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Motif Statistics - Course I - Counting with Automata

I Basics of Automata theory
I Pattern Matching
I Counting with automata in random texts
I Applications
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What is an automaton?

0

1

2

A directed graph

where vertices are called states,
edges are called transitions,
and labelled by letters of a finite alphabet;
there is a specific state called start,
and there are accepting states;
The function mapping the nodes to their successors

is called “transition function”
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What is an automaton?

0

1

2

AUTO = (A, Q, start, δ, F )

1. Alphabet - A = {a, b}
2. Set of States - Q = {1, 2, 3}
3. start = {0}

4. Transition function δ:


δ(0, a) = {1} δ(0, b) = {1, 2}
δ(1, a) = {} δ(1, b) = {}
δ(2, a) = {2, 1} δ(2, b) = {}

5. Accepting states: F = {1}
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What is an automaton?

0

1

2

a

b

b

a

a AUTO = (A, Q, start, δ, F )

I A run of length n is a sequence (q0, q1, . . . , qn) such that
1. q0 = start
2. there exists a1a2 . . . an ∈ An and qi+1 ∈ δ(qi, ai+1)

I A word w = a1a2 . . . an is accepted if there is at least a run
of length n spelling its letters and ending in an accepting
state.

I The set of words accepted by the automaton is the
language recognized by the automaton.
(A language is a possibly infinite set of words)
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What is an automaton?

0

1
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a

a AUTO = (A, Q, start, δ, F )

I Some not accepted words:
c, am, ab, bn (m ≥ 2, n ≥ 2)

I Accepted words:
a, b, can (n ≥ 1)

I Recognized language
a+ b+ ca+ (a+ =

∑
n≥1 a

n)
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What are Automata and Motif Statistics useful for?

Automata are used
I in hardware technology (circuits)
I in compilers and lexical analyzers
I for pattern matching
I to build groups with specific cogrowth

Motif Statistics is used in
I linguistics
I bioinformatics
I Web analysis
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What is an automaton? Deterministic or Non-Deterministic

0
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a

a

A NFA
(Non-deterministic Finite Automaton)

|δ(2, a)| =
∣∣{2, 1}∣∣ > 1

Several successors
with the same letter

0

1

2

a
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c

a

A DFA
(Deterministic Finite Automaton)

∀q ∈ Q,∀` ∈ A, |δ(q, `)| = 1

Only one successor
with one letter at each state
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Finite Automata and ε−transitions

0
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ε

ε

a

b

ε

ε

ε-auto =
(
A = {a, b, ε}, Q = {0, 1, 2, 3, 4}, s = 0, δ, F = {2}

)

An ε-transition consumes no input
ε-closure: ∀q ∈ Q, ε-cl(q) := {p | p is accessible from q without consuming input}

auto-without-ε =
(
A = {a, b}, Q, s,∆, F ′

)
F ′ = F

⋃
{q | ε-cl(q)

⋂
F 6= ∅} = {0, 4, 1, 2}

∆(q, `) = ε-cl(
⋃
p∈ε-cl(q) δ(p, `))

ε-cl(4) = {4, 1, 2}

F ′ = {0, 1, 4, 2}

ε-cl(0) = {0, 1, 2, 3}

∆(0, a) = ε-cl
(⋃

p∈{0,1,2,3} δ(p, a)
)

= ε-cl
(
{4}) = {4, 1, 2}
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The automata MNFA and MDFA are equivalent

0

1

2

a

b

b

b

a

MNFA = (A, Q, s, δ, F )

each accepted run of MNFA translates to an accepted run of MNFA

each non accepted run of MDFA is the translation

of a non accepted run of MDFA

Proof by induction

0

{1}

{1, 2}

{2}

a

b

a

b

b
a

M ′DFA = (A, Q′, s′,∆, F ′)
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Equivalence of Non-Determistic and Deterministic automata

Two automata M = (Q,A, s, δ, F ) and M ′ = (Q′,A′, s′, δ′, F ′)
are equivalent if they recognize the same language
(L(M) = L(M ′))

Theorem (Rabin-Scott 1959)
Let M = (Q,A, s,∆, F ) be a NFA. Then there exists a DFA
M ′ = (Q′,A′, s′, δ′, F ′) that is equivalent to M .

