CIMPA Summer School 2014 University An Najah, Nablus

Automata and Motif Statistics

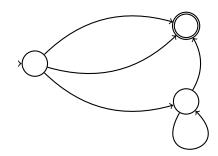
Pierre Nicodème

LIPN, University Paris 13

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

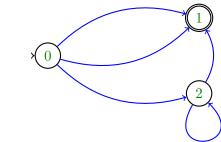
Motif Statistics - Course I - Counting with Automata

- Basics of Automata theory
- Pattern Matching
- Counting with automata in random texts
- Applications



A directed graph

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲□ シタぐ



A directed graph where vertices are called states,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへで

A directed graph where vertices are called states, edges are called transitions,

A directed graph \boldsymbol{a} where vertices are called states, edges are called transitions, and labelled by letters of a finite alphabet;

b

3-July 21, 2014

a

A directed graph where vertices are called states, edges are called transitions, and labelled by letters of a finite alphabet; there is a specific state called start,

b

a

 \boldsymbol{a}

A directed graph where vertices are called states, edges are called transitions, and labelled by letters of a finite alphabet; there is a specific state called start, and there are accepting states;

b

a

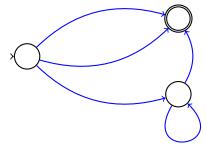
 \boldsymbol{a}

A directed graph a where vertices are called states. edges are called transitions, and labelled by letters of a finite alphabet; there is a specific state called start, and there are accepting states; The function mapping the nodes to their successors is called "transition function"

h

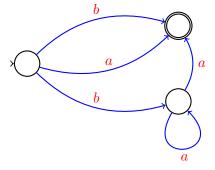
3-July 21, 2014

a



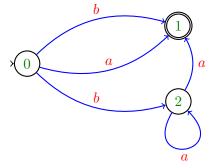
 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



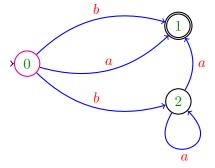
 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

1. Alphabet - $\mathcal{A} = \{a, b\}$



 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

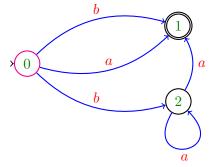
Alphabet - *A* = {*a*, *b*}
 Set of States - *Q* = {1, 2, 3}



 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

Alphabet - A = {a, b}
 Set of States - Q = {1, 2, 3}
 start = {0}

・ロト・日本・日本・日本・日本・今日・



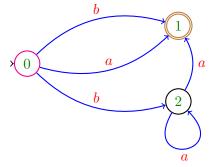
 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

1. Alphabet - $\mathcal{A} = \{a, b\}$ 2. Set of States - $Q = \{1, 2, 3\}$ 3. start = $\{0\}$ 4. The initial function is $\int_{0}^{0} \delta(0, a) = \{1\}$ $\delta(0, b) = \{1, 2\}$

4. Transition function δ : $\begin{cases} \delta(0,a) = \{1\} & \delta(0,b) = \{1,2\} \\ \delta(1,a) = \{\} & \delta(1,b) = \{\} \\ \delta(2,a) = \{2,1\} & \delta(2,b) = \{\} \end{cases}$

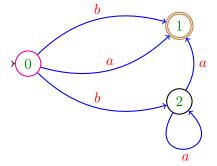
4-July 21, 2014

3 ∃ > 4



 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

1. Alphabet - $\mathcal{A} = \{a, b\}$ 2. Set of States - $Q = \{1, 2, 3\}$ 3. start = $\{0\}$ 4. Transition function δ : $\begin{cases} \delta(0, a) = \{1\} & \delta(0, b) = \{1, 2\} \\ \delta(1, a) = \{\} & \delta(1, b) = \{\} \\ \delta(2, a) = \{2, 1\} & \delta(2, b) = \{\} \end{cases}$ 5. Accepting states: $F = \{1\}$

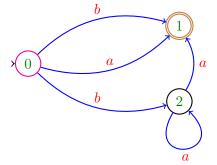


 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

• A run of length n is a sequence (q_0, q_1, \ldots, q_n) such that

- 1. $q_0 = \text{start}$
- 2. there exists $a_1a_2 \ldots a_n \in \mathcal{A}^n$ and $q_{i+1} \in \delta(q_i, a_{i+1})$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ ● ◆◎



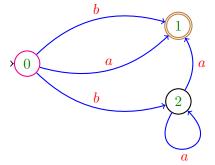
 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

(日) (同) (目) (

- A run of length *n* is a sequence (q_0, q_1, \ldots, q_n) such that
 - 1. $q_0 = \text{start}$

2. there exists $a_1 a_2 \dots a_n \in \mathcal{A}^n$ and $q_{i+1} \in \delta(q_i, a_{i+1})$

► A word w = a₁a₂...a_n is accepted if there is at least a run of length n spelling its letters and ending in an accepting state.



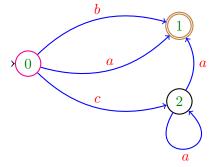
 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

5-July 21, 2014

- A run of length n is a sequence (q_0, q_1, \ldots, q_n) such that
 - 1. $q_0 = \text{start}$

2. there exists $a_1 a_2 \ldots a_n \in \mathcal{A}^n$ and $q_{i+1} \in \delta(q_i, a_{i+1})$

- ► A word w = a₁a₂...a_n is accepted if there is at least a run of length n spelling its letters and ending in an accepting state.
- The set of words accepted by the automaton is the language recognized by the automaton.
 (A language is a possibly infinite set of words)

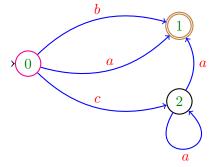


 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

(日)

Some not accepted words:
 c, *a^m*, *ab*, *bⁿ* (*m* ≥ 2, *n* ≥ 2)
 Accepted words:

 $a, b, ca^n \qquad (n \ge 1)$



 $AUTO = (\mathcal{A}, Q, \text{start}, \delta, F)$

< □ > < 同 >

- Some not accepted words: c, a^m, ab, b^n $(m \ge 2, n \ge 2)$
- Accepted words:

 $a, b, ca^n \qquad (n \ge 1)$

► Recognized language $a + b + ca^+$ $(a^+ = \sum_{n>1} a^n)$ What are Automata and Motif Statistics useful for?

Automata are used

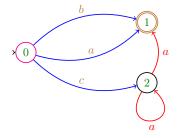
- in hardware technology (circuits)
- in compilers and lexical analyzers
- for pattern matching
- to build groups with specific cogrowth

Motif Statistics is used in

- Inguistics
- bioinformatics
- Web analysis

(日) (同) (三) (

What is an automaton? Deterministic or Non-Deterministic



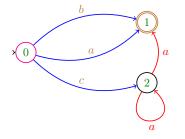
A NFA (Non-deterministic Finite Automaton)

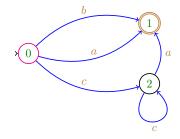
 $\left|\delta(2, \boldsymbol{a})\right| = \left|\{2, 1\}\right| > 1$

Several successors with the same letter

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is an automaton? Deterministic or Non-Deterministic





A NFA (Non-deterministic Finite Automaton)

 $|\delta(2, a)| = |\{2, 1\}| > 1$

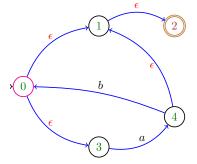
Several successors with the same letter

A DFA (Deterministic Finite Automaton)

 $\forall q \in Q, \forall \ell \in \mathcal{A}, |\delta(q, \ell)| = 1$

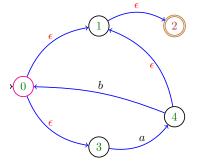
Only one successor with one letter at each state

(日)、(同)、(三)、(



$$\epsilon$$
-auto = $(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\})$

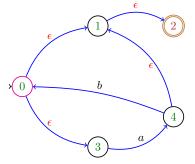
・ロ・・雪・・雪・・雪・ うへぐ



$$\epsilon$$
-auto = $(A = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\})$

An ϵ -transition consumes no input

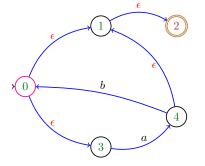
・ロト・4回ト・4回ト・4回ト 回 のQの



$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ -cl(q) := {p | p is accessible from q without consuming input}

> <ロト < 昂ト < 臣ト < 臣ト 臣 の Q () 9-July 21, 2014

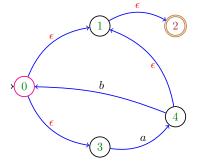


$$\epsilon$$
-*cl*(4) = {4, 1, 2}

$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ -cl(q) := {p | p is accessible from q without consuming input}

> < □ > < @ > < E > < E > E の Q @ 9-July 21, 2014



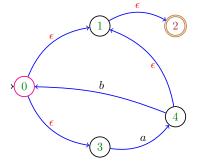
$$\epsilon$$
-*cl*(4) = {4, 1, 2}

$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ - $cl(q) := \{p \mid p \text{ is accessible from } q \text{ without consuming input}\}$ auto-without- $\epsilon = (\mathcal{A} = \{a, b\}, Q, s, \Delta, F')$

∃ ► ∃ ∽
9-July 21, 2014

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



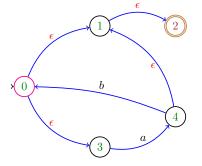
 $\begin{aligned} & \epsilon\text{-}cl(4) = \{4, 1, 2\} \\ & F' = \{0, 1, 4, 2\} \end{aligned}$

$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ - $cl(q) := \{p \mid p \text{ is accessible from } q \text{ without consuming input}\}$ auto-without- $\epsilon = (\mathcal{A} = \{a, b\}, Q, s, \Delta, F')$ $F' = F \bigcup \{q \mid \epsilon - cl(q) \cap F \neq \emptyset\} = \{0, 4, 1, 2\}$

9-July 21, 2014

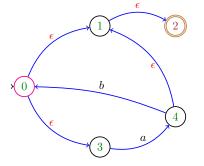
イロト イポト イヨト イヨト



$$\begin{aligned} &\epsilon\text{-}cl(4) = \{4,1,2\} \\ &F' = \{0,1,4,2\} \end{aligned}$$

$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ - $cl(q) := \{p \mid p \text{ is accessible from } q \text{ without consuming input}\}$ auto-without- $\epsilon = (\mathcal{A} = \{a, b\}, Q, s, \Delta, F')$ $F' = F \bigcup \{q \mid \epsilon - cl(q) \cap F \neq \emptyset\} = \{0, 4, 1, 2\}$ $\Delta(q, \ell) = \epsilon - cl(\bigcup_{p \in \epsilon - cl(q)} \delta(p, \ell))$

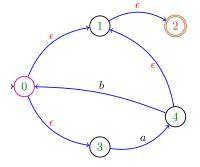


$$\epsilon$$
-cl(4) = {4, 1, 2}
 $F' = \{0, 1, 4, 2\}$

$$\epsilon - cl(0) = \{0, 1, 2, 3\}$$

$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

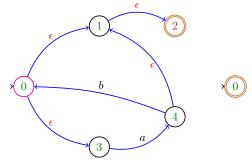
An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ - $cl(q) := \{p \mid p \text{ is accessible from } q \text{ without consuming input}\}$ auto-without- $\epsilon = (\mathcal{A} = \{a, b\}, Q, s, \Delta, F')$ $F' = F \bigcup \{q \mid \epsilon - cl(q) \cap F \neq \emptyset\} = \{0, 4, 1, 2\}$ $\Delta(q, \ell) = \epsilon - cl(\bigcup_{p \in \epsilon - cl(q)} \delta(p, \ell))$



 $\epsilon - cl(4) = \{4, 1, 2\}$ $F' = \{0, 1, 4, 2\}$ $\epsilon - cl(0) = \{0, 1, 2, 3\}$ $\Delta(0, a) = \epsilon - cl\left(\bigcup_{p \in \{0, 1, 2, 3\}} \delta(p, a)\right)$ $= \epsilon - cl\left(\{4\}\right) = \{4, 1, 2\}$

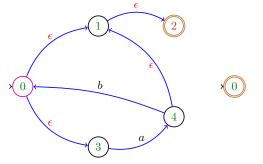
$$\epsilon\text{-auto} = \left(\mathcal{A} = \{a, b, \epsilon\}, Q = \{0, 1, 2, 3, 4\}, s = 0, \delta, F = \{2\}\right)$$

An ϵ -transition consumes no input ϵ -closure: $\forall q \in Q, \ \epsilon$ - $cl(q) := \{p \mid p \text{ is accessible from } q \text{ without consuming input}\}$ auto-without- $\epsilon = (\mathcal{A} = \{a, b\}, Q, s, \Delta, F')$ $F' = F \bigcup \{q \mid \epsilon - cl(q) \cap F \neq \emptyset\} = \{0, 4, 1, 2\}$ $\Delta(q, \ell) = \epsilon - cl(\bigcup_{p \in \epsilon - cl(q)} \delta(p, \ell))$



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … のへぐ

3

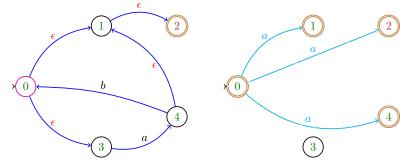


$$\begin{split} \epsilon - cl(0) &= \{0, 1, 2, 3\} \\ \epsilon - cl(1) &= \{1, 2\} \\ \epsilon - cl(2) &= \{2\} \\ \epsilon - cl(3) &= \{3\} \\ \epsilon - cl(4) &= \{4, 1, 2\} \end{split}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ のへで 10-July 21, 2014

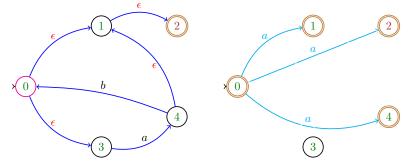
3

 $\mathbf{2}$



$$\begin{split} \epsilon - cl(0) &= \{0, 1, 2, 3\} \\ \epsilon - cl(1) &= \{1, 2\} \\ \epsilon - cl(2) &= \{2\} \\ \epsilon - cl(3) &= \{3\} \\ \epsilon - cl(4) &= \{4, 1, 2\} \end{split}$$

□ > < 급 > < 분 > < 분 > 분 < 0 < 0
 10−July 21, 2014



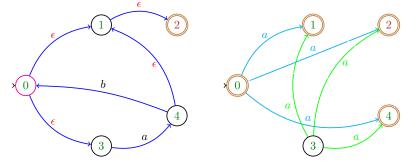
 $\begin{aligned} \epsilon - cl(0) &= \{0, 1, 2, 3\} \\ \epsilon - cl(1) &= \{1, 2\} \\ \epsilon - cl(2) &= \{2\} \\ \epsilon - cl(3) &= \{3\} \\ \epsilon - cl(4) &= \{4, 1, 2\} \end{aligned}$

$$\begin{split} \Delta(0,a) &= \{4,1,2\}\\ \Delta(0,b) &= \{\}\\ \Delta(1,a) &= \Delta(1,b) = \{\}\\ \Delta(2,a) &= \Delta(2,b) = \{\} \end{split}$$

