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Abstract

Motivation

We want to provide biologists with a fast
and sensitive scanning tool for searching local
alignments of a protein query sequence against
databases of protein multiple alignments such
as ProDom. Reversely, we want to provide a
tool for locally aligning a protein multiple align-
ment query against a protein database such as
SWISSPROT.

Results

We developed the program SSMAL (Shuffling
Similarities with Multiple Alignments) that uti-
lizes features of the Blast (Altschul et al., 1990)
algorithm and part of the Blast code. Our soft-
ware allows both scanning multiple alignments
and searching with a multiple alignment. Dele-
tions in the multiple alignment only are handled
and a SSMAL search may miss some similarities
found by a profile search. However a SSMAL
scan of a database as ProDom would be 20 to
30 times faster that a profile scan. In the worst
case a SSMAL search is about 9 times faster
that a profile search.

Availability.

http://www.dkfz-heidelberg.de/tbi/people/nicodeme
and follow the hyperlink SSMAL.
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Introduction

We provide a method for a search of protein se-
quences against multi-alignment databases such as
ProDom (Sonnhamer & Kahn, 1994)

Scanning ProDom for similarity search is usually done
by searching similarities against a database of consensus
sequences of the multi-alignments.

We developed a new approach, different to pro-
files (Gribskov, 1994) (Gribskov et al., 1987) and using
alignment graphs built on a distinction between well-con-
served and weakly-conserved regions. Alignment graphs
have previously been used by Hein (Hein, 1989; Hein,
1990) to align homologous sequences, given their phy-
logeny, and by Schwikowski and Vingron (Schwikowski
& Vingron, 1997) to handle the generalized tree align-
ment problem.

The biological intuition underlying our approach re-
lies upon the hypothesis that the variable subsequences
composing the weakly-conserved regions of a multi-align-
ment have less structural constraints and may mutate
around a skeleton built over the well-conserved parts of
a multi-alignment. The algorithm therefore rests on the
idea that an alignment with a multiple alignment must
in the strongly conserved regions match the consensus of
this multiple alignment while it may match any of the
sequences of the multiple alignment in the weakly con-
served regions. There, it will possibly match different
sequences (shuffling) in different regions.

System and Methods

SSMAL is written in the C language (Kernighan &
Ritchie, 1978). It has been tested on a Sun Solaris plat-
form. Its main features are:

e Preparation of the database - equivalent to BLAST
setdb.



alignment-graph

query-sequence

BBBBNNNNNNBBBBBBBBEEEEBBBBBBB
FFFFNNNNNNFFFFFFFFZZZZFFFFFFF
CCCCNNNNNNCCCCCCCCEEEECCCCCCC

BBBB BBBBBBBB BBBBBBB
FFFFNNNNNNFFFFFFFFEEEEFFFFFFF
CCcC cccceece ccccece

CCCCNNNNNNBBBBBBBBEEEEFFFFFFF

Fig. 1. An Alignment-Graph and a Best-Path. In the conserved regions (in solid lines), we take the consensus. We
build branches in the weakly-conserved regions (in dashed lines). Combination of these branches is allowed by the
algorithm, producing a best path (in bold in the left part of the figure). Note that the example of the right part of
the figure corresponds to exact matching while our algorithm performs as Blast approximate matching, by use of a
similarity matrix. In this example, B, F and C are supposed to be weakly similar, while E and Z are strongly similar.

¢ Poisson clumping-declumping probabilistic calibra-
tion of the multi-alignments and printing of the pa-
rameters (A and K) for the multi-alignments

e Search for similarity of a query sequence against a
database of multi-alignments.

e Search for similarity of a query multiple alignment
against a database of sequences.

Alignment-Graphs and Best-Path
method

Overview of the method

Like in the Blocks approach (Henikoff & Henikoff, 1991),
we consider that the well-conserved and aligned regions
are joined by weakly-conserved regions, although in SS-
MAL we consider this in a different way. We take
the consensus of the sequences as representant for the
well-conserved regions while using a set of “parallel”
subsequences to represent the weakly-conserved regions.
When the alignment algorithm processes positions in a
weakly-conserved region, the subsequence with the best
match is selected.

We describe in the following section how we discrim-
inate between conserved or non conserved positions to
build conserved regions; we also discuss heuristic choices

made to keep the method efficient and to prune align-
ments without real significance (”noisy hits”).

