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Problem setting

I Alphabet A = {A, C, G, T} (DNA)

time = 0 Sn(0) = YYYYYYY......YYYYYYYY
...

...
...

time = T Sn(T ) = YYYY...FF..FF..YYYYYY

I n = length of random sequences Sn(0), . . . , Sn(T ) (n ≈ 2000)

I b = FF..FF ∈ Ak Transcription Factor (5 ≤ k = |b| ≤ 10)
I b does not occur in Sn(0)
I b occurs for the first time by evolution at time T in a

sequence evolving from Sn(0)

Aim: Compute T
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Initial ν(α) and Substitution Probabilities πα→β

α ν(α)

A 0.23889
C 0.26242
G 0.25865
T 0.24004

 
substitution prob.
P(1) = πα→β
for one generation
(20 years)

A  A 0.9999999763
A  C 4.54999994943× 10−9

A  G 1.57499995613× 10−8

A  T 3.40000001733× 10−9

C  A 6.14999993408× 10−9

C  C 0.99999996495
C  G 7.14999984731× 10−9

C  T 2.17499993935× 10−8

G  A 2.17499993935× 10−8

G  C 7.14999984731× 10−9

G  G 0.99999996495
G  T 6.14999993408× 10−9

T  A 3.40000001733× 10−9

T  C 1.57499995613× 10−8

T  G 4.54999994943× 10−9

T  T 0.9999999763

January 24, 2014



Powers of P(1) remains close to the Identity Matrix

P(1) ≈


1− 3m m m m
m 1− 3m m m
m m m 1− 3m
m m m 1− 3m

 with m ≈ 10−8

PN (1) ≈


1− 3mN mN mN mN
mN 1− 3mN mN mN
mN mN mN 1− 3mN
mN mN mN 1− 3mN

+O(m2N)

Therefore

PN (1)× ν ≈ ν for N ≈ 106 and N < 106

P∞(1)× ν = (0.25, 0.25, 0.25, 0.25)t
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Geometric distribution of the Waiting Time
By stationnarity of ν, assuming T ∈ N

P
(
no b in Sn(j + 1) | no b in Sn(j)

)
= P

(
no b in Sn(1) | no b in Sn(0)

)
= 1−P

(
b occurs in Sn(1) | no b in Sn(0)

)

P
(
b occurs in Sn(T ) | no b in Sn(T − 1)

)
= P

(
b occurs in Sn(1) | no b in Sn(0)

)
Setting pn = P

(
b occurs in Sn(1) | no b in Sn(0)

)
,

E(T ) ≈ i
∑
i≥0

(1− pn)
i × pn =

1

pn
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Renewing the Aim

We need now computing

pn = P
(
b occurs in Sn(1) | no b in Sn(0)

)
=

P
(
b occurs in Sn(1) AND no b in Sn(0)

)
P(no b in Sn(0))
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Different computations of pn

1. Behrens-Vingron (2010)
I Approach neglecting words correlation.
I Efficient computation of pn with respect to this assumption.

2. Behrens-Nicaud-N (2012)
I Rigorous and efficient approach by automata.

3. N (NCMA2012)
I Heuristic approach by clump analysis, either by
combinatorics of words or by automata and generating
functions.

4. N (2013)
I Heuristic approach, adaptation of the Régnier-Szpankowski
equations and explicit formula approximating pn
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Different computations of pn

time = 0 Sn(0) = YYYYYYY......YYYYYYYY
...

...
...

time = 1 Sn(1) = YYYY...FF..FF..YYYYYY

I Behrens-Vingron compute the probability that b occurs in
Sn(1) (without allowing overlaps of occurrences), and
then the probability that Sn(0) evolves to Sn(1)

I Behrens-Nicaud-N use an automaton on the alphabet A×A
that scans simultaneously Sn(0) and Sn(1). This automaton
is a kind of product of two Knuth-Morris-Pratt automata.

I N (2012) assumes that a single mutation occurred and
considers the clumps of neighbors of b at distance 1 in
Sn(0).
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An unexpected behaviour

n
n

pn

π
×P(no b (or b′) in Sn(0)) P(no b (or b′) in Sn(0))

b = ACAC b′ = AACC, ν(A) = ν(C) =
1

2
, π = πA→C = πC→A

pn

π

n

F (z, t) rational function

P
(
b ∈ Sn(1) | b 6∈ Sn(0)

)
= pn ×P(no b in Sn(0)) = [zn]

∂F (z, t)

∂t

∣∣∣∣
t=1

P(no b in Sn(0)) = [zn]F (z, 1)
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Formal Languages Approach - (N 2013)

(Assuming a single mutation)
b = AAAAA

S(0) = XXXX...XXXAAAAXAAAAXXXX..........XXX

S(1) = XXXX...XXXAAAAAAAAAXXXX..........XXX

= XX...− short clump of AAAAA− ...XXX

I length of short clump of b in S(1) must be less than
2× |b| − 1,

I else there is at least one occurrence of b in S(0)

