
that there exists a constant A ≥ 1 and a function a(x) of at most polynomial growth as x tends to ∞ such
that for each nonnegative integer m and all sufficiently large x, the derivatives h(m)(x) exist and satisfy
∣

∣

∣

∣

∣

h(m)(x)
m!

∣

∣

∣

∣

∣

≤ a(x)

(

A
x

)m

. Put h∞(x) = e−x
∞

∑
k=2

xkh(k)
k!

. Then,

h∞(x) = h(x)+ xh′′(x)+O(a(x)x−2),

as x tends to ∞.

Applying this theorem with h(x) = xζ/
√

logx and a(x) = A = 1 for large integer x = n and then reason-
ing by contradiction gives the following depoissonization result.

Theorem 4. As n → ∞ we have, for any small ε > 0, m(T)
k (n) = m(T )

k,P (n)(1 + O(n−(1−ε))) when α ∈
]1/log(1/q),α0 [ and p(T)

k (n) = p(T)
k,P (n)

(

1+O
(

n−(1−ε)
))

when α ∈ ]α0,α−2[ .

3 Average internal profile of suffix-trees
We consider now languages L ⊆ {0,1}? and the corresponding weighted generating functions L(z) =

∑ω∈L πωz|ω| = ∑n≥0 lnzn, where πω is the probability of the word ω and ln is the probability that a random
word of size n belongs to the language.

We also consider the autocorrelation set Aω of a word ω, defined as

Aω =
{

h; ω.h = u.ω and |h| < |ω|
}

.

We define in the following by O(r)
ω (resp. O(r+)

ω ) the language of words with exactly (resp. at least) r

(possibly overlapping) occurrences of ω and remark that O (2+)
ω = Σ?−O(0)

ω −O(1)
ω .

We consider the suffix-tree built on the n first suffixes of an infinite string U , further referred to as

suffix-tree with n keys. The number of nodes s(S)
k (n) at depth k in the suffix-tree is equal to the number

of words ω of size k that occur at least twice in the prefix τ of length n+ k−1 of U . We note p(S)
k (n) the

average number of nodes at depth k. We have

s(S)
k (n) = ∑

|ω|=k

1{ω occurs at least twice in τ} and p(S)
k (n) = ∑

|ω|=k

P(ω occurs at least twice in τ).

Multiplying by zn and summing over n gives

P(S)
k (z) = ∑

n≥0
p(S)

k (n)zn = ∑
|ω|=k

O(2+)
ω (z) =

2k

1− z
− ∑

|ω|=k

(

O(0)
ω (z)+ O(1)

ω (z)
)

. (20)

It follows from an extension of Guibas and Odlyzko analysis of O (0)
ω (see Sedgewick and Flajolet (1996)

p. 374) or from the Bernoulli case in Régnier and Szpankowski (1998) that

P(S)
k (z) =

2k

1− z
− ∑

|ω|=k

(

Aω(z)
Kω(z)

+
πωz|ω|

Kω(z)2

)

with
1

Kω(z)
=

1

πωz|ω| +(1− z)Aω(z)
. (21)
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We follow Fayolle (2004) and consider the dominant pole ρω of 1/Kω(z); for |ω| large we have ρω close
to 1. Considering a suitable R ∈]1,1/p[ we perform a Cauchy integration along a circle of radius R of

P(S)
k (z)/zn+1 and use a bootstrapping method (see Fayolle (2004)); this provides asymptotically

p(S)
k (n) = [zn]P(S)

k (z) = ∑
|ω|=k

1−
(

1+
nπω

Aω(1)

)

e−nπω/Aω(1) + ∑
|ω|=k

O
(

nπ2
ωe−nπω/Aω(1)

)

+ ∑
|ω|=k

O(knπ2
ω);

Let S2 and S3 represent the second and third sums of the right member of this equation. We have

πω ≤ p|ω| = pk = n−α log(1/p) for all ω and therefore S2 = p(T)
k,P (n)O(n−α log(1/p)).

Let ζ = ζ(α) = α log(p−σ(α) +q−σ(α))−σ(α) where nζ is the dominant asymptotic term of p(T )
k,P (n) in

Equation 18. We have

S3/p(T)
k,P (n) = O

(

kn(p2 +q2)k/nζ
)

= O
(

n1−α log(1/(p2+q2))−ζ
)

logn.

This leads to the following definition.

Definition 4. Let υ(α) =−(1−α log(1/(p2+q2))−ζ(α)) and α be the solution of the equation υ(α) = 0.

We have α > α ⇒ υ(α) > 0, which implies

Lemma 3. Considering α defined in Definition 4 and α ∈ ]max(α,α0),α−2[ , as n → ∞, the number of
nodes at depth k = α logn of a suffix-tree of n keys verifies for a positive υ

p(S)
k (n) = a(S)

k (n)+ p(T)
k,P (n)

(

O(n−υ)+O
(

n−α log(1/p)
))

where a(S)
k (n) = ∑

|ω|=k

1−
(

1+
nπω

Aω(1)

)

e−nπω/Aω(1).

See Figure 1 for a plot of α(p). A result similar to Lemma 3 holds for the missing nodes when
α ∈ ]α,α0[ and p ∈ [0.5,0.83[.

