CIMPA Summer School 2014

University An Najah, Nablus

o>

Motif Statistics - Course | - Counting with Automata

v

Basics of Automata theory
Pattern Matching

v

v

Counting with automata in random texts

v

Applications

2—July 21, 2014

What is an automaton?

A directed graph

3—July 21, 2014

What is an automaton?

(D
)

A directed graph I
where vertices are called states,

3—July 21, 2014

What is an automaton?

)
(]

(2)
A directed graph ‘

where vertices are called states,
edges are called transitions,

3—July 21, 2014

What is an automaton?

=

A directed graph o
where vertices are called states,

edges are called transitions,

and labelled by letters of a finite alphabet;

3—July 21, 2014

What is an automaton?

O ‘

A directed graph

where vertices are called states,

edges are called transitions,

and labelled by letters of a finite alphabet;
there is a specific state called start,

3—July 21, 2014

What is an automaton?

O ‘

A directed graph o
where vertices are called states,

edges are called transitions,

and labelled by letters of a finite alphabet;

there is a specific state called start,

and there are accepting states;

3—July 21, 2014

What is an automaton?

O ‘

A directed graph

where vertices are called states,

edges are called transitions,

and labelled by letters of a finite alphabet;

there is a specific state called start,

and there are accepting states;

The function mapping the nodes to their successors
is called “transition function”

3—July 21, 2014

What is an automaton?

O

() AUTO = (A, Q,start, 8, F)

4—July 21, 2014

What is an automaton?
—0
. a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}

4—July 21, 2014

What is an automaton?
b

(D

@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}

4—July 21, 2014

What is an automaton?
b

(D

@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}

4—July 21, 2014

What is an automaton?
0
@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}
5(0,a) ={1} 46(0,b) ={1,2}
4. Transition function ¢: { 5(1,a) = {} 0(1,0) ={}
§(2,a) ={2,1} 6(2,b) ={}

4—July 21, 2014

What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}
5(0,a) ={1} 6(0,b) ={1,2}
4. Transition function §: < d(1,a) = {} 5(1,0) ={}
5(2,a) ={2,1} 4(2,b) ={}
5. Accepting states: F' = {1}

4—July 21, 2014

What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gop = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)

5—July 21, 2014

What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gop = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)
» A word w =ajas...a, is accepted if there is at least a run
of length n spelling its letters and ending in an accepting
state.

5—July 21, 2014

What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gy = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)

» A word w =ajas...a, is accepted if there is at least a run
of length n spelling its letters and ending in an accepting
state.

» The set of words accepted by the automaton is the
language recognized by the automaton.

(A language is a possibly infinite set of words) 5 suly 21, 2014

What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

» Some not accepted words:
c,a™, ab, b (m>2,n>2)
» Accepted words:
a, b, ca™ (n>1)

6—July 21, 2014

What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

» Some not accepted words:
c,a™, ab, b (m>2,n>2)

» Accepted words:
a, b, ca™ (n>1)

» Recognized language
a+b+cat (at=5,-,a"

6—July 21, 2014

What are Automata and Motif Statistics useful for?

Automata are used
» in hardware technology (circuits)

» in compilers and lexical analyzers

v

for pattern matching

v

to build groups with specific cogrowth

Motif Statistics is used in
» linguistics
» bioinformatics

» Web analysis

7—July 21, 2014

What is an automaton? Deterministic or Non-Deterministic

1)
0 .
(2)

A NFA
(Non-deterministic Finite Automaton)

16(2,a)] = [{2,1}| > 1

Several successors
with the same letter

8—July 21, 2014

What is an automaton? Deterministic or Non-Deterministic

(1) ()
(0} a (0} :
(2) (2)

a C
A NFA A DFA
(Non-deterministic Finite Automaton) (Deterministic Finite Automaton)
16(2,0)] = [{2,1}] > 1 Vg e Q,Vle A |d(q, ()] =1
Several successors Only one successor
with the same letter with one letter at each state

8—July 21, 2014

Finite Automata and e—transitions

e-auto = (A ={a,b,e},Q =1{0,1,2,3,4},s = 0,6, F = {2})

9—July 21, 2014

Finite Automata and e—transitions

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input

9—July 21, 2014

Finite Automata and e—transitions

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

9—July 21, 2014

Finite Automata and e—transitions

e-cl(4) ={4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

9—July 21, 2014

Finite Automata and e—transitions

e-cl(4) ={4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")

9—July 21, 2014

Finite Automata and e—transitions

e-cl(4) ={4,1,2}
F'={0,1,4,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FWaq | ecd(@NF #0} ={0,4,1,2}

9—July 21, 2014

Finite Automata and e—transitions

e-cl(4) ={4,1,2}
F'={0,1,4,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FUq| ec(q)NF # 0} ={0,4,1,2}
A((],f) = 6_(I'I(Up€(—(:l((]) 5([)7[))

9—July 21, 2014

Finite Automata and e—transitions

e-cl(4) ={4,1,2}
F'={0,1,4,2}

e-cl(0) = {0,1,2,3}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FUq| ec(q)NF # 0} ={0,4,1,2}
A((],f) = 6_(I'I(Up€(—(:]((]) 5([)7[))

9—July 21, 2014

Finite Automata and e—transitions

ecl(4) ={4,1,2}
F'={0,1,4,2}
e-cl(0) = {0,1,2,3}

A(07 a‘) = el (Up€{0,1,2,3} 5(177 a))
= e-cl ({4}) = {4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FUq| ec(q)NF # 0} ={0,4,1,2}
A((],f) = E_C'I(LJ[E(—(:/((/) 5([)7[))

9—July 21, 2014

Finite Automata and e—transitions

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) = {0,1,2,3}
ecl(1) = {1,2}
ecl(2) = {2}
ecl(3) = {3}
e-cl(4) = {4,1,2}

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}
A(0,a) = {4.1,2}
ecl(l) ={1,2}
ecl(2) = {2}
e-cl(3) = {3}
ecl(4) ={4,1,2}

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}

A(0,a) = {4,1,2}
ecl(l) ={1,2}

A0,0) = {}
ecl(2) = {2}

AL a) = A(L,b) = {}
e-cl(3) = {3}

A2,a) = A(2,0) = {}
ecl(4) ={4,1,2}

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}
A(0,a) = {4.1,2} A(3,a) = {4.1,2}
ecl(l) ={1,2}
A0,0) = {}
ecl(2) = {2}
AL a) = A(L,b) = {}
e-cl(3) = {3}
A2,a) = A(2,0) = {}
ecl(4) ={4,1,2}