The Alignment-Graph of a multi-alignment then is
composed of subsequences of the consensus and of sets of
parallel subsequences (branches) in the weakly-conserved
regions (branch regions as opposed to consensus regions).
See Fig. 1 for a schematic example. In the context of an
alignment process, an admissible path never intersects
two branches of the same branch region.

Fig. 1 shows on the right side a sketched multi-align-
ment, and on the left side the corresponding schematic
Alignment-Graph.

Considering now a similarity matrix M, the score of
an alignment of an admissible path with amino-acids
P1,P2,...,pr and of a subsequence with amino-acids
q1,92,---,q, of a query sequence is the sum of the scores:

S = Z M[p,,qz]

i=1...k

We call the admissible path with optimal alignment score
S with respect to the query the Best-Path.



Getting the well-conserved and
weakly-conserved regions from the multi-
alignment

Definition of a coefficient of conservation for a
multi-alignment position

We now describe how we discriminate between well-con-
served and weakly-conserved positions.

Definitions: Given a multi-alignment of n sequences
of length [, let a;; be the amino-acid at position 4 in the
sequence j. Let s(ab) be the score of similarity of two
amino-acids a and b in the similarity matrix M. Let
¢; be the consensus amino-acid at position ¢, such that
X7, s(aike;) is maximal. Let & be the anti-consensus
amino-acid at position ¢, such that X7_, s(a;x¢;) is mini-
mal. To normalize as much as possible the level of simi-
larity at a position, we define a coefficient of conservation
7; at position i as follows:

ki (s(airei) — s(Tici)) 1)
s(cici) — s(Tic;)

By construction, 7; is positive in the range [0, 1]; for
a perfectly conserved position, we have 7; = 1, and 7;
decreases as the level of similarity does.

We then choose a threshold value 7, which is constant
for the multi-alignment. Depending on whether or not
T > 7, we say that the position is conserved or not.
Different strategies may be adopted when considering a
set of multi-alignments: choosing an unique value for all
the multi-alignments, or choosing a 7 in relationship with
the number of sequences in the multi-alignment.

Statistical results show that the empirical choice of 7 =
95% for all ProDom multi-alignments, with BLOSUMG62
as similarity matrix M, is reasonable.

1
Ti = — X
n

Mathematical model

Simulations show that the Karlin-Altschul model (Karlin
& Altschul, 1990) applies for SSMAL. With [ = I, x I,
where [, is the length of a query sequence, I; is the length
of a target multi-alignment and S(I) the score of the
optimal alignment (see end of section ), we have

Pr (3(1) > @ + m) =l-e X" (2

for some constants K and A.

However, a technical condition of validity of this model
is that the average score at a position is strictly negative.
The average score at a position increases as the number
of branches increases, drifting to positives values. Ana-
lytical and numerical analysis done on an approximate

model of normal distributions for the scores of random
branches against random sequences show that limiting
the number of branches to 5 and eliminating very short
branches (under 3 positions) suffices to insure a negative
average score (see (Nicodeme, 1997)).

This heuristic implies the necessity of collapsing to-
gether the most similar branches during the preprocess-
ing step of the algorithm, described in the next section.

A branch region then will be composed of at most 5
branches of at least 3 contiguous positions with 7 > 95%.

Implementation

Preprocessing step: construction of

Alignment-Graphs

This step defines the strongly conserved positions and
reduces when necessary the number of parallel branches.

We reduce the set of branches by aggregating together
branches with high similarity, and by taking the consen-
sus for each of these sets. We detail how we reduce the
number of sets from k to k — 1.

We consider a partition of the set of n branches b; in
k sets S;,j =1...k; we have:

reduction step:

1-  take the consensus C; of each set Sj;

2- for each pair I,m, with 1 <l <m <k,
compute the score s(C;Cp,), as the sum
of the score of the individual positions;
select the pair I',m' with highest score;

3-  merge the sets Sp and S,

Initialization of the preceding algorithm is made by
considering a partition with a single branch in each set
S;; we iterate the reduction step until £ < 5, the heuristic
value given in the preceding section.

After this step, branches may contain gaps, but there
will never be simultaneously gaps on all the branches for
a given position (assuming that this does not occur in
the initial multiple alignment).

See Fig. 2 for an example of preprocessing.

Main step: searching for an align-
ment between a query sequence and an
Alignment-Graph

This step differs from Blast by the extension algorithm.

