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Regexpcount, a symbolic package for counting problems on regular
expressions and words
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Abstract. In previous work [10], we considered algorithms related to the statistics of matches with
words and regular expressions in texts generated by Bernoulli or Markov sources. In this work
these algorithms are extended for two purposes: to determine the statistics of simultaneous counting
of different motifs, and to compute the waiting time for the first match with a motif in a model
which may be constrained. This extension also handles matches with errors. The package is fully
implemented and gives access to high and low level commands. We also consider an example
corresponding to a practical biological problem: getting the statistics for the number of matches
of words of size 8 in a genome (a Markovian sequence), knowing that an (overrepresented DNA
protecting) pattern named Chi occurs a given number of times.
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1. Introduction

An important class of computational biology problems is related to counting. When considering words,
one is interested in the probability of match in a sequence, the statistics of occurrences in a genome,
and the selection of words with unusual counts. These problems have been studied by several authors
using combinatorics or probabilistic (Poisson approximation) methods, in the Bernoulli and Markov
case [11, 12, 13, 15, 14, 16, 18]. When considering regular expressions or motifs such as Prosite motifs,

*An extended abstract of this article has appeared in the Proceedings of the fifteenth german conference on bioinformatics
GCBOO [8].
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Table 1. Examples of computations (see notations in Section 2)

pat. stat. md. u(n) a*(n) w(1000) | &%(1000)
abab n.m.o. Bo En—2 +0(a") aen — 25 4+ O(a™) 62.31 66.10
aaab n.m.o By =n— =+ 0(a”) 7251 — 32 + O(a™) 62.31 35.05
abab nmr. | Bo 351 — 185 +0(a™) 30057 — 35 + O(a™) 49.87 34.34
abab n.m.o. By 32:1 — 2 + O(a™) aen — 2% 4+ 0(a™) 35.05 39.44
abab nmo. | Mi | &n—2L40(") | £Zn- 28 400" | 11212 112.78
A(abab, 1) n.m.o. By Spn— 1 +0(™) Bp -2 40> 623.62 296.18
) 8 8 64 64
A(abab, 1) n.m.o. B 2n—Im +0(a™) oS n — 12952 + O(a™) 491.08 423.54
A(abab,1) | nmo. | My | n—23140(a") | seen— 20 4+ 0(a”) | 710.86 228.61
o] <1
pat. stat. md. © o’
€, abab wait By 20 275.89
€, aaab wait By 16 144
abab, aaab wait By 16 144
aaab, abab wait By 16 271.92
€, abab wait By 33.77 925.38
€, abab wait M 12.72 82.26

one is also interested in probability of match in a sequence [17], or, once again, in the statistics of number
of matches [10]. In this article, we consider regular expressions, with words and patterns (finite set of
words) as a subclass of these, and texts generated by either a (uniform or non-uniform) Bernoulli source
or by a Markovian source. In [10], we addressed the counting problem for matches of one motif in these
texts. Our method was based on construction of automata and the analysis of their generating functions
(with one variable and one parameter). We extend this approach to handle simultaneous counting of
several motifs, which corresponds to generating functions with one variable and several parameters and
gives access to covariance statistics. We also consider a new statistic, the waiting time for the first
match with a regular expression R F-; this last problem may be constrained by knowing that a match just
occurred with a regular expression RFE, either with rematch with RFE; allowed, or forbidden. Another
new feature of the package is the possibility of handling statistics for matches with errors, for all the
problems considered. In Section 2 we give some examples of our computations. In Section 3 we provide
the necessary definitions. We describe our methods and algorithms in Section 4 and several extensions
in Section 5. We give in Section 6 an application to a biological problem.
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2. Examples

Table 1 contains some examples of the possible computations, with the following notations:

pat.: pattern. A(regezp,k): language of words at edit distance (substitution, insertion, deletion) < k
from regexp. In the case of the wait statistics, two patterns are given (see stat.).

stat.: considered statistics; (1) n.m.o : number of matches in the overlapping case (overlapping matches
are accepted); (2) n.m.r. : number of matches in the renewal case (restart after each match, or non-
overlapping case); (3) wait (pattern p1, p2): wait time for the first match with pattern po, knowing that
pattern p, has been found (rematch with p; is allowed during the wait). If p; = ¢, wait time for the first
match with po from the beginning of the text.

md.: model; (1) By: Bernoulli uniform; (2) B;: Bernoulli non-uniform (probability of letters =, =
1/4,m, = 3/4); (3) My: Markov model of order 1; (probability associated to the Markov chain: 7, =
1/4,my = 3/4, a0 = 1/4,Tap = 3/4,mpa = 1/2,mpp = 1/2, where 7, is the initial probability of
letter = and 7, ,, is the probability that the letter z is followed by the letter y in the text).

p(n), o?(n): asymptotic value of the expectation and variance for texts of size n.
©(1000), o%(1000): numerical evaluation of the expectation and variance for texts of size 1000.
u, o2 (wait statistics): numerical evaluation of the expectation and variance for the wait statistics.

See Section A of the appendix for a Maple session which computes lines A(abab, 1), n.m.o, By and M;
of Table 1.

3. Definitions

We recall in this section the classical definitions for languages, generating functions and finite automata.

Languages. An alphabet is a (finite) set of letters. A word is a concatenation of letters of the alphabet.
A language over an alphabet X is a subset of the set X* of all words over the alphabet. Concatenation
of languages is denoted by a product (A; A2 = {wjwe, w1 € A1, we € Az}). Union of languages is the
ordinary set union. The empty word is denoted by e and the Kleene star operator “x” is understood as
A* =€+ A+ A%+ A3 + ..., where A2 = AA and so on. A regular language over an alphabet X is
built by recursively applying Union, Concatenation and Kleene-Star operators to the singleton languages
{e} and {o} (Vo € X). A regular expression is a short-hand description of a regular language (most
commonly using symbols “., +, x”” and brackets).