э

・ロト ・ 同ト ・ ヨト ・

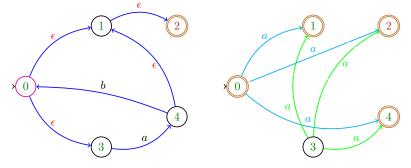
Finite Automata and ϵ -transitions



 ϵ -cl(0) = {0, 1, 2, 3} $\epsilon - cl(1) = \{1, 2\}$ $\epsilon - cl(2) = \{2\}$ $\epsilon - cl(3) = \{3\}$ ϵ -cl(4) = {4, 1, 2}

- $\Delta(0, a) = \{4, 1, 2\}$ $\Delta(3, a) = \{4, 1, 2\}$ $\Delta(0,b) = \{\}$ $\Delta(1,a) = \Delta(1,b) = \{\}$ $\Delta(2,a) = \Delta(2,b) = \{\}$ ・ロト ・ 同ト ・ ヨト ・
 - э 10-July 21, 2014

Finite Automata and ϵ -transitions

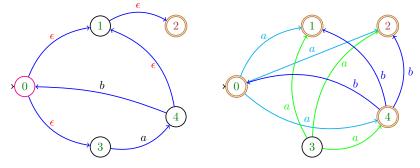


 $\begin{aligned} \epsilon - cl(0) &= \{0, 1, 2, 3\} \\ \epsilon - cl(1) &= \{1, 2\} \\ \epsilon - cl(2) &= \{2\} \\ \epsilon - cl(3) &= \{3\} \\ \epsilon - cl(4) &= \{4, 1, 2\} \end{aligned}$

$$\begin{split} \Delta(0,a) &= \{4,1,2\} & \Delta(3,a) = \{4,1,2\} \\ \Delta(0,b) &= \{\} & \Delta(3,b) = \{\} \\ \Delta(1,a) &= \Delta(1,b) = \{\} & \Delta(4,a) = \{\} \\ \Delta(2,a) &= \Delta(2,b) = \{\} \end{split}$$

イロト イポト イヨト イヨト

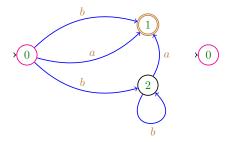
Finite Automata and ϵ -transitions



 $\begin{array}{lll} \epsilon - cl(0) = \{0, 1, 2, 3\} \\ \epsilon - cl(1) = \{1, 2\} \\ \epsilon - cl(2) = \{2\} \\ \epsilon - cl(3) = \{3\} \\ \epsilon - cl(4) = \{4, 1, 2\} \end{array} \qquad \begin{array}{lll} \Delta(0, a) = \{4, 1, 2\} \\ \Delta(0, b) = \{\} \\ \Delta(0, b) = \{\} \\ \Delta(1, a) = \Delta(1, b) = \{\} \\ \Delta(2, a) = \Delta(2, b) = \{\} \\ \Delta(4, b) = \{0, 1, 2\} \end{array}$

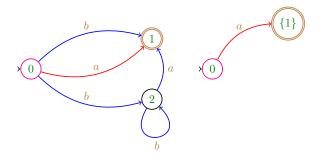
∃ ► ∃ ∽ Q ⊂ 10−July 21, 2014

$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F) \qquad \qquad M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$$



・ロ・・部・・ヨ・・ヨ・ シタぐ

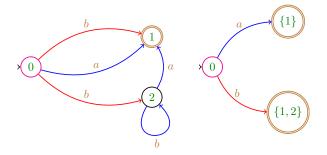
$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F) \qquad \qquad M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$$



$$\Delta(0,a)=\{1\}$$

・ロ・・部・・ボッ・ボッ・ いくろ

$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F) \qquad \qquad M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$$

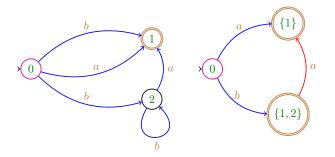


$$\Delta(0, a) = \{1\}$$

 $\Delta(0, b) = \{1, 2\}$

・ロ・・「聞・・用・・用・ 「四・・日・

$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$



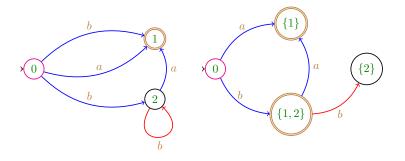
$$\begin{split} &\Delta(0,a) = \{1\} \\ &\Delta(0,b) = \{1,2\} \\ &\Delta(\{1,2\},a) = \{1\} \end{split}$$

11-July 21, 2014

Э

・ロト ・ 日 ・ ・ 目 ・ ・

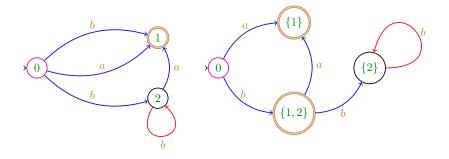
$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$



$$\begin{split} &\Delta(0,a) = \{1\} \\ &\Delta(0,b) = \{1,2\} \\ &\Delta(\{1,2\},a) = \{1\} \end{split}$$

 $\Delta(\{1,2\},b)=\{2\}$

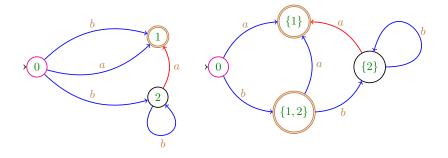
$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$



$$\begin{split} &\Delta(0,a) = \{1\} \\ &\Delta(0,b) = \{1,2\} \\ &\Delta(\{1,2\},a) = \{1\} \end{split}$$

 $\Delta(\{1,2\},b) = \{2\}$ $\Delta(\{2\},b) = \{2\}$

$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$

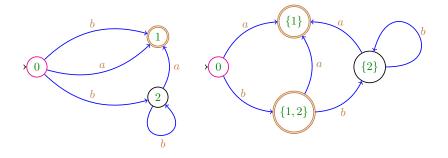


$$\begin{split} \Delta(0,a) &= \{1\} \\ \Delta(0,b) &= \{1,2\} \\ \Delta(\{1,2\},a) &= \{1\} \end{split}$$

 $\Delta(\{1,2\},b) = \{2\}$ $\Delta(\{2\},b) = \{2\}$ $\Delta(\{2\},a) = \{1\}$

<ロト < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

$$M_{\rm NFA} = (\mathcal{A}, Q, 0, \delta, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', 0, \Delta, F')$

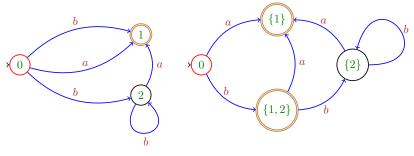


$$\begin{split} \Delta(0,a) &= \{1\} \\ \Delta(0,b) &= \{1,2\} \\ \Delta(\{1,2\},a) &= \{1\} \end{split}$$

$$\begin{split} \Delta(\{1,2\},b) &= \{2\} \\ \Delta(\{2\},b) &= \{2\} \\ \Delta(\{2\},a) &= \{1\} \end{split}$$

<ロト < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

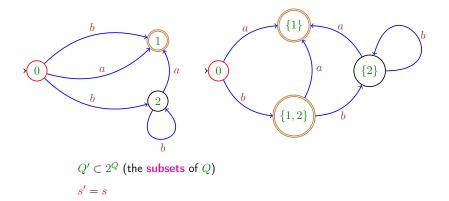
$$M_{\rm NFA} = (\mathcal{A}, Q, \boldsymbol{s}, \boldsymbol{\delta}, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', \boldsymbol{s}', \boldsymbol{\Delta}, F')$



 $Q' \subset 2^Q$ (the subsets of Q)

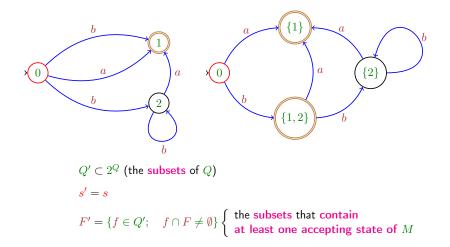
< □ > < (□ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

$$M_{\rm NFA} = (\mathcal{A}, Q, \boldsymbol{s}, \boldsymbol{\delta}, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', \boldsymbol{s}', \boldsymbol{\Delta}, F')$



・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・ うへで

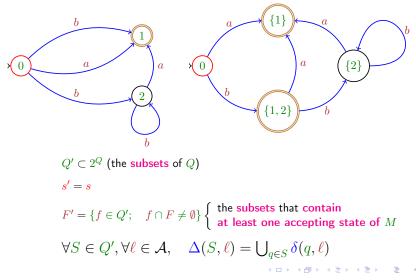
$$M_{\rm NFA} = (\mathcal{A}, Q, \boldsymbol{s}, \boldsymbol{\delta}, F)$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', \boldsymbol{s}', \boldsymbol{\Delta}, F')$



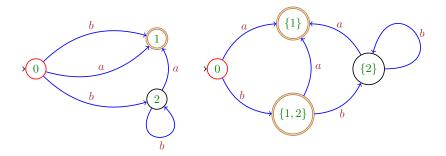
12-July 21, 2014

◆□ → ◆□ → ◆三 → ◆三 →

$$M_{\rm NFA} = (\mathcal{A}, Q, \boldsymbol{s}, \boldsymbol{\delta}, \boldsymbol{F})$$
 $M'_{\rm DFA} = (\mathcal{A}, Q', \boldsymbol{s}', \boldsymbol{\Delta}, \boldsymbol{F}')$



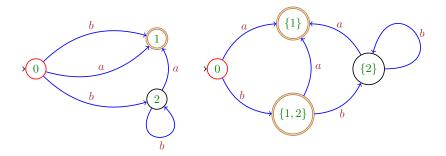
The automata $M_{\rm NFA}$ and $M_{\rm DFA}$ are equivalent $M_{\rm NFA} = (A, Q, s, \delta, F)$ $M'_{\rm DFA} = (A, Q', s', \Delta, F')$



each accepted run of $M_{\rm NFA}$ translates to an accepted run of $M_{\rm NFA}$

・ロト ・日 ・ モ ・ ・ 田 ・ うくぐ

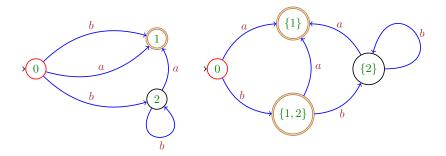
The automata $M_{\rm NFA}$ and $M_{\rm DFA}$ are equivalent $M_{\rm NFA} = (A, Q, s, \delta, F)$ $M'_{\rm DFA} = (A, Q', s', \Delta, F')$



each accepted run of $M_{\rm NFA}$ translates to an accepted run of $M_{\rm NFA}$ each non accepted run of $M_{\rm DFA}$ is the translation of a non accepted run of $M_{\rm DFA}$

13-July 21, 2014

The automata $M_{\rm NFA}$ and $M_{\rm DFA}$ are equivalent $_{M_{\rm NFA}} = (A, Q, s, \delta, F)$ $M'_{\rm DFA} = (A, Q', s', \Delta, F')$



each accepted run of $M_{\rm NFA}$ translates to an accepted run of $M_{\rm NFA}$ each non accepted run of $M_{\rm DFA}$ is the translation of a non accepted run of $M_{\rm DFA}$

Proof by induction

13-July 21, 2014

Equivalence of Non-Determistic and Deterministic automata

Two automata $M = (Q, A, s, \delta, F)$ and $M' = (Q', A', s', \delta', F')$ are equivalent if they recognize the same language $(\mathcal{L}(M) = \mathcal{L}(M'))$

Theorem (Rabin-Scott 1959) Let $M = (Q, A, s, \Delta, F)$ be a NFA. Then there exists a DFA $M' = (Q', A', s', \delta', F')$ that is equivalent to M.

Remark: each DFA is a NFA

Corollary

(i) The NFA's are no more powerful than the DFAs in terms of the languages they accept.
(ii) The NFA's and DFA's recognize the same set of languages.

Another characterization of the languages recognized by Finite Automata (NFA and DFA)?

・ロト ・聞 ・ ・聞 ・ ・聞 ・ うらぐ

Another characterization of the languages recognized by Finite Automata (NFA and DFA)?

YES!!!

・ロト ・母 ト ・目 ト ・目 ・ うへぐ

Another characterization of the languages recognized by Finite Automata (NFA and DFA)?

YES!!!

The Regular Languages and Regular Expressions

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 1 日 = 1 日 = 1 日 = 1 日 = 1 日 = 1 日 = 1 日 = 1 日 = 1 日 =

Definition

Let \mathcal{A} be a finite alphabet.

The collection of regular languages over ${\mathcal A}$ is defined recursively by

Definition

Let \mathcal{A} be a finite alphabet.

The collection of regular languages over ${\mathcal A}$ is defined recursively by

1. \emptyset is a regular language

Definition

Let \mathcal{A} be a finite alphabet.