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}

A(0,a) = {4.1,2} A(3,a) = {4.1,2}
ecl(l) ={1,2}

A0,0) = {} AB0) = {}
ecl(2) = {2}

AL a) = A(L,b) = {} A(4,0) = {}
e-cl(3) = {3}

A2,a) = A(2,0) = {}
ecl(4) ={4,1,2}

10—July 21, 2014

Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}

A(0,a) = {4.1,2} A(3,a) = {4.1,2}
ecl(l) ={1,2}

A0,0) = {} AB0) = {}
ecl(2) = {2}

AL a) = A(L,b) = {} A(4,0) = {}
e-cl(3) = {3}

A2,a) = A(2,0) = {} A4,0) = {0,1,2}
ecl(4) ={4,1,2}

10—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

(] O,

f=a

11—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

o @

(] « ()

b

A(0,a) = {1}

11—July 21, 2014

Determinisation of an automaton
MNFA = (Aa Q70767 F) M]’:)FA = (A7 QI7O7A7FI)

o @

a
e |

b

A(0,a) = {1}
A0,0) = {1,2}

11—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

b @ a
0’ a 0 a
.
b

A0, a) = {1}
A(0,b) = {1,2}
A({1,2},a) = {1}

11—July 21, 2014

Determinisation of an automaton

MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

A(0,a) = {1} A({1,2},0) = {2}
A(0,b) = {1,2}
A({1,2},a) = {1}

11—July 21, 2014

Determinisation of an automaton

MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1}

11—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

L

b

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1} A({2},a) = {1}

11—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

L

b

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1} A({2},a) = {1}

11—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le 5/7A7 Fl)

Q' C 29 (the subsets of Q)

12—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le 5/7A7 Fl)

Q' C 29 (the subsets of Q)

s =s

12—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le SI7A7 Fl)

Q' C 29 (the subsets of Q)

s =s

the subsets that contain
at least one accepting state of M

F={feq; fﬂF#V)}{

12—July 21, 2014

Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le 5/7A7 Fl)

Q' C 29 (the subsets of Q)

s =s

the subsets that contain
at least one accepting state of M

F={feq; fﬂF#VJ}{
VSeQ e A AS0) =, 0)

12—July 21, 2014

The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

CR_B

b

each accepted run of Mypp translates to an accepted run of Mypa

13—July 21, 2014

The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

IS

b

each accepted run of Mypp translates to an accepted run of Mypa

each non accepted run of Mppy is the translation

of a non accepted run of Mppp

13—July 21, 2014

The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

each accepted run of Mypp translates to an accepted run of Mypa

each non accepted run of Mppy is the translation

of a non accepted run of Mppp

Proof by induction

13—July 21, 2014

Equivalence of Non-Determistic and Deterministic automata

Two automata M = (Q, A, s,6,F) and M' = (Q', A',s',d', F')
are equivalent if they recognize the same language
(L(M) = L(M'))

Theorem (Rabin-Scott 1959)

Let M = (Q, A, s, A, F) be a NFA. Then there exists a DFA
M = (Q',A,¢,, F") that is equivalent to M.

Remark: each DFA is a NFA

Corollary

(i) The NFA's are no more powerful than the DFAs in terms of the
languages they accept.
(i) The NFA's and DFA's recognize the same set of languages.

14—July 21, 2014

Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

15—July 21, 2014

Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

YESI!!

15—July 21, 2014

Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

YESI!!

The Regular Languages and Regular Expressions

15—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language

2. {€} is a regular language

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language
2. {€} is a regular language
3. {¢} is a regular language for each ¢ € A

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language
2. {€} is a regular language
3. {¢} is a regular language for each ¢ € A

4. if A and B are regular languages, so are

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are

» AUB (Ex: {ab}U{c} = {ab,c})

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})

> A* (Ex: {ab}* = {e,ab,abab, ..., (ab)",...})

16—July 21, 2014

What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})

> A* (Ex: {ab}* = {e,ab,abab, ..., (ab)",...})

5. No other languages over A are regular

16—July 21, 2014

Regular Expressions

Regular expressions are shorthands for regular languages

a+b

denotes
denotes
denotes

denotes

{a,b} = {a} U{b}
{ab} = {a e b}
{a}*

a.a* =aea*

17—July 21, 2014

Formal definition of Regular Expressions

Regular expressions are defined recursively by
1. 0 and € are regular expressions
2. £ is a regular expressions for each £ € A
3. if r and s are regular expressions, so are
> r+s

> 7r.s

> r*

4. No other sequence of symbols is a regular expression.

18—July 21, 2014

Kleene Theorem

Lemma (i)
Every regular language can be accepted by a finite automaton

Lemma (ii)
Every language accepted by a finite automaton is regular

Theorem (Kleene 1956)

A language is regular if and only if it is accepted by a Finite
Automaton

19—July 21, 2014

Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages
0 is accepted by (A, {0},0,6 =0,0)
€ is accepted by (A, {0},0,6 = 0,{0})
te A s accepted by (A,{0,1},0,6(0,¢) ={1},{1})

2. let £1 and L, regular languages respectively accepted by
automata A; and As.

L1.Lo is accepted by A;i.As
Li1+Lo is accepted by A;UA,
L1* is accepted by Ar*

20—July 21, 2014

Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages
0 is accepted by (A, {0},0,6 =0,0)
€ is accepted by (A, {0},0,6 = 0,{0})
te A s accepted by (A,{0,1},0,6(0,¢) ={1},{1})

2. let £1 and L, regular languages respectively accepted by
automata A; and As.