Remark: each DFA is a NFA

Corollary
(i) The NFA’s are no more powerful than the DFAs in terms of the
languages they accept.
(ii) The NFA’s and DFA’s recognize the same set of languages.
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Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

YES!!!

The Regular Languages and Regular Expressions
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively
by

1. ∅ is a regular language
2. {ε} is a regular language
3. {`} is a regular language for each ` ∈ A
4. if A and B are regular languages, so are

I A
⋃
B (Ex: {ab}

⋃
{c} = {ab, c})

I A •B (Ex: {ab, c} • {d, e} = {abd, cd, abe, ce})

I A? (Ex: {ab}? = {ε, ab, abab, . . . , (ab)n, . . . })

5. No other languages over A are regular
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Regular Expressions

Regular expressions are shorthands for regular languages

a+ b denotes {a, b} = {a}
⋃
{b}

ab denotes {ab} = {a • b}

a? denotes {a}?

a+ denotes a.a? = a • a?
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Formal definition of Regular Expressions

Regular expressions are defined recursively by
1. ∅ and ε are regular expressions
2. ` is a regular expressions for each ` ∈ A
3. if r and s are regular expressions, so are

I r + s

I r.s

I r?

4. No other sequence of symbols is a regular expression.
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Kleene Theorem

Lemma (i)
Every regular language can be accepted by a finite automaton

Lemma (ii)
Every language accepted by a finite automaton is regular

Theorem (Kleene 1956)
A language is regular if and only if it is accepted by a Finite
Automaton
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Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages

∅ is accepted by (A, {0}, 0, δ = ∅, ∅)
ε is accepted by (A, {0}, 0, δ = ∅, {0})

` ∈ A is accepted by (A, {0, 1}, 0, δ(0, `) = {1}, {1})

2. let L1 and L2 regular languages respectively accepted by
automata A1 and A2.

L1.L2 is accepted by A1.A2

L1+L2 is accepted by A1∪A2

L1
? is accepted by A1

?

Starting from the atomic languages, one builds recursively a
ε-NFA recognizing a given regular expression
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Lemma(ii) - From Finite Automata to Regular Expressions

A = (A+ ε, {q1, q2, . . . , qm}, S ⊆ Q, δ, F ⊆ Q) a finite automaton

1. let L(i, j, k) =

{
w

∣∣∣∣ w is the label of a path from qi to qj
where intermediate nodes have labels ≤ k

}

2. L(i, j, 0) has no intermediate labels =⇒ L(i, j, 0) ⊆ A∪ ε is regular
3. Assume L(i, j, k) regular and consider L(i, j, k + 1)

Let p be a path form qi to qj where intermediate nodes have
labels ≤ k + 1.

I (a) p ∈ L(i, j, k) (the path p does not reach qk+1)
I (b) p begins at qi,reaches qk+1 a first time, possibly other
times, until a last time, and ends at qj

Cases (a) and (b) give
L(i, j, k + 1) = L(i, j, k) ∪ L(i, k + 1, k)L(k + 1, k + 1, k)?L(k + 1, j, k)
Therefore L(i, j, k + 1) is regular

4. In particular L(i, j,m) is regular

Conclusion: L(A) =
⋃{

L(i, j,m)|qi ∈ S, qj ∈ F
}
is regular,

since it is a finite union of regular languages
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Counting - Generating Function of a Language

L a language (a possibly infinite set of words)

I Enumeration

L(z) =
∑
w∈L

z|w| =
∑
n≥0

lnz
n

where ln is the number of words of length n of L

I Weighted generating Function

W (z) =
∑
w∈L

P(w)z|w| =
∑
n≥0

pnz
n

where pn is the probability that a random word of length n
belongs to L
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Counting - Generating Function of a Language

I Enumeration

L(a, b) =
∑
w∈L

a|w|ab|w|b =
∑
i,j

li,ja
ibj

li,j = number of words in the language with
{
i letters a
j letters b

F (z) = L(z, z) =
∑
n

fnz
n, fn =

number of words of length n
in the language

I Weighted counting F (z) = L(P(a)z,P(b)z) =
∑
n

pnz
n

pn =
probability that a word of length n
is in the language
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Generating Function of a Regular Expression
Chomsky-Schützenberger (1963)

0 1 2 3
a b a

b a

b

a

b

P = A?aba = (a+ b)?aba

The automaton accepts the words
terminating with aba

Li language of runs
{

that start at state i
and terminate in an accepting state

L1 =

ba+ a?ba+ ba(ba)? + . . .