The collection of regular languages over ${\mathcal A}$ is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language

Definition Let \mathcal{A} be a finite alphabet. The collection of regular lang

The collection of regular languages over ${\mathcal A}$ is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$

Definition Let \mathcal{A} be a finite alphabet. The collection of regular languages over \mathcal{A} is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$
- 4. if \boldsymbol{A} and \boldsymbol{B} are regular languages, so are

ヘロト ヘアト ヘリト ヘ

Definition Let \mathcal{A} be a finite alphabet. The collection of regular languages over \mathcal{A} is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$
- 4. if \boldsymbol{A} and \boldsymbol{B} are regular languages, so are
 - $\blacktriangleright A \bigcup B \quad (\mathsf{Ex:} \{ab\} \bigcup \{c\} = \{ab, c\})$

ヘロト ヘアト ヘリト ヘ

Definition Let \mathcal{A} be a finite alphabet. The collection of regular languages over \mathcal{A} is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$
- 4. if \boldsymbol{A} and \boldsymbol{B} are regular languages, so are
 - $\blacktriangleright A \bigcup B \quad (\mathsf{Ex:} \{ab\} \bigcup \{c\} = \{ab, c\})$

 $\blacktriangleright A \bullet B \quad (\mathsf{Ex:} \{ab, c\} \bullet \{d, e\} = \{abd, cd, abe, ce\})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Let \mathcal{A} be a finite alphabet. The collection of regular languages over \mathcal{A} is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$
- 4. if A and B are regular languages, so are
 - $\blacktriangleright A \bigcup B \quad (\mathsf{Ex:} \{ab\} \bigcup \{c\} = \{ab, c\})$
 - $\blacktriangleright A \bullet B \quad (\mathsf{Ex:} \ \{ab, c\} \bullet \{d, e\} = \{abd, cd, abe, ce\})$
 - $\blacktriangleright A^{\star} \qquad (\mathsf{Ex:} \ \{ab\}^{\star} = \{\epsilon, ab, abab, \dots, (ab)^n, \dots\})$

16-July 21, 2014

Definition Let \mathcal{A} be a finite alphabet. The collection of regular languages over \mathcal{A} is defined recursively by

- 1. \emptyset is a regular language
- 2. $\{\epsilon\}$ is a regular language
- 3. $\{\ell\}$ is a regular language for each $\ell\in\mathcal{A}$
- 4. if \boldsymbol{A} and \boldsymbol{B} are regular languages, so are
 - $\blacktriangleright A \bigcup B \quad (\mathsf{Ex:} \{ab\} \bigcup \{c\} = \{ab, c\})$
 - $\blacktriangleright A \bullet B \quad (\mathsf{Ex:} \ \{ab, c\} \bullet \{d, e\} = \{abd, cd, abe, ce\})$

 $\blacktriangleright A^{\star} \qquad (\mathsf{Ex:} \ \{ab\}^{\star} = \{\epsilon, ab, abab, \dots, (ab)^n, \dots\})$

5. No other languages over \mathcal{A} are regular

Regular Expressions

Regular expressions are shorthands for regular languages

$$a+b$$
 denotes $\{a,b\} = \{a\} \bigcup \{b\}$

- ab denotes $\{ab\} = \{a \bullet b\}$
- $a^\star \quad \mathsf{denotes} \quad \{a\}^\star$
- $a^+ \quad \text{denotes} \quad a.a^\star = a \bullet a^\star$

17-July 21, 2014

Formal definition of Regular Expressions

Regular expressions are defined recursively by

- 1. \emptyset and ϵ are regular expressions
- 2. ℓ is a regular expressions for each $\ell \in \mathcal{A}$
- 3. if r and s are regular expressions, so are

4. No other sequence of symbols is a regular expression.

Kleene Theorem

Lemma (i)

Every regular language can be accepted by a finite automaton

Lemma (ii)

Every language accepted by a finite automaton is regular

Theorem (Kleene 1956)

A language is regular if and only if it is accepted by a Finite Automaton

イロト イポト イヨト イヨト

Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages

$$\emptyset$$
 is accepted by $(\mathcal{A}, \{0\}, 0, \delta = \emptyset, \emptyset)$

$$\epsilon \qquad \text{is accepted by} \quad (\mathcal{A}, \{0\}, 0, \delta = \emptyset, \{\mathbf{0}\})$$

- $\ell \in \mathcal{A} \quad \text{ is accepted by } \quad (\mathcal{A}, \{0, 1\}, 0, \delta(0, \ell) = \{1\}, \{1\})$
- 2. let \mathcal{L}_1 and \mathcal{L}_2 regular languages respectively accepted by automata A_1 and A_2 .
 - $\begin{array}{ll} \mathcal{L}_1.\mathcal{L}_2 & \text{is accepted by} & A_1.A_2 \\ \\ \mathcal{L}_1 + \mathcal{L}_2 & \text{is accepted by} & A_1 \cup A_2 \\ \\ \\ \mathcal{L}_1^{\star} & \text{is accepted by} & A_1^{\star} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages

$$\emptyset$$
 is accepted by $(\mathcal{A}, \{0\}, 0, \delta = \emptyset, \emptyset)$

$$\epsilon \qquad \text{is accepted by} \quad (\mathcal{A}, \{0\}, 0, \delta = \emptyset, \{\mathbf{0}\})$$

- $\ell \in \mathcal{A} \quad \text{ is accepted by } \quad (\mathcal{A}, \{0,1\}, 0, \delta(0,\ell) = \{1\}, \{1\})$
- 2. let \mathcal{L}_1 and \mathcal{L}_2 regular languages respectively accepted by automata A_1 and A_2 .
 - $\begin{array}{lll} \mathcal{L}_1.\mathcal{L}_2 & \text{is accepted by} & A_1.A_2 \\ \\ \mathcal{L}_1 + \mathcal{L}_2 & \text{is accepted by} & A_1 \cup A_2 \\ \\ \\ \mathcal{L}_1^{\star} & \text{is accepted by} & A_1^{\star} \end{array}$

Starting from the atomic languages, one builds recursively a ϵ -NFA recognizing a given regular expression

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$A = (\mathcal{A} + \epsilon, \{q_1, q_2, \dots, q_m\}, S \subseteq Q, \delta, F \subseteq Q) \text{ a finite automaton}$$

1. let $L(i, j, k) = \left\{ w \middle| \begin{array}{l} w \text{ is the label of a path from } q_i \text{ to } q_j \\ where intermediate nodes have labels} \leq k \end{array} \right\}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへ⊙

 $A = (\mathcal{A} + \epsilon, \{q_1, q_2, \dots, q_m\}, S \subseteq Q, \delta, F \subseteq Q) \text{ a finite automaton}$ 1. let $L(i, j, k) = \left\{ w \middle| \begin{array}{c} w \text{ is the label of a path from } q_i \text{ to } q_j \\ \text{where intermediate nodes have labels} \leq k \end{array} \right\}$

2. L(i, j, 0) has no intermediate labels $\Longrightarrow L(i, j, 0) \subseteq \mathcal{A} \cup \epsilon$ is regular

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

- $A = (\mathcal{A} + \epsilon, \{q_1, q_2, \dots, q_m\}, S \subseteq Q, \delta, F \subseteq Q) \text{ a finite automaton}$
 - 1. let $L(i, j, k) = \left\{ w \mid w \text{ is the label of a path from } q_i \text{ to } q_j \\ where intermediate nodes have labels <math>\leq k \right\}$
 - 2. L(i, j, 0) has no intermediate labels $\Longrightarrow L(i, j, 0) \subseteq \mathcal{A} \cup \epsilon$ is regular
 - 3. Assume L(i, j, k) regular and consider L(i, j, k + 1)Let p be a path form q_i to q_j where **intermediate nodes** have **labels** $\leq k + 1$.
 - ▶ (a) $p \in L(i, j, k)$ (the path p does not reach q_{k+1})
 - (b) p begins at q_i,reaches q_{k+1} a first time, possibly other times, until a last time, and ends at q_j

Cases (a) and (b) give

$$\begin{split} L(i,j,k+1) &= L(i,j,k) \cup L(i,k+1,k)L(k+1,k+1,k)^{\star}L(k+1,j,k) \\ \text{Therefore } L(i,j,k+1) \text{ is regular} \end{split}$$

- $A = (\mathcal{A} + \epsilon, \{q_1, q_2, \dots, q_m\}, S \subseteq Q, \delta, F \subseteq Q) \text{ a finite automaton}$
 - 1. let $L(i, j, k) = \left\{ w \mid w \text{ is the label of a path from } q_i \text{ to } q_j \\ where intermediate nodes have labels <math>\leq k \right\}$
 - 2. L(i, j, 0) has no intermediate labels $\Longrightarrow L(i, j, 0) \subseteq \mathcal{A} \cup \epsilon$ is regular
 - 3. Assume L(i, j, k) regular and consider L(i, j, k + 1)Let p be a path form q_i to q_j where **intermediate nodes** have **labels** $\leq k + 1$.
 - ▶ (a) $p \in L(i, j, k)$ (the path p does not reach q_{k+1})
 - (b) p begins at q_i,reaches q_{k+1} a first time, possibly other times, until a last time, and ends at q_j

Cases (a) and (b) give $L(i, j, k+1) = L(i, j, k) \cup L(i, k+1, k)L(k+1, k+1, k)^*L(k+1, j, k)$ Therefore L(i, j, k+1) is regular

4. In particular L(i, j, m) is regular

- $A = (\mathcal{A} + \epsilon, \{q_1, q_2, \dots, q_m\}, S \subseteq Q, \delta, F \subseteq Q) \text{ a finite automaton}$
 - 1. let $L(i, j, k) = \left\{ w \mid w \text{ is the label of a path from } q_i \text{ to } q_j \\ \text{where intermediate nodes have labels } \leq k \end{array} \right\}$
 - 2. L(i, j, 0) has no intermediate labels $\Longrightarrow L(i, j, 0) \subseteq \mathcal{A} \cup \epsilon$ is regular
 - 3. Assume L(i, j, k) regular and consider L(i, j, k + 1)Let p be a path form q_i to q_j where **intermediate nodes** have **labels** $\leq k + 1$.
 - ▶ (a) $p \in L(i, j, k)$ (the path p does not reach q_{k+1})
 - (b) p begins at q_i,reaches q_{k+1} a first time, possibly other times, until a last time, and ends at q_j

Cases (a) and (b) give $L(i, j, k+1) = L(i, j, k) \cup L(i, k+1, k)L(k+1, k+1, k)^*L(k+1, j, k)$ Therefore L(i, j, k+1) is regular

4. In particular L(i, j, m) is regular

Conclusion: $L(A) = \bigcup \{L(i, j, m) | q_i \in S, q_j \in F\}$ is regular, since it is a finite union of regular languages

Counting - Generating Function of a Language

 $\mathcal L$ a language (a possibly infinite set of words)

Enumeration

$$L(z) = \sum_{\boldsymbol{w} \in \mathcal{L}} z^{|\boldsymbol{w}|} = \sum_{n \ge 0} l_n z^n$$

where l_n is the number of words of length n of \mathcal{L}

Weighted generating Function

$$W(z) = \sum_{w \in \mathcal{L}} \mathbf{P}(w) z^{|w|} = \sum_{n \ge 0} p_n z^n$$

where p_n is the probability that a random word of length n belongs to \mathcal{L}

22-July 21, 2014

イロト イヨト イヨト

Counting - Generating Function of a Language

Enumeration

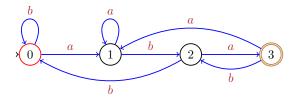
$$\begin{split} L(a,b) &= \sum_{w \in \mathcal{L}} a^{|w|_a} b^{|w|_b} = \sum_{i,j} l_{i,j} a^i b^j \\ l_{i,j} &= \text{number of words in the language with} \left\{ \begin{array}{l} i \text{ letters } a \\ j \text{ letters } b \end{array} \right. \end{split}$$

 $F(z) = L(z, z) = \sum_{n} f_n z^n$, $f_n =$ number of words of length n in the language

• Weighted counting $F(z) = L(\mathbf{P}(a)z, \mathbf{P}(b)z) = \sum_{n} p_n z^n$ $p_n = \begin{array}{l} \text{probability that a word of length } n \\ \text{is in the language} \end{array}$

23-July 21, 2014

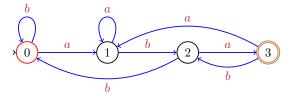
$$P = \mathcal{A}^* aba = (a+b)^* aba$$



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● の Q ()・

$$P = \mathcal{A}^* aba = (a+b)^* aba$$

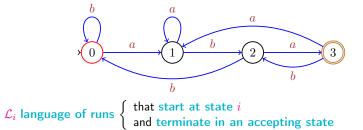
The automaton accepts the words terminating with *aba*



▲ロト ▲聞 と ▲臣 と ▲臣 と ● ● のへの

$$P = \mathcal{A}^* aba = (a+b)^* aba$$

The automaton accepts the words terminating with *aba*



$$\mathcal{L}_{i} \text{ language of runs } \begin{cases} \text{that start at state } i \\ \text{and terminate in an accepting state} \end{cases}$$

 $P = \mathcal{A}^* aba = (a+b)^* aba$

The automaton accepts the words terminating with *aba*

24-July 21, 2014

 $P = \mathcal{A}^* aba = (a+b)^* aba$

$$\mathcal{L}_{i} \text{ language of runs } \begin{cases} \text{that start at state } i \\ \text{and terminate in an accepting state} \end{cases}$$

24-July 21, 2014

・ロン ・部と ・ヨン ・ヨン

The automaton accepts the words

torminating with aba

 $P = \mathcal{A}^* aba = (a+b)^* aba$

$$\mathcal{L}_{i} \text{ language of runs} \begin{cases} \text{that start at state } i \\ and \text{ terminating with } aba \end{cases}$$

24-July 21, 2014

The automaton accepts the words

・ロト ・聞 と ・ ほ と ・ ほ と …

the second se

 $P = \mathcal{A}^* aba = (a+b)^* aba$

$$\mathcal{L}_{i} \text{ language of runs} \begin{cases} \text{that start at state } i \\ \text{and terminate in an accepting state} \end{cases}$$

 $\mathcal{L}_1 = ba + a^*ba + ba(ba)^*$

・ロト・4回ト・4回ト・4回ト 回 のへの

The automaton accepts the words

 $P - A^*aba = (a+b)^*aba$

$$\mathcal{L}_{i} \text{ language of runs} \begin{cases} \text{that start at state } i \\ \text{that start at start at state } i \\ \text{that start at start at state } i \\ \text{that start at start at$$

) and terminate in an accepting state

$$\mathcal{L}_1 = ba + a^*ba + ba(ba)^* + \dots$$

The automaton accepts the words

A* 1 (+ 1)* 1

$$\mathcal{L}_1 = ba + a^*ba + ba(ba)^* + \dots$$

 $\mathcal{L}_0 = \frac{\mathbf{a}.\mathcal{L}_1 + \mathbf{b}.\mathcal{L}_0}{\mathbf{b}.\mathcal{L}_0}$

р

24-July 21, 2014

The automaton accepts the words

(日)

р

 $\mathcal{L}_0 = \mathbf{a} \cdot \mathcal{L}_1 + \mathbf{b} \cdot \mathcal{L}_0 \qquad \qquad \mathcal{L}_0(a, b) = \mathbf{a} \times \mathcal{L}_1(a, b) + \mathbf{b} \times \mathcal{L}_0(a, b)$

24-July 21, 2014

The automaton accepts the words

(日)、(同)、(三)、(

 $\mathcal{L}_i \text{ language of runs } \left\{ \begin{array}{l} \text{that start at state } i \\ \text{and terminate in an accepting state} \end{array} \right.$

b

$$\mathcal{L}_1 = ba + a^*ba + ba(ba)^* + \dots$$

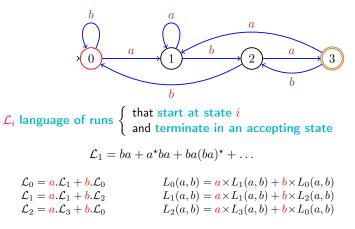
 $\begin{array}{ll} \mathcal{L}_0 = a.\mathcal{L}_1 + b.\mathcal{L}_0 & L_0(a,b) = a \times L_1(a,b) + b \times L_0(a,b) \\ \mathcal{L}_1 = a.\mathcal{L}_1 + b.\mathcal{L}_2 & L_1(a,b) = a \times L_1(a,b) + b \times L_2(a,b) \end{array}$