L1.Lo is accepted by A;i.As
Li1+Lo is accepted by A;UA,
L1* is accepted by Ar*

Starting from the atomic languages, one builds recursively a
e-NFA recognizing a given regular expression

20—July 21, 2014

Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton

1. let L(i, j, k) = {w' w is the label of a path from ¢; to ¢, }

where intermediate nodes have labels < k

21—July 21, 2014

Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }

21—July 21, 2014

Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;
Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }

21—July 21, 2014

Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;
Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular
4. In particular L(i,j,m) is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }

21—July 21, 2014

Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;

Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular
4. In particular L(i,j,m) is regular
Conclusion: L(A) = U {L(i,j,m)|g; € S,q; € F} is regular,
since it is a finite union of regular languages

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢; }

21—July 21, 2014

Counting - Generating Function of a Language

L a language (a possibly infinite set of words)

» Enumeration

L(z) = Z vl = Z 2"

weLl n>0

where [,, is the number of words of length n of £

» Weighted generating Function

W) = 3Pl =3 p,2"

weL n>0

where p,, is the probability that a random word of length n
belongs to L

22—July 21, 2014

Counting - Generating Function of a Language

» Enumeration

L(a,b) = Z al@laplwls — Z l@jaibj
1 letters a

l; ; = number of words in the language Wlth{ j letters b

number of words of length n
in the language

F(z)=L(z,2) = anz", fn=

» Weighted counting F(z) = L(P(a)z,P(b)z) = anzn

probability that a word of length n
is in the language

Pn =

23—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba

The automaton accepts the words
terminating with aba

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

Ly =

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

£1:ba

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 =ba+ a*ba

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)*

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

,C() = a.£1 + b,C()

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) =a ><L1(a, b) +bxLg (a, b)

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
— * — *
P = Araba = (a+b)*aba terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) =a ><L1(a, b) +bx Ly (a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) =a ><L1(a, b) +bx Ly (a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)

L3 =aLlq+bLs+e€

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L7 b)
Ls=aLly+bLo+e Ls(a,b) = ax Li(a,b) + bx La(a,b) + 1

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)

Ly =aLy+bLs Li(a,b) = ax Li(a,b) + bx Ly(a,b)

LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L7 b)

Ls=aLly+bLy+e¢ L3(a, b) = aXLl(a, b) + b><L2(a, b) +1
solve:

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Ly =aLy+bLs Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) = (l><Lg(0,7 b) + })XL[)((L, b)
L3 =aLlq+bLs+e€ L3(a, b) = aXLl(a, b) + b><L2(a, b) +1
1
lve: L b)= — Xxab
solve o(a,b) (s) aba

24—July 21, 2014

Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)
L3 =aLlq+bLs+e€ Lg(a, b) = aXLl(a, b) + b><L2(a, b) +1
1
solve: Lo(a,b) = T—atD) x aba F(z) =Y ppz" = Lo(P(a)z,P(b)z)

24—July 21, 2014

Asymptotics of a rational expression

- if F(2) = % with P(p # 0), Q(p = 0)

» and p real, positive, dominant singularity of order k

Then,

fn=1"1F(z) = ZEZ; Xp "x(n—k+1)x(1+ A") (A<1)

Expand the polynomial P(z) at p
1
P(2) = P(p) + (2 = p)P'(p) + (2 = p)*P"(p) + ...

to get a full expansion

25—July 21, 2014

Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton

2. The Chomsky-Schiitzenberger algorithm applies to any
regular expression.

26—July 21, 2014

Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton

2. The Chomsky-Schiitzenberger algorithm applies to any
regular expression.

Theorem (Chomsky-Schiitzenberger 1963)

The generating function of a regular language is rational.

Corollary

Let R a regular language and R,, = RN A".
Ing, Yn>ng, |Ru| =pi1(n)A] + -+ pp(n)A}, with p;(n)
complex polynomials and \; € C

26—July 21, 2014

An asymptotic test of non-regularity

For any regular language R, there exists a real positive number \
and a polynomial p(n) such that

lim r, = A" x p(n), Ty = ‘T\’,ﬂA"

n—o0

> The number of words of length 2n in Dyck Languages ((()(()))) is
47L
the Catalan number (*)/(2n + 1) asymptotic to

RN

Dyck languages are not regular and cannot be recognized by a
DFA; however they can be recognized by a push-down automaton,
and they have an algebraic generating function.

> Let w(x) be the number of prime numbers less than » € RY.

()

im
z—oo x/logx

There is no known generating function enumerating the
primes. Would one find one it would not be regular. It is not
possible to enumerate the primes by an automaton.

27—July 21, 2014

Some classical pattern matching
algorithms

28—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

>/ :a
0(2,a) =2 wo.a =a.aa

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa

5(2,0) =3 wab=a.ab

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,0) =3 wab=a.ab

b 0(3,a) =1 ws.a=ab.a

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

|

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P = {a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 2

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 4 1

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3 wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 & & 12

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

O——O——0——0O

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b

o« N b N a
8@@@

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b a

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b a

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaaba

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabar

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbaba

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabas

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabarba

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabarbar

30—July 21, 2014

Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabaarbarbb

30—July 21, 2014

Pattern matching and Statistics - Regular patterns

1. We learned how to compute the

» number of matches of a finite pattern
» in a particular text

31—July 21, 2014

Pattern matching and Statistics - Regular patterns

1. We learned how to compute the

» number of matches of a finite pattern
» in a particular text

2. In a random text, what about

» finding the occurrences of a Regular Expression
(i.e, the number of positions at which a match
is found)

» and counting them

31—July 21, 2014

Tools and Aim - Generating Functions

For a given pattern P, we want to compute

F(z,u) = Z Faguz"

n>0,k>0

PP occurs k times
where f, =P

in a random text of length n

32—July 21, 2014

Tools and Aim - Generating Functions

For a given pattern P, we want to compute

(z,u) Z fnku 2"

n>0,k>0

PP occurs k times
where f, =P

in a random text of length n

If X,, is the random variable
» counting the number of occurrences of P

> in a random text of size n

Z fn,kukz Z ZP n = k

n>0,k>0 n>0 k>0
The variables z and u are formal variables
» 2 is related to the length of the texts
» u is related to the number of occurrences of I°

32—July 21, 2014

Counting with Regular Expressions - The right language

1. Input:

» a finite alphabet A
> a regular expression R

2. QOutput:
F(z,u) Z fnku 2"

n>0,k>0

33—July 21, 2014

Counting with Regular Expressions - The right language

1. Input:

» a finite alphabet A
> a regular expression R

2. QOutput:
F(z,u) Z fnku 2"

n>0,k>0

» Method
1. Build the DFA recognizing A*. R

2. Use a variant of Chomsky-Schiitzenberger
to ring the bell and produce the variable «

33—July 21, 2014

Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
oagbga@
b

a

34—July 21, 2014

Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
0— (1)— (2) (3)
b
a
L"O = (I,.,Cl + b-L"O LO((Z7 b) = (1,><L1(ll, b) + [)><LO((17 b)
Li=aLly+bLy Ll(a,b)=a,><L1(a,b)+b><L2(a,b)