L0 = a.L1 + b.L0 L0(a, b) = a×L1(a, b) + b×L0(a, b)
L1 = a.L1 + b.L2 L1(a, b) = a×L1(a, b) + b×L2(a, b)
L2 = a.L3 + b.L0 L2(a, b) = a×L3(a, b) + b×L0(a, b)
L3 = a.L1 + b.L2 + ε L3(a, b) = a×L1(a, b) + b×L2(a, b) + 1

solve: L0(a, b) =
1

1− (a+ b)
× aba F (z) =

∑
pnz

n = L0(P(a)z,P(b)z)
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Asymptotics of a rational expression

I if F (z) =
P (z)

Q(z)
with P (ρ 6= 0), Q(ρ = 0)

I and ρ real, positive, dominant singularity of order k

Then,

fn = [zn]F (z) =
P (ρ)

Q(ρ)
×ρ−n× (n−k+1)× (1 +An) (A < 1)

Expand the polynomial P (z) at ρ

P (z) = P (ρ) + (z − ρ)P ′(ρ) +
1

2!
(z − ρ)2P ′′(ρ) + . . .

to get a full expansion
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Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton
2. The Chomsky-Schützenberger algorithm applies to any

regular expression.

Theorem (Chomsky-Schützenberger 1963)
The generating function of a regular language is rational.

Corollary
Let R a regular language and Rn = R∩An.
∃n0, ∀n > n0, |Rn| = p1(n)λn1 + · · ·+ pk(n)λnk , with pi(n)
complex polynomials and λi ∈ C
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An asymptotic test of non-regularity
For any regular language R, there exists a real positive number λ
and a polynomial p(n) such that

lim
n→∞

rn = λn × p(n), rn =
∣∣∣R⋂An∣∣∣

I The number of words of length 2n in Dyck Languages ((()(()))) is

the Catalan number
(

2n
n

)
/(2n+ 1) asymptotic to

4n

n3/2
√
π
.

Dyck languages are not regular and cannot be recognized by a
DFA; however they can be recognized by a push-down automaton,
and they have an algebraic generating function.

I Let π(x) be the number of prime numbers less than x ∈ R+.

lim
x→∞

π(x)

x/ log x
= 1

There is no known generating function enumerating the
primes. Would one find one it would not be regular. It is not
possible to enumerate the primes by an automaton.
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Some classical pattern matching
algorithms
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Aho-Corasick (1975) - Finite Motif - Multiple Counting

0 1

2

3

4

a

a

b

b

whitea

whiteb

whitea

whiteb

whitea

whiteb

P = {a, aa, ab, b}

I build a trie over the words of P

let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4}
∀q ∈ Q, let wq the word spelling the run from 0 to q − (w3 = ab)

I for each node q with a missing transition `
add a transition δ(q, `) to state q′

such that wq′ is the longuest possible suffix of wq.`

δ(2, a) = 2 w2.a = a.aa

δ(2, b) = 3 w2.b = a.ab

δ(3, a) = 1 w3.a = ab.a

δ(3, b) = 4 w3.b = ab.b

for each specific match ring a bell
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Knuth-Morris-Pratt automaton (1977) - Only one word

0 1 2 3
a b a

whiteb whitea

whiteb

whitea

whiteb

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaaba


bbaba
ba
bb
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Pattern matching and Statistics - Regular patterns

1. We learned how to compute the
I number of matches of a finite pattern
I in a particular text

2. In a random text, what about
I finding the occurrences of a Regular Expression
(i.e, the number of positions at which a match
is found)

I and counting them
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Tools and Aim - Generating Functions
For a given pattern P , we want to compute