Generating functions. We give the definitions for an alphabet of 2 letters ¥ = {a, b} and consider
generating functions for a language L. They generalize immediately to alphabets of higher cardinality.
Define the counting generating function of a language L as F(a,b) = Y c;ja'®’ where ¢;; is the
number of words of L with i letters a and j letters b; this is equivalent to F'(a,b) = »_, ., com(w),
where the operator “com”, applied to a word w, produces the monomial obtained by letting the letters
of w commute. For example, if L = {aab, aba} then F(a,b) = 2a?b. Remark that if d,, is defined
by F(z,z) = > dpz" then d, counts the number of words of size n in the language. Similarly the
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“probability”” generating function of L is P(z) = > wp2™, Where wy, is the probability that a word of
size n belongs to L. In the Bernoulli models By and Bj thisis F'(z/2, z/2) and F(myz, mpz) Where mg, T
are the probabilities of occurrences of letters ¢ and b respectively. For example with L = {aab, aba}, we
have P(z) = z3/4 in the model By. In the Markov model M; the probability of each word is computed
by using the probability of occurrences of the first letters and the transitions probabilities (this generalizes
easily to higher Markov models).

As an example, the bivariate generating function of number of matches of the pattern abab in the
Markov model M; of Section 2 is

128 + 322 + (1 — u) (4822 + 1223 + 924)
64 — 482 — 1622 + (1 — u) (2422 — 1823 + 32%)’

1
F(z,u) = Zf,mukz” =5 X
where fi,, is the probability that there are k£ matches in a text of size n.

Translation rules. If unions are disjoint and concatenations are unambiguous, unions of languages
translate to sums of generating functions and concatenations translate to products of generating functions;
with the same conditions, the counting and probability generating functions of L* are the quasi-inverses
Fr«(a,b) =1/(1—Fp(a,b)) and Pr«(z) = 1/(1 — Pr(2)).

Automata. A Nondeterministic Finite Automaton (or NFA) is a 5-tuple (2, @, s, F, §) such that: X is
the input alphabet; @ is a finite collection of states; s € @ is the start state; F' C @ is the collection of
final states; ¢ is a (possibly partial) transition function from @ x X to Sg the set of subsets of Q.

There exists a transition from state g; to state g; if there is a letter £ € X such that ¢; € 6(g;,4). A
word w = wyws - - - wy, € X* is accepted or recognized by an NFA A = (X, Q, s, F, §) if there exists a
sequence of states giy, ¢i ; Gi,, - - - , ¢, SUCh that g;; = s, g;; € 8(gi;_,, w;) and g;,, € F.

Kleene’s theorem states that a language is regular if and only if it is recognized by an NFA. Given
an input regular language there are several algorithms to construct an NFA that recognizes it. See [6]
among numerous text books for the construction using e-transitions or [2] for the Berry-Sethy algorithm.
Deterministic finite automata (or DFAs) are special cases of NFAs where the images of the transition
function are singletons. By a classical theorem of Rabin and Scott, NFAs are equivalent to DFAs in the
sense that they recognize the same class of languages.

An important theorem of Chomsky and Schiitzenberger states that the generating function F'(z) of a
regular language R is rational [3]. The proof uses a DFA recognizing the language R as an intermediate
step; a system of linear equations is then deduced from the DFA,; one of the unknowns of the system is

4. Methods and algorithms

4.1. Marked automata

The process is best illustrated with an example. Consider the pattern aba and counting the number of
matches of this pattern in random texts over the alphabet ¥ = {a,b}. This may be done by considering
marked texts where a mark /m not belonging to X is inserted in the texts after each match. If we consider
the text t = aababaaabab, we get mark(t) = aabambamaabamb if overlapping matches are allowed
and mark(t) = aabambaaabamb otherwise.
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A marked automaton is an automaton {3, Q, s, F, §, M1, ..., My} where M, ..., My are subsets of the
set () of states that are distinguished. For instance, consider the DFA A = {X (={a,b}),@Q, s, F, 6}
recognizing the regular expression ~*aba. When running this automaton against a text, each state
reached after reading an aba is a final state. From there, define a marked automaton A,, with M; =F
as marked subset and all states final. Therefore 4, = (%,Q,s,Q,d, F). We consider now a DFA
A" = (¥ = {a,am,b,bm},Q, s, Q, d,,) deduced from A,, by transforming é to a marked transition
function §,, as follows: Vs € Q,VI € %, if §(s,1) & M then é,,(s,1) = d(s,1), else 6, (s,Im) = 6(s,1)
and 0, (s, 1) is not defined. Then A’ recognizes all the marked texts where the mark m has been inserted
after each match. This method has been developed in [10] and we extend it to the case where r patterns
are considered. In the latter case, we define » marked sets My, ..., M, corresponding to the matches
with each pattern, and a suitable rule of marking the transitions is chosen.

Since the marked automata that we construct in this paragraph are deterministic, the Chomsky and
Schiitzenberger method is available. When a single motif is considered, it produces, in the Bernoulli
case, a generating function F'(a,b, m). From F(a,b,m) we get the multivariate probability generating
function P(z,u) = F(maz, mpz,u) = Y. pnru®2", where p, ; is the probability that a text of size n
contains k£ occurrences of the pattern. In what follows, we consider that the insertion of marks is done
during the Chomsky-Schiitzenberger translation into generating functions.