4 Comparison of the suffix-tree and the trie
We compare now the internal profiles of a random suffix-tree with n keys and of a trie in the Poisson
model of parameter n. We consider again the case of the present nodes, with σ ∈]− 2,0[, but a similar
proof applies to the case of missing nodes.

We have.

Theorem 5. Let k = α logn where α ∈ ]max(α,α0),α−2[ and α is defined in Definition 4. As n → ∞ the
numbers of nodes at depth k

• p(S)
k (n) of a suffix-tree of n keys

• and p(T)
k,P (n) of a trie whose number of keys is Poisson of parameter n

verify
∣

∣

∣
p(S)

k (n)− p(T)
k,P (n)

∣

∣

∣
= p(T )

k,P (n)×O(n−λ)

for a positive λ.
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Proof. Building upon Lemma 3 we analyze the difference
∣

∣

∣
a(S)

k (n)− p(T)
k,P (n)

∣

∣

∣
, where

a(S)
k (n) = ∑

|ω|=k

1−
(

1+
nπω

Aω(1)

)

e−nπω/Aω(1) and p(T)
k,P (n) = ∑

|ω|=k

1− (1+nπω)e−nπω . (22)

We follow the spirit of Fayolle (2004), improving upon the worst case by use of Mellin transforms.
The basic period d of a word ω is the size of the smallest word u such that ω = uhv where v is a prefix

of u and h is a positive integer.
We have as previously g(x) = 1− (1+x)e−x. Let Dk (resp. Dc

k ) be the set of periodic (resp. aperiodic)
words of size k such that d ≤ k/2 (resp. d > k/2); we split the sums of Equation 22 with respect to these
sets, and consider bounds for Aω(1) in these sets;

a(S)
k (n) =

(

∑
ω∈Dk

+ ∑
ω∈Dc

k

)

g

(

nπω

Aω(1)

)

= SDk
+SDc

k
and p(T )

k,P (n) =

(

∑
ω∈Dk

+ ∑
ω∈Dc

k

)

g(nπω) = TDk
+TDc

k
,

1 ≤ Aω(1) ≤ 1
1− p

(ω ∈ Dk) and 1 ≤ Aω(1) ≤ 1+
pk/2

1− p
= ck(p) (ω ∈ Dc

k ).

We also consider in the following BDk
= ∑ω∈Dk

g(nπω/ck(p)).

We use repetitively the fact that M [g(xπω/χ);s] = (1/χ)−sM [g(xπω);s] and remark that the function
g(x) = 1− (1+ x)e−x is increasing on [0,∞[.

We consider first the periodic words and write ω = (ab)ra where d = |ab|, r = bk/dc > 1, and |a| =
k− rd. The Mellin transform M [p(d)

k,P (n);s] of the expectation of the number of nodes at depth k labeled
by a word of period d, in a trie and within the Poisson model of parameter n, is

M [p(d)
k,P (n);s] = −(1+ s)Γ(s)

(

p−(r+1)s +q−(r+1)s
)|a|
(

p−rs +q−rs)|b| =⇒
M [p(d)

k,P (n);σ]

M [pk,P (n);σ]
= O(ψk

1),

(23)
where we have ψ1 < 1 and σ verifies Equation 9. The last equation follows by separately handling the
cases where r = O(1), in which case |a+b| is of the order of log(n), and where r tends to infinity.

We perform now the inverse Mellin integral of M [p(d)
k,P (n);s] on the vertical line ℜs = σ; the point s = σ

is no more a saddle-point, but the analysis follows the same lines as in Section 2.2 and uses Equation 23
to upper bound the dominant part of the integral. Summing over d and using the inequalities 1/Aω(1)≤ 1
and 1/ck(p) < 1 provide for ψ1 < ψ2 < 1 and k large enough

TDk
= p(T)

k,P (n)×O(ψk
2), SDk

= p(T)
k,P (n)×O(ψk

2) and BDk
= p(T)

k,P (n)×O(ψk
2). (24)

We consider now the non-periodic words. By expanding (1/ck(p))−σ, where σ is the saddle-point of
Equation 9, we have, up to second order terms, for k large enough,

(

1− 2|σ|pk/2

1− p

)

p(T)
k,P (n) ≤ SDc

k
+BDk

≤ p(T)
k,P (n)

(

1+O(ψk
2)
)

.
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This gives, with k = α logn and α > α
∣

∣

∣
p(S)

k (n)− p(T)
k,P (n)

∣

∣

∣
= p(T )

k,P (n)×O(n−λ)

where λ = min(υ,α log(1/ψ2),α log(1/p)/2) and υ satisfies Definition 4.

From there and Section 2.3 where we compared the Poisson model and the “fixed” model follows the
theorem.

Theorem 6. As n → ∞ and k = α logn with α ∈ ]max(α,α0),α−2[, where α and α−2 are defined as

previously, the number of present nodes at depth k in a suffix-tree p(S)
k (n) and a trie p(T )

k (n) of n keys
verify for a positive λ

∣

∣

∣
p(S)

k (n)− p(T)
k (n)

∣

∣

∣
= p(T )

k (n)×O
(

n−min(λ,1)
)

.

A similar result holds for the missing nodes when p < 0.83 and α belongs to the range ]α,α0[ (see
Figure 1). We conjecture that these results extend to a larger range of values of α.
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