F (z, u) =
∑

n≥0,k≥0

fn,ku
kzn

where fn,k = P

(
P occurs k times

in a random text of length n

)

If Xn is the random variable
I counting the number of occurrences of P
I in a random text of size n

F (z, u) =
∑

n≥0,k≥0

fn,ku
kzn =

∑
n≥0

zn
∑
k≥0

P(Xn = k)uk

The variables z and u are formal variables
I z is related to the length of the texts
I u is related to the number of occurrences of P
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Counting with Regular Expressions - The right language

1. Input:
I a finite alphabet A
I a regular expression R

2. Output:
F (z, u) =

∑
n≥0,k≥0

fn,ku
kzn

I Method
1. Build the DFA recognizing A?.R

2. Use a variant of Chomsky-Schützenberger
to ring the bell and produce the variable u
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Counting the number of occurrences of ab+a

0 1 2 3
a b a

b a b

a

b

P = A?ab+a = (a+ b)?ab+a

L0 = a.L1 + b.L0 L0(a, b

, u

) = a×L1(a, b

, u

) + b×L0(a, b

, u

)
L1 = a.L1 + b.L2 L1(a, b

, u

) = a×L1(a, b

, u

) + b×L2(a, b

, u

)
L2 = a.L3
+b.L2 L2(a, b

, u

) = a×u×L3(a, b

, u

) + b×L2(a, b

, u

)
L3 = a.L1 + b.L2 + ε L3(a, b,

u

) = a×L1(a, b,

u

) + b×L2(a, b,

u

) + 1

solve: L0(a, b, u) =
1− b+ ab− uab

1− a− 2b+ 2ab+ b2 − ab2 − u(ab− ab2)

F (z, u) =
∑
fn,ku

kzn = L0(P(a)z,P(b)z, u)

P(a) = P(b) =
1

2
; F (z, u) =

8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)
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Exploiting the generating Function

R = ab+a, F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)

I Expand in series with respect to z in the neighborhood of 0

F (z, u) = 1+z+z2+

(
1

8
u+

7

8

)
z3+

(
5

16
u+

11

16

)
z4+

(
1

2
+

15

32
u+

1

32
u2

)
z5+O(z6)

I Compute the generating function of the expectations of the number
of occurrences of the pattern

E(z) =
∑
n

E(Xn)zn =
∂F (z, u)

∂u

∣∣∣∣
u=1

= −1

2

z2

1− z+
1

4

z2

1− 1

2
z

+
1

4

z2

(1− z)2

I Get E(Xn)

E(Xn) = −1

2
+ 2−n +

1

4
(n− 1) =

1

4
(n− 3) + 2−n
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Exploiting the generating Function

R = ab+a, F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)

I Generating function of the Second Moment

M2(z) =
∑
n≥0

E(X2
n)zn =

∂

∂u
u
∂F (z, u)

∂u

∣∣∣∣
u=1

M2(z) =
1

4

z2(z2 − 2)

1− z
− 1

4

z2(z2 − 1)

(1− z)2
− 1

8

z2(z2 − 2)

1− z

2

+
1

8

z4

(1− z)3

I Extract the nth. Taylor coefficient

E(X2
n) = [zn]M2(z) =

1

16
n2 − 5

16
n+

5

8
− 2−n

I Standard Deviation σn

σn =
√

E(X2
n)−E2(Xn) =

1

4

√
n+ 1− 2−n+3n+ 2−n+3 − 4−n+2
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Limit law
I Laplace transform L of a random variable X

L(X, t) = E(etX)

I Laplace transform of a standard Gaussian variable N

L(N , t) =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx = et

2/2

Theorem (Paul Lévy Continuity Theorem - 1925)

If for t ∈ [−α,+α] lim
n→∞

E(etXn) = L(N ) = et
2/2

then Xn
D−→ N (convergence in distribution or law)

lim
n→∞

P(Xn < x) =
1√
2π

∫ x

−∞
e−w

2/2dw
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Limit law of the occurrences of ab+a

F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)

= − 1− u
u
(

1− z

2

) +
1 +
√
u

2u

(
1− z 1 +

√
u

2

) +
1−
√
u

2u

(
1− z 1−

√
u

2

)