4.2. Algorithms

We consider a problem for one or several motifs Ry, ..., R; (¢ > 1). The algorithmic chain is as follows.

1. If the match(es) with the motif R; is (are) considered with a function of error A, build first an

automaton recognizing R; and next an “error” automaton recognizing A(R;). Use classical e-

transitions constructions to connect this automaton to the automata built during the following step.

Construct a deterministic Bernoulli automaton corresponding to the problem.

If the model is Markov, transform the last automaton constructed to a Markov automaton.

4. Compute the (eventually multivariate) counting or probability generating function of the language
recognized by the automaton.

5. Use computer algebra methods to extract the Taylor coefficients of order n of the generating func-
tions, which provide expectation(s), moment(s) of order 2, or covariance(s) of the statistical pa-
rameters under study. See [10] for details.

wn

Remarks about implementation: steps 1-3 are implemented in the package regexpcount; step 4 is
performed either by use of the package combstruct (combinatorial structures), or by combination of
functions of the packages regexpcount and combstruct and by the standard solver of Maple; step 5
is performed either by the package gfun (generating functions) when computing exact coefficients or
by the packages equivalent (asymptotic expansions of coefficients of generating functions) and gdev
(general asymptotic expansions) for asymptotic results.

Properties of marked states: For a given mark, the corresponding set of marked states shares the proper-
ties of the set of final states for the determinization or minimization of automata. This follows from the
fact that, at a given time of the construction of a marked automata, the set of marked states has been (or
has been equivalent to) the set of final states of an automaton. Similarly, the marking process behaves
nicely during the cartesian product of automata.
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NFA determinization. It uses the subset construction adapted to the case of marked automata. Con-
sider the marked NFA Ay = {%,Q, s, F, 6, M } where M is the subset of states marked with the letter
m (the extension to a sequence of sets M, ..., M, where M; is the subset of states marked by the letter
m is immediate). Forgetting M, the subset construction on Ay givesa DFA Ap = {3, Q, {s}, F,A}
where Q (the set of states) is the subset of 2% used during the construction, A is the transition function
induced on this setand F = {S € Q|S N F # (}. This automaton is marked by adjoining the set of
marked states M = {S € Q| SN M # 0} to Ap.

Automaton minimization. It is performed when necessary during the algorithmic chain.

A marked automaton may be considered as an automaton that simultaneously recognizes several
regular languages. For a given automaton A,,,, a minimized automaton is an automaton with minimum
number of states that simultaneously recognizes the same languages as A,,.

We consider first the classical minimization of non-marked deterministic automata. See [7] for details
and proofs. Consider a deterministic automaton A = {3, Q, s, F, 6 }. We define inductively on the length
of the strings the function 5 Qx¥X*—=Qby

(g,€) =
(q,za) = 6(6(q,),a)

An equivalence relation = 4 is defined on the set of states ) by

-~ -~

g=aq; © {Vre¥* 0(g,z)€F & i(gz) € F}

The automaton naturally defined on the equivalence classes of the relation = 4 on @ is one instance of
minimal automaton equivalent to A.

Let us consider now a marked automaton A,, = {Q, s, F,§, M1, ..., M,}, where (after eventually
renaming the marked sets) the index of the marked sets ranges from 1 to r. We identify the set " with
a set My and therefore the index set I ranges from 0 to . The function § is defined as previously. We
consider now the set Z = 27 of subsets of I and for each J € Z the sets

Ny = () M; D
jeJ

In many cases, the set NV; is empty. We denote by Z the set of indices J for which N is not empty and
not duplicated that is defined by

T={Je?2, N;#0 and AJ',JcJ and N;= Ny}.

We can describe this partitioning in terms of coloring by assigning a color to the set of terminal states
and to each set of marked states; equivalently, we assign a color to each integer from 0 to r. The set of
states is partitioned along the subsets of colors assigned to each state. The cardinality of the partition
is upper bounded by |Q| and by 271, We extend now the definition of the equivalence relation given
precedently to the case of marked automata. We consider the marked automaton A,,, defined above and
consider the relation = 4, on the set of states () defined by

~ -~

=4, < {VzeX*VJeZ, 6(q,r)€ Nsjs d(g,z) € Ny} 2
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It is easy to prove that the relation =4, is an equivalence relation. The automaton induced by § on the
classes of equivalence of Q/=4,, is an instance of minimal marked automaton equivalent to the original
automaton A,,,. All the required proofs are identical to the proofs done for classical automata.

The minimization algorithm for handling marked automata uses a slight generalization of the Hopcroft
nlog(n) algorithm [5]. Instead of beginning with a partition of the set of states with 2 subsets, the set
of final states F' and its complement F, we begin with the partition { N, J € Z} (see Equation 1). The
algorithm then further refines the partition as does Hopcroft’s one, and the subset created at each step has
size at most half of the splitted subset. The algorithm has therefore complexity O(n log n) as Hopcroft’s
algorithm does.

Product automaton. An automaton is complete if for any state and any letter the transition function is
defined. Let [.,.] denote an ordered list. Given two complete DFAs A; = (2, Q;, si, F, 6;, M;), i=1,2,
we construct the marked product automaton B=AxA>= (%, @, [s1, 2], FB,08, Mp 1, Mp 2) as fol-
lows: @p is asubset of {[z,y],z € Q1,y € Q2}; if [z,y] € @B, then d([z,y],1) = [61(=,1), d2(y,!)]
belongs to @ . The start state [s1, so] belongs to Q. Fp = {[z,y],z € F1,y € F>}. The distinguished
subsets are M1 = {[z,y],z € M1}, Mo = {[z,y],y € Ma}. The construction is classical, but com-
pleted to handle the case of marked automata. This construction generalizes immediately to the product
of more than 2 automata.

