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Inclusion-Exclusion principle: set-theoretical view

» General set-up

AUB=A+B—-AB

By recurrence:

AU VA =00 A= i Ande +- -+ (1) A1 4,
» Derangements of G, set A, = B;, where

» B; set of permutations with no fixed point at position ¢
» B, set of permutations with a fixed point at position z.
B1U---UB, =6, — B1B;...B,
|BiBy...B,| =

|6 | Zl<z<r

Eil Eiz +

for §i1§12 ---Ezk with 21 < 15 < - - < 5

> choices of indices: (%)

» choices for other positions: (n — k)!

Dn=|B1B;...By| = nl—(n—1)! (’f) +(n—2)! (;‘) 4+ +(=1)"0! (Z)

D, . 1 1 a1
=l gt ()
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> Set of camelus genus (camel and dromedary): each one is of size 1, the
number of humps is counted by the formal variable u.

’P:{m,m‘}, P(u) = u + u?
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Analytic Inclusion-Exclusion principle

Generating function point of view

> Set of camelus genus (camel and dromedary): each one is of size 1, the
number of humps is counted by the formal variable u.

’P:{m,m‘}, P(u) = u + u?

> Distinguished set

Q _ { “objects of P in which each elementary configuration (hump)
- is either distinguished or not" }

{9 P YA YA YA W

Q) =v+1+v>+v+v+1=2+3v+7°
= P(1+v)

» Inclusion-Exclusion principle
Q(v) easy to get, gives P(u) = @Q(u — 1).
Goulden-Jackson book (1983)
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Back to Derangements
P: set of all permutations.

Given a permutation (2,5, 3,4,1) € Gs

consider a “super’set Q of “super” permutations where some fixed
points are marked.

(27 51 31 4’ 1) ~r {(27 57 37 47 1)’ (27 57 37 47 1)’ (27 57 37 47 1)’ (27 57 37 47 1)}

» The marked fixed points form a set S of positions

» removing the marked fixed points leaves a permutation of P

1
Q= SxP = Qzv)=e"r—

Then

P(z,u) = Q(z,u—-1) = D,=[2"]Q(z,—1)=1[2"]



Rises and ascending runs in permutations - Philippe’s book

» Rises or ascending runs of length 1 (Eulerian numbers)

u—1
Az,u) = P o=y

» mean number for permutations of size n: 2(n — 1)
> variance: ~ %n

» Ascending runs
» mean number of ascending runs of length £ — 1: %(n —-1+1)

» Permutations without /-ascending runs

Goulden-Jackson book (1983), Elizalde, Noy, ...
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Analytical approach to Word Counting

» Probabilistic methods [Prum, Rodolphe, de Turkheim 95],
[Schbath 97], [Apostolico, Bock, Xuyan 98], [Reinert,
Schbath, Waterman 00], ...

» Combinatorial and algorithmic methods - Generating functions
of probabilities [Goulden, Jackson 83], [Régnier, Szpankowski
98], [Noonan, Zeilberger 99], [Flajolet, P.N., Salvy 99],
[Bassino, Clément, P.N. (to appear)]...

» Large deviations [Denise, Régnier 04]
See also Lothaire vol.3 “Applied Combinatorics on Words” with a

chapter by Reinert, Schbath, Waterman and another by Jacquet,
Szpankowski.



Inclusion-Exclusion: one word

> A text P = abaaaabb and a pattern U = {u = aaa}. Text with all
occurrences marked:
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P(z,z) = m(a)57(b)32822 (where = counts occurrences of u, and
z the length of the text).
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Inclusion-Exclusion: one word

> A text P = abaaaabb and a pattern U = {u = aaa}. Text with all
occurrences marked:

abaaggbb.

P(z,z) = m(a)57(b)32822 (where = counts occurrences of u, and
z the length of the text).

> Set of decorated texts (some occurrences marked)

Q= {abaaggbb, abaagabb, abaaagbb, abaaaabb}
Q(Z, t) — ZWEQ ﬂ'(W)ZlW‘ t#distinguished occurrences
=m(a)Sm(b)328(t> +t +t + 1),
where the variable t counts the distinguished occurrences).
h h iable ¢ he distinguished

Q(z,t) = P(z,1+t) or P(z,2) = Q(z,z — 1).