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b

a

L"O = (I,.Ll + b-L"O
Li=aLly+bLy
Lo=a.L3 +b.Lo

LO((I7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

)+ bxLo(a,b
)+ bxLa(a,b

)
)

34—July 21, 2014

Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b

0 1 2

a

b

L"O = (I,.,Cl + b-L"O
Li=aLly+bLy
Lo=a.L3 +b.Lo

LO((Z7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

b

) +bxLo(a,b
)+ bxLa(a,b

)
)

34—July 21, 2014

Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b

0 1 2

a

b

L"O = (I,.,Cl + b-L"O
Li=aLly+bLy
Lo = a.L3a+b.Lo

LO((Z7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

b

) +bxLo(a,b
)+ bxLa(a,b

)
)

34—July 21, 2014

Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
0— (1)— (2)
b
a
L"O = (I,.,Cl + b-L"O (a,b) = (J,XLl(ll,b) + [)XL()(G, b)
Li=aLly+bLy Ll(a,b)—a><L1(ab)+b><L2(ab)
Lo = a.L3r+b.Loy Ly(a,b) =axuxLz(a,b)+bxLay(a,b)

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0— (1)— (2)
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2)2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2)2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve:

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2)2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve: Lo(a,b,u) = e
: ola, 0, u —1_a_2b+2ab+b2_ab2—u(ab—ab2)

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2)2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve: Lo(a,b,u) = e
: ola, 0, u —1_a_2b+2ab+b2_ab2—u(ab—ab2)

F(z,u) =3 fasrubz" = Lo(P(a)z, P(b)z,u)

34—July 21, 2014

Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
00— (1)—L (o) —
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1
1—-b+ab—uab
solve: Lo(a,b,u) = Tavua

T 1—a—2b+2ab+ b2 —ab? — u(ab — ab?)
F(z,u) = Z,fn,kukzn = LO(P((I)27P<{))27U)

P(a) =P(b) =

F(z,u) 8 — 4z 4222 — 2uz?
’ 8 — 122 4 622 — 23 — (222 — 23)

N | =

34—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2022

ft=abta, Flau) = g 62— 5 — a2 = 29)

35—July 21, 2014

Exploiting the generating Function

B 8 — 4z + 222 — 2uz2?
81224622 — 23 — u(222 — 23)

R=abTa, F(z,u)

» Expand in series with respect to z in the neighborhood of 0

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2uz2?
8 — 12z 4 622 — 23 — u(222 — 23)

R=abta, F(z,u)=

» Expand in series with respect to z in the neighborhood of 0
15

1
F(z,u) = l+z+zg+<§u+;>z +(£u—|—)z —1—(2—1—3271—&——11)25—&— 0(=%

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2022

R=abta, F =
av- a, (2,u) 8 — 122 + 622 — 23 — u (222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142z+=2 +< 11—1—7)2 +(£u—|—)z +(2+£71+—71>z5+(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2022

R=ab*ta, F =
W (2,) 8 — 12z 4 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142+2 —|—< u+7>z +(£u—|—)z —1—(2—1—:1))271—&——11)25—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

_ n _ OF(z,u)
= ;E(Xn)z = ——

u=1

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2022

R=abta, F =
av- a, (2,u) 8 — 122 + 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142z+=2 —|—< 11+7>z +(£u—|—)z —1—(2—1—;271—&——11)2'5—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

_ n _ OF(z,u)

u=1

> Get E(X,,)

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2022

R=ab*ta, F =
W (2,) 8 — 12z 4 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142+2 —|—< u+7>z +(£u—|—)z —1—(2—1—:1))271—&——11)25—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

n_ OF(z,u) 122 1 2 1 22
~ Y E(X,)." = &5 - - -
Zn: (Xn)2 ou | T T2T—2Ta, 1 Ta(i-2p
57
> Get E(X,,)
1 | _
E(X,) = —§—|—2 + 1(77 -1) (n—3)+2

35—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

36—July 21, 2014

Exploiting the generating Function

8 —dz + 222 — 2uz?

R=abta, F =
abva, Flzu) 8 — 122 + 622 — 23 — (222 — 23)

» Generating function of the Second Moment

36—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2uz2?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n _ 2)
Msy(z) = g E(X:)z" = 50 9u

n>0 u=1

36—July 21, 2014

Exploiting the generating Function

8 —dz + 222 — 2uz?

R=abta, F =
abva, Flzu) 8 — 122 + 622 — 23 — (222 — 23)

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n _ 2)
Msy(z) = g E(X:)z" = 50 9u

n>0 u=1

C12%(2% - 2) B 122(22-1) 12%(22-2) 2

1
4 1-=z 4 (1-22 8 1-2 +§(1—Z)3
2

A@(@

36—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n ’
Msy(z) = g E(X:)z" = 0 Bn

n>0 u=1

C12%(2% - 2) B 122(22-1) 12%(22-2)

1
M. - = -
) =11 4 (1-22 8 {_Z% TR
2

» Extract the nth. Taylor coefficient

1
E(X?) = ["|My(2) = —n” — 3n + 5_ 27"

36—July 21, 2014

Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n ’
Msy(z) = g E(X:)z" = 0 Bn

n>0 u=1

C12%(2% - 2) B 122(22-1) 12%(22-2)

1
M. - = -
) =11 4 (1-22 8 {_Z% TR
2

» Extract the nth. Taylor coefficient
1 5 5

E(X?) = [2"]|My(z2) = 1—677,2 — En + 3 27"

» Standard Deviation o,

1
o, = VE(X2) - E2(X,,) = Z\/n + 1= 27nh8p o 2703 g-n2

36—July 21, 2014

Limit law

» Laplace transform L of a random variable X
L(X,t) = E(e'Y)
» Laplace transform of a standard Gaussian variable \/

tx ,—x /2dl‘ t2/2

L(N,t) = \/ﬁ/

37—July 21, 2014

Limit law

» Laplace transform L of a random variable X
L(X,t) = E(e'Y)
» Laplace transform of a standard Gaussian variable \/

.2 2
el /2dl‘:6t /2

L(N,t) = \/ﬁ/

Theorem (Paul Lévy Continuity Theorem - 1925)
Iffort € [—a,+a] lim E(e"") = L(V) = et’/?