5. Extensions

5.1. Number of pairs of occurrences.

The automaton construction for counting the number of occurrences of a pattern in a text has been de-
scribed in [10] and in Section 4. To simultaneously consider the occurrences of 2 patterns p; and po,
construct two marked automata A and A, recognizing the regular expressions >*p; and >*py respec-
tively and compute the product B = A1 x A2 = {%,Q, s, Q, M1, M2} of the two automata, where the
set of final states is made equal to Q. This is the required automaton. The corresponding probability
generating function is of the form P(z,u,v) = 3" ppi ju‘v’i 2™ where p,,; ; is the probability that a text
of size n has ¢ occurrences of p; and j occurrences of ps. The construction generalizes immediately to
the case where more than two patterns are simultaneously considered.

5.2. Waiting times

We consider now two patterns p; = ab and ps = ba. In this case, we are interested in the waiting time
for a match with po, knowing that a match with p; occurred. (See the corresponding next paragraph
for an algorithm). Let us exemplify the marking process on the text ¢t = abbbba. This text begins with
a match with pq, finishes with a match with p, and has no other matches with p,. The marked text is
mark(t) = abbmbmbmam; this text contains 4 marks m, corresponding to the number of letters read
after the match with p1 until the match with po occurred. We assume that we know how to construct a
marked automaton By, 1 = (X, Q, s, F, §, M1, M>) verifying the following conditions: By, 1 recognizes
the texts that begin with a match with p1, end with a match with ps and have no other match with po
(except possibly within the first match with p1); M; is the set of states reached when matching p; and M
is the set of states crossed after a match with p; until a first match with po; furthermore we assume that no
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path from s to M intersects a path from M to F'. Let @), be the subset of states of () that are accessible
and coaccessible in By, = (%, Q, s, M1, 6); note that B, recognizes p;. Then My = Q — Q,,. Said
in different words, the constructed automaton splits into a first part where p; is recognized and into a
second part where the first match with po is recognized, and the marked set M5 is the set of states of
the second part. Forget M in By, ; to produce B, » = (3, Q, s, F, 6, M>). Translate into a generating
function F'(a, b, m) which enumerates the marked texts. In the Bernoulli model, this gives the probability
generating function P(u) = F(ma, ™, u) = Y spu”™ Where s, is the probability that the waiting time is
n. From there, the expectation and second moment of the statistics are immediately obtained.

Waiting time, first match with a pattern p;. Construct the automaton for 3*p; and erase all transi-
tions from final states.

Waiting time p; — po for a match with py after a match with p;.  Construct the marked automata
AW recognizing p; and A®) recognizing £*po, where AW = (2, Q) s QM 5@ M ®). Construct
the automaton B = A1) x A®?) = (%,Q, s, F,8, My, My). Construct an automaton C' by duplicating
the states of B by a bijective copy function ) of @ onto (Q) such that @ N1 (Q) = (. Then the
required automaton is C' = (3,Q U ¥(Q), s,9¥(Ms),dc,1¥(Q)) where é¢ is defined as follows: if
s € Q — My, then dc(s,l) = d(s,1); if s € My, then dc(s,l) = 9(8(s,1)); and if s € P(Q) — (M),
then d¢(s,1) = 9(6(p~1(s),1)); the transition function ¢ is not defined for the states of +)(Mz). Note
that the marked states are all the copied states.

Remark: if rematch with p, is forbidden, remove all transitions §¢ (s, 1) such that é¢(s,7) = ¢ and
t € ¢(My).

5.3. “Error” automaton

We consider successively the cases of an error function A with (1) 1 substitution (2) 1 insertion (3) 1
deletion allowed for a motif R;.

Let A; = (2,Q,s,F,d) be a complete DFA recognizing R; (or *R; if necessary). We use a
copy function 4 as in the preceding paragraph. The NFA error automaton (an e-NFA in the case of one
deletion) is B;= (%, Q + ¥(Q), s, F + ¥ (F), dc). We have for ¢ respectively.

1. One substitution:
Vs€Q, bo(dh(s),l) =9(0(s,0)), (s, l) = {0(s, D)} U{p(8(s, 1)), li € Z\{i}}
2. One insertion:
VseQ, dc(9(s),l) =9(0(s,1), dc(s,l) = {d(s, 1)} U {s(s)}.
3. One deletion:
Vs€Q, do((s),1) = $(6(s,1)), do(s,l) = {0(s, 1)}, dc(s,€) = {9 (d(s,1)),1 € X}

Use B; as input in the algorithm corresponding to the problem to produce an e-NFA. Determinize and
minimize it, and translate into a generating function. When k errors are allowed, repeat the construction
k — 1 times. Combinations of substitutions, insertions, and deletions are handled in the like.
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5.4. Markov automaton

The construction from a Bernoulli automaton into a Markov automaton of order 1 has been given in [10].
The extension to a Markov automaton of order k is immediate: Let s be a state of the Bernoulli automa-
ton, and let W = {w;, w; is a path of length k ending in s}. Create a state s,,, for each w; € W in the
Markov automaton and add the necessary transitions.

Remark that, in the case of a Markov model of order k, if the letter p is used for naming the tran-
sitions, a transition pg, .z, «,., from a state s means that the state has been entered by a transition
of the form py ;, ... -, and that the letter currently read is zy41. This translates to m, . z when
computing generating functions.