We need to compute the generating function of decorated texts!!!



Combinatorial description of decorated texts

Consider the text w = baaaaaaacaaabaaaabaaaaab, the pattern
U = {aaa} and a particular decorated text
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Definition (Cluster)

A cluster ¢ with respect to a pattern U is a decorated text such that
» all positions are covered by at least a distinguished occurrence,

> and, either there is only one distinguished occurrence, or any
distinguished occurrence has an overlap with another distinguished
occurrence.
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Definition (Cluster)
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Combinatorial description of decorated texts

The set of decorated texts T decomposes as sequences of either arbitrary
letters of the alphabet A or clusters,

T=(A+0)".
Now, let us assume that we know how to compute the generating
function £(z,t) of the set of clusters C,

€(z,t) = > w(w)z1t7), where (w) = (|wly, ..., [w],) (“type").
weC

From general principles the g.f. T'(z,t) of all decorated texts is

1
1— A(z) — €(z,t)°

and the sought generating function is

T(z,t) =

1

Fu(z,x) = 1—-A(z) = €é(z,x—1)




Clusters: the simple case of one word

Take U = {aaa}, the set of clusters is
0 <o o)*
C=aaa-|(a+aa) .

The bivariate generating function £(z, t) of C is obtained from this
expression by counting the distinguished occurrences, i.e., symbols @,
with the variable ¢.

_ tn(a)23
€zt = 1—t(m(a)z + m(a)222)’

where £ counts the number of distinguished occurrences.



Clusters: the simple case of one word

Take U = {aaa}, the set of clusters is
0 (o o)*
C=aaa-|(a+aa) .

The bivariate generating function £(z, t) of C is obtained from this
expression by counting the distinguished occurrences, i.e., symbols @,
with the variable ¢.

_ tn(a)23
€zt = 1—t(m(a)z + m(a)222)’

where £ counts the number of distinguished occurrences.
Then, posing 7(a) = m(b) = 1 (to get the enumerative generating
function), we obtain

1 1
F(z,z)

= — 3
{— 9 (z —1)z

T1-A(z)—€(z,z—-1)
1—(z—-1)(z+ 2%



Patterns as set of words

» Reduced pattern: no word of the pattern is factor of
another word of the pattern

U = {baaab, aaaaa, aabb}
» Non-reduced patterns (general case): no conditions

U ={baaab, aaaaa, aa, ba}
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Avoiding an “infinite” pattern - Zeilberger (2000)

> patten P = ) ab™"'c™ "o = {abca, abbeca, ..., }

m>0
» autocorrelation pattern C = Z pEticktlg
k>0
» counting generating functions
z* 23
g P(z):1—z2(’) =17
tP(z 1
> f(z,t)zi, F(Z,f): _1)P
1-C(2) EERENCE O
We get
1 1— 22+ 28
F(Z,O) = =
P(z) _ 3, _ 52 3 _ 9,4
1_3z+1+c(z) 1—-32—2°+42° -2z

= 1432+922+2723+802%+2372°+70125+207427 +613528 +. ..



Self-Avoiding walks (finite memory) - Noonan (1998)

» nearest neighbours walks on the lattice Z¢

» loop of a walk: subsequence of the walk with common initial
and end point

» c4(n) number of self-avoiding n-steps walks (no loops)

» C4(n, k) number of n-steps walks with no loops of length
<k

» By construction, c4(n) < cq(n, k)



Self-Avoiding walks (finite memory) - Noonan (1998)

» nearest neighbours walks on the lattice Z¢

» loop of a walk: subsequence of the walk with common initial
and end point

» c4(n) number of self-avoiding n-steps walks (no loops)

» C4(n, k) number of n-steps walks with no loops of length
<k

» By construction, c4(n) < cq(n, k)

Connectivity constant for self avoiding walks ug4
Ca(m + n) < Ca(m)ea(n) = pg < lim, .o (C4(n))Y/™ (Fekete

lemma)

Noonan (1998) Ho < 2.6939
Ponitz and Tittman (2000) 2 < 2.6792 (record?)