・ロト ・日下・・日下・・日下・ シック・

h

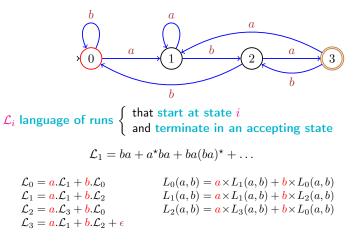
$$P = \mathcal{A}^{\star}aba = (a+b)^{\star}aba$$

The automaton accepts the words terminating with *aba*



$$P = \mathcal{A}^{\star}aba = (a+b)^{\star}aba$$

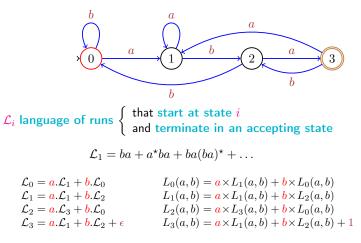
The automaton accepts the words terminating with *aba*



◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

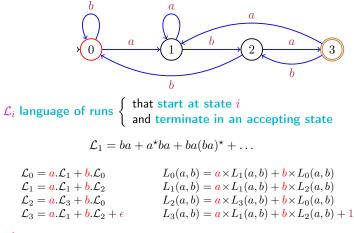
$$P = \mathcal{A}^* aba = (a+b)^* aba$$

The automaton accepts the words terminating with *aba*



$$P = \mathcal{A}^{\star}aba = (a+b)^{\star}aba$$

The automaton accepts the words terminating with *aba*

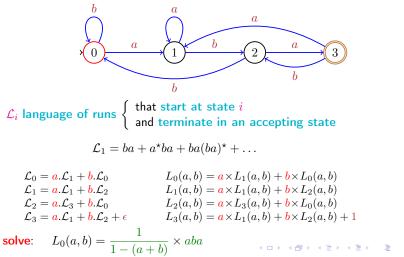


solve:

- * ロ * * 御 * * 注 * * 注 * ・ 注 ・ の < や

$$P = \mathcal{A}^{\star}aba = (a+b)^{\star}aba$$

The automaton accepts the words terminating with *aba*



$$P = \mathcal{A}^* aba = (a+b)^* aba$$
 The automaton accepts the words terminating with aba

 $\mathcal{L}_{i} \text{ language of runs} \begin{cases} \text{that start at state } i \\ and \text{ terminate in an accepting state} \end{cases}$ $\mathcal{L}_{0} = a_{i}\mathcal{L}_{1} + b_{i}\mathcal{L}_{0}$ $\mathcal{L}_{0}(a, b) = a \times L_{1}(a, b) + b \times L_{0}(a, b)$

$$\begin{split} \mathcal{L}_0 &= a.\mathcal{L}_1 + b.\mathcal{L}_0 & L_0(a,b) = a \times L_1(a,b) + b \times L_0(a,b) \\ \mathcal{L}_1 &= a.\mathcal{L}_1 + b.\mathcal{L}_2 & L_1(a,b) = a \times L_1(a,b) + b \times L_2(a,b) \\ \mathcal{L}_2 &= a.\mathcal{L}_3 + b.\mathcal{L}_0 & L_2(a,b) = a \times L_3(a,b) + b \times L_0(a,b) \\ \mathcal{L}_3 &= a.\mathcal{L}_1 + b.\mathcal{L}_2 + \epsilon & L_3(a,b) = a \times L_1(a,b) + b \times L_2(a,b) + 1 \\ \end{split}$$
solve:
$$\begin{split} \mathcal{L}_0(a,b) &= \frac{1}{1 - (a+b)} \times aba & F(z) = \sum p_n z_n^n = L_0(\mathbf{P}(a)z, \mathbf{P}(b)z)_{\text{solve}} \\ \end{split}$$

Asymptotics of a rational expression

• if
$$F(z) = \frac{P(z)}{Q(z)}$$
 with $P(\rho \neq 0), \ Q(\rho = 0)$

• and ρ real, positive, dominant singularity of order k

Then,

$$f_n = [z^n]F(z) = \frac{P(\rho)}{Q(\rho)} \times \rho^{-n} \times (n-k+1) \times (1+A^n) \qquad (A < 1)$$

Expand the polynomial P(z) at ρ

$$P(z) = P(\rho) + (z - \rho)P'(\rho) + \frac{1}{2!}(z - \rho)^2 P''(\rho) + \dots$$

to get a full expansion

25-July 21, 2014

Generating Functions of Regular Languages

- 1. Any regular expression is recognized by a Finite Automaton
- 2. The Chomsky-Schützenberger algorithm **applies** to **any regular expression**.

Generating Functions of Regular Languages

- $1. \ \mbox{Any regular expression}$ is recognized by a Finite Automaton
- 2. The Chomsky-Schützenberger algorithm **applies** to **any regular expression**.

Theorem (Chomsky-Schützenberger 1963)

The generating function of a regular language is rational.

Corollary

Let \mathcal{R} a regular language and $\mathcal{R}_n = \mathcal{R} \cap \mathcal{A}^n$. $\exists n_0, \forall n > n_0, \quad |\mathcal{R}_n| = p_1(n)\lambda_1^n + \dots + p_k(n)\lambda_k^n$, with $p_i(n)$ complex polynomials and $\lambda_i \in \mathbb{C}$

An asymptotic test of non-regularity

For any regular language \mathcal{R} , there exists a real positive number λ and a polynomial p(n) such that

$$\lim_{n \to \infty} r_n = \lambda^n \times p(n), \qquad r_n = \left| \mathcal{R} \bigcap \mathcal{A}^n \right|$$

► The number of words of length 2n in Dyck Languages ((())(())) is the Catalan number $\binom{2n}{n}/(2n+1)$ asymptotic to $\frac{4^n}{n^{3/2}\sqrt{\pi}}$.

Dyck languages are **not regular** and **cannot be recognized by a DFA**; however they can be recognized by a push-down automaton, and they have an algebraic generating function.

• Let $\pi(x)$ be the number of prime numbers less than $x \in \mathbb{R}^+$.

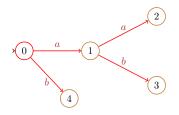
$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

There is no known generating function enumerating the primes. Would one find one it would not be regular. It is not possible to enumerate the primes by an automaton.

Some classical pattern matching algorithms

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

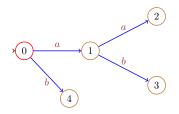
Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$



 \blacktriangleright build a trie over the words of P

・ロト ・聞 ・ ・聞 ト ・ 聞 ・ うらの

Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$

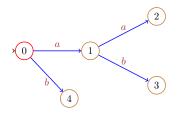


 build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4}
 ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)

29-July 21, 2014

(日)

Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$

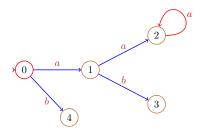


build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

29-July 21, 2014

イロト イヨト イヨト イ

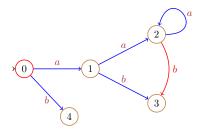
 $P = \{a, aa, ab, b\}$



 $\delta(2, a) = 2 \quad w_2.a = a.aa$

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

 $P = \{a, aa, ab, b\}$

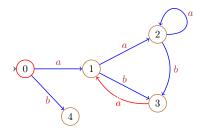


 $\delta(2, a) = 2$ $w_2.a = a.aa$ $\delta(2, b) = 3$ $w_2.b = a.ab$

(日)

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4}
∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

 $P = \{a, aa, ab, b\}$

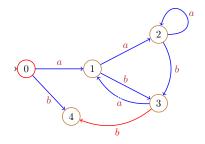


 $\delta(2, a) = 2$ $w_{2.a} = a.aa$ $\delta(2, b) = 3$ $w_{2.b} = a.ab$ $\delta(3, a) = 1$ $w_{3.a} = ab.a$

(日)

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0,1,2,3,4}
∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

 $P = \{a, aa, ab, b\}$



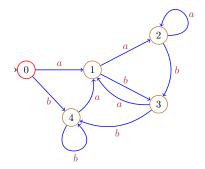
$$\begin{split} &\delta(2,a) = 2 \quad w_2.a = a.aa \\ &\delta(2,b) = 3 \quad w_2.b = a.ab \\ &\delta(3,a) = 1 \quad w_3.a = ab.a \\ &\delta(3,b) = 4 \quad w_3.b = ab.b \end{split}$$

(日)

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting

 $P = \{a, aa, ab, b\}$



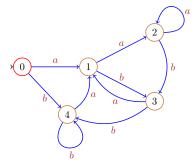
 $\begin{array}{ll} \delta(2,a) = 2 & w_2.a = a.aa \\ \delta(2,b) = 3 & w_2.b = a.ab \\ \delta(3,a) = 1 & w_3.a = ab.a \\ \delta(3,b) = 4 & w_3.b = ab.b \end{array}$

イロト イヨト イヨト イ

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting

 $P = \{a, aa, ab, b\}$



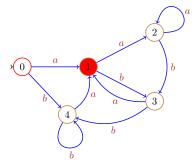
 $\begin{array}{ll} \delta(2,a) = 2 & w_2.a = a.aa \\ \delta(2,b) = 3 & w_2.b = a.ab \\ \delta(3,a) = 1 & w_3.a = ab.a \\ \delta(3,b) = 4 & w_3.b = ab.b \end{array}$

for each specific match ring a bell

 build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
 for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting

 $P = \{ \mathbf{a}, aa, ab, b \}$

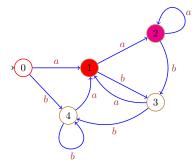


 $\begin{array}{ll} \delta(2,a) = 2 & w_2.a = a.aa \\ \delta(2,b) = 3 & w_2.b = a.ab \\ \delta(3,a) = 1 & w_3.a = ab.a \\ \delta(3,b) = 4 & w_3.b = ab.b \end{array}$

for each specific match ring a bell

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$

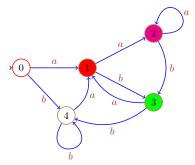


$$\begin{split} &\delta(2,a) = 2 \quad w_2.a = a.aa \\ &\delta(2,b) = 3 \quad w_2.b = a.ab \\ &\delta(3,a) = 1 \quad w_3.a = ab.a \\ &\delta(3,b) = 4 \quad w_3.b = ab.b \end{split}$$

for each specific match ring a bell

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$



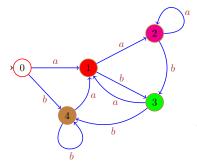
$\delta(2, a) = 2$	$w_2.a = a.aa$
$\delta(2, b) = 3$	w_2 . b = a. ab
$\delta(3, \mathbf{a}) = 1$	$w_3.\mathbf{a} = ab.\mathbf{a}$
$\delta(3, \mathbf{b}) = 4$	$w_3.\mathbf{b} = ab.\mathbf{b}$

for each specific match ring a bell

(日) (同) (日) (日) (日)

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

Aho-Corasick (1975) - Finite Motif - Multiple Counting $P = \{a, aa, ab, b\}$

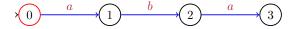


 $\begin{array}{ll} \delta(2,a) = 2 & w_2.a = a.aa \\ \delta(2,b) = 3 & w_2.b = a.ab \\ \delta(3,a) = 1 & w_3.a = ab.a \\ \delta(3,b) = 4 & w_3.b = ab.b \end{array}$

for each specific match ring a bell

build a trie over the words of P let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4} ∀q ∈ Q, let w_q the word spelling the run from 0 to q − (w₃ = ab)
for each node q with a missing transition ℓ add a transition δ(q, ℓ) to state q' such that w_{q'} is the longuest possible suffix of w_q.ℓ

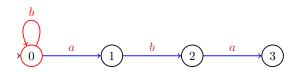
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

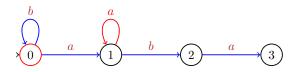
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - わぐら

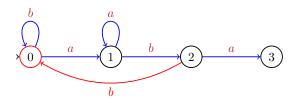
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - わぐら

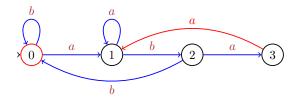
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

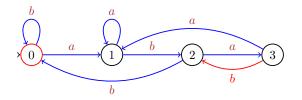
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

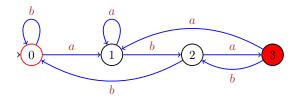
P = aba



same construction as Aho-Corasick

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

P = aba

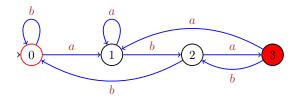


same construction as Aho-Corasick

for each match ring the bell

30-July 21, 2014

P = aba



same construction as Aho-Corasick

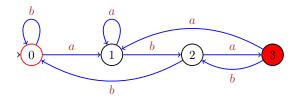
for each match ring the bell

aaaa<mark>aba</mark>

30-July 21, 2014

・ロト ・ 同ト ・ ヨト ・

P = aba



same construction as Aho-Corasick

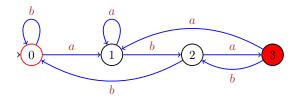
for each match ring the bell

aaaaaba 🌢

30-July 21, 2014

・ロト ・ 同ト ・ ヨト ・

P = aba



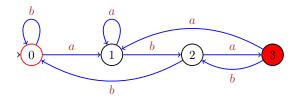
same construction as Aho-Corasick

for each match ring the bell

 $aaaaaaba {f a}bbaba$

30-July 21, 2014

P = aba

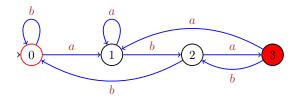


same construction as Aho-Corasick

for each match ring the bell

30-July 21, 2014

P = aba



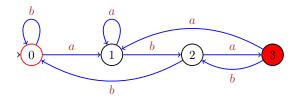
same construction as Aho-Corasick

for each match ring the bell

 $aaaaaba {f 4}bbaba {f 4}ba$

30-July 21, 2014

P = aba



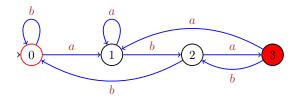
same construction as Aho-Corasick

for each match ring the bell

aaaaaba**↓**bbaba**↓**ba

30-July 21, 2014

P = aba



same construction as Aho-Corasick

for each match ring the bell

 $aaaaaba \bullet bbaba \bullet ba \bullet bb$

30-July 21, 2014

Pattern matching and Statistics - Regular patterns

- 1. We learned how to compute the
 - number of matches of a finite pattern
 - in a particular text