Ll sThk+1

6. Occurrences of words under constraint

Although the full power of the package regexpcount is best demonstrated on regular expressions, we
give an application of our computations to a biological problem over words. This application is fully au-
tomatized. See Section B of the appendix for a Maple session computing the conditional expectation and
the conditional standard deviation of the word considered in this section for the genome of H. influenzae.

6.1. Statistics of number of occurrences pairs

We make some preliminary remarks about the statistics of the number of occurrences of pairs of words.
Let w; and wy be the words and F(z,u,v) = 3 fniu'v?2" be the multivariate generating function
counting the number of pairs of matches. Here, f,, ; ; is the probability that a random sequence of size
n has ¢ matches with w; and 5 matches with we. Bender and Kochman [1] prove that the counts of
generalized words (finite sets of words) verify a multivariate normal distribution. They also prove that
this remains true when conditioning by the count of one of the generalized words. It seems reasonable to
conjecture that these results also hold when considering counts of matches with regular expressions, but
there are so far no proofs for this.

The “section” [u*2"]f(z,u,v) of the generating function, up to a normalization coefficient, counts
the number of matches of the word wq in texts of size n, knowing that exactly & matches with w;
occurred. It is computationally expensive to compute the k-th Taylor coefficient with respect to the
variable u of F(z,u,v) when k is not small and practically impossible as soon as & is larger than 100. To
circumvent this problem, we use the following heuristic: we shift the distribution so that the expectation
of the number of matches with w4 is k, and we compute the moments of matches with wo from the
shifted distribution. The shift is obtained by giving to the parameter u the appropriate positive value c.

The methods developed in Nicodeme et al. [10] apply here. When a:and v are real positive, F'(z, o, v)
is part of a system involving a matrix with non-negative entries. The Perron-Frobenius theory induces
that there exist a dominant singularity. Suitable Cauchy integration and application of the large powers
theorem of Hwang then imply that the distribution of number of matches of w4 remains normal when the
distribution is shifted.
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6.2. Biological application

We consider now the Chi sequence x = gztggtgg of the 1830140 base pairs long genome of H. in-
fluenzae read in the transcription direction (z stands for any letter of the alphabet ¥ = {a, ¢, g,t}). The
variables c; j, with 7,7 € 3 count the number of bases 4 followed by the base j in the genome. From
this, we deduce the Markov probability m; ; = ¢; j/(cia +Ci,c +cig+ci ). With this Markov model of
order 1, the expectation and standard deviation of number of occurrences of y in the genome are 56.26
and 7.59. However, the x sequence is highly overrepresented in the genome, and found 223 times. When
looking for exceptional words in H. influenzae, we must condition the statistics by the observed number
of occurrences of the x sequence. We compute the constrained statistics of the word w = tggtgggc as
follows. Construct a marked automaton A,,, for £*x and a marked automaton A,, for 3*w. Compute the
product B = Markov(A4,, x 4p) = {£,Q,s, F,é, M, P}, where M and P are the set of states corre-
sponding to matches with x and with w. Set F' = @ in B to recognize all the marked texts mark, ,(3*),
where m and p are respectively inserted after a match with y and w. Compute the generating function
F(z,u,v) = fn,iju'v’z" where f, ; ; is the probability that a text of size n distributed as H. influen-
zae contains 7 occurrences of x and j occurrences of w. We use the mean-shifting method? to get the
constrained probability. Consider

0F (z,au, 1)
"] —5,
[2"|F(z,a,1)

OF (z,a,v)
ov
[z”]F(z, a9, 1)

[2"]

p(n, o) = =l and pe= v=L. 3)
Remark that ¢(n, «) is the shifted mean of occurrences of x for parameter «.. Solving ¢(1830140, ) =
223 numerically provides «c¢ = 3.715. The expectation p. of the constrained statistics is given in Eq 3.
More specifically, let

P(z) OF(z/k,aq,v)

k" = [2"]F(z,aq,1 and H(z) = =
[ ] ( 0 ) ( ) Q(Z) v vt

and let ¢ be the dominant singularity of H(z). Note that ¢ is a pole of order 2 of H(z). The Taylor
expansions of P(z) and Q(z) at z = £ are

P() = P&+ (: ~ ) 90 (6) + ofz ~ ),
2) (3)
and Q)= 3 (=~ 7720 + 5o~ 0702 (@) +ole - 6
o p oW Q

Letp; = ——-(§) and ¢; = — .
We get by Laurent expansion of H(z) at £ the asymptotic equivalent of the conditioned expectation,

2 23 —
fle = ﬂ(n + 1)5_”_2 _ 49P192 . pOQ3§_n_1 +o(1)
92 3 93

1Greene and Knuth [4] give a nice account of this method. They want to compute the asymptotic value of the coefficient of
2™ in the binomial distribution (1/2 + z/2)®". A direct use of the saddle point method is hard, the values considered being
out of the domain of application of the central limit theorem. Greene and Knuth make the shift z — z/2. This transforms the
distribution to (2/3 + z/3)3", and a saddle point method applies within the domain of the central limit theorem. See also [19]
for an application of this method to large deviations.
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The moment of order 2 is computed similarly, and from there, the standard deviation o. follows. A
2.5 seconds computation gives the numerical values . = 23.52 and 0. = 4.85, to be compared to
the unconditioned values 4 = 15.21 and o = 3.9. Theoretical [9] and numerical [10] considerations
indicate that 4 =~ o2 and . = o2 when the words are not self-overlapping (or have low probability of
self-overlapping matches); in this case (that covers most of the words and can be easily pre-checked by
a pattern-matching algorithm) computation of y . alone that requires only 0.48 seconds provides a good
estimation of o.. For the words with strong self-overlap structure, the full computation is necessary. This
makes a total time shorter than 15 hours for computing all the words of size 8. As a comparison, the
package R’MES at http://www-bia.inra.fr/J/AB/genome/ cCOMputes the unconstrained statistics for all
the words of size 8 in the Markov case in a few seconds, but fails to compute the constrained case.