Loop and mistakes

v

k-mistake: a loop of size at most k that contains no inner
loop

Steps = (+1,—-1,+2,-2,...,+d, —d), where (412, —1)
stands for a (41, —1) increment of the ith coordinate.

v
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(+1,—2,+2,—1) is not a mistake
(+1,—2,—1,42) is a mistake
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Loop and mistakes

» k-mistake: a loop of size at most k that contains no inner
loop

» Steps = (+1,—-1,+2,-2,...,+d, —d), where (+1,—1%)
stands for a (41, —1) increment of the ith coordinate.

» (+1,-2,42,—1) is not a mistake

» (+1,-2,—1,+2) is a mistake

Method
» build clusters of mistakes
» use inclusion-exclusion to get the generating function of walks
without k-mistakes
Remark: by construction the set of k-mistakes is a finite reduced
set.



Equivalent mistakes

GE;) : set of signed permutations of {£1,...,£d}
m1 = mso (my and my mistakes), iff

» 310 ¢ 6515) and my = II(*)(my)

» equivalently, there is an isometry of Z% mapping m; to my
Examples: d = 3

» (1,-1)=(-1,1) = (-3,3)

» (1,-2,-1,2) =(2,-1,-2,1)



Equivalent mistakes

GE;) : set of signed permutations of {£1,...,£d}
m1 = mso (my and my mistakes), iff
» 310 ¢ 6515) and my = II(*)(my)
» equivalently, there is an isometry of Z% mapping m; to my
Examples: d = 3
» (1,-1)=(-1,1) = (-3,3)
> (1,-2,-1,2) = (2,-1,-2,1)
Property:
» F(2): generating function of walks avoiding the mistake m
»mi=my = Fpn(2)=Fn(z) (by symmetry)



Canonical mistake of a class

> let 2 < —1
> sort lexicographically each class
» take the first mistake as canonical mistake

+1,42,-1,-2
< 41,-2,-1,+2
< 42,41,-2,-1
< 42,-1,-2,+1
< —1,42,+1,-2
< —1,-2,+41,+2
< —2,41,+2,—-1
< —2,-1,+2,—1



Canonical mistake of a class

> let 2 < —1
> sort lexicographically each class
» take the first mistake as canonical mistake

41,42, -1, -2
+1,-2, 1,42
+2,+1,-2, -1
+2,-1,-2,+1
~1,+2,41, -2
—1,-2,41,+2
—2,+1,42, -1
—2,-1,+2, 1

A A A A A A A

» (D (m): class of equivalence of the mistake m in dimension d
> 6@ (41,42, -1,-2)[ =8, (¢ (+1, 1) =4
b |G (41,42, ~1,-2) = 4d(d — 1), [ D(+1,-1)| = 2d



Clusters of mistakes and equations
TH) cluster of mistakes finishing by the mistake m (Im] < 4)
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Clusters of mistakes and equations
TH) cluster of mistakes finishing by the mistake m (Im] < 4)

(+1,42,-1,-2) PE2]_],2,—1,—2) = -z
coo (41,42,-1,-2)
(+2,-1,-2,+1)
(=1,-2,+1,+2) ~~> —(z+22+223)1"E21],2,_1’_2)
(=2, 41, +2,—1)
(—2,—-1,42,+1)

coo (41,42,-1,-2)

(_21+2) —ZPEQIJ,_]_)
2 2 2
I‘El],z’fl’fz) — 2t (z+z2+2z3)1"gl]’2’71’72) _ zPEl}’fl)
2 2 2
FE1]7_1) - _Z2 - ZPE]'}r_l) o 223FE1]721_11_2)
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Clusters of mistakes and equations
TH) cluster of mistakes finishing by the mistake m (Im] < 4)

2 2 2
I‘El]g,_l,_z) — 2t (z+z2—|—2z3)1"E1],2’_1’_2) _ zFEl}’_l)
[ 2 2
].—‘(1],_1) = _22 + ZPEl},_l) - 2Z31—‘E1]72,_1,_2)
d d d
(o 1 2 =—2*—(z+2°+2(d— 1281, | 5 — 203G
[d] _ [d] d
F(d)4(Z) = 1 [d]