Pattern matching and Statistics - Regular patterns

- $1. \ \mbox{We learned}$ how to compute the
 - number of matches of a finite pattern
 - in a particular text
- 2. In a random text, what about
 - finding the occurrences of a Regular Expression (*i.e*, the number of positions at which a match is found)
 - and counting them

(日) (同) (三) (三)

Tools and Aim - Generating Functions For a given pattern *P*, we want to compute

$$F(z, \boldsymbol{u}) = \sum_{n \ge 0, k \ge 0} f_{n,k} \boldsymbol{u}^k z^n$$

where $f_{n,k} = \mathbf{P} \begin{pmatrix} P \text{ occurs } k \text{ times} \\ \text{in a random text of length } n \end{pmatrix}$

・ロット 4回ッ 4回ッ 4回ッ 4日マ

Tools and Aim - Generating Functions For a given pattern *P*, we want to compute

$$F(z, \boldsymbol{u}) = \sum_{n \ge 0, k \ge 0} f_{n,k} \boldsymbol{u}^k z^n$$

where $f_{n,k} = \mathbf{P} \begin{pmatrix} P \text{ occurs } k \text{ times} \\ \text{in a random text of length } n \end{pmatrix}$

If X_n is the random variable

- counting the number of occurrences of P
- in a random text of size n

$$F(z,u) = \sum_{n \ge 0, k \ge 0} f_{n,k} u^k z^n = \sum_{n \ge 0} z^n \sum_{k \ge 0} \mathbf{P}(X_n = k) u^k$$

The variables z and u are formal variables

- z is related to the length of the texts
- ▶ u is related to the number of occurrences of P

Counting with Regular Expressions - The right language

- 1. Input:
 - ▶ a finite alphabet *A*
 - a regular expression \mathcal{R}
- 2. Output:

$$F(z,u) = \sum_{n \ge 0, k \ge 0} f_{n,k} u^k z^n$$

Counting with Regular Expressions - The right language

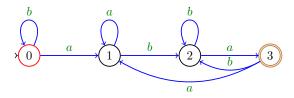
- 1. Input:
 - a finite alphabet A
 - ► a regular expression *R*
- 2. Output:

$$F(z,u) = \sum_{n \ge 0, k \ge 0} f_{n,k} u^k z^n$$

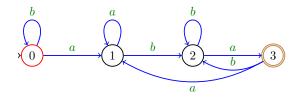
- Method
 - 1. Build the DFA recognizing $\mathcal{A}^{\star}.\mathcal{R}$
 - 2. Use a variant of Chomsky-Schützenberger to ring the bell and produce the variable u

33-July 21, 2014

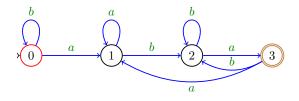
イロト イポト イヨト イヨト



▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●



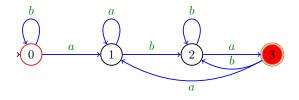
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 めんぐ



 $\begin{aligned} \mathcal{L}_0 &= a.\mathcal{L}_1 + b.\mathcal{L}_0\\ \mathcal{L}_1 &= a.\mathcal{L}_1 + b.\mathcal{L}_2\\ \mathcal{L}_2 &= a.\mathcal{L}_3 + b.\mathcal{L}_2 \end{aligned}$

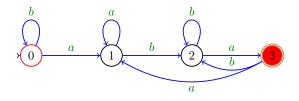
 $\begin{array}{ll} L_0(a,b \quad) = a \times L_1(a,b \quad) + b \times L_0(a,b \quad) \\ L_1(a,b \quad) = a \times L_1(a,b \quad) + b \times L_2(a,b \quad) \end{array}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



 $\mathcal{L}_0 = a.\mathcal{L}_1 + b.\mathcal{L}_0$ $\mathcal{L}_1 = a.\mathcal{L}_1 + b.\mathcal{L}_2$ $\mathcal{L}_2 = a.\mathcal{L}_3 + b.\mathcal{L}_2$ $\begin{array}{ll} L_0(a,b \quad) = a \times L_1(a,b \quad) + b \times L_0(a,b \quad) \\ L_1(a,b \quad) = a \times L_1(a,b \quad) + b \times L_2(a,b \quad) \end{array}$

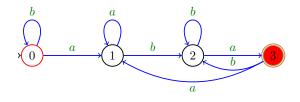
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?



 $\begin{aligned} \mathcal{L}_0 &= a.\mathcal{L}_1 + b.\mathcal{L}_0\\ \mathcal{L}_1 &= a.\mathcal{L}_1 + b.\mathcal{L}_2\\ \mathcal{L}_2 &= a.\mathcal{L}_3 \bullet + b.\mathcal{L}_2 \end{aligned}$

 $\begin{array}{ll} L_0(a,b \quad)=a \times L_1(a,b \quad)+b \times L_0(a,b \quad)\\ L_1(a,b \quad)=a \times L_1(a,b \quad)+b \times L_2(a,b \quad) \end{array}$

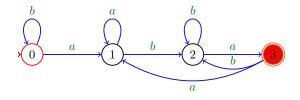
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの



 $\mathcal{L}_0 = a.\mathcal{L}_1 + b.\mathcal{L}_0$ $\mathcal{L}_1 = a.\mathcal{L}_1 + b.\mathcal{L}_2$ $\mathcal{L}_2 = a.\mathcal{L}_3 + b.\mathcal{L}_2$

 $\begin{array}{ll} L_0(a,b &) = a \times L_1(a,b &) + b \times L_0(a,b &) \\ L_1(a,b &) = a \times L_1(a,b &) + b \times L_2(a,b &) \\ L_2(a,b &) = a \times \frac{u}{u} \times L_3(a,b &) + b \times L_2(a,b &) \end{array}$

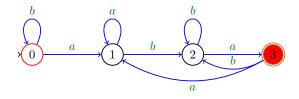
4 ロト 4 回 ト 4 目 ト 4 目 ト 目 の 4 で



 $\mathcal{L}_0 = a.\mathcal{L}_1 + b.\mathcal{L}_0$ $\mathcal{L}_1 = a.\mathcal{L}_1 + b.\mathcal{L}_2$ $\mathcal{L}_2 = a.\mathcal{L}_3 + b.\mathcal{L}_2$

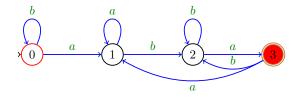
$$\begin{split} L_0(a, b, u) &= a \times L_1(a, b, u) + b \times L_0(a, b, u) \\ L_1(a, b, u) &= a \times L_1(a, b, u) + b \times L_2(a, b, u) \\ L_2(a, b, u) &= a \times u \times L_3(a, b, u) + b \times L_2(a, b, u) \end{split}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 めんぐ



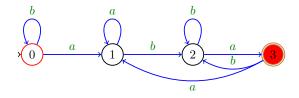
- $\mathcal{L}_0 = a.\mathcal{L}_1 + b.\mathcal{L}_0$ $\mathcal{L}_1 = a.\mathcal{L}_1 + b.\mathcal{L}_2$ $\mathcal{L}_2 = a.\mathcal{L}_3 + b.\mathcal{L}_2$ $\mathcal{L}_3 = a.\mathcal{L}_1 + b.\mathcal{L}_2 + \epsilon$
- $$\begin{split} & L_0(a, b, u) = a \times L_1(a, b, u) + b \times L_0(a, b, u) \\ & L_1(a, b, u) = a \times L_1(a, b, u) + b \times L_2(a, b, u) \\ & L_2(a, b, u) = a \times u \times L_3(a, b, u) + b \times L_2(a, b, u) \\ & L_3(a, b, u) = a \times L_1(a, b, u) + b \times L_2(a, b, u) + 1 \end{split}$$

・ロト ・(型)・ ・ヨト ・ヨ・ ・ヨ・ つへで



- $\begin{aligned} \mathcal{L}_0 &= a.\mathcal{L}_1 + b.\mathcal{L}_0 \\ \mathcal{L}_1 &= a.\mathcal{L}_1 + b.\mathcal{L}_2 \\ \mathcal{L}_2 &= a.\mathcal{L}_3 \bullet + b.\mathcal{L}_2 \\ \mathcal{L}_3 &= a.\mathcal{L}_1 + b.\mathcal{L}_2 + \epsilon \end{aligned}$
- $$\begin{split} & L_0(a, b, u) = a \times L_1(a, b, u) + b \times L_0(a, b, u) \\ & L_1(a, b, u) = a \times L_1(a, b, u) + b \times L_2(a, b, u) \\ & L_2(a, b, u) = a \times u \times L_3(a, b, u) + b \times L_2(a, b, u) \\ & L_3(a, b, u) = a \times L_1(a, b, u) + b \times L_2(a, b, u) + 1 \end{split}$$

solve:



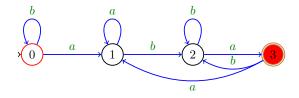
 $\begin{array}{ll} \mathcal{L}_{0} = a.\mathcal{L}_{1} + b.\mathcal{L}_{0} & L_{0}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{0}(a,b,u) \\ \mathcal{L}_{1} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} & L_{1}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{2} = a.\mathcal{L}_{3} \bullet + b.\mathcal{L}_{2} & L_{2}(a,b,u) = a \times u \times L_{3}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{3} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} + \epsilon & L_{3}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) + 1 \end{array}$

solve:
$$L_0(a, b, u) = \frac{1 - b + ab - uab}{1 - a - 2b + 2ab + b^2 - ab^2 - u(ab - ab^2)}$$

34-July 21, 2014

・ロト ・ 同ト ・ ヨト ・

Counting the number of occurrences of ab^+a $P = \mathcal{A}^*ab^+a = (a+b)^*ab^+a$



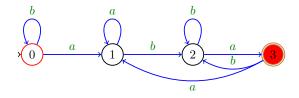
 $\begin{array}{ll} \mathcal{L}_{0} = a.\mathcal{L}_{1} + b.\mathcal{L}_{0} & L_{0}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{0}(a,b,u) \\ \mathcal{L}_{1} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} & L_{1}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{2} = a.\mathcal{L}_{3} \bullet + b.\mathcal{L}_{2} & L_{2}(a,b,u) = a \times u \times L_{3}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{3} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} + \epsilon & L_{3}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) + 1 \end{array}$

solve: $L_0(a, b, u) = \frac{1 - b + ab - uab}{1 - a - 2b + 2ab + b^2 - ab^2 - u(ab - ab^2)}$ $F(z, u) = \sum f_{n,k} u^k z^n = L_0(\mathbf{P}(a)z, \mathbf{P}(b)z, u)$

34-July 21, 2014

イロト 不得 とくほ とくほ とうほう

Counting the number of occurrences of ab^+a $P = \mathcal{A}^*ab^+a = (a+b)^*ab^+a$



 $\begin{array}{ll} \mathcal{L}_{0} = a.\mathcal{L}_{1} + b.\mathcal{L}_{0} & L_{0}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{0}(a,b,u) \\ \mathcal{L}_{1} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} & L_{1}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{2} = a.\mathcal{L}_{3} \bullet + b.\mathcal{L}_{2} & L_{2}(a,b,u) = a \times u \times L_{3}(a,b,u) + b \times L_{2}(a,b,u) \\ \mathcal{L}_{3} = a.\mathcal{L}_{1} + b.\mathcal{L}_{2} + \epsilon & L_{3}(a,b,u) = a \times L_{1}(a,b,u) + b \times L_{2}(a,b,u) + 1 \end{array}$

solve: $L_0(a, b, u) = \frac{1 - b + ab - uab}{1 - a - 2b + 2ab + b^2 - ab^2 - u(ab - ab^2)}$

$$F(z, \boldsymbol{u}) = \sum f_{n,k} \boldsymbol{u}^{\boldsymbol{k}} z^n = L_0(\mathbf{P}(a)z, \mathbf{P}(b)z, \boldsymbol{u})$$

$$\mathbf{P}(a) = \mathbf{P}(b) = \frac{1}{2} \quad \rightsquigarrow \quad F(z, u) = \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)}$$

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 >

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

• Expand in series with respect to z in the neighborhood of 0

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

• Expand in series with respect to z in the neighborhood of 0 $F(z, u) = 1 + z + z^{2} + \left(\frac{1}{8}u + \frac{7}{8}\right)z^{3} + \left(\frac{5}{16}u + \frac{11}{16}\right)z^{4} + \left(\frac{1}{2} + \frac{15}{32}u + \frac{1}{32}u^{2}\right)z^{5} + \mathcal{O}(z^{6})$

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

► Expand in series with respect to z in the neighborhood of 0 $F(z, u) = 1 + z + z^2 + \left(\frac{1}{8}u + \frac{7}{8}\right)z^3 + \left(\frac{5}{16}u + \frac{11}{16}\right)z^4 + \left(\frac{1}{2} + \frac{15}{32}u + \frac{1}{32}u^2\right)z^5 + \mathcal{O}(z^6)$

Compute the generating function of the expectations of the number of occurrences of the pattern

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

Expand in series with respect to z in the neighborhood of 0 (1, 7) = (5, 11) + (1, 15, 1, 2)

$$F(z, u) = 1 + z + z^{2} + \left(\frac{1}{8}u + \frac{7}{8}\right)z^{3} + \left(\frac{5}{16}u + \frac{11}{16}\right)z^{4} + \left(\frac{1}{2} + \frac{15}{32}u + \frac{1}{32}u^{2}\right)z^{5} + \mathcal{O}(z^{6})$$

 Compute the generating function of the expectations of the number of occurrences of the pattern

$$E(z) = \sum_{n} \mathbf{E}(X_{n}) z^{n} = \left. \frac{\partial F(z, u)}{\partial u} \right|_{u=1} = -\frac{1}{2} \frac{z^{2}}{1-z} + \frac{1}{4} \frac{z^{2}}{1-\frac{1}{2}z} + \frac{1}{4} \frac{z^{2}}{(1-z)^{2}}$$

35-July 21, 2014

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

Expand in series with respect to z in the neighborhood of 0

$$F(z, u) = 1 + z + z^{2} + \left(\frac{1}{8}u + \frac{7}{8}\right)z^{3} + \left(\frac{5}{16}u + \frac{11}{16}\right)z^{4} + \left(\frac{1}{2} + \frac{15}{32}u + \frac{1}{32}u^{2}\right)z^{5} + \mathcal{O}(z^{6})$$

 Compute the generating function of the expectations of the number of occurrences of the pattern

$$E(z) = \sum_{n} \mathbf{E}(X_{n}) z^{n} = \left. \frac{\partial F(z, u)}{\partial u} \right|_{u=1} = -\frac{1}{2} \frac{z^{2}}{1-z} + \frac{1}{4} \frac{z^{2}}{1-\frac{1}{2}z} + \frac{1}{4} \frac{z^{2}}{(1-z)^{2}}$$