Ψn(u) = [zn]F (z, u) =
1

u

(
1 +
√
u

2

)n+1

+O

(
1

2n

)
for u close of 1

We consider Ψn(et) = E(etXn) and the normalised law
Xn − µn

σn

Φn(t) = Ψn(t
Xn − µn

σn
) = E

[
exp

(
t(Xn − µn)

σn

)]
= exp

(
−µnt
σn

)
E

[
exp

(
tXn
σn

)]
We substitute: µn =

n− 3

4
+O(2−n), σn =

√
n+ 1

4
+O(2−n)

In a neighborhood of t = 0, we expand log(Φn(t))

log(Φn(t)) =
t2

2
− t4

12(n+ 1)
+O

(
t6

n2

)
n→∞−→ t2

2
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Limit law of the occurrences of ab+a
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1

u

(
1 +
√
u

2

)n+1

+O

(
1

2n

)
for u close of 1

We consider Ψn(et) = E(etXn) and the normalised law
Xn − µn

σn

Φn(t) = Ψn(t
Xn − µn

σn
) = E

[
exp

(
t(Xn − µn)

σn

)]
= exp

(
−µnt
σn

)
E

[
exp

(
tXn
σn

)]

We substitute: µn =
n− 3

4
+O(2−n), σn =

√
n+ 1

4
+O(2−n)

In a neighborhood of t = 0, we expand log(Φn(t))

log(Φn(t)) =
t2

2
− t4

12(n+ 1)
+O

(
t6

n2

)
n→∞−→ t2

2
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Limit law of the occurrences of ab+a
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The Gaussian law is general

0 1 2 3
a b a

b a b

a

b

R = ab+a P = A?ab+a

L0(z, u) = L0 = zpaL1 + zpbL0 + 1,
L1 = zpbL2 + zpaL1 + 1,
L2 = zpauL3 + zpbL2 + 1
L3 = zpaL1 + zpbL2 + 1

∣∣∣∣∣∣∣∣ L =

L0

...
Ln

 = zT(u)L+1

general case: T(u) positive n× n matrix for u ≥ 0

Theorem (Perron-Frobenius, 1907-1912)
If T(u) is positive, irreducible and aperiodic, the dominant eigenvalue is
unique, real and positive.

L0(z, u) =
P (z, u)

Q(z, u)
=

P (z, u)

(1− zλ1(u)) · · · (1− zλn(u))

λ1(u) dominant =⇒ 1

|λ1(u)|
<

1

|λ2(u)|
≤ . . .
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Perron-Frobenius conditions

0 1 2 3
a b a

b a b

a

b

R = ab+a P = A?ab+a

In the context of automata,
I irreducibility: from any state, any other state can be reached

(The above automaton is not irreducible)
I primitivity: there exists a large enough e such that any state can be

reached by any other state in exactly e steps
Remarks

I The above automaton with initial state 1 and states 1, 2, 3, is irreducible
and primitive

I The automaton with states 0, 1, 2, 3 is such that L0 =
L1

1− zpb
+

1

1− zpb
I For u = 1, we have L0 = L1 = L2 = L3 = 1/(1− z)
I by continuity, λ1(u) is close of 1 for u ∈ [1− ε, 1 + ε]

I for L0, we have
1

λ1(u)
<

1

pb
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Uniform Separation Property with respect to n

1

1/λ1(u)

1/λ2(u)

1/λ3(u)

1/λ4(u)

1/λ5(u)

R = 1/A

Γ

pn(u) = [zn]F (z, u) =
1

2iπ

∮
Γ

dz

zn+1
F (z, u),

=
1

2iπ

∮
Γ

c(u)

zn+1(1− λ1(u)z)
+

1

zn+1
g(z, u) dz,

= c(u)λ1(u)n(1 +O(An)) (A < 1)

Hwang’s quasi-power theorem → limiting Gaussian distribution

Variability condition: λ′′(1) + λ′(1)− λ′(1)2 6=0 (λ(u) = λ1(u))
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Statistics of one regular motif
Let Xn count the number of occurrences of a regular motif R in a
random text of length n.