I no occurrences of b in the XXX...XXX

if b without self-overlap, short clump=b
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Guibas-Odlyzko decomposition - occurrences of a word b
b = acaca

acaca
acaca

acaca acaca acaca

∈ R ∈ bM

∈ bM

∈ bU

I Right R: = { w = u.b et 6 ∃r, s, w = r.b.s }

aaaaaacaca ⊂ R, cccccacacaca 6⊂ R
I MinimalM: = { w, b.w = u.b et 6 ∃r, s, b.w = r.b.s }

acaca ccaca ccaca
aaaaacaca ⊂M caccccccccacaca 6⊂ M ca ⊂M

I Ultimate U : = {w, 6 ∃r, s, b.w = r.b.s}

acaca ccaca
aacccaccccccc ⊂ U caccccccc 6⊂ U

I Zero Z := A? −A?.b.A? = {w, 6 ∃r, s, w = r.b.s}
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Régnier-Szpankowski Equations (see Lothaire)

I A? = U +MA?

I A?b = R.C +R.A?.b
I M+ = A?.b+ C − ε
I Z.σ = R+ Z − ε

Generating Functions of the Languages

R(z) =
P(b)z|b|

D(z)
, M(z) = 1− 1− z

D(z)
,

U(z) =
1

D(z)
, Z(z) =

C(z)

D(z)
,

∣∣∣∣∣∣∣∣ with D(z) = (1−z)C(z)+P(b)z|b|,

C autocorrelation set of the word b

C = {w; b.w = u.b, 0 ≤ |w| < |b|} C(z) =
∑
w∈C

P(w)z|w|
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What do we need in Sn(1)?

b = ACACA ACACACACA

∈ R

∈ C

∈ U

But not any position of the clump can mutate

ACACACACA

NNNNYNNNN

ACACACA

NNYYYNN

ACACA

YYYYY

I to avoid an occurrence of b in S(0)
I if the short clump is b.c with c ∈ C
I only t = |b| − |c| positions can mutate
I these positions are the t last positions of b
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The right generating function

b = ACACA ACACACACA

∈ R

∈ C

∈ U

I Gen.Fun. F (z) of sequences with one short clump

F (z) = R(z)×
∑
c∈C

P(c)z|c| × U(z) =
∑
c∈C

P(b.c)z|b.c|

D2(z)

I Gen.Fun Z(z) of sequences with no occurrences of b

Z(z) =
C(z)

D(z)

I D(z) = (1− z)C(z) +P(b)z|b|

I F (z) and Z(z) have the same dominant singularity ω
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Asymptotics of qn (approximation of pn)

qn =
[zn]F (z)

[zn]Z(z)
(P(ε) = 1)

ω dominant singularity of D(z)

qn =
P(b)

C(ω)D′(ω)

×
∑
c∈C

(|b| − |c|)P(c)ω|b.c| ×
∑

β∈{b[|c|+1|],...,b[|b|]}
α 6=β

P(α)

P(β)
× πα→β

×
(
(n− |b.c|+ 1)ω−1 +

D′′(ω)

D′(ω)

)
+ o(P(b)).
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An even more approximated result
D(z) = (1− z)C(z) +P(b)z|b|

by bootstrapping ω ≈ 1 +
P(b)

C(1) + |b|P(b)
≈ 1

Using ω ≈ 1 gives

q(approx)n =

P(b)

C2(1)
×
∑
c∈C

(|b| − |c|)P(c)(n− |b.c|+ 1)

×
∑

β∈{b[|c|+1|],...,b[|b|]}
α 6=β

P(α)

P(β)
× πα→β
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Theorem[N 2013]. The conditioned probability pn that a
random sequence of length n that does not contain a k-mer b
at time 0 evolves at time 1 to a random sequence that
contains this k-mer verifies

pn = qn × (1 +O(nψ)) +O(n2ψ2)

where

qn =
P(b)

C(ω)D′(ω)

×
∑
c∈C

(|b| − |c|)P(c)ω|b.c| ×
∑

β∈{b[|c|+1|],...,b[|b|]}
α 6=β

P(α)

P(β)
× πα→β

×
(
(n− |b.c|+ 1)ω−1 +

D′′(ω)

D′(ω)

)
+ o(P(b)).

ψ =
maxα,β∈A;α 6=β pα→β

minα∈A pα→α
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Numerical validation

A = {A, C, G, T} - uniform Bernoulli model for S(0).

b = AAAAA and for α 6= β, pα→β = 10−8

Length n pn × 106 hn × 106 qn × 106 q
(approx)
n × 106

10000 1.03335528 1.03335588 1.03335587 1.02703244
100000 10.3368481 10.3369021 10.3369021 10.2742439

10000000 1033.19278 1033.72699 1033.72698 1027.46750

I pn - Exact result by automata (Behrens-Nicaud-N 2012)
I Heuristic of a single mutation

I hn clumps of neighbors at distance 1 of b in Sn(0) (N 2012)
I qn, q

(approx)
n short clump approach on Sn(1) (N 2103)
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