• Get $\mathbf{E}(X_n)$

35-July 21, 2014

$$R = ab^{+}a, \quad F(z, \mathbf{u}) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

• Expand in series with respect to z in the neighborhood of 0

$$F(z, u) = 1 + z + z^{2} + \left(\frac{1}{8}u + \frac{7}{8}\right)z^{3} + \left(\frac{5}{16}u + \frac{11}{16}\right)z^{4} + \left(\frac{1}{2} + \frac{15}{32}u + \frac{1}{32}u^{2}\right)z^{5} + \mathcal{O}(z^{6})$$

 Compute the generating function of the expectations of the number of occurrences of the pattern

$$E(z) = \sum_{n} \mathbf{E}(X_{n}) z^{n} = \left. \frac{\partial F(z, u)}{\partial u} \right|_{u=1} = -\frac{1}{2} \frac{z^{2}}{1-z} + \frac{1}{4} \frac{z^{2}}{1-\frac{1}{2}z} + \frac{1}{4} \frac{z^{2}}{(1-z)^{2}}$$

► Get $\mathbf{E}(X_n)$ $\mathbf{E}(X_n) = -\frac{1}{2} + 2^{-n} + \frac{1}{4}(n-1) = \frac{1}{4}(n-3) + 2^{-n}$

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

Generating function of the Second Moment

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

• Generating function of the Second Moment $M_2(z) = \sum_{n \ge 0} \mathbf{E}(X_n^2) z^n = \left. \frac{\partial}{\partial u} u \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

► Generating function of the Second Moment $M_2(z) = \sum_{n \ge 0} \mathbf{E}(X_n^2) z^n = \left. \frac{\partial}{\partial u} u \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$

$$M_2(z) = \frac{1}{4} \frac{z^2(z^2 - 2)}{1 - z} - \frac{1}{4} \frac{z^2(z^2 - 1)}{(1 - z)^2} - \frac{1}{8} \frac{z^2(z^2 - 2)}{1 - \frac{z}{2}} + \frac{1}{8} \frac{z^4}{(1 - z)^3}$$

36-July 21, 2014

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

► Generating function of the Second Moment $M_2(z) = \sum_{n \ge 0} \mathbf{E}(X_n^2) z^n = \left. \frac{\partial}{\partial u} u \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$

$$M_2(z) = \frac{1}{4} \frac{z^2(z^2 - 2)}{1 - z} - \frac{1}{4} \frac{z^2(z^2 - 1)}{(1 - z)^2} - \frac{1}{8} \frac{z^2(z^2 - 2)}{1 - \frac{z}{2}} + \frac{1}{8} \frac{z^4}{(1 - z)^3}$$

Extract the nth. Taylor coefficient

$$\mathbf{E}(X_n^2) = [z^n]M_2(z) = \frac{1}{16}n^2 - \frac{5}{16}n + \frac{5}{8} - 2^{-n}$$

36-July 21, 2014

$$R = ab^{+}a, \quad F(z, u) = \frac{8 - 4z + 2z^{2} - 2uz^{2}}{8 - 12z + 6z^{2} - z^{3} - u(2z^{2} - z^{3})}$$

► Generating function of the Second Moment $M_2(z) = \sum_{n \ge 0} \mathbf{E}(X_n^2) z^n = \left. \frac{\partial}{\partial u} u \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$

$$M_2(z) = \frac{1}{4} \frac{z^2(z^2 - 2)}{1 - z} - \frac{1}{4} \frac{z^2(z^2 - 1)}{(1 - z)^2} - \frac{1}{8} \frac{z^2(z^2 - 2)}{1 - \frac{z}{2}} + \frac{1}{8} \frac{z^4}{(1 - z)^3}$$

Extract the nth. Taylor coefficient

$$\mathbf{E}(X_n^2) = [z^n]M_2(z) = \frac{1}{16}n^2 - \frac{5}{16}n + \frac{5}{8} - 2^{-n}$$

Standard Deviation σ_n

$$\sigma_n = \sqrt{\mathbf{E}(X_n^2) - \mathbf{E}^2(X_n)} = \frac{1}{4} \sqrt{n + 1 - 2\frac{-n+3}{4}n_{\text{ch}} + 3n_{\text{ch}} + 2\frac{-n+3}{4}} \frac{-n+2}{2} \sqrt{n + 1 - 2\frac{-n+3}{4}n_{\text{ch}} + 3n_{\text{ch}} + 3n_{\text{ch}}$$

Limit law

► Laplace transform L of a random variable X

 $\mathbf{L}(X,t) = \mathbf{E}(e^{tX})$

► Laplace transform of a standard Gaussian variable *N*

$$\mathbf{L}(\mathcal{N},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx = e^{t^2/2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタぐ

Limit law

► Laplace transform L of a random variable X

 $\mathbf{L}(X,t) = \mathbf{E}(e^{tX})$

► Laplace transform of a standard Gaussian variable *N*

$$\mathbf{L}(\mathcal{N},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx = e^{t^2/2}$$

Theorem (Paul Lévy Continuity Theorem - 1925)

If for $t \in [-\alpha, +\alpha]$ $\lim_{n \to \infty} \mathbf{E}(e^{tX_n}) = \mathbf{L}(\mathcal{N}) = e^{t^2/2}$ then $X_n \xrightarrow{\mathcal{D}} \mathcal{N}$ (convergence in distribution or law)

$$\lim_{n \to \infty} \mathbf{P}(X_n < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-w^2/2} dw$$

$$F(z,u) = \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)}$$
$$= -\frac{1 - u}{u\left(1 - \frac{z}{2}\right)} + \frac{1 + \sqrt{u}}{2u\left(1 - z\frac{1 + \sqrt{u}}{2}\right)} + \frac{1 - \sqrt{u}}{2u\left(1 - z\frac{1 - \sqrt{u}}{2}\right)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$F(z,u) = \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)}$$
$$= -\frac{1 - u}{u\left(1 - \frac{z}{2}\right)} + \frac{1 + \sqrt{u}}{2u\left(1 - z\frac{1 + \sqrt{u}}{2}\right)} + \frac{1 - \sqrt{u}}{2u\left(1 - z\frac{1 - \sqrt{u}}{2}\right)}$$
$$\Psi_n(u) = [z^n]F(z,u) = \frac{1}{u}\left(\frac{1 + \sqrt{u}}{2}\right)^{n+1} + O\left(\frac{1}{2^n}\right) \quad \text{for } u \text{ close of } 1$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

$$F(z,u) = \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)}$$
$$= -\frac{1 - u}{u\left(1 - \frac{z}{2}\right)} + \frac{1 + \sqrt{u}}{2u\left(1 - z\frac{1 + \sqrt{u}}{2}\right)} + \frac{1 - \sqrt{u}}{2u\left(1 - z\frac{1 - \sqrt{u}}{2}\right)}$$
$$\Psi_n(u) = [z^n]F(z,u) = \frac{1}{u}\left(\frac{1 + \sqrt{u}}{2}\right)^{n+1} + O\left(\frac{1}{2^n}\right) \quad \text{for } u \text{ close of } 1$$
We consider $\Psi_n(e^t) = \mathbf{E}(e^{tX_n})$ and the normalised law $\frac{X_n - \mu_n}{\sigma_n}$
$$\Phi_n(t) = \Psi_n(t\frac{X_n - \mu_n}{\sigma_n}) = \mathbf{E}\left[\exp\left(\frac{t(X_n - \mu_n)}{\sigma_n}\right)\right] = \exp\left(-\frac{\mu_n t}{\sigma_n}\right) \mathbf{E}\left[\exp\left(\frac{tX_n}{\sigma_n}\right)\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つへで

$$\begin{split} F(z,u) &= \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)} \\ &= -\frac{1 - u}{u\left(1 - \frac{z}{2}\right)} + \frac{1 + \sqrt{u}}{2u\left(1 - z\frac{1 + \sqrt{u}}{2}\right)} + \frac{1 - \sqrt{u}}{2u\left(1 - z\frac{1 - \sqrt{u}}{2}\right)} \\ \Psi_n(u) &= [z^n]F(z,u) = \frac{1}{u}\left(\frac{1 + \sqrt{u}}{2}\right)^{n+1} + O\left(\frac{1}{2^n}\right) \quad \text{for } u \text{ close of } 1 \\ \text{We consider } \Psi_n(e^t) &= \mathbf{E}(e^{tX_n}) \text{ and the normalised law } \frac{X_n - \mu_n}{\sigma_n} \\ \Phi_n(t) &= \Psi_n(t\frac{X_n - \mu_n}{\sigma_n}) = \mathbf{E}\left[\exp\left(\frac{t(X_n - \mu_n)}{\sigma_n}\right)\right] = \exp\left(-\frac{\mu_n t}{\sigma_n}\right) \mathbf{E}\left[\exp\left(\frac{tX_n}{\sigma_n}\right)\right] \\ \text{We substitute:} \quad \mu_n = \frac{n - 3}{4} + \mathcal{O}(2^{-n}), \quad \sigma_n = \frac{\sqrt{n+1}}{4} + \mathcal{O}(2^{-n}) \end{split}$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三回 - のへで

$$\begin{split} F(z,u) &= \frac{8 - 4z + 2z^2 - 2uz^2}{8 - 12z + 6z^2 - z^3 - u(2z^2 - z^3)} \\ &= -\frac{1 - u}{u\left(1 - \frac{z}{2}\right)} + \frac{1 + \sqrt{u}}{2u\left(1 - z\frac{1 + \sqrt{u}}{2}\right)} + \frac{1 - \sqrt{u}}{2u\left(1 - z\frac{1 - \sqrt{u}}{2}\right)} \\ \Psi_n(u) &= [z^n]F(z,u) = \frac{1}{u}\left(\frac{1 + \sqrt{u}}{2}\right)^{n+1} + O\left(\frac{1}{2^n}\right) \quad \text{for } u \text{ close of } 1 \\ \text{We consider } \Psi_n(e^t) &= \mathbf{E}(e^{tX_n}) \text{ and the normalised law } \frac{X_n - \mu_n}{\sigma_n} \\ \Phi_n(t) &= \Psi_n(t\frac{X_n - \mu_n}{\sigma_n}) = \mathbf{E}\left[\exp\left(\frac{t(X_n - \mu_n)}{\sigma_n}\right)\right] = \exp\left(-\frac{\mu_n t}{\sigma_n}\right) \mathbf{E}\left[\exp\left(\frac{tX_n}{\sigma_n}\right)\right] \\ \text{We substitute:} \quad \mu_n = \frac{n - 3}{4} + \mathcal{O}(2^{-n}), \quad \sigma_n = \frac{\sqrt{n+1}}{4} + \mathcal{O}(2^{-n}) \end{split}$$

In a neighborhood of t = 0, we expand $\log(\Phi_n(t))$

$$\log(\Phi_n(t)) = \frac{t^2}{2} - \frac{t^4}{12(n+1)} + \mathcal{O}\left(\frac{t^6}{n^2}\right) \xrightarrow{n \to \infty} \frac{t^2}{2}$$

The Gaussian law is general $R = ab^+a$ $P = A^*ab^+a$ $\begin{aligned} L_0(z,u) &= L_0 &= z p_a L_1 &+ z p_b L_0 + 1, \\ L_1 &= z p_b L_2 &+ z p_a L_1 + 1, \\ L_2 &= z p_a u L_3 + z p_b L_2 + 1 \end{aligned}$ $\mathbf{L} = \begin{pmatrix} L_0 \\ \vdots \\ L \end{pmatrix} = z \mathbb{T}(u) \mathbf{L} + \mathbf{1}$ $L_3 = z p_a L_1 + z p_b L_2 + 1$

The Gaussian law is general $R = ab^+a$ $P = A^*ab^+a$ $\begin{array}{c|c} L_0(z,u) = L_0 &= zp_a L_1 &+ zp_b L_0 + 1, \\ L_1 &= zp_b L_2 &+ zp_a L_1 + 1, \\ L_2 &= zp_a u L_3 + zp_b L_2 + 1 \\ \end{array} \right| \qquad \mathbf{L} = \begin{pmatrix} L_0 \\ \vdots \\ L_n \end{pmatrix} = z \mathbb{T}(u) \mathbf{L} + \mathbf{1}$ $L_3 = z p_a L_1 + z p_b L_2 + 1$

general case: $\mathbb{T}(u)$ positive $n \times n$ matrix for $u \ge 0$

(日) (同) (三) (

The Gaussian law is general $R = ab^+a$ $P = A^*ab^+a$ $\begin{array}{c|c} L_0(z,u) = L_0 &= zp_a L_1 &+ zp_b L_0 + 1, \\ L_1 &= zp_b L_2 &+ zp_a L_1 + 1, \\ L_2 &= zp_a u L_3 + zp_b L_2 + 1 \end{array} \right| \qquad \mathbf{L} = \begin{pmatrix} L_0 \\ \vdots \\ L_0 \end{pmatrix} = z \mathbb{T}(u) \mathbf{L} + \mathbf{1}$ $L_3 = z p_a L_1 + z p_b L_2 + 1$

general case: $\mathbb{T}(u)$ positive $n \times n$ matrix for $u \ge 0$ Theorem (Perron-Frobenius, 1907-1912)

If $\mathbb{T}(u)$ is positive, irreducible and aperiodic, the dominant eigenvalue is unique, real and positive.