F (z, u) =
∑
n,k

P(Xn = k)ukzn =
c(u)

1− λ(u)z
+ g(z, u)

Theorem (N, Salvy, Flajolet - 1999)
Both in the Bernoulli and Markov model, with T(u) the fundamental
matrix, and λ(u) its dominant eigenvalue,

1. F (z, u) is rational and can be computed explicitly

2.
Moments


E(Xn) = λ′(1)n+ c1 +O(An), (c1 = c′(1))

Var(Xn) = (λ′′(1) + λ′(1)− λ′(1)2)n+ c2 +O(An)

(c2 = c′′(1) + c′(1)− c′(1)2)

3. Limit Gaussian law: Pr

(
Xn − µn
σ
√
n

)
→ 1√

2π

∫ x

−∞
e−t

2/2 dt

[Bourdon, Vallée - 2006] Extension to dynamical sources
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Counts of R = ab+a

I P(a) = P(b) =
1

2
I Xn number of occurrences of R in a random text of size n

I σn =
√

Var(Xn) =

√
n+ 1

4
+O(2−n)

Variability condition:

Var(Xn) = (λ′′(1) + λ′(1)− λ′(1)2)n+ c2 +O(An) = Θ(n)

We have Var(Xn) = Θ(n) =⇒ normal limit law
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Counts of R = ab?

P(a) = P(b) =
1

2

F (z, u) =
∑
n≥0

∑
k≥0

P(Xn = k)ukzn =
uz/2− 1

1− z/2− uz + uz2



E(Xn) = n− 1 + 2−n

E(X2
n) = n2 − 2n+ 3− 3×2−n

Var(Xn) = 2− (2n+ 1)2−n − 4−n

lim
n→∞

Var(Xn) = 2

I The variation condition is not verified
I The limiting law is not normal
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Hwang’s Quasi-Power theorem - Gaussian form

Notation: m(f) =
f ′(1)

f(1)
, v(f) =

f”(1)

f(1)
+
f ′(1)

f(1)
−
(
f ′(1)

f(1)

)2

Theorem (Hwang 1994)

Let the Xn be non-negative discrete random variables (supported by Z≥0) with probability generating
function pn(u). Assume that, uniformly in a complex neighborhood of u = 1, for sequences
βn, κn →∞, there holds

pn(u) = A(u).B(u)βn
(

1 +O
(

1

κn

))
,

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies the
so-called “variability condition”,

v(B(u)) ≡ B′′(1) +B′(1)−B′(1)2 6= 0.

Under these conditions, the mean and variance of Xn satisfy

µn ≡ E(Xn) = βnm(B(1)) +m(A(1)) +O
(
κ−1
n

)
σ2
n ≡ Var(Xn) = βnv(B(1)) + v(A(1)) +O

(
κ−1
n

)
.

The distribution of Xn is, after standardization, asymptotically Gaussian,

Pr

{
Xn −E(Xn)√

Var(Xn)
≤ x

}
= N (x) +O

(
1

κn
+

1
√
βn

)
,
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What about counting with several motifs simultaneously?

0 









a

a

b

b

a

b

a

b

a

b

P = {a, aa, ab, b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie

Not so easy for a general regular motif
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Product of Marked Automata

0 1 2


3


a

b

a

b

a

ba

b

U = aa + b

AutoU = (A, 0, Q, δ, F = Q,Mark = {2, 3})

0 1 2
 3
a

b

a

b

a

b

a

b

V = b?aab?;

AutoV = (A, 0, Q, δ, F = Q,Mark = {2, 3})

0, 0 1, 1 2,2




3,0



3,3




a

b

a

b

a

a

b

ba

b

Prod(AutoU,AutoV)

Prod(AutoU,AutoV) =
(
A, (0, 0),Q ⊆ Q×Q,∆,F = Q,

Mark1 = {(2, 2), (3, 0), (3, 3)},
Mark2 = {(2, 2), (3, 3)}

)
∆
(
(qi, qj), (`1, `2)

)
=
(
δ(qi, `1), δ(qj, `2))

Mark1 = Q
⋂(⋃

q∈Mark q ×Q
)

Mark2 = Q
⋂(⋃

q∈MarkQ× q
)
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Getting the Multivariate generating Function

0, 0 1, 1 2,2




3,0



3,3




a

b

a

b

a

a

b

ba

b

U = aa+ b, V = b?aab?