Clusters of mistakes and equations
TH) cluster of mistakes finishing by the mistake m (Im] < 4)

2 2 2
I‘El]g,_l,_z) — 2t (z+z2—|—2z3)1"E1],2’_1’_2) — zFEl}’_l)
2 2

FE].],—].) — _22 + ZPEl},_l) - 2Z31—‘E1]72,_1,_2)

d d d
I‘El}’z’fl’d) =—z*— (z+22+2(d — 1)23)1"E1}’2’71’72) - zl"El]’fl)

[d] _ [d] [d]
Fly(z) = 1 [

=(d)

A = 1im - SR k) = 7R ()

nooe(@(n —1,k)’



General finite pattern - Reduced versus non-reduced

» Reduced case:

double staircase property

» Non-reduced case (first considered by Noonan-Zeilberger
1999)

some occurrences are factors of others
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Skeletization: remove factors occurrences. (The result is unique)
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Combinatorial description of clusters
Skeleton of a cluster

Skeletization: remove factors occurrences. (The result is unique)

Example
Let us consider the pattern U = {u; = ab, uz = ba, uz = baba} and the
clusters
e 0 2]
o 0 o (17501
¢, = abababg, <= ababebs ;= abababe
ab baba ab ba ab ba
baba baba ba
ab baba ab
ba baba
We have
(1] 000
Skel(c;) = Skel(cs) = abababa, Skel(cs) = abababa.

This example illustrates that two different clusters with same support
(here abababa) can have different skeletons.



Dual “Flip” operation

The Flip of a skeleton gives the set of all decorated clusters having the
same skeleton

How?
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Dual “Flip” operation

The Flip of a skeleton gives the set of all decorated clusters having the
same skeleton

How?
Consider the pattern U = {u; = ab, ux = ba, us = baba} and the
skeleton: o

c= ababgbg,

the set Flip(c) is the set of clusters having c as skeleton and can be
identified to the following bicolored decorated word

2._©
(1 30r<0)
€ = Flip(c) = abababg

equivalent to 2% = 32 decorated texts: each factor occurrence or @
(resp. @) can be distinguished or not, becoming @ (resp. ®) or nothing,
without modifying the skeleton.



Integrity rule

Two distinct skeletons cannot give rise to the same decorated
text (integrity rule).

U = {aaa, aaaaaaa}

0 e ®
¢, = aaaaaaaaa ' 0 OO0
— Flip(c;) = aaa - aaaaaa. (1)

aaa
aaaaaaq



Integrity rule

Two distinct skeletons cannot give rise to the same decorated
text (integrity rule).

U = {aaa, aaaaaaa}

0 e
¢ = aaaaaaaad i 0 000D
— Flip(c;) = aaa - aaaaaa (1)
aaa
aaaaaaa

the fourth position has no label ® signaling a factor occurrence
aaa; considering a factor occurrence aaa at this position would
break the integrity rule and correspond to a skeleton c,

00 )
¢, = aaaaaeaad o
. 0 0 PODDD
aaa — Flip(c;) = aaa-a-aaaaa. (2)
aaa

aaaaaaqa



General strategy for clusters

Two steps
» Describe clusters with respect to their skeletons
> Reinject all possible factor occurrences (with the “Flip”
operation)
We must ensure that all (decorated) clusters are generated exactly
once !



First step: how do we extend a skeleton?
(Auto)-Correlation Set

» Auto-correlation

bab
Cin={w, h-w=r-hand|w|<|h|}, ababa~ ababal

ababale
aba|ba

] a|baba

» Correlation set of two words

Cow={w, w-w=r-v and |w|<|v|}

u = baba, v = abaaba ~> Cigpa,cbaara = {aba, baaba}

Problem: not rigorously defined in the non-reduced case!



