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Applications
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What is an automaton?

A directed graph
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What is an automaton?

O ‘

A directed graph

where vertices are called states,

edges are called transitions,

and labelled by letters of a finite alphabet;

there is a specific state called start,

and there are accepting states;

The function mapping the nodes to their successors
is called “transition function”
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What is an automaton?

O

() AUTO = (A, Q,start, 8, F)
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What is an automaton?
b

(D

@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}
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What is an automaton?
0
@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}
5(0,a) ={1}  46(0,b) ={1,2}
4. Transition function ¢: { 5(1,a) = {} 0(1,0) ={}
§(2,a) ={2,1} 6(2,b) ={}
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What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

1. Alphabet - A = {a,b}
2. Set of States - @ = {1, 2,3}
3. start = {0}
5(0,a) ={1}  6(0,b) ={1,2}
4. Transition function §: < d(1,a) = {} 5(1,0) ={}
5(2,a) ={2,1} 4(2,b) ={}
5. Accepting states: F' = {1}
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What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gop = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)
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What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gop = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)
» A word w =ajas...a, is accepted if there is at least a run
of length n spelling its letters and ending in an accepting
state.
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What is an automaton?

O,
@ a AUTO = (A, Q,start, d, F)
a
» A run of length n is a sequence (qo, q1,- .., ¢n) such that
1. gy = start

2. there exists ajas...a, € A" and ¢;11 € §(qi, aiv1)

» A word w =ajas...a, is accepted if there is at least a run
of length n spelling its letters and ending in an accepting
state.

» The set of words accepted by the automaton is the
language recognized by the automaton.

(A language is a possibly infinite set of words) 5 suly 21, 2014



What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

» Some not accepted words:
c,a™, ab, b (m>2,n>2)
» Accepted words:
a, b, ca™ (n>1)
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What is an automaton?
b

(1)

@ a AUTO = (A, Q,start, d, F)

» Some not accepted words:
c,a™, ab, b (m>2,n>2)

» Accepted words:
a, b, ca™ (n>1)

» Recognized language
a+b+cat (at=5,-,a"
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What are Automata and Motif Statistics useful for?

Automata are used
» in hardware technology (circuits)

» in compilers and lexical analyzers

v

for pattern matching

v

to build groups with specific cogrowth

Motif Statistics is used in
» linguistics
» bioinformatics

» Web analysis
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What is an automaton? Deterministic or Non-Deterministic

1)
0 .
(2)

A NFA
(Non-deterministic Finite Automaton)

16(2,a)] = [{2,1}| > 1

Several successors
with the same letter
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What is an automaton? Deterministic or Non-Deterministic

(1) ()
(0} a (0} :
(2) (2)

a C
A NFA A DFA
(Non-deterministic Finite Automaton) (Deterministic Finite Automaton)
16(2,0)] = [{2,1}] > 1 Vg e Q,Vle A |d(q, ()] =1
Several successors Only one successor
with the same letter with one letter at each state
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Finite Automata and e—transitions

e-auto = (A ={a,b,e},Q =1{0,1,2,3,4},s = 0,6, F = {2})
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Finite Automata and e—transitions

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
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Finite Automata and e—transitions

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}
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Finite Automata and e—transitions

e-cl(4) ={4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}
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Finite Automata and e—transitions

e-cl(4) ={4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
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Finite Automata and e—transitions

e-cl(4) ={4,1,2}
F'={0,1,4,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FWaq | ecd(@NF #0} ={0,4,1,2}
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Finite Automata and e—transitions
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An e-transition consumes no input
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Finite Automata and e—transitions

e-cl(4) ={4,1,2}
F'={0,1,4,2}

e-cl(0) = {0,1,2,3}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FUq| ec(q)NF # 0} ={0,4,1,2}
A((],f) = 6_(I'I(Up€(—(:]((]) 5([)7[))
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Finite Automata and e—transitions

ecl(4) ={4,1,2}
F'={0,1,4,2}
e-cl(0) = {0,1,2,3}

A(07 a‘) = el (Up€{0,1,2,3} 5(177 a))
= e-cl ({4}) = {4,1,2}

cauto = (A= {a,b,¢},Q ={0,1,2,3,4},5s = 0,0, F = {2})

An e-transition consumes no input
e-closure: Vg € Q, ecl(q) :={p | p is accessible from ¢ without consuming input}

auto-without-¢ = (A = {a,b},Q, s, A, F")
Fr=FUq| ec(q)NF # 0} ={0,4,1,2}
A((],f) = E_C'I(LJ[E(—(:/((/) 5([)7[))
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Finite Automata and e—transitions
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Finite Automata and e—transitions

e-cl(0) = {0,1,2,3}
ecl(1) = {1,2}
ecl(2) = {2}
ecl(3) = {3}
e-cl(4) = {4,1,2}
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Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}
A(0,a) = {4.1,2}
ecl(l) ={1,2}
ecl(2) = {2}
e-cl(3) = {3}
ecl(4) ={4,1,2}
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Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}