Chomsky-Schützenberger again

L00 = πazL11 + πbzuL30 + 1
L11 = πazuvL22 + πbzuL30 + 1
L30 = πazL11 + πbzuL30 + 1
L22 = πazuvL22 + πbzuvL33 + 1
L33 = πazL11 + πbzuvL33 + 1

P(a) = πa P(b) = πb

Assume πa = πb =
1

2

{
Un number of occurrences of U in texts of length n
Vn number of occurrences of V in texts of length n

F (z, u, v) =
∑
n≥0

zn
∑
u≥0
v≥0

P(Un = r, Vn = s)urvs

=
8 + 4z − 8uvz − 2uv(1− uv)z2

8− 4uz − 8uvz − 2u(1− 2uv − uv2)z2 − u2v2(1 + u)z3
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Covariance of Un and Vn

F (z, u, v) =
∑
n≥0

zn
∑
u≥0
v≥0

P(Un = r, Vn = s)urvs

=
8 + 4z − 8uvz − 2uv(1− uv)z2

8− 4uz − 8uvz − 2u(1− 2uv − uv2)z2 − u2v2(1 + u)z3

By differentiation:∑
n≥0

E(UnVn)zn =
∂

∂u

∂

∂v
F (z, u, v)

∣∣∣∣
u=1
v=1

=
z2

8
×8 + 8z − 14z2 + 5z3 − z4

(1− z)3(2− z)2

E(UnVn) =
3

8
n2 − 3n+ 1

4
+ 2−nn


E(Un) =

3n− 1

4

E(Vn) =
n− 2

2
+ 2−n

Cov(Un, Vn) = E(UnVn)−E(Un)E(Vn) =
n− 4

8
+ 2−n

n+ 1

4
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∑
u≥0
v≥0

P(Un = r, Vn = s)urvs

=
8 + 4z − 8uvz − 2uv(1− uv)z2

8− 4uz − 8uvz − 2u(1− 2uv − uv2)z2 − u2v2(1 + u)z3

By differentiation:∑
n≥0

E(UnVn)zn =
∂

∂u

∂

∂v
F (z, u, v)

∣∣∣∣
u=1
v=1

=
z2

8
×8 + 8z − 14z2 + 5z3 − z4

(1− z)3(2− z)2

E(UnVn) =
3

8
n2 − 3n+ 1

4
+ 2−nn


E(Un) =

3n− 1

4

E(Vn) =
n− 2

2
+ 2−n

Cov(Un, Vn) = E(UnVn)−E(Un)E(Vn) =
n− 4

8
+ 2−n

n+ 1

4

49−July 21, 2014



Correlation of Un = aa+ b and Vn = b?aab?

Cor(Un, Vn) =
Cov(Un, Vn)

σUn
σVn

=
E(UnVn)−E(Un)E(Vn)

σUn
σVn

=
n− 4 + 2−(n−1)(n+ 1)√

(n+ 1)(3n− 6− 2−n(4n− 12)− 4−(n−1))

1√
3

Cor(Un, Vn)

Remark:
2100 ≈ 1.27× 1030

weak correlation
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More on Marked-Automata

1. The Marked-States have the same properties as the
Accepting-States, with respect to

I determinization of NFAs
I minimization of DFAs

2. It is possible to make the product of any finite number of
automata; this is not limited to the product of two automata.
The automata need only be complete.
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Reg-Exp to NFA by Glushkov (1961) or Berry-Sethi (1986)
algorithm

R = (a+ b)∗aba

1. Index the occurrences of letters R′ = (a1 + b1)∗a2b2a3

2. Use the constructors first, last, follow
first(R′) = {a1, b1, a2}
last(R′) = {a3}
follow(R′, b1) = {a1, b1, a2}

3. Automaton
I indexed letters → states
I suppression of the indices → transitions

δ(b1, a) = {a1, a2}, δ(b1, b) = {b1}, etc.
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Glushkov and Berry-Sethy algorithm