First, when a multiple-alignment is considered, a lay-
out of this multi-alignment is made in as many strings



>1284 (10) DEHYDROGENASE ...

. .YSEVFVDFIRRVREQFPTHTIFAGNVVTGEMVEELILSGADVVKVGIG.
. .YSEHFVQFVAKAREAWPTKTICAGNVVTGEMCEELILSGADIVKVGIG.
. .NSVYQIAMVHYIKQKYPHLQVIGGNVVTAAQAKNLIDAGVDGLRVGMG.
. .NSIFQINMIKYIKDKYPNLQVIGGNVVTAAQAKNLIDAGVDALRVGMG.
. .HSAGVIERVRWVKQNFPQVQVIGGNIATGDAALALLDAGADAVKVGIG.
. .HSQGVLNTVTKIRETYPELNIIAGNVATAEATRALIEAGADVVKVGIG.
. .HSEGVLQRIRETRAKYPDLQIIGGNVATAAGARALAEAGCSAVKVGIG.
. .NTIYQIAFIKWVKSTYPHLEVVAGNVVTQDQAKNLIDAGADGIRIGMG.
. .NSIFQINMIKYMKEKYPNLQVIGGNVVTAAQAKNLIDAGVDALRVGMG.
. .NSIFQINMIKYIKEKYPSLQVIGGNVVTAAQAKNLIDAGVDALRVGMG.

. .YSEVFVDFIRRVREQF THTIFA GEMVEE ILS ADVVK
. .NSVYQIAMVHYIKQKY TKTICA AAQAKN IDA VDGLR
. .HSAGVIERVRWVKQNFPHLQVIGGNVVTGDAALALLDAGVDALRVGMG.
. .HSQGVLNTVTKIRETY QVQVIG AEATRA IEA CSAVK
. .HSEGVLQRIRETRAKY ELNIIA AAGARA AEA ADGIR

Fig. 2. A region (positions 270 to 319) of the
multi-alignment 1284 of ProDom28, and the corre-
sponding preprocessing output. Positions considered as
conserved have a conservation coefficient 7 such that
T>7=95%.

as there are branches plus one string for the consen-
sus. Then, inside the branch strings, the positions corre-
sponding to a consensus region are set to Null. Reversely,
inside the consensus string, the positions corresponding
to branch regions are set to Null (see Fig. 4)

Hits detected by the Aho-Corasick (Crochemore &
Rytter, 1994) multi-string automaton on high scoring
small words are right and left extended for high scor-
ing alignments of the multi-alignment and of the protein
sequence (Fig. 3). This extension works similarly to the
Blastp extension, with the addition of interruptions when
a Null byte is hit.

We detail in Fig. 4 the left extension; right extension
is symmetrical.

Applications

Test-1: SSMAL search. Comparisons of
different methods

Given a family of homologous proteins sharing sufficient
similarity to build a multi-alignment, we want to detect
in a sequence database which ones are related to the
family.

Fig. 6 presents a synthetic comparison of results of
similarity search with 6 different methods. This test does
not consider gaps.

HIT-EXTENSION ()
begin
BLASTP-LEFT-AND-RIGHT-EXTENSION ()
until hit Null-sentinel-byte
(initializes rightscore and rightsum)

forever do
EXTEND-LEFT()

if RecordScore > rightscore
and -rightscore > -DropOffScore
and rightsum > -Drop0ffScore then

leftscore = RecordScore
leftsum = ExtendScore - RecordScore
EXTEND-RIGHT ()

if RecordScore <= leftscore

or -leftscore <= -DropOffScore

or leftsum <= -DropOffScore
then break

else

rightscore = RecordScore
rightsum = ExtendScore - RecordScore
fi
else
od
if RecordScore high
then MEMORIZE-ALIGNMENT() fi

break fi

end

Fig. 3. SSMAL: extension of a Hit.

(A) SSMAL (Best-Path method with Alignment-
Graph).

e (B) Unweighted Consensus.
e (C) Weighted Consensus.

¢ (D) Unweighted Profile (profile with average score
at each position).

o (E) Weighted Profile (profile with weighted score at
each position).

o (F) Set of sequences: with n sequences Sy, in the
multi-alignment, for each test sequence S, the se-
quence S, scoring best with S; is selected, and the
corresponding maximal score memorized.