A(0,a) = {4,1,2}
ecl(l) ={1,2}

A0,0) = {}
ecl(2) = {2}

AL a) = A(L,b) = {}
e-cl(3) = {3}

A2,a) = A(2,0) = {}
ecl(4) ={4,1,2}
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Finite Automata and e—transitions

e-cl(0) ={0,1,2,3}

A(0,a) = {4.1,2} A(3,a) = {4.1,2}
ecl(l) ={1,2}

A0,0) = {} AB0) = {}
ecl(2) = {2}

AL a) = A(L,b) = {} A(4,0) = {}
e-cl(3) = {3}

A2,a) = A(2,0) = {} A4,0) = {0,1,2}
ecl(4) ={4,1,2}
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Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

(] O,

f=a
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Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

o @

(] « ()

b

A(0,a) = {1}
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Determinisation of an automaton
MNFA = (Aa Q70767 F) M]’:)FA = (A7 QI7O7A7FI)

o @

a
e |

b

A(0,a) = {1}
A0,0) = {1,2}
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Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

b @ a
0’ a 0 a
.
b

A0, a) = {1}
A(0,b) = {1,2}
A({1,2},a) = {1}
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Determinisation of an automaton

MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

A(0,a) = {1} A({1,2},0) = {2}
A(0,b) = {1,2}
A({1,2},a) = {1}
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Determinisation of an automaton

MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1}
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Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

L

b

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1} A({2},a) = {1}
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Determinisation of an automaton
MNFA = (A7 Q70767 F) M]’:)FA = (A7 Ql707A7FI)

L

b

A(0,a) = {1} A({1,2},0) = {2}
A0,0) = {1,2} A({2},0) = {2}
A({1,2},0) = {1} A({2},a) = {1}
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Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le 5/7A7 Fl)

Q' C 29 (the subsets of Q)
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Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le SI7A7 Fl)

Q' C 29 (the subsets of Q)

s =s

the subsets that contain
at least one accepting state of M

F={feq; fﬂF#V)}{
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Determinisation of an automaton
MNFA = (A7 Q7 5767 F) M]’)FA = (Aa le 5/7A7 Fl)

Q' C 29 (the subsets of Q)

s =s

the subsets that contain
at least one accepting state of M

F={feq; fﬂF#VJ}{
VSeQ e A AS0) =, 0)
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The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

CR_B

b

each accepted run of Mypp translates to an accepted run of Mypa
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The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

IS

b

each accepted run of Mypp translates to an accepted run of Mypa

each non accepted run of Mppy is the translation

of a non accepted run of Mppp
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The automata Mypa and Mppa are equivalent

MNFA = (A7Q75763 F) M]’:)FA = (A7 QI7S/7A7FI)

each accepted run of Mypp translates to an accepted run of Mypa

each non accepted run of Mppy is the translation

of a non accepted run of Mppp

Proof by induction
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Equivalence of Non-Determistic and Deterministic automata

Two automata M = (Q, A, s,6,F) and M' = (Q', A',s',d', F')
are equivalent if they recognize the same language
(L(M) = L(M'))

Theorem (Rabin-Scott 1959)

Let M = (Q, A, s, A, F) be a NFA. Then there exists a DFA
M = (Q',A,¢,, F") that is equivalent to M.

Remark: each DFA is a NFA

Corollary

(i) The NFA's are no more powerful than the DFAs in terms of the
languages they accept.
(i) The NFA's and DFA's recognize the same set of languages.
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Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?
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Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

YESI!!
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Another characterization of the languages recognized
by Finite Automata (NFA and DFA)?

YESI!!

The Regular Languages and Regular Expressions
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by

16—July 21, 2014



What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively
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1. 0 is a regular language
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language

2. {€} is a regular language
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

by
1. 0 is a regular language
2. {€} is a regular language
3. {¢} is a regular language for each ¢ € A

4. if A and B are regular languages, so are
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are

» AUB (Ex: {ab}U{c} = {ab,c})
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})

> A* (Ex: {ab}* = {e,ab,abab, ..., (ab)",...})
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What is a Regular Language?