イロト イポト イヨト イヨト

The Gaussian law is general $R = ab^+a$ $P = A^*ab^+a$ $\begin{array}{c|c} L_0(z,u) = L_0 &= zp_a L_1 &+ zp_b L_0 + 1, \\ L_1 &= zp_b L_2 &+ zp_a L_1 + 1, \\ L_2 &= zp_a u L_3 + zp_b L_2 + 1 \\ \end{array} \right| \qquad \mathbf{L} = \begin{pmatrix} L_0 \\ \vdots \\ L_n \end{pmatrix} = z \mathbb{T}(u) \mathbf{L} + \mathbf{1}$

general case: $\mathbb{T}(u)$ positive $n \times n$ matrix for $u \ge 0$ Theorem (Perron-Frobenius, 1907-1912)

 $L_3 = z p_a L_1 + z p_b L_2 + 1$

If $\mathbb{T}(u)$ is positive, irreducible and aperiodic, the dominant eigenvalue is unique, real and positive.

$$L_0(z,u) = \frac{P(z,u)}{Q(z,u)} = \frac{P(z,u)}{(1-z\lambda_1(u))\cdots(1-z\lambda_n(u))}$$

$$\lambda_1(u) \text{ dominant } \implies \frac{1}{|\lambda_1(u)|} < \frac{1}{|\lambda_2(u)|} \le \dots$$

Perron-Frobenius conditions $R = ab^{+}a \qquad P = \mathcal{A}^{*}ab^{+}a$ $\bigcap^{b} \qquad \bigcap^{a} \qquad \bigcap^{b} \qquad \bigcap^{b}$

In the context of automata,

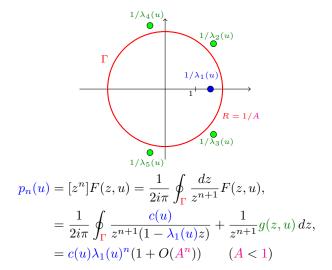
- irreducibility: from any state, any other state can be reached (The above automaton is not irreducible)
- primitivity: there exists a large enough e such that any state can be reached by any other state in exactly e steps

Remarks

- ▶ The above automaton with initial state 1 and states 1, 2, 3, is irreducible and primitive
- The automaton with states 0, 1, 2, 3 is such that $L_0 = \frac{L_1}{1 2n_1} + \frac{1}{1 2n_2}$
- For u = 1, we have $L_0 = L_1 = L_2 = L_3 = 1/(1-z)$
- ▶ by continuity, $\lambda_1(u)$ is close of 1 for $u \in [1 \epsilon, 1 + \epsilon]$

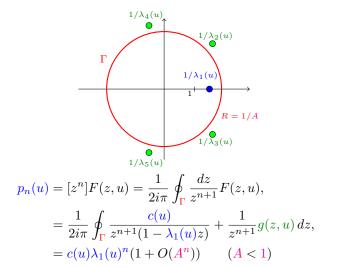
► for
$$L_0$$
, we have $\frac{1}{\lambda_1(u)} < \frac{1}{p_b}$

Uniform Separation Property with respect to n



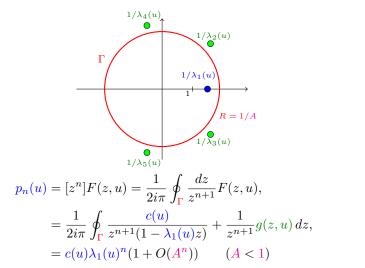
▲ロ ▶ ▲母 ▶ ▲母 ▶ ▲母 ▶ ▲日 ▶ ▲

Uniform Separation Property with respect to n



Hwang's quasi-power theorem \rightarrow limiting Gaussian distribution

Uniform Separation Property with respect to n



Hwang's quasi-power theorem \rightarrow limiting Gaussian distribution Variability condition: $\lambda''(1) + \lambda'(1) - \lambda'(1)^2 \neq 0$

Statistics of one regular motif

Let X_n count the number of occurrences of a regular motif R in a random text of length n.

$$F(z,u) = \sum_{n,k} \mathbf{P}(X_n = k)u^k z^n = \frac{c(u)}{1 - \lambda(u)z} + g(z,u)$$

Theorem (N, Salvy, Flajolet - 1999)

Both in the **Bernoulli** and **Markov** model, with $\mathbb{T}(u)$ the fundamental matrix, and $\lambda(u)$ its dominant eigenvalue,

1. F(z, u) is rational and can be computed explicitly 2. $\begin{cases} E(X_n) = \lambda'(1)n + c_1 + O(A^n), & (c_1 = c'(1)) \\ Var(X_n) = (\lambda''(1) + \lambda'(1) - \lambda'(1)^2)n + c_2 + O(A^n) \\ & (c_2 = c''(1) + c'(1) - c'(1)^2) \end{cases}$ 3. Limit Gaussian law: $\Pr\left(\frac{X_n - \mu n}{\sigma \sqrt{n}}\right) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt$

[Bourdon, Vallée - 2006] Extension to dynamical sources

Counts of $R = ab^+a$

Variability condition:

$$\operatorname{Var}(X_n) = (\lambda''(1) + \lambda'(1) - \lambda'(1)^2)n + c_2 + O(A^n) = \Theta(n)$$

We have $\operatorname{Var}(X_n) = \Theta(n) \implies$ normal limit law

43-July 21, 2014

of size n

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Counts of $R = ab^{\star}$

$$\begin{split} \mathbf{P}(a) &= \mathbf{P}(b) = \frac{1}{2} \\ F(z,u) &= \sum_{n \ge 0} \sum_{k \ge 0} \mathbf{P}(X_n = k) u^k z^n = \frac{uz/2 - 1}{1 - z/2 - uz + uz^2} \end{split}$$

$$\begin{cases} \mathbf{E}(X_n) = n - 1 + 2^{-n} \\ \mathbf{E}(X_n^2) = n^2 - 2n + 3 - 3 \times 2^{-n} \\ \mathbf{Var}(X_n) = 2 - (2n+1)2^{-n} - 4^{-n} \\ \lim_{n \to \infty} \mathbf{Var}(X_n) = 2 \end{cases}$$

- The variation condition is not verified
- The limiting law is not normal

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

Hwang's Quasi-Power theorem - Gaussian form

Notation:
$$m(f) = \frac{f'(1)}{f(1)}, \quad v(f) = \frac{f''(1)}{f(1)} + \frac{f'(1)}{f(1)} - \left(\frac{f'(1)}{f(1)}\right)^2$$

Theorem (Hwang 1994)

Let the X_n be non-negative discrete random variables (supported by $\mathbb{Z}_{\geq 0}$) with probability generating function $p_n(u)$. Assume that, uniformly in a complex neighborhood of u = 1, for sequences $\beta_n, \kappa_n \to \infty$, there holds

$$p_n(u) = A(u).B(u)^{\beta_n} \left(1 + \mathcal{O}\left(\frac{1}{\kappa_n}\right)\right),$$

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies the so-called "variability condition",

$$v(B(u)) \equiv B''(1) + B'(1) - B'(1)^2 \neq 0.$$

Under these conditions, the mean and variance of X_n satisfy

$$\mu_n \equiv \mathbf{E}(X_n) = \beta_n m(B(1)) + m(A(1)) + \mathcal{O}\left(\kappa_n^{-1}\right)$$

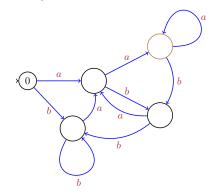
$$\sigma_n^2 \equiv \mathbf{Var}(X_n) = \beta_n v(B(1)) + v(A(1)) + \mathcal{O}\left(\kappa_n^{-1}\right).$$

The distribution of X_n is, after standardization, asymptotically Gaussian,

$$Pr\left\{\frac{X_n - \mathbf{E}(X_n)}{\sqrt{\mathbf{Var}(X_n)}} \le x\right\} = \mathcal{N}(x) + \mathcal{O}\left(\frac{1}{\kappa_n} + \frac{1}{\sqrt{\beta_n}}\right),$$

What about counting with several motifs simultaneously?

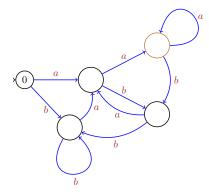
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

What about counting with several motifs simultaneously?

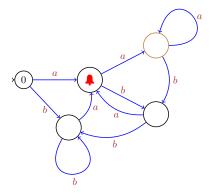
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

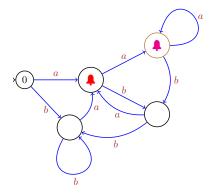
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**?

46-July 21, 2014

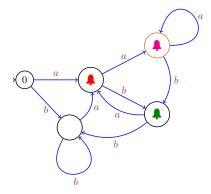
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

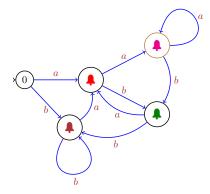
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**?

46-July 21, 2014

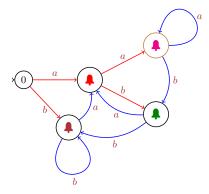
 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**?

46-July 21, 2014

 $P = \{a, aa, ab, b\}$ Several Finite Motifs

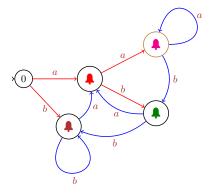


Where are the **bells**? Easy: upon some **nodes** of the **trie**

46-July 21, 2014

Image: A mathematical states and a mathem

 $P = \{a, aa, ab, b\}$ Several Finite Motifs



Where are the **bells**? Easy: upon some **nodes** of the **trie**

Not so easy for a general regular motif

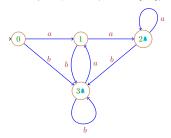
46-July 21, 2014

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Product of Marked Automata

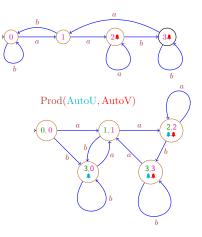
U = aa + b

 $AutoU = (\mathcal{A}, 0, Q, \delta, F = Q, Mark = \{2, 3\})$



 $V = b^* a a b^*$

 $AutoV = (\mathcal{A}, 0, Q, \delta, F = Q, Mark = \{2, 3\})$



◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Product of Marked Automata

U = aa + b $V = b^* a a b^*$ AutoU = $(A, 0, Q, \delta, F = Q, Mark = \{2, 3\})$ AutoV = $(A, 0, Q, \delta, F = Q, Mark = \{2, 3\})$ 2 b a 34 Prod(AutoU, AutoV) a 2,2 × 0.0 3,0 3,3 $Prod(AutoU, AutoV) = (\mathcal{A}, (0, 0), \mathbf{Q} \subseteq Q \times Q, \Delta, \mathbf{F} = \mathbf{Q},$ $Mark_1 = \{(2, 2), (3, 0), (3, 3)\},\$ $Mark_2 = \{(2, 2), (3, 3)\}$ $\Delta((q_i, q_i), (\ell_1, \ell_2)) = (\delta(q_i, \ell_1), \delta(q_i, \ell_2))$

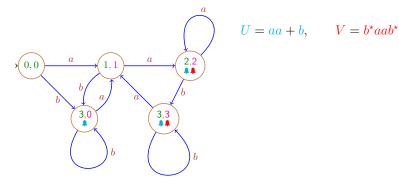
47-July 21, 2014

(日)

Product of Marked Automata

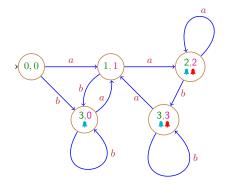
 $V = b^* a a b^*$ U = aa + bAutoU = $(A, 0, Q, \delta, F = Q, Mark = \{2, 3\})$ AutoV = $(A, 0, Q, \delta, F = Q, Mark = \{2, 3\})$ b a 34 Prod(AutoU, AutoV) a 2,2 × 0.0 3,0 3,3 $Prod(AutoU, AutoV) = (\mathcal{A}, (0, 0), \mathbf{Q} \subseteq Q \times Q, \Delta, \mathbf{F} = \mathbf{Q},$ $Mark_1 = \{(2, 2), (3, 0), (3, 3)\},\$ $Mark_2 = \{(2, 2), (3, 3)\}$ $\Delta((q_i, q_j), (\ell_1, \ell_2)) = (\delta(q_i, \ell_1), \delta(q_j, \ell_2))$ $Mark_1 = \mathbf{Q} \cap \left(\bigcup_{q \in Mark} q \times Q \right) \qquad Mark_2 = \mathbf{Q} \cap \left(\bigcup_{q \in Mark} Q \times q \right)$

Getting the Multivariate generating Function



▲ロト ▲園 ト ▲国 ト ▲国 ト ● の Q ()・

Getting the Multivariate generating Function

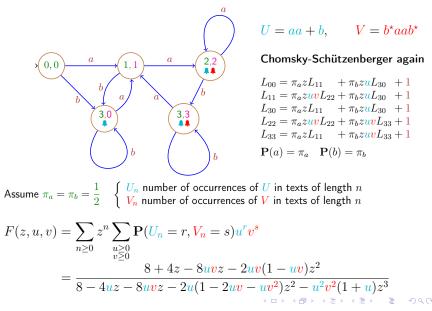


 $U = aa + b, \qquad V = b^{\star}aab^{\star}$

Chomsky-Schützenberger again

$$\begin{split} & L_{00} = \pi_a z L_{11} & +\pi_b z u L_{30} & +1 \\ & L_{11} = \pi_a z u v L_{22} + \pi_b z u L_{30} & +1 \\ & L_{30} = \pi_a z L_{11} & +\pi_b z u L_{30} & +1 \\ & L_{22} = \pi_a z u v L_{22} + \pi_b z u v L_{33} & +1 \\ & L_{33} = \pi_a z L_{11} & +\pi_b z u v L_{33} +1 \\ & \mathbf{P}(a) = \pi_a \quad \mathbf{P}(b) = \pi_b \end{split}$$

Getting the Multivariate generating Function



Covariance of U_n and V_n

$$\begin{split} F(z,u,v) &= \sum_{n \ge 0} z^n \sum_{\substack{u \ge 0 \\ v \ge 0}} \mathbf{P}(U_n = r, V_n = s) u^r v^s \\ &= \frac{8 + 4z - 8uvz - 2uv(1 - uv)z^2}{8 - 4uz - 8uvz - 2u(1 - 2uv - uv^2)z^2 - u^2v^2(1 + u)z^3} \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Covariance of U_n and V_n

$$\begin{split} F(z,u,v) &= \sum_{n\geq 0} z^n \sum_{\substack{u\geq 0\\v\geq 0}} \mathbf{P}(U_n = r, V_n = s) u^r v^s \\ &= \frac{8 + 4z - 8uvz - 2uv(1 - uv)z^2}{8 - 4uz - 8uvz - 2u(1 - 2uv - uv^2)z^2 - u^2v^2(1 + u)z^3} \end{split}$$

By differentiation:

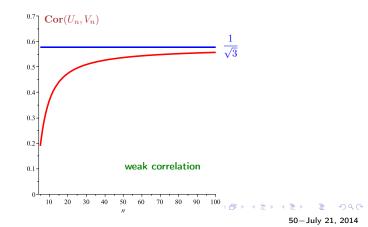
$$\sum_{n\geq 0} \mathbf{E}(U_n V_n) z^n = \left. \frac{\partial}{\partial u} \frac{\partial}{\partial v} F(z, u, v) \right|_{\substack{u=1\\v=1}} = \frac{z^2}{8} \times \frac{8 + 8z - 14z^2 + 5z^3 - z^4}{(1-z)^3(2-z)^2}$$

$$\mathbf{E}(U_n V_n) = \frac{3}{8}n^2 - \frac{3n+1}{4} + 2^{-n}n \quad \begin{cases} \mathbf{E}(U_n) = \frac{3n-1}{4} \\ \mathbf{E}(V_n) = \frac{n-2}{2} + 2^{-n} \end{cases}$$