then X, — N (convergence in distribution or law)

7w2/2
nh_)n(}OP(X <) \ﬁ/ dw

37—July 21, 2014

Limit law of the occurrences of ab™a

8 — 4z + 222 — 2uz?
8 — 12z + 622 — 23 — u(222 — 23)

1—u 1++u 1-Vu

=- +

T IO (R ESTY WY (R B2

F(z,u) =

38—July 21, 2014

Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1—u 1++u 1-Vu

=- +

T IO (R ESTY WY (R B2

n+1
U, (u) = [2"]F(z,u) = % (H—iu) +0 (i) for u close of 1

F(z,u) =

38—July 21, 2014

Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1w 1++/u 1—u

“(1%) Zu(l—z1+2\/a> +2u<1—z1_2\/a>

n+1
U, (u) =[2"]F(z,u) = % (#) +0 (2%) for u close of 1

F(z,u) =

. X - Mn
We consider ¥,,(e') = E(e'*") and the normalised law =" "
on

D, (t) =T, (tiX" ICUR R ;) [exp <7t(X" — 'u")>} = exp <—’l;"t) E {exp (ff”)}
0—77/ 0—77/ n n

38—July 21, 2014

Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1w 1++u 1-Vu

“(1%) Zu(l—z1+2\/a> +2u<1—z1_2\/a>

n+1
U, (u) =[2"]F(z,u) = 1 (#) + 0 (2%) for u close of 1

F(z,u) =

U
H t tX . Xn — Un
We consider ¥,,(e") = E(e’*") and the normalised law —————
On
X'n - HMn n — Hn n v An
P, (t) =V, (ti’u) =E [exp <M>:| = exp <—'u t) E |:exp (fX >:|
0’77/ 0-77/ 0-’"/ O’n,
We substitute: i, = - 3 +02™), on= ntl +0(2™)

4 4

38—July 21, 2014

Limit law of the occurrences of ab™a

8 — 4z + 22% — 2uz?

Fzu) = 8 — 12z + 622 — 23 — u(222 — 23)
o lew 1+vu N 1-Vu
Z _
(R AW (W R com vy
n+1
U, (u) =[2"]F(z,u) = 1 (#) + 0 (QL) for u close of 1
u n

. . X - Mn
We consider ¥,,(e') = E(e'*") and the normalised law =" "

On

D, (t) =W, (tM) =E [exp <M>} = exp <_,unt) E {exp (tX">}
0—77, O—'Il 0—’", O—n,

) — < vn+1
We substitute: i, = 1 3 +02™), on= n4+ +0(2™)

In a neighborhood of ¢ = 0, we expand log(®,, (1))
2 el

Nt 1 nooo t°
e() =5 " mrn T9\e) T 2

38—July 21, 2014

The Gaussian law is general
R=ab"a P=A%abta

b a b
g % a Q b Q a
© w\%ly@

a

Lo(z,u) =Ly = zpoLl1 + zpyLo + 1, Lo

L1 =zpyls +2zp.Li+1, _ _
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zpal1 +z2plo+1 Ln

39—July 21, 2014

The Gaussian law is general
R=ab"a P=A%ab"a

b a b
g % a Q b Q a
© w\%ly@

a

Lo(z,u) = Lo = zpal1 + zppLo + 1, Lo
Ly =zpyle + 2p.Li1+1, N I
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zp.L1 +zpla+1 Ln

general case: T(u) positive n x n matrix for u >0

39—July 21, 2014

The Gaussian law is general
R=ab"a P=A%ab"a

b a b

a

Lo(z,u) = Lo = zpal1 + zppLo + 1, Lo
Ly =zppyle + 2paln+1, N R
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zpal1 +z2plo+1 Ln
general case: T(u) positive n x n matrix for u >0

Theorem (Perron-Frobenius, 1907-1912)

If T(u) is positive, irreducible and aperiodic, the dominant eigenvalue is
unique, real and positive.

39—July 21, 2014

The Gaussian law is general
R=ab"a P=A%ab"a

b a b

a

Lo(z,u) =Ly = zpoLl1 + zpyLo + 1, Lo
Ly =zpyLo + zpeli+1,) /
Lo = zpquLs + zppyLo + 1 L=|: | =2T(u)L+1
Ly =zpal1 +zppla+1 L,

general case: T(u) positive n x n matrix foru >0
Theorem (Perron-Frobenius, 1907-1912)

If T(u) is positive, irreducible and aperiodic, the dominant eigenvalue is

unique, real and positive.

P(zu) _ P(z,u)

Qzu) (I—2hi(u)---(1-
1 < 1 <

M)l [Aelw)] =

Lo(z,u) =

An (1))

A1(u) dominant =

39—July 21, 2014

Perron-Frobenius conditions
R=ab"a P = A*aba

b a b

a

In the context of automata,
» irreducibility: from any state, any other state can be reached
(The above automaton is not irreducible)
> primitivity: there exists a large enough e such that any state can be
reached by any other state in exactly e steps
Remarks
»> The above automaton with initial state 1 and states 1,2, 3, is irreducible
and primitive
Ly 1
+
1—2zpy 1—2py

» The automaton with states 0, 1,2, 3 is such that Lo =

> Foru=1,wehave Lo =Li =La=L3=1/(1—2)

> by continuity, A1(u) is close of 1 for u € [1 —€,1 + €]
1 1

» for Lo, we have —— < —

’ (W) p

40— July 21, 2014

Uniform Separation Property with respect to n

1/Xq(u)
(@]
I
R=1/A
@]
1/X3(u)
(]
1/X5(u)
1 dz
pal) = V) = 5= § PG,

1 c(u)
- %jg (= M) 9z dz,

=c(uAi(W)"(1+0(4") (A<1)

41—July 21, 2014

Uniform Separation Property with respect to n

1/Xq(u)
o
r
R=1/A
o
1/As(u)
(©)
1/X5(u)
1 dz
pali) = ["IF) = 5 f S F)

1 c(u)
- %jg (= M) 9z dz,
=c(uA(W)"(1+0(4") (A<1)

Hwang's quasi-power theorem — limiting Gaussian distribution

41—July 21, 2014

Uniform Separation Property with respect to n

1/Xq(u)
o
r
R=1/A
o
1/As(u)
(©)
1/X5(u)
1 dz
pali) = ["IF) = 5 f S F)