First step: how do we extend a skeleton?
(Auto)-Correlation Set

» Auto-correlation

bab
Cin={w, h-w=r-hand|w|<|h|}, ababa~ ababal

ababale
aba|ba

] a|baba

» Correlation set of two words

Cow={w, v-w=r-v and |w|<]|v|}
u = baba, v = abaaba ~> Cigpa,cbaara = {aba, baaba}
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First step: how do we extend a skeleton?
(Auto)-Correlation Set

> Auto-correlation ababal|
Chp={w, h-w=r-hand|w| <|h]}, ababa~— 7
aba|ba
a|baba

» Correlation set of two words
Cow={w, w-w=r-v and |w|<|v|}

u = baba, v = abaaba ~> Cigpa,cbaara = {aba, baaba}
Problem: not rigorously defined in the non-reduced case!

The notion of right extension set of two words u and v is a
generalization of the correlation set of two words but differs in that:

(i) overlapping not allowed to start at the beginning of u;
Ex: a® ~ a”; a* is not in the right extension set of a® to a”
(ii) extension has to add some letters to the right of u; (forbid €)

These two conditions prevent from considering factor occurrences.

To extend a skeleton: start from a word of U and iteratively concate-
nate a word of the right extension set.



Second step: factor occurrences

Factor occurrences must not change the skeleton and must be considered
within the last occurrence constituting the skeleton.
This is simply done by considering bicolored versions of right extensions.

_ _ (0 0
For U = {ab, aba}, we have £ = <b ba)'

o 2} . o . )
up = ab, wup =aba, Flip(u;)={ab} and Flip(uz) = {aba}

The decorated right extension matrix verifies

e ( 0 0 )
= (1] ©) .
(b} {va}



Second step: factor occurrences

Factor occurrences must not change the skeleton and must be considered
within the last occurrence constituting the skeleton.
This is simply done by considering bicolored versions of right extensions.

_ _ (0 0
For U = {ab, aba}, we have £ = (b ba)'

° > . ° . )
up = ab, wup =aba, Flip(u;)={ab} and Flip(uz) = {aba}

The decorated right extension matrix verifies

e ( 0 0 )
= (1] ©) .
(b} {va}

Description for the set of clusters

C = (Flip(uy), . .., Flip(u,)) - E* -



From decorated text to generating function

Essence of the symbolic method:
> symbols a of the alphabet — 7(a)z (commutative weight)
> 0,0,0,...t, b, ts,...
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From decorated text to generating function

Essence of the symbolic method:

> symbols a of the alphabet — 7(a)z (commutative weight)
> 0,0,0,...— 1,1, ts,...

> D,0,®,...— (1+t),(1+ %), (1 4+ ts),...
The translation gives

£(2,8) = (Ui(z2,1), ..., Un(z, 1)) - (]I—]E(z,t)>_1- () ,
For instance, taking (u1, u2) = (ab, aba) '
Fllp(ul):{a?}n—) U]_(Z,tj_,tz)zzzt]_

F].lp(U2) = {a%?} — UQ(Z, tl, tg) = thz(l + tl)
0 0

: (o 0
E= {?} {52} = E(Z’tl’t2)_<zt2 22t2(1+t1)>'



Applications (typical formulas)
Proposition. Let &/ = {u1,...,ur} be a pattern. The expected value and the
variance of the variable X, counting the number of occurrences of U in a
random text of size n satisfy

B[X.] =) w(u)(n—|u[+1),

uEU
1
Z V. W= — —
—Var[ X, = w(U) — Y w(w)m(v)(ul + |v] — 1)
u, vEU
+2 ) m(u)m(Eun) +2 Y m(u)lul, + o(1).
u,veU u,veU
uFv
Proposition. Let U/ = {u1,...,ux} and V = {v1,..., v;} be two patterns. The

covariance of the variables X, and Y, counting respectively the number of
occurrences of U and V in a random text of size n verifies

%Cov(Xn, V) =a@nv)— S w(wn(o)(lul +v] - 1)
uEU,vEV

.S (w(u)r(su,v)+vr(v)7r(ev,u)) .S (|u|v7r(u)+|v|uw(v)) + o)

UEU,VEV uEU,VEV
uFv



Example - Covariance Matrix for a® and a’

p = Pr(a), X, and Y, respectively count the number of
occurrences of a® and a7 in a random text of size n.