Weighting schemes

Weighting schemes for consensus and profile of sequence
alignments have been computed by using ClustalV (Hig-
gins et al., 1992) and TreeWgt (Gerstein et al., 1994).



Example of lay out of a multi-alignment for extension (C:conserved U:unconserved)

"' ccuuuccccccuuuuuuuuuucuuuuuyucccccccccuuuucuuuuuuuuuy

type
consensus = "OKV000GAGGGV0000000000Q0000000QNRSVTPIIO000D00000000000"

branch[0] = "000AVIOO0000GQALAFLLKNONQPIASEOOOOOOOOOLVLYOINEAMDKAPGO"
branch[1] = "000TIVOOOOOOGSSYAFAILNONQGIADEOOOOOOOOOLAIVOIMKAMDKTKGO"
branch[2] = "00OOLVTOO0000OAYSLLYRIANOGNMFGKDOOOOOOOOOLHLLOIPQAMGVLDGO"
branch[3] = "000AVSOO0000SNHLLFKLASOGEVFGQDOOOOOOOOOLKLLOSERSFQALEGO"
branch[4] = "000AILOOOOOOGQPLSLLLKNOLNHQVSEOOOOOOOOOLALYOIREAMDAANGO"

EXTEND-LEFT ()
begin
forever do
if ExtensionScore - RecordScore < -DropOffScore  then return fi

01dRecordScore = RecordScore
01dExtensionScore = ExtensionScore
ExtensionScore = -Infinity

if Type-of-Region = "branch (U)" then
foreach branch of the region do BLASTP-EXTEND-LEFT() od

else
for consensus of the region do BLASTP-EXTEND-LEFT() od
fi
if Beginning-of-region not reached then break fi
if Beginning-of-multialignment reached then break fi
if Beginning-of-protsequence reached then break fi
od

end

BLASTP-EXTEND-LEFT ()
begin
score = (0ldRecordScore
0ldExtensionScore - 0ldRecordScore

sum

forever do

sum += ScoreMatrix[protsequence--] [multialignement—-]

if sum > O then
Memorize-Position-as-Putative-Beginning-of-Alignment
score += sum
sum = 0

fi

if Hit-Null-Sentinel-Byte then break

X = —-score
if x < -Drop0ffScore then x = -DropOffScore fi
if sum < x then break fi
od
if score > RecordScore then RecordScore = score fi
if scoret+sum > ExtensionScore then ExtensionScore = score+sum fi
end

Fig. 4. SSMAL: lay-out with Null bytes and left extension.
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Fig. 6. The best 30 Z’'-scores obtained with a globin Probe-Family from a target set of 66 globins and 1875 non
globins; (A) SSMAL; (B) Unweighted Consensus; (C) Weighted consensus; (D) Unweighted Profile; (E) Weighted
Profile; (F) Set of Sequences. Non Globins are represented by a black rectangle. Letters -A,... -F indicate the
method giving the highest Z'-score for the corresponding protein.



ClustalV produces a binary phylogenetic-type tree for
sequences belonging to a multi-alignment; each sequence
is assigned to a node in the tree and the tree topology
gives the similarity level between sequences. With such a
topological tree as input, TreeWgt gives weights for the
sequences, and these weights may be used to compute
weighted consensus or weighted profiles.

Description of the tests

Each sequence with odd rank in multi-alignment #1
(globin family) of ProDom28 is selected to build a multi-
alignment, the Probe-Family.

Test sequences are:

o globin sequences of SwissProt32 which do not belong
to multi-alignment #1 of Prodom28 (66 sequences);

e non globin sequences randomly chosen inside Swis-
sProt32 (1875 sequences).

For each method, Z'-scores are computed as follows.

1. For each test sequence, the alignment with the
Probe-Family producing the best score S is consid-
ered.

2. Expectation E and variance V of these scores for
the non-globin sequences are computed.

3. A Z-score is computed as

1
Z = 358 = BS)):

4. Equation 2 shows that linear regression applied to
the plot Z = f(log(L)), where L is the length of the
sequences, gives a line with slope % Computing
A by this linear regression, we define a Z'-score as
Z' = Z— $log(L), to get rid of the deviation caused

by the sequence lengths.

Although the Z'-scores most likely follow an extreme
value distribution, an approximation by a normal distri-
bution was used simply for the convenience of comparing
the scores, not as statistical indicator.