1 c(u)

= %im fi—‘ z"+1(1 —)\1(’[1,)2) + ot Q(Z,u) dZa

= c(u)A(w)"(1 4+ O(A™)) (A<
Hwang's quasi-power theorem — limiting Gaussian distribution
Variability condition: \”(1) + X (1) — X' (1)2£0 (A(u) = A(u))

41—July 21, 2014

Statistics of one regular motif

Let X,, count the number of occurrences of a regular motif R in a
random text of length n.

c(u)

Tz I

F(z,u) = ZP(Xn = k)uF2" =
n,k

Theorem (N, Salvy, Flajolet - 1999)

Both in the Bernoulli and Markov model, with T(u) the fundamental
matrix, and A(u) its dominant eigenvalue,

1. F(z,u) is rational and can be computed explicitly
2 E(X,) =XN(n+c+0A"), (a=d(1))
Moments { Var(X,) = (\/(1)+ N (1)~ N(1)*)n+ e + O(A")
(co=c"(1)+ (1) = (1)?)

.. . X, — un 1 /”J 2
3. Limit Gaussian law: Pr — e 2 qt
(o\/n) V21 J

[Bourdon, Vallée - 2006] Extension to dynamical sources

42—July 21, 2014

Counts of R =ab"a

1
> Pa)=P(h) =,
» X,, number of occurrences of R in a random text of size n
2V 1
» 0, =/ Var(X,) = n4—|— +0(2™)

Variability condition:
Var(X,) = (N (1) + N(1) = N(1)?)n+ cs + O(A™) = O(n)

We have Var(X,,) = ©(n) = normal limit law

43— July 21, 2014

Counts of R = ab*

Pla) =P(b) = -

Flzu)=>») P(X,=k

n>0 k>0

lim Var(X,)=2

n—oo

uz/2—1

- 1—2/2—uz+ uz?

E(X,)=n—-1+2""
E(X2) =n?—-2n+3—-3x27"
Var(X,) =2— (2n+1)27" —4™"

» The variation condition is not verified

» The limiting law is not normal

44—July 21, 2014

Hwang's Quasi-Power theorem - Gaussian form

_ M (W)
=T (f(l))

£
@y’

Theorem (Hwang 1994)

Notation: m(f) =

Let the X, be non-negative discrete random variables (supported by Z~) with probability generating
function py, (u). Assume that, uniformly in a complex neighborhood of u = 1, for sequences
Bn, kn — oo, there holds

pn(u) = A(u).B(u)r (1 +0 (i)) ,

Rn
where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies the

so-called “variability condition”,
v(B(u)) = B"(1) + B'(1) — B'(1)2 # 0.

Under these conditions, the mean and variance of X, satisfy

P = E(Xn) = Brm(B(1)) +m(A(1) + O (r,)
o2 = Var(X,) = Brv(B(1)) +v(A(1) + O (k1) .

The distribution of X, is, after standardization, asymptotically Gaussian,

Xo—B(Xn) _ | _ 1,1
PT{ Var(X,) = } N()+O(Hn+\/E)’

45— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

46— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?

46—July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?

46— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?

46— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?

46— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?

46— July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie

46—July 21, 2014

What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie

Not so easy for a general regular motif

46—July 21, 2014

Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})

47—July 21, 2014

Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})

Prod(AutoU, AutoV) = (A7 0,0,QCRxQAF=Q,
]\[m‘k] = {(27 2)7 (37 0)7 (37 3)}>
Mark, = {(2,2),(3,3)}

A((gi, 4), (01, 65)) = (8(gi, 1), 0(q;. £2))

47—July 21, 2014

Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})

Prod(AutoU, AutoV) = (A7 0,0,QCQxQ,AF=Q,
]\[m‘k] = {(27 2)7 (37 0)7 (37 3)}>
Mark, = {(2,2),(3,3)}

A((gi,q5), (01, 62)) = (8(qi, €1), (a5, (2))

Mark; = Q) (qu\lzuk qx Q) Marks = Q0 (UVGMWQ x q)

47—July 21, 2014

Getting the Multivariate generating Function

U=aa+Db, V = b aab*

48—July 21, 2014

Getting the Multivariate generating Function

a

U =aa+0, V = b aab*

Chomsky-Schiitzenberger again

Loy = mazLyy +mpzulsy +1
Lll = ﬂaZIll,‘Ln —+ 7T'bZIIL30 + 1
L30 = ’/TaZLll + ’/TbZU,L30 +1
Loo = mazuv Log + mpzuvLag + 1
L33 = mezLlyy + mpzuvlag + 1

Pla)=m, P@O)=m

48—July 21, 2014

Getting the Multivariate generating Function

a

U =aa+b, V = b aab*

Chomsky-Schiitzenberger again

L()g = 71'aZL11 + 71'1,2/[[/30 +1
Lll = 7TaZIll,‘L22 —+ 7T'bZIIL30 + 1
L30 = 7raZL11 + ’/TbZH,L30 +1
Loo = mazuv Log + mpzuvLag + 1
L33 = mezLlyy + mpzuvlag + 1
Pla)=m, P@O)=m

UU,, number of occurrences of [in texts of length n

Assume 1, = 1, =

2 V,, number of occurrences of V' in texts of length n
F(z,u,v) g E PU,=mrV,=su"’
n>0 u>0
v>0

8+ 42 — Suvz — 2uv(1 — uv)2?
T 8— duz — Suvz — 2u(1 — 2uv — uv?) 22 — w2 (1 4 u)23

48—July 21, 2014

Covariance of U,, and V,,

F(z,u,v) Z ZP U, =r,V,=s)u"v*

n>0 u>0
v>0

B 8 + 42 — 8uvz — 2uv(l — uv)2?
T8 — 4duz — Suvz — 2u(1l = 2uv — uv?)z? — u?v?(1 4+ u)23

49—July 21, 2014

Covariance of U,, and V,,

F(z,u,v) Z ZP n=1,V, = s)u"v®

n>0 u>0
v>0

8 + 42 — 8uvz — 2uv(l — uv)2?
T 8~ duz — Buvz — 2u(1l = 2uv — uv?)z? — u?v?(1 4+ u)23
By differentiation:

0 0
E(U, V)" = — —
D B(ULVn)2" = oo F(z,u,0)