1 1
By = nlgréo —Var(X,), Bo = lim —Var(Y,),

n n—oo n

. 1
Blg = Bgl = r}l_)ngo ECOV(Xn; Yn)

B <p3+2p3(p+p2)—5p6 p'(5+2p+2p°—9p°) )

p'(5+2p+2p°—9p°)  p"+2p"(p+p°+p°+p*+p°+p°%)—13p**

A(p) = [B(="2"
— pl044pll 4 8p12 5518 _25p14 _20p'5 _24p% 1 67p7 —16p%

A(1) =0 Ouf! Degeneracy of the system



Conclusion & Perspectives

» The inclusion-exclusion method gives the multivariate
generating function of occurrences for a (arbitrary) finite set
of words

» main parameter is the number of words
» use explicit relations between words (right extension sets)
which can be built efficiently with the Aho-Corasick algorithm.

» An alternative exists using the Aho-Corasick automaton to
compute the generating functions
» main parameter is the number of states.
> relations between words hidden in the automaton



Conclusion & Perspectives

» The inclusion-exclusion method gives the multivariate
generating function of occurrences for a (arbitrary) finite set
of words

» main parameter is the number of words
» use explicit relations between words (right extension sets)
which can be built efficiently with the Aho-Corasick algorithm.

» An alternative exists using the Aho-Corasick automaton to
compute the generating functions
» main parameter is the number of states.
> relations between words hidden in the automaton
» We would like to prove in this context that “most of the
times” a multivariate normal distribution holds

» extends to a Markovian model or dynamical sources



Complexity

For a set U = {u1,...,ur}, 7 = Card(l).

» For the inclusion-exclusion approach, we need to compute the
quasi-inverse of a 7 X 7 matrix with entries which are
polynomials of degrees at most max;(|u;|) in any variables.



Complexity

For a set U = {u1,...,ur}, 7 = Card(l).
» For the inclusion-exclusion approach, we need to compute the
quasi-inverse of a 7 X 7 matrix with entries which are
polynomials of degrees at most max;(|u;|) in any variables.

» The Aho-Corasick automaton approach considers the quasi
inverse of a matrix of size N2 (where N = O(3, |w]) is the
number of states of the automaton), but it is sparse and
entries are monomials of degree at most one in any variables.



Aho-Corasick automaton

» Input: non-reduced set of words U.
» Qutput: automaton Ay recognizing A*U.

Algorithm:
1. build 7y, the ordinary trie representing the set U

2. build Ay = (A, Q,6,¢, T):
» Q = Pref(U)
» T = A*UnN Pref(U)
> 6(g,z) = Mgz)
where A(v) = the longest suffix of v which belongs to

Pref(U).
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U = {aa, aab}
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Aho-Corasick automaton (example)

U = {aa, aab}

d(aab,a) = A(aaba) = a
ab,b) = A(aabb) = ¢




Aho-Corasick automaton (example)

U = {aa, aab}
b a O 0
b 0 az; O
0 0 am bx
b a O 0

F(a,b, o, 1) = (1,0,0,0)(I — T(a, b, 1, 22)) * (i)
1

1-— a(a:l — 1)
1—az — b+ ab(z — 1) — a?bzy(zp — 1)2°
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An easy application - Bender and Kochman

Consider in a random text 7, of size n over A = {a, b} which

avoid a word w
Question: expectation of number of letters a in 7,

Clusters:
> clusters w.C}, of w:
» and clusters of a (limited to the word a; no overlapping)

Generating function: (¢, z; for w, and 3, 2> for a)

£ty a) = M)z (14 ) x () oz

1
F =
(2,21, 22) 1-¢(z,t1 — 1,5 —1)

/[z”]F(z, 0,1)
z2—=1

0F (2,0, )
Oz




An easy application - Continued

1
Kn,a.,ﬁ = *En(Xa,E)
n
Tuned distribution of letters a

Z K, oaaz2™ =5z + 5z% + 428571428623 + .42307692312* + .41666666672°
n21 + .4090909091z°% + 405643739027 + .40268456382°% ...

Y K, " =5z + 527 + .47619047622% + 45833333332 + .44000000002°
n21 +.42424242422° + 410052010127 + 307727272725 ...