Discussion of the plots

Fig. 5 gives the test results for SSMAL (A) and the
Weighted Profiles (E). The 66 globin sequences are rep-
resented by dark circles in the plots, and the 1875 non
globin sequences by grey points.

Most of the test globin sequences have a length close
of 150, giving many points in the neighborhood of the
vertical line log(L) = 5.

Fig. 6 gives a synthetic comparison of the test re-
sults for the six methods. The proteins with the 30
best Z'-scores are represented in order of decreasing Z'-
scores, a shadow white rectangle representing a globin
and a black rectangle representing a non-globin (false
positive). Moreover, for each protein in this figure,
the method producing the highest Z’'-score is given in
the shadow rectangle. Weighted Profiles are the most
sensitive method, but SSMAL detects several similari-
ties (marked “-A”) which are not detected by the other
methods. SSMAL is also the method with the small-
est number of false positives in these 30 best scores.
When looking more precisely at the results, SSMAL de-
tects similarities of the globin Probe-Family with globins
GLB2_TYLHE, GLBT_CHITH, GLB1_CALSO, GLBI-
_LUMTE and GLB1_PHESFE which are not detected by
the other methods (GLBT-CHITH is an insect globin
whose similarity with the Probe-Family is distant). Sim-
ilarities with globins GLB2_.CALSO and LGB3_-SESRO
are better detected by SSMAL. The specific differences
between SSMAL and the weighted profile results can
be explained from the composition of the Probe-Family.
The Probe-Family consists of 304 globins, 27 of which be-
ing globins subunits (GLB...), 241 being a and S-chains
(HBA..,HBB...), and 36 being myoglobins (MYG...).
Although the GLB globins have higher weights, the
weighted profile favors similarities to the dominant «
and (-chains. Some leghemoglobins have good similar-
ities with both the a and [-chains; these similarities
are not detected either with the a-chain nor with the
[-chain separately. The preprocessing step of SSMAL,
on the other hand, builds set of branches respecting the
diversity of the Probe-Family; this gives a chance for
similarities to the subunits globins GLB which are well
detected by SSMAL and not by the weighted profiles.
See (Nicodéme, 1997) for further results.

Test-2: SSMAL search. Comparison with
generalized profiles

The tests described below have been performed using a
Sun Ultra-Sparc.

This test compares a SSMAL search and a generalized
profile search (Bucher et al., 1996). Gaps are allowed.
The Probe-Family consists of 30 sequences from the lac-
tate test family given by Bucher. The test sequences
are:

o 48 lactate sequences, 47 of which belonging to the
lactate test family of Bucher;

e 1872 random sequences from SWISSPROT32 which
are not lactates.



Krogh and al. (Krogh et al., 1994) have experimentally
shown that generalized profiles and profilessHMMs are
equivalent. Bucher and al (Bucher et al., 1996) gave the-
oretical demonstration of this equivalence. Comparisons
made in this paragraph with generalized profiles there-
fore stand also as comparisons with profiles-HMMs.

SSMAL results

SSMAL search finds 43 out of the 48 target lactates and
misses 5. One of these 5 sequences is a very short se-
quence (MDHC_HUMAN, 14 positions). 3 other false
negatives are significantly shorter (34 to 74 positions)
than the average size of the target sequences (330 posi-
tions). There are false positives at rank 37, 39, 44 and
46. The search time is 8.53 sec..

Generalized profiles

The generalized profile built over the Probe-Family
misses the MDHC_HUMAN sequence too, but finds the
47 other ones. False positives are at rank 41 to 45 (5),
49, 50, 53 and 55. The search time is 75.64 sec..

Blastp search with the Probe-Family consensus

This search misses 9 sequences, 8 of which are short se-
quences (under 40 positions). The search time is 1.35
sec..

SSMAL scan of multi-alignments

We now describe the second application of our method,
which consists in looking for similarities of a protein
query sequence against a collection of multi-alignments.
This approach has a direct application to the database
ProDom.