£x8+8271422+5z37754
18 (1-2)3(2—2)2

n>0 =1
3n—1
E(U,) =
3 3 1 "
((11‘/n) g 2 n: +2 n’I’L 42
E(‘/n) = z 9 + 27"
—4 1
COV((/VIH ‘/n) = E([’Tn ‘/n) - E([vu)E(‘/n) = n + 27”71] +

8 4

49— July 21, 2014

Correlation of U,, = aa + b and V,, = b*aab*

Cov(U,,V,) EU,V,)-E(U,)E(,)
v, 0v, ou,ov,
n—4+4+2"0""D(n41)
V(n+1)(B3n —6 — 271 (4n — 12) — 4-(n—1))

Cor(UVH ‘/n) -

071 Cor(U,, Vy,)

0.6

Sl

0.54
0.4+
0.3+

0.2

0.14 weak correlation

T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
”

50—July 21, 2014

Correlation of U,, = aa + b and V,, = b*aab*

Cov(U/,,V,) E(U,V,)—EU,)E(V,)
ou,ov, ou,ov,
n—4+4+2"0""D(n41)
V(n+1)(B3n —6 — 271 (4n — 12) — 4-(n—1))

Cor(UVH ‘/n) =

071 Cor(U,, Vy,)

0.6

Sl

0.5
0.44
0.3

0.2

Remark:

9100 o, 197 % 1030 014 weak correlation

50—July 21, 2014

More on Marked-Automata

1. The Marked-States have the same properties as the
Accepting-States, with respect to

» determinization of NFAs
» minimization of DFAs

51— July 21, 2014

More on Marked-Automata

1. The Marked-States have the same properties as the
Accepting-States, with respect to

» determinization of NFAs
» minimization of DFAs

2. It is possible to make the product of any finite number of
automata; this is not limited to the product of two automata.
The automata need only be complete.

51— July 21, 2014

Reg-Exp to NFA by Glushkov (1961) or Berry-Sethi (1986)
algorithm

R = (a+b)*aba

1. Index the occurrences of letters R = (a1 4 by)*asboas

2. Use the constructors first, last, follow
first(R') = {a1,b1, a2}
last(R') = {as}
fOHOW(R/, bl) = {al, bl, ag}

3. Automaton
» indexed letters — states
» suppression of the indices — transitions

5(()17&) = {CLl,CLQ}, (5(b1,b) = {bl}, etc.

52—July 21, 2014

Glushkov and Berry-Sethy algorithm

Recursive definition of first, last, follow and nullable
nullable(R) = true if e € language of R

ﬁI‘St(RlRQ) =
first(R;) Ufirst(R2) if nullable(Ry),
first(Ry) otherwise

fOHOW(RlRQ, l‘) =
follow(Ra,z) if x € Ry,
follow(Ry, z) Ufirst(Re) 1if « € last(Ry)

follow(R1,z) otherwise

1,

follow (R*, x
x)Ufirst(R) if « € last(R),
x

)
follow (R,
follow(R,x) otherwise

Technical Condition = quadratic complexity

53—July 21, 2014

Fast exact extraction of Taylor coefficients
P(z,u) U(z)
Q(z,u) V(z)
E(X,) = ["]|E(z), E(X;)=["]|Ma(2)

Aim: fast extraction of the nth Taylor coefficient of a rational function

H(z)

F(z,u) = K()

= FE(z) =

A{Q(Z') =

Method

= emVo + em—-1V1 + -+ €m_rvp =0 (m>j)

—v1/vg —v2/vo ... —vE/vo

En = (@7717 Cm—T1y.+n, e'mfk)
{ with A — 1 0 . 0 square

Efn,+1 =AxE!, 0 1 0 matrix
Et _ Am—kEt
m k

binary exponentiation to compute A™~F: A1 = (A2)2 , A% = (A4)2 yee

54—July 21, 2014

Example - R = aba, P(a) = P(b) = 0.5 - E(400000)7

3
2°/2
E(X,)z" =
Z (Xn) 4—82+ 522 — 2234 24
n>0
5
en =26ep_1— —€n_2+ —€p_3— —€n_
n n—1 41L2 21L3 4IL4
399997
f 750/4 1(/)2 73/4 1(/)8 399997
El o000 = 0 1 0 0 0 = 1100001101001111101
0 0 1 0 0 (base 2) (19 bits)

19 matrix products, 11 matrix by vector products (number of bits equal to 1)

399998 3999998

E(X400000) = 3 (()()()1 sec), E(X4000000) = 3

(0.002sec)

Complexity O(logn) number of operations for the computation
of the nth coefficient

1log(4000000)/ 1og(400000) ~ 1.179 beware of -bit complexity

55— July 21, 2014

Automatic computations - Lib. regexpcount (N.-Salvy)

:> with(regexpcount) :
> GRAM:={a=Atom,b=Atom,R=Prod(a,Sequence(b),a)};
GRAM = { R= Prod (a, Sequence (b)), a), a= Awom, b= Adrom }

E autoR:=regexptomatchesgram(GRAM, S, [[R,u, 'overlap']]);

autoR = { 5= Union (E, Prod (a, w3), Prod (5, 8)), a= Atom, b= Atom, u=E, w2

= Union (E, Prod (a, u, w2), Prod (b, w3)), wi = Union(E, Prod (a, i, w2, Prod (5,
wi))}

B EQS:={seqg(eval (subs(Pred="*",Union="+",Epsilon=1,Atom=var,i)),i=

autoR) };
EOS={S=1+awitbS a=var. b=var.u=1, w2=1+auwwl+ bwi wi=1
+ awwl + b wd}
> for i in {u,p} do EQS:=EQS minus {i=1} end do:for i in {a,b} do
EQS:=EQS minus {i=var} end do:EQS;
{(S=lt+aw?+sSw2=1+auww2+bwiwi=1+aun?+hbwi}

> vaR:=(seq(op(1,1),i=E0S)};
VAR = {8 w2 wi}

.> SOLabu:=subs (solve(EQS,VAR) ,S);

a1+ At
SOLabw = —”—f:”
aub+1—256+0" —au

> SoLzu:=subs(a=2/2,b=2/2,S0Labu);

-]+;—:1¢
SOLzu = - 1 1
?:’{f+l—:+ I:’—?:u
B E(z):=subs(u=1,diff(SOLzu,u));

1 1, 1
i P "+?-'][?-‘ ‘E-‘]