 $\mathbf{Cov}(U_n, V_n) = \mathbf{E}(U_n V_n) - \mathbf{E}(U_n) \mathbf{E}(V_n) = \frac{n-4}{8} + 2^{-n} \frac{n+1}{4}$

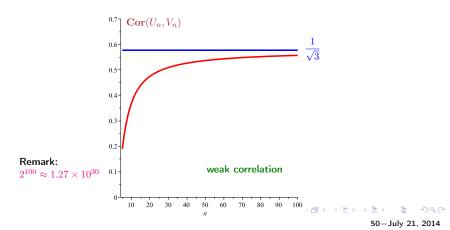
Correlation of $U_n = aa + b$ and $V_n = b^* aab^*$

$$\begin{aligned} \mathbf{Cor}(U_n, V_n) &= \frac{\mathbf{Cov}(U_n, V_n)}{\sigma_{U_n} \sigma_{V_n}} = \frac{\mathbf{E}(U_n V_n) - \mathbf{E}(U_n) \mathbf{E}(V_n)}{\sigma_{U_n} \sigma_{V_n}} \\ &= \frac{n - 4 + 2^{-(n-1)}(n+1)}{\sqrt{(n+1)(3n - 6 - 2^{-n}(4n - 12) - 4^{-(n-1)})}} \end{aligned}$$



Correlation of $U_n = aa + b$ and $V_n = b^*aab^*$

$$\begin{aligned} \mathbf{Cor}(U_n, V_n) &= \frac{\mathbf{Cov}(U_n, V_n)}{\sigma_{U_n} \sigma_{V_n}} = \frac{\mathbf{E}(U_n V_n) - \mathbf{E}(U_n) \mathbf{E}(V_n)}{\sigma_{U_n} \sigma_{V_n}} \\ &= \frac{n - 4 + 2^{-(n-1)}(n+1)}{\sqrt{(n+1)(3n - 6 - 2^{-n}(4n - 12) - 4^{-(n-1)})}} \end{aligned}$$



More on Marked-Automata

- 1. The Marked-States have the same properties as the Accepting-States, with respect to
 - determinization of NFAs
 - minimization of DFAs

More on Marked-Automata

- 1. The Marked-States have the same properties as the Accepting-States, with respect to
 - determinization of NFAs
 - minimization of DFAs

 It is possible to make the product of any finite number of automata; this is not limited to the product of two automata. The automata need only be complete.

Reg-Exp to NFA by Glushkov (1961) or Berry-Sethi (1986) algorithm

 $R = (a+b)^*aba$

- 1. Index the occurrences of letters $R' = (a_1 + b_1)^* a_2 b_2 a_3$
- 2. Use the constructors $\operatorname{first}, \operatorname{last}, \operatorname{follow}$

 $first(R') = \{a_1, b_1, a_2\}$ $last(R') = \{a_3\}$ $follow(R', b_1) = \{a_1, b_1, a_2\}$

- 3. Automaton
 - ► indexed letters → states
 - ► suppression of the indices → transitions

 $\delta(b_1, a) = \{a_1, a_2\}, \qquad \delta(b_1, b) = \{b_1\}, \quad etc.$

52-July 21, 2014

Glushkov and Berry-Sethy algorithm

Recursive definition of first, last, follow and nullable $\operatorname{nullable}(R) = \operatorname{true} \quad \text{if } \epsilon \in \operatorname{\mathsf{language of }} R$ $\operatorname{first}(R_1R_2) =$ $\begin{cases} \operatorname{first}(R_1) \cup \operatorname{first}(R_2) & \text{if} \quad \operatorname{nullable}(R_1), \\ \operatorname{first}(R_1) & \text{otherwise} \end{cases}$ follow $(R_1R_2, x) =$ $\begin{cases} \text{follow}(R_2, x) & \text{if } x \in R_2, \\ \text{follow}(R_1, x) \cup \text{first}(R_2) & \text{if } x \in \text{last}(R_1) \\ \text{follow}(R_1, x) & \text{otherwise} \end{cases}$ $follow(R^*, x) =$ $\left\{ \begin{array}{ll} {\rm follow}(R,x)\cup {\rm first}(R) \quad {\rm if} \quad x\in {\rm last}(R),\\ {\rm follow}(R,x) \quad {\rm otherwise} \end{array} \right.$

Technical Condition \Rightarrow quadratic complexity

イロト 不得 とくほ とくほ とうほう

Fast exact extraction of Taylor coefficients

$$F(z,u) = \frac{P(z,u)}{Q(z,u)} \Longrightarrow E(z) = \frac{U(z)}{V(z)}, \quad M_2(z) = \frac{H(z)}{K(z)}$$
$$\mathbf{E}(X_n) = [z^n]E(z), \quad \mathbf{E}(X_n^2) = [z^n]M_2(z)$$

Aim: fast extraction of the nth Taylor coefficient of a rational function

Method

$$\begin{split} E(z) &= \frac{\sum\limits_{0 \le i \le j} u_i z^i}{\sum\limits_{0 \le i \le k} v_i z^i} = \sum\limits_{n \ge 0} e_n z^n \Longrightarrow \sum\limits_{0 \le i \le k} v_i z^i \sum\limits_{n \ge 0} e_n z^n = \sum\limits_{0 \le i \le j} u_i z^i \\ &\implies e_m v_0 + e_{m-1} v_1 + \dots + e_{m-k} v_k = 0 \qquad (m > j) \\ \begin{cases} E_m = (e_m, e_{m-1}, \dots, e_{m-k}) \\ E_{m+1}^t = \mathbb{A} \times E_m^t \end{cases} \quad \text{with } \mathbb{A} = \begin{pmatrix} -v_1 / v_0 & -v_2 / v_0 & \dots & -v_k / v_0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & & & \end{pmatrix} \text{ square matrix} \\ E_m^t = \mathbb{A}^{m-k} E_k^t \end{split}$$

binary exponentiation to compute \mathbb{A}^{m-k} : $\mathbb{A}^4 = (\mathbb{A}^2)^2_{\mathbb{C}^2}, \mathbb{A}^8_{\mathbb{C}^2} = (\mathbb{A}^4)^2_{\mathbb{C}^2}, \mathbb{A}^6, \mathbb{A}^6, \mathbb$

Example - R = aba, $\mathbf{P}(a) = \mathbf{P}(b) = 0.5$ - $\mathbf{E}(400000)$?

$$\sum_{n\geq 0} \mathbf{E}(X_n) z^n = \frac{z^3/2}{4 - 8z + 5z^2 - 2z^3 + z^4}$$
$$e_n = 2e_{n-1} - \frac{5}{4}e_{n-2} + \frac{1}{2}e_{n-3} - \frac{1}{4}e_{n-4}$$
$${}_{00000} = \begin{pmatrix} 2 & -5/4 & 1/2 & -1/4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}^{39997} \begin{pmatrix} 1/8 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{399997}_{= 1100001101001111101}_{(\text{base } 2) (19 \text{ bits})}$$

19 matrix products, 11 matrix by vector products (number of bits equal to 1)

 E_4^t

$$E(X_{400000}) = \frac{399998}{8} (0.001 \text{sec}), \ E(X_{4000000}) = \frac{3999998}{8} (0.002 \text{sec})$$

Complexity $O(\log n)$ number of operations for the computation of the **nth coefficient**

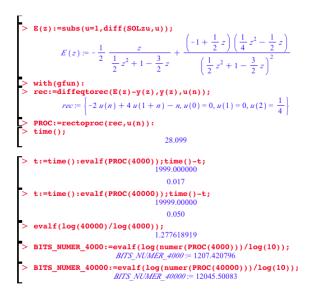
 $\log(400000)/\log(400000) \approx 1.179$ beware of bit complexity see

Automatic computations - Lib. regexpcount (N.-Salvy)

 $GRAM := \{a=Atom, b=Atom, R=Prod(a, Sequence(b), a)\};$ $GRAM := \{R = Prod(a, Sequence(b), a), a = Atom, b = Atom\}$ > autoR:=regexptomatchesgram(GRAM,S,[[R,u,'overlap']]); $autoR := \{S = Union (E, Prod (a, w3), Prod (b, S)), a = Atom, b = Atom, u = E, w2\}$ = Union (E, Prod (a, u, w2), Prod (b, w3)), w3 = Union (E, Prod (a, u, w2), Prod (b, $w3)\}$ EQS:={seq(eval(subs(Prod=`*`,Union=`+`,Epsilon=1,Atom=var,i)),i= autoR) }; $EOS := \{S = 1 + a w 3 + b S, a = var, b = var, u = 1, w 2 = 1 + a u w 2 + b w 3, w 3 = 1\}$ $+ a u w^{2} + b w^{3}$ for i in {u,p} do EQS:=EQS minus {i=1} end do:for i in {a,b} do
EQS:=EQS minus {i=var} end do:EQS; $\{S = 1 + a w^3 + b S, w^2 = 1 + a u w^2 + b w^3, w^3 = 1 + a u w^2 + b w^3\}$ $VAR:={seq(op(1,i), i=EQS)};$ $VAR := \{S, w2, w3\}$ SOLabu:=subs(solve(EQS,VAR),S); $SOLabu := -\frac{-a-1+b+au}{aub+1-2b+b^2-au}$ SOLzu:=subs(a=z/2,b=z/2,SOLabu); $SOLzu := -\frac{-1 + \frac{1}{2} z u}{\frac{1}{4} z^2 u + 1 - z + \frac{1}{4} z^2 - \frac{1}{2} z u}$ E(z):=subs(u=1,diff(SOLzu,u)); $E(z) \coloneqq -\frac{1}{2} \frac{z}{\frac{1}{2} z^2 + 1 - \frac{3}{2} z} + \frac{\left(-1 + \frac{1}{2} z\right) \left(\frac{1}{4} z^2 - \frac{1}{2} z\right)}{\left(\frac{1}{2} z^2 + 1 - \frac{3}{2} z\right)^2}$

⁵⁶⁻July 21, 2014

Automatic computations - Lib. gfun (Salvy-Zimmerman)



▲ロ▶ ▲圖▶ ▲注▶ ▲注▶ 三注 のへの

Automatic computations - Lib. gfun (Salvy-Zimmerman)

> rec:=diffeqtorec(E(z)-y(z),y(z),u(n));

> PROC:=rectoproc(rec,u(n)):

PP[4000]:=PROC(4000);

PP4000 :=

263569987276445257110765496675496153000455430025452054165140970332720992975560757064244942210719442437465722045922925385118857078692198218059345457185 93050842143293910327016123149012158661431365192955747794631755345544224891864398560560292533275966118929401748617616396247668046514812862912926693451 9305084214329391023701612314901215866143136519295574779463175534559442248918643985605602925832759661189294017486176163962476680465148128629129226693451 931654579653331521167519971098182090511326931411743816439102090055299508299582399582398623965593564913731530159054987643933255445593546913415730152954891249249 931475221537409950803333474950148210362292458126180584045590555914491404702873125976469173933135485457457315845649154157305955460913415730595546091341573019559544093931556454758475849296864915415730105955400953444 672176191011511331015803439394769625037131476304698774251135676063359007809029931366468231393397498699296450785936165447582990810870106378786095467205 65880315465910394559095701884471039007575154911881727041145400338528445931330962245370562017631732658192398403510619377245595546093897888412209 6099818738880265549845172360501162229313971521287289590052090652309531364587808225581923912840361067377245595546093897884412209

1318200934109431000138879422659136318401916109327270902280436024175902811284445101975212317212200341490407564807168230384488170942405812817310624252121 353466744443868889563289700427719939300365865529242495144885318339413823756200925492508946111038578754709173126540915851355860581452972446036349002 35007826811672468900210689104488089483347129125708820119765066125944858397761874669301278745233504796586945140544352170538037327032402834008159261893483 994727100457689400724131686625688860300585324863300612501764355640973240725287456721773309424265056007938327252194569382194509722022538843712208204 566314921287159656874453908061474797581349485668866712297954128553841474606657296394055800793832727563120000487897 201688939975743537276539898962230279825570166606797260890623692162876477283791552608464339161570534016955703744840502752790940875872989642351653162067 98389331440200568512210704880667184798433092320719787563987720862122704040120912767610058141079375804340611425454441805771508552048371646090251227 5106393092214700977287450937347209051339771138745406047942797905555541567252804357500434767

evalf(log10(numer(PP[4000])));

1207.420796

evalf(log10(denom(PP[4000])));

1204.119983

58-July 21, 2014

(日) (同) (三) (

An application to biology - Protein Motifs Statistics

Motif PS00844 (1998): DALA_DALA_LIGASE_2

[LIV]-x(3)-[GA]-x-[GSAIV]-R-[LIVCA]-D-[LIVMF](2)-x(7,9)-[LI]-x-E-[LIVA]-N-[STP]-x-P-[GA]

• A: alphabet of the proteins (20 letters)

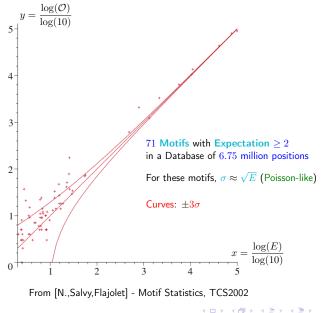
$$\blacktriangleright [\mathsf{LIV}] = L + I + V$$

• [LIVMF](2) =
$$(L + I + V + M + F)^2$$

- x = A
- ► x(3) = x³
- ▶ $x(7,9) = x^7 + x^8 + x^9$

The automaton recognizing \mathcal{A}^* .PS00844 and counting the matches of the motif in a random non-uniform Bernoulli text has 946 states while the number of words of the finite language generated by the motif is about 2×10^{26}

Comparison of Observed and Predicted Counts



Open problems

Definition of a random model of NFA

- Limit distribution of the number of occurrences of two regular expressions (use Heuberger's theorem)
- Generalization of Hwang's Large Powers theorem to dimensions larger than two

Limit distribution when the number of occurrences is O(1) (one regular expression) - Conjecture: Poisson

< ロ > < 同 > < 回 > < 回 > < □ > <

Short Bibliography

- Kelley, D. Automata and Formal Languages, an Introduction. Prentice Hall, 1995
- Kozen, D. C. Automata and Computability, Springer Verlag, 1997
- ▶ Nicodème,P. , Salvy, B., Flajolet, F. *Motif Statistics*, TCS 2002
- Nicodème, P. Regexpcount, a symbolic package for counting problems on regular expressions and words, Fundamentae Informaticae, 2003
- Nicaud, C., Pivoteau, C., Razet, B. Average Analysis of Glushkov Automata under a BST-Like Model, FSTTCS'10, 2010
- Nuel, G., Dumas, J.-G. Sparse approaches for the exact distribution of patterns in long state sequences generated by a Markov source, TCS 2012

イロト 不得 とくほ とくほ とうほう