7. Conclusion

We provide here a general purpose symbolic package for statistical properties of occurrences of words
and regular expressions. Our method goes through the construction of automata and translations into
generating function. Although determinization could lead to an explosion of the size of the automata
constructed, previous work shows that this is not the case when considering exact matches and a biologi-
cal application such as calibrating Prosite motifs. The package should be able to cope with matches with
errors of DNA or RNA motifs in reasonable time. Complete biological applications and a push-button
interface are part of future work.

Availability. The regexpcount package is written in Maple. It is fully documented and available at
http://algo.inria.fr/libraries/software.html. The packages combstruct, gfun, equivalent and
gdev are also available at this address.

Acknowledgments. The regexpcount package has been developed in close collaboration with Bruno
Salvy. We thank Philippe Flajolet for precious hints and an anynomous referee for very constructive
suggestions.
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Appendix: maple sessions

A. Occurrences of A(abab)

We consider here the number of occurrences with overlap and one possible error (insertion, substitution, deletion) of the
pattern abab in the non-uniform Bernoulli and Markov models. The asymptotic expectation and variance for these statistics are
computed (see lines A(abab, 1), n.m.o, By and M; of Table 1).

> Bwg:=[[1/4,a],[3/4,p]1]: # Bernoulli weights
> # Maple syntax necessitates a dummy letter (here rho) for Markov transitionms.
> Mwg:=[[1/4,rho[al]l, [3/4,rho[bl], # Markov weights

[1/4,rho[a,al], [3/4,rho[a,b]l],[1/2,rho[b,al], [1/2,rho[b,b]l]]:

> GR:={abab=Prod(a,b,a,b), a=Atom, b=Atom}: # grammar for word abab
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> tl:=time():
> marked_automat:=regexpcount [regexptomatchesgram] (GR,ABAB,

[[abab,m, ’overlap’, ’error’[1,{’subst’,’ins’,’del’}]1]1]);
> time()-t1;

marked_automat := {a = Atom, b = Atom,
w6 = Union(F, Prod(b, w5), Prod(a, wl)),
wl = Union(E, Prod(a, w1), Prod(b, m, w2)), m = E,
w5 = Union(E, Prod(b, w5), Prod(a, wl)),
w7 = Union(E, Prod(b, w3), Prod(a, wl)),
w8 = Union(FE, Prod(a, m, w8), Prod(b, m, wj)),
ABAB = Union(E, Prod(a, w7), Prod(b, w5)),
w2 = Union(E, Prod(a, m, w8), Prod(b, m, w})),
w4 = Union(E, Prod(b, m, w6), Prod(a, wl)),
w8 = Union(E, Prod(a, m, w9), Prod(b, m, w2)),
w9 = Union(E, Prod(a, w1), Prod(b, m, w2))}

167

> # Input: a marked automaton for the number of matches problem
# getvals prints the asymptotic expectation and variance of number of matches
> getvals:=proc(auto,init,weight)
local gfeq, wauto, i, gfzu, gfz, var, eq;
wauto:=regexpcount [gramweight] (auto) :
gfeq:=combstruct [gfeqns] (wauto,unlabeled,z,weight) ;
# gfzu is the bivariate generating function for number of matches
gfzu:=subs (solve({op(gfeq)},{seq(op(1,i),i=gfeq)}) ,init(z,u));
printf ("gfzu=%a\n",gfzu) ;
gfz[1] :=subs(u=1,diff (gfzu,u)) ; # g.f for expect
gfz[2] :=subs(u=1,diff (u*diff (gfzu,u),u)); # g.f. for second moment
for i to 2 do eqlil:=equivalent(gfz[il,z,n,6); od;
print ("expectation", eq[1]);
var:=eq[2]-eq[1]"2;
print ("variance",gdev(var,n=infinity,10));
end:

> t2:=time(): getvals(marked_automat,ABAB, [op(Bwg),[u,m]]); time()-t2;

1024 — 1202%u® — 1442302 — 482343 — 1922202 + 2762 u? + 19222
+925u% — 182%u? — 1922° — 1922%u + 3842%u + 362* + 92°u

072U = — 508, — 128 7 97707 — 67507 T 67507 + 245707 — 97hu? — 2457)
. 63 141
“expectation”, — n — — (=00)
expectatio > 108 ™ 128+O(n )
6957 12663

“variance” + O(n{=2)

' 16384 16384
519
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> t3:=time():

> markov_marked_automat:=regexpcount [grammarkov] (marked_automat,ABAB,1,rho, [m]);

> time()-t3;

markov_marked _automat := {

m = E, w7, = Union(Prod(pq,«, wla), E, Prod(p,,p, w3s)),

ABAB = Union(E, Prod(pq, w7,), Prod(py, wss)),

wl, = Union(Prod(pq, 4, wl,), Prod(pg,s, m, w2), E),
w94 = Union(Prod(p,, 4, wl,), Prod(pe, s, m, w2s), E),
w4, = Union(E, Prod(pp, 5, m, w6;), Prod(pp 4, wly,)),