Probabilistic calibration of the multi-
alignments

To allow pertinent comparisons of the results across dif-
ferent multi-alignments, the parameters K and A in equa-
tion 2 must be computed for each multi-alignment, which
corresponds to the calibration step for blocks. It is
not possible to do this analytically, but the clumping-
declumping method of Waterman and Vingron (Water-
man & Vingron, 1994) applies and gives good approxi-
mations for K and A. No position only consists of gap
characters, and a clump therefore is a “diagonal” seg-
ment in the comparison matrix of the query and the con-
sensus. Thus declumping is easy. We count the number
of clumps C(t) over a score ¢ to check the fit with the

0.3+ |/

0.1 \

i
B(C(1))

Fig. 7. SSMAL. Fit with the Poisson model (5000 sim-
ulations with alignment 437 of ProDom28). C(t) is the
number of clumps of score over ¢ (¢ = 40). The circles o
correspond to a Poisson of parameter 1.48

Poisson model (Fig. 7) and to compute parameters K
and A.

The whole calibration of ProDom33 takes 4 hours on
a Sun Ultra-Sparc.

MultiAlignments producing HSPs: Score P(N) N
35274 (1) MDL_ECOLI // MULTIDRUG.. 639 5.4e-84 1
34459 (1) MDL_ECOLI // MULTIDRUG.. 589 1.5e-76 1
103 (88) MDR1(12) MDR3(8) MDR2... 84 3.6e-09 2
12271 (2) CYDC(2) // CYDC PROT... 73 5.4e-08 2
1947 (9) UVRA(9) // A SUBUNIT... 80 0.00036 1
3289 (6) HLYB(3) LKTB(2) RTXB.... 72 0.0037 1
2498 (8) RECF(8) // RECF PROT... 67 0.0081 2
2941 (7) // PROTEIN CHROMOSOME... 71 0.0094 2
12344 (2) MOBB(2) // B PROTEIN... 51 0.010 3
2034 (9) LHB(5) LHB1(2) LHB7(1).. 50 0.023 2
2033 (9) LHA(4) LHA1(2) LHA7(1).. 49 0.039 2
16091 (1) PNKL_NPVAC // PUTATIVE.. 74 0.075 1
Fig. 8  Result of a SSMAL scan query against

ProDom33; the query sequence is the ATP-binding pro-
tein MDL_ECOLL



MultiAlignments producing HSPs: Score P(N) N
35274 (1) MDL_ECOLI // MULTIDRUG.. 639 6.5e-83 1
34459 (1) MDL_ECOLI // MULTIDRUG.. 589 7.3e-76 1
103  (88) MDR1(12) MDR3(8) MDR2... 83 3.3e-12 4
3289 (6) HLYB(3) LKTB(2) RTXB.... 71 0.0091 1
1947 (9) UVRA(9) // A SUBUNIT... 65 0.030 1
16091 (1) PNKL_NPVAC // PUTATIVE.. 74 0.066 1
6629 (3) MDR1(3) // P-GLYCOPRO.. 63 0.10 1

Fig. 9. Result of a Blastp query against ProDom33 con-
sensus sequences; the query sequence is the ATP-binding
protein MDL_ECOLIL

Test-3: SSMAL scan of PRODOM multi-
alignments

We take as query the ATP-binding protein MDL_ECOLI
and as target ProDom33. The number of sequences in
the multi-alignments is indicated between brackets in the
output results.

SSMAL results

The SSMAL result is given on Fig. 8. 12 sequences have
a significance over 0.1. The search time is 109s.

Blastp results

We proceed to a Blastp search against the consensus
sequences of the multi-alignments of ProDom33 with
MDL_ECOLI as query. The result of the search is given
in Fig. 9. 7 sequences have a significance over 0.1 and
therefore 5 matches obtained with SSMAL are missed.
The search time is 26s.

Conclusions

We described a new method for similarity search of a
sequence and a multi-alignment; this method takes ad-
vantage of the combinatorial possibilities given by align-
ment graphs, which distinguish conserved regions of the
multi-alignment and weakly-conserved ones. It is gen-
uinely different to others method that try to model ho-
mology because it explicitely models different paths in
weakly-conserved regions.

The SSMAL software implements this approach and
allows queries on the protein multi-alignments database
ProDom. Comparisons with methods such as unweighted
or weighted consensus, unweighted or weighted profiles
are good; comparison with a ”set of sequences” approach
is clearly to the advantage of SSMAL. We detect dis-
tantly related similarities, and particularly, similarity of
an insect globin with a probe globin family containing
no such globins.

For searching similarities of a multi-alignment against
a collection of sequences, our approach is not as sensitive
as profiles, but much faster. For scanning a collection of
multi-alignments, we are not as fast as a scan against the
consensus, but much more sensitive.
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very efficient help of the Theoretical Bioinformatics group at
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