Recursive definition of first, last, follow and nullable

nullable(R) = true if ε ∈ language of R

first(R1R2) ={
first(R1) ∪ first(R2) if nullable(R1),
first(R1) otherwise

follow(R1R2, x) =
follow(R2, x) if x ∈ R2,
follow(R1, x) ∪ first(R2) if x ∈ last(R1)
follow(R1, x) otherwise

follow(R∗, x) ={
follow(R, x) ∪ first(R) if x ∈ last(R),
follow(R, x) otherwise

Technical Condition ⇒ quadratic complexity
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Fast exact extraction of Taylor coefficients

F (z, u) =
P (z, u)

Q(z, u)
=⇒ E(z) =

U(z)

V (z)
, M2(z) =

H(z)

K(z)

E(Xn) = [zn]E(z), E(X2
n) = [zn]M2(z)

Aim: fast extraction of the nth Taylor coefficient of a rational function

Method

E(z) =

∑
0≤i≤j

uiz
i

∑
0≤i≤k

viz
i

=
∑
n≥0

enz
n =⇒

∑
0≤i≤k

viz
i
∑
n≥0

enz
n =

∑
0≤i≤j

uiz
i

=⇒ emv0 + em−1v1 + · · ·+ em−kvk = 0 (m > j)

{
Em = (em, em−1, . . . , em−k)

Etm+1 = A× Etm
with A =


−v1/v0 −v2/v0 . . . −vk/v0

1 0 . . . 0
0 1 . . . 0
. . .

 square
matrix

Etm = Am−kEtk

binary exponentiation to compute Am−k: A4 =
(
A2
)2
, A8 =

(
A4
)2
, . . .
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Example - R = aba, P(a) = P(b) = 0.5 - E(400000)?

∑
n≥0

E(Xn)zn =
z3/2

4− 8z + 5z2 − 2z3 + z4

en = 2en−1 −
5

4
en−2 +

1

2
en−3 −

1

4
en−4

Et400000 =


2 −5/4 1/2 −1/4
1 0 0 0
0 1 0 0
0 0 1 0


399997

1/8
0
0
0

 399997
= 1100001101001111101

(base 2) (19 bits)

19 matrix products, 11 matrix by vector products (number of bits equal to 1)

E(X400000) =
399998

8
(0.001sec), E(X4000000) =

3999998

8
(0.002sec)

Complexity O(log n) number of operations for the computation
of the nth coefficient

log(4000000)/ log(400000) ≈ 1.179 beware of bit complexity
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Automatic computations - Lib. regexpcount (N.-Salvy)
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Automatic computations - Lib. gfun (Salvy-Zimmerman)

57−July 21, 2014



Automatic computations - Lib. gfun (Salvy-Zimmerman)
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An application to biology - Protein Motifs Statistics

Motif PS00844 (1998): DALA_DALA_LIGASE_2

[LIV]-x(3)-[GA]-x-[GSAIV]-R-[LIVCA]-D-[LIVMF](2)-x(7,9)-[LI]-x-
E-[LIVA]-N-[STP]-x-P-[GA]

I A: alphabet of the proteins (20 letters)
I [LIV] = L+ I + V

I [LIVMF](2) = (L+ I + V +M + F )2

I x = A
I x(3) = x3

I x(7,9) = x7 + x8 + x9

The automaton recognizing A?.PS00844 and counting the
matches of the motif in a random non-uniform Bernoulli text
has 946 states while the number of words of the finite
language generated by the motif is about 2× 1026
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Comparison of Observed and Predicted Counts
y =

log(O)

log(10)

x =
log(E)

log(10)

71 Motifs with Expectation ≥ 2
in a Database of 6.75 million positions

For these motifs, σ ≈
√
E (Poisson-like)

Curves: ±3σ

From [N.,Salvy,Flajolet] - Motif Statistics, TCS2002
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Open problems

I Definition of a random model of NFA

I Limit distribution of the number of occurrences of two
regular expressions (use Heuberger’s theorem)

I Generalization of Hwang’s Large Powers theorem to
dimensions larger than two

I Limit distribution when the number of occurrences is O(1)
(one regular expression) - Conjecture: Poisson
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