(
(
w6y = Union(E, Prod(py, s, wp), Prod(ps,q, wla)),
(
(
(

d
w2y = Union d )
)
w8 4 = Union(Prod(p,, s, m, w2p), E, Prod(pe,a, m, w9,)),
wdp = Union(E, Prod(py, s, w5p), Prod(ps,q, wls)),

pa = Atom, py = Atom, pg p = Atom, py o = Atom,

(
E, Prod(ps,a, m, w84), Prod(ps, s, m, wiy
w8y = Union(E, Prod(ps, 4, m, w8,), Prod(ps,s, m, ws,,

Py, b = Atom, p, o = Atom}
.079

> t4:=time(): getvals(markov_marked_automat,ABAB, [op(Mwg),[u,m]]); time()-t4;

—322 — 482% + 122303 + 182%u® — 128 + 3623u?
+482%u? — 302z%u? — 662%u + 182% + 152%u — 32*
2(48z — 822 + 623u3 + 3z%u3 — 64 — 623u? + 242%2u? — 3z%u?)
57 1311 27 4(=n)
“expectation”, —n — —— — = (—4)(=") 1 O
P 50" 800 25 Y (=)
7323 17601

*'32000 ° 128000
785

gfzu =

nd

“variance” +0(n4t™)

B. Occurrences of words on DNA under constraint

We compute the expectation and standard deviation of the word tggtggge for H. influenzae (Markov model of order 1). Con-

straint: the observed number of occurrences of the motif Chi gztggtgg is 223. See Section 6.

> with(regexpcount): with(combstruct): with(gfun):

> nuc:=[a,g,c,t]: # nucleotides of DNA

> # counts of binucleotides (Markov of order 1)

> cntla,al:= 213715: cntla,gl:= 91504: cnt[a,c]:= 86381: cntl[a,t]:= 166838:
> cntlg,al:= 97395: cntlg,gl:= 71409: cntlg,cl:= 95530: cntlg,t]l:= 97342:
> cnt[c,a]:= 115361: cntlc,gl:= 72522: cntlc,c]l:= 63061: cnt[c,t]:= 85502:
> cnt[t,al:= 131957: cnt[t,gl:= 126249: cnt[t,c]l:= 91471: cnt[t,t]:= 223670:
>

for i in nuc do
tot[i] :=add(ent[i,j],j=nuc): for j in nuc do wm[i,j]:=ent[i,jl/tot[i] od:
od:
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>
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total:=add(tot[i],i=nuc):
Hgen:={chi=Prod(g,x,t,g,g,t,g,g) ,x=Union(a,c,g,t) ,a=Atom,c=Atom,g=Atom,t=Atom}:
word:={W=Prod(t,g,g,t,g,.8,8,c)}:
adnw:= [[tot[a]/total,k[a]], [tot[c]/total,k[c]],
[tot[g]/total,k[gl], [tot[t]/total,k[t]],
seq(seq([wm[i, j],k[i,j]l],i=nuc), j=nuc), [u,m], [v,pl]:
berw:=[seq([1/4,k[i]] ,i=nuc) ,seq(seq([1/4,k[i,j]],i=nuc),j=nuc), [u,m], [v,pl]:
mkeq:=proc(auto: :set,adw) local WA, i, listat, eq;
WA:=gramweight (auto) ;
WA:= WA minus select(type,WA,anything={identical(’Epsilon’)}):
eq:={seq(eval (subs(Prod=‘**,Union=‘+¢,Epsilon=1,Atom=z,m=u,p=v,i)) ,i=op(WA))}:
eq:=subs(seq(i[2]=i[1] ,i=adw) ,eq);
eq;
end:

# n is given numerically to the function expstd
# vu: numerical value of u; sc: sum of coefficients for u=vu and length n
# xi is a pole of order 2 for EXGF and of order 3 for M2GF
expstd:=proc(MVGFUV,vu,sc,n)
local kappa, GF, xi, EXGF, M2GF,H1,H2, DN3, pO, pl, p2, q2, q3, q4, q5;
if vu=1 then kappa:=1
else kappa:=sc”~(1/n) fi;
GF :=subs (u=vu, z=z/kappa,MVGFUV) ;
EXGF:=subs (v=1,diff (GF,v));
xi:=op(1, [fsolve(denom(EXGF),z,0.8..1.2)]1);
pO:=subs (z=xi,numer (EXGF)) ;
pl:=subs(z=xi,diff (numer (EXGF) ,z));
q2:=subs (z=xi,diff (denom(EXGF) ,z,z)) ;
q3:=subs (z=xi,diff (denom(EXGF) ,z,z,z));
H1:=2*p0*(n+1)/q2/xi" (n+2) -2* (p1*q2-p0*q3/3) /q2"2/xi~ (n+1) ;
if vu=1 then print("Expectation",H1);
else print ("Conditioned Expectation",H1); fij;
M2GF:=subs (v=1,diff (v*diff (GF,v),v));
pO:=subs (z=xi,numer (M2GF)) ;
pl:=subs(z=xi,diff (numer (M2GF) ,z));
p2:=subs (z=xi,diff (numer (M2GF) ,z,z)) ;
q3:=subs (z=xi,diff (denom(M2GF) ,z,z,z));
q4:=subs(z=xi,diff (denom(M2GF) ,z,z,z,2z)) ;
q5:=subs (z=xi,diff (denom(M2GF) ,z,z,z,z,2));
H2:=-6*p0* (n"2/2+3*n/2+1) /q3/xi" (n+3) +6* (p1*q3-p0*q4/4) * (n+1) /q3~2/xi" (n+2)
-6+% (p2%q3~2/2-p0*q3*q5/20- (4*p1*q3-p0*qd) *q4/16) /q3~3/xi" (n+1) ;
if vu=1 then print("Standard Deviation", evalf(sqrt(H2-H172)));
else print ("Conditioned Standard Deviation", evalf (sqrt(H2-H172)));
fi
end:

# numerical evaluation of the Taylor coefficient of order n for alpha=v_alpha

> evalcoeff:=proc(f,v_alpha,n,k) local sing, H;

sing:=op(1, [fsolve(subs(alpha=v_alpha,denom(f)),z,.8..1.2)]1);
if k=1 then
H:=-subs (alpha=v_alpha,z=sing,numer (f)/diff (denom(f) ,z))*sing~ (-n-1)
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else # k=2
H:=(n+1) *sing” (-n-2) *subs (alpha=v_alpha,z=sing, numer(f)*2/diff (denom(f),z,z))
fi;
H
> end:

> T:=time(): auto:=regexptomatchesgram(Hgen union word,CHI,
[[chi,m, ’overlap’], [W,p, ’overlap’]]):
> markovauto:=grammarkov(auto,CHI,1,’k’): tauto:=time()-T; T:=time():

tauto := .315

> neq:=mkeq(markovauto,adnw) :
> mvgfuv:=subs(solve({op(neq)},{seq(op(1,i),i=neq)}),CHI): tsolve:=time()-T;T:=time():
tsolve := 1.910

> # when numerically solving phi with fsolve, only one argument is allowed
> # for phi; therefore L, Chi_obs, numphi and denphi are defined as global variables

> L:=1830140: Chi_obs:=223:

> mvgfu:=subs(v=1,mvgfuv) :
> numphi:=subs(u=1,diff (mvgfu,u)): denphi:=subs(u=1,mvgfu):

> phi:=proc(v_alpha) local nm, dn;
nm:=evalcoeff (numphi,v_alpha,L,2); dn:=evalcoeff(denphi,v_alpha,L,1);
nm/dn - Chi_obs

> end:

> Digits:=30: T:=time():
alphaO:=fsolve(phi,2..5); time()-T;
ag = 3.71500260619846885584814600795

.964

sumofcoeff = k™ = [2"]F (2, a0, 1);
[2"]F(2/k, o, v) is a probability generating function; coefficients sum up to 1

> sumofcoeff:=evalcoeff (denphi,alphal,L,1);
sumofcoeff := .330376940523924778854588001899 1089

> Digits:=10: adnw;

[[186146 ] [ 336446 ] [ 361676 573347 213715 97395

| 1609969° *| 7| 1829907 | * | 1829907 7] * | 1829907 *| * | 558438 “*| | 361676 "]’
(115361 . | [131957 [ 45752 71409 36261

3364467 | 7 | 5733477 1| 7| 2792197 7| * | 361676 97|’ | 168223" Y]’

(126249 ] [ 86381 . [ 47765 L 63061 91471

| 573347 "9 7 | 5584387 "¢ 7 | 1808387 9| 7 | 336446’ |’ | 573347 V°|”

[ 83419 1 [ 6953 42751 223670

_2792197 aJ_a _25834’kg¢]’ [168223’ CJ]a [573347>km4 ah%TnL[Uapﬂ
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> Digits:=30: expstd(mvgfuv,alphal,sumofcoeff,1830146);
“Conditioned Expectation”, 23.5181552641957932394301363950
“Conditioned Standard Deviation”, 4.84912348849073588546892002761

> tstats:=time()-T; ttotal:=tauto+tsolve+tstats;
tstats := .227

ttotal := 2.452

> std(mvgfuv,1,1,1830146) ;
“Expectation”, 15.2124052543474542605033150726
“Standard Deviation”, 3.90005838002946105422993294350

v

# for sake of comparison, multivariate generating function in the uniform
# Bernoulli model
bern_mvgfuv:=subs (gfsolve(auto,unlabeled,z, [[u,m],[v,pl]),z=2/4,CHI(z,u,Vv));

vV Vv

8 1 8 1 le + 1 11

21y — 2uv +

1+ m zng}w 65536z U — %5536 % UV ~ 7194304 I194304% U
bern-mvgfuy = —ewsms 65536z v+ 552" — 20562 Ut mome? — mome? Ut gt —gad v
-2+ —z L 65536 2% — mzlo + 262144Z10U - 65;36 2ou— LZSU + %zs
65536z8“” 262144z Puw — ﬁz + m 2° 64Z4 - 4096Z Su+ 65536 55362 UY
+65536 2Pu— 2684;5456 2% + 419}1304 212 — 2684;5456 2%+ mzw‘w
+mzl?’v + 2684;5456215 - 41941304312“ + mzmm’ - 167717216z13 - 419}1304212”

10

1 1 13 1 13 1.6
toe21a2? U Terrmie? Wt Terreie? Ut 10064

> # First terms of the Taylor expansion in z
> expand(series(bern_mvgfuv,z=0,14));

. 1 1 1
1+z+z2+z3+z4+z5+z6+z7+(6553 ) 8

65536 T 16384 T 65536 "

n 32763+ 1 ut 1 o) 20+ 11 vt 1 uv+262085+ 47 w) 210
32768 = 8192 32768 262144 262144 262144 262144

(104825 123 1, 7 1Ny
1048576 | 524288 "t Toasse " t 31072" Tt 131072
(19 524095 L 2, 3 1T \on
65536+ 524288 T 524288 T 262144™ T 262144
1048115 5793 5 255 a7, 1 5\ s ”
0
+ (1048576 16777216t 65536 * T Terrre16 " T Te7r7216 " T+ 16777216 " ”) #7406
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