FE)= g Tt - —

P 2" [E: +|—?:J

56—July 21, 2014

Automatic computations - Lib. gfun (Salvy-Zimmerman)

> E(z):=subs(u=1,diff(50Lzu,u));

1 [|
. | P "+Z-‘] (?-‘ ‘z-’]
vl -4 - - +
“ 201 3 1, 3 °
7 - 2 - [?: +1- ?:]
:> with(gfun):
> rec:=diffeqtorec(E(z)-¥(z),y(z),u(n));

rec={-2ula)+adu(l+a)—mu(0)=0,u(1)=0,u(2)= l—]

PROC:=rectoproc(rec,u(n)):
time();

VI\/I

28.099

> t:=time():evalf(PROC(4000));time()-t;
1999000000
0.017
> t:=time():evalf(PROC(40000));time()-t;
1999900000
0.050
> evalf(log(40000)/log(4000));
1.277618919
> BITS_NUMER_4000:=evalf(log(numer (PROC(4000)))/log(10));
BITS NUMER 4000 = 1207.420796
> BITS_NUMER_40000:=evalf (log(numer (PROC(40000)))/log(10));
BITS NUMER 40000 = 12045.50083

57—July 21, 2014

Automatic computations - Lib. gfun (Salvy-Zimmerman)

rec:=diffeqtorec(E(z)-y(z),y(z),u(n));
PROC:=rectoproc(rec,u(n}):
PP[4000] : =PROC (4000) ;

g™

26350899827684352571076756986789461 35004854303025452265416514097033272099297556075760842449422107 1944248 740572204952929253855 18857078692 1982 1 8039384257185
930508042143293910237016123149012158661431363192935747794631755343954422489188643985605602952832739661189294017486176163962476680465 148128629219226693451F
T616564579653326533152116751987169088120903711326493141941024724576377193712598746393325621172177608837740203359481 599889055366167377732651823103641252735
3414595947305921 11204790941 564752043 19528599141 17438 164391026906958 299508 2098496259868 2496559536491 13971 743294709168 79684875 148 580824268¢
72413752231537403993608303334745961 48 1203652 12952448 1426 10805 840455064559 134667030298 31279070468 7079353 1354824541 75849720688 5640931 74157630595 50400063544¢
6T21T6191011511331013580343939476962503713 147630469877423113567606335900780902993 13664684231393397949869929643078593616544758290908 10870106378 7860954672032
0588031354659109364559093701888447103900767515491 18851727041 14540033852844839313698622453705624017678 1373287638192394840336169737245595546693897583441229:
6996981 873RR03GI255494851728608601169229313937152127802599162360457889640974096533205528 730408 2286646838 1 14987802625 f

1318204093430943 100103889794236591363 15401916 1093272769092803450241 756928 112834455 1079752123 172122033 1409407564807 1682303844681 769424058 128173 106245251215
3B5446° 5632897064277199393003638653529242495144 888321833894 158323756200092849226089461 1 1038378734077913265440918583 12558605043 164728460363649081
500078268 116724689002 106891 044880894853471921527088201197650061259448583977618746693012787452335047965869945140544352170538037327032402834008 159261 693483¢
994727160945 76894007243 168662 568 8B66030658324868 30606 1250176433 56469732407252874567217733694824236675323341 75568 18392219546938204560720202538843 7122682684
S8636194212875139566587445390068014747975813971 7481 14770439248826688667129237954 1 2855584 1 87446066572963049263 86001 79338272579 1 L002088 1228767361 20060347897
2016889399757435372763399896922309279823570166606797269890623692 1628 76477283791 3526086464389161370534616936703744840302973527909408738729896842351633 16260¢
983893514490200568512210790489667 188 7894330923207 1978575639877208621237040940126912767610658 14107937875804340361 14254547441 8057T15085520493716346090251272
5126053963922 145700597724 72666763440 181556475095 1539671 13514875460624794445927790555554213627225045 757069 10949376

> evalf(logl0(numer(PP[4000]))};
1207 420796
[> evalf(logl0(denom(PP[40001}));

1204.119983

58—July 21, 2014

An application to biology - Protein Motifs Statistics
Motif PS00844 (1998): DALA DALA LIGASE 2
[LIV]-x(3)-[GA]-x- [GSAIV]-R-[LIVCA]-D-[LIVMF](2)-x(7,9)-[LI]-x-
E-[LIVA]-N-[STP]-x-P-[GA]

» A: alphabet of the proteins (20 letters)
s LV]=L+T1+V

[LIVMF](2) = (L+1+V + M + F)?

» x=A

» x(3) =x3

> x(7,9) = x7 +x® +x?

v

The automaton recognizing A*.PS00844 and counting the
matches of the motif in a random non-uniform Bernoulli text
has 946 states while the number of words of the finite
language generated by the motif is about 2 x 10%°

59— July 21, 2014

Comparison of Observed and Predicted Counts

_ log(0)
5ﬁy ~ log(10)
2]

3,

71 Motifs with Expectation > 2
in a Database of 6.75 million positions

For these motifs, o =~ /F (Poisson-like)

Curves: +3c

_ log(E)
log(10)

x

EE 5

From [N.,Salvy,Flajolet] - Motif Statistics, TCS2002

60—July 21, 2014

Open problems

» Definition of a random model of NFA

» Limit distribution of the number of occurrences of two
regular expressions (use Heuberger's theorem)

» Generalization of Hwang's Large Powers theorem to
dimensions larger than two

» Limit distribution when the number of occurrences is O(1)

(one regular expression) - Conjecture: Poisson

61—July 21, 2014

Short Bibliography

» Kelley, D. Automata and Formal Languages, an Introduction.
Prentice Hall, 1995

» Kozen, D. C. Automata and Computability, Springer Verlag,
1997

» Nicodéme,P. , Salvy, B., Flajolet, F. Motif Statistics, TCS 2002

» Nicodéme, P. Regexpcount, a symbolic package for counting
problems on regular expressions and words, Fundamentae
Informaticae, 2003

» Nicaud, C., Pivoteau, C., Razet, B. Average Analysis of
Glushkov Automata under a BST-Like Model, FSTTCS'10,
2010

» Nuel, G., Dumas, J.-G. Sparse approaches for the exact
distribution of patterns in long state sequences generated by a
Markov source, TCS 2012

62—July 21, 2014