Definition
Let A be a finite alphabet.
The collection of regular languages over A is defined recursively

1. 0 is a regular language

2. {€} is a regular language

3. {¢} is a regular language for each ¢ € A
4

. if A and B are regular languages, so are
» AUB (Ex: {ab}U{c} = {ab,c})
» AeB (Ex: {ab,c}e{d, e} = {abd,cd,abe,ce})

> A* (Ex: {ab}* = {e,ab,abab, ..., (ab)",...})

5. No other languages over A are regular
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Regular Expressions

Regular expressions are shorthands for regular languages

a+b

denotes
denotes
denotes

denotes

{a,b} = {a} U{b}
{ab} = {a e b}
{a}*

a.a* =aea*
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Formal definition of Regular Expressions

Regular expressions are defined recursively by
1. 0 and € are regular expressions
2. £ is a regular expressions for each £ € A
3. if r and s are regular expressions, so are
> r+s

> 7r.s

> r*

4. No other sequence of symbols is a regular expression.
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Kleene Theorem

Lemma (i)
Every regular language can be accepted by a finite automaton

Lemma (ii)
Every language accepted by a finite automaton is regular

Theorem (Kleene 1956)

A language is regular if and only if it is accepted by a Finite
Automaton
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Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages
0 is accepted by (A, {0},0,6 =0,0)
€ is accepted by (A, {0},0,6 = 0,{0})
te A s accepted by (A,{0,1},0,6(0,¢) ={1},{1})

2. let £1 and L, regular languages respectively accepted by
automata A; and As.

L1.Lo is accepted by  A;i.As
Li1+Lo is accepted by A;UA,
L1* is accepted by Ar*
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Lemma(i) - From Regular Expressions to Finite Automata

1. Atomic Languages
0 is accepted by (A, {0},0,6 =0,0)
€ is accepted by (A, {0},0,6 = 0,{0})
te A s accepted by (A,{0,1},0,6(0,¢) ={1},{1})

2. let £1 and L, regular languages respectively accepted by
automata A; and As.

L1.Lo is accepted by  A;i.As
Li1+Lo is accepted by A;UA,
L1* is accepted by Ar*

Starting from the atomic languages, one builds recursively a
e-NFA recognizing a given regular expression
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Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton

1. let L(i, j, k) = {w' w is the label of a path from ¢; to ¢, }

where intermediate nodes have labels < k

21—July 21, 2014



Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }
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Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;
Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }
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Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;
Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular
4. In particular L(i,j,m) is regular

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢, }
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Lemma(ii) - From Finite Automata to Regular Expressions
A= A+e{q,92, - ,qn},S CQ,5,F C Q) a finite automaton
1. let L(i,j,k) = {w

2. L(i,7,0) has no intermediate labels = L(i,j,0) C AUe€ is regular
3. Assume L(i, 7, k) regular and consider L(i, 7,k + 1)
Let p be a path form ¢; to ¢; where intermediate nodes have
labels < & + 1.
» (a) p € L(i,j,k) (the path p does not reach ¢ 1)
» (b) p begins at ¢;,reaches ¢ a first time, possibly other
times, until a last time, and ends at ¢;

Cases (a) and (b) give
L(i,j,k+1) = L(i,j,k) UL@, k + 1,k)L(k + 1,k + 1,k)*L(k + 1, 5, k)
Therefore L(i,j,k + 1) is regular
4. In particular L(i,j,m) is regular
Conclusion: L(A) = U {L(i,j,m)|g; € S,q; € F} is regular,
since it is a finite union of regular languages

where intermediate nodes have labels < k

w is the label of a path from ¢; to ¢; }
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Counting - Generating Function of a Language

L a language (a possibly infinite set of words)

» Enumeration

L(z) = Z vl = Z 2"

weLl n>0

where [,, is the number of words of length n of £

» Weighted generating Function

W) = 3Pl =3 p,2"

weL n>0

where p,, is the probability that a random word of length n
belongs to L
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Counting - Generating Function of a Language

» Enumeration

L(a,b) = Z al@laplwls — Z l@jaibj
1 letters a

l; ; = number of words in the language Wlth{ j letters b

number of words of length n
in the language

F(z)=L(z,2) = anz", fn=

» Weighted counting F(z) = L(P(a)z,P(b)z) = anzn

probability that a word of length n
is in the language

Pn =
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba

The automaton accepts the words
terminating with aba
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

Ly =
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

£1:ba
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 =ba+ a*ba
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

P = A*aba = (a + b)*aba The automaton accepts the words

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)*
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

,C() = a.£1 + b,C()
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) =a ><L1(a, b) +bxLg (a, b)
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
— * — *
P = Araba = (a+b)*aba terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) =a ><L1(a, b) +bx Ly (a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) =a ><L1(a, b) +bx Ly (a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)

L3 =aLlq+bLs+e€
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLq+bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L7 b)
Ls=aLly+bLo+e Ls(a,b) = ax Li(a,b) + bx La(a,b) + 1
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)

Ly =aLy+bLs Li(a,b) = ax Li(a,b) + bx Ly(a,b)

LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L7 b)

Ls=aLly+bLy+e¢ L3(a, b) = aXLl(a, b) + b><L2(a, b) +1
solve:

24—July 21, 2014



Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Ly =aLy+bLs Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) = (l><Lg(0,7 b) + })XL[)((L, b)
L3 =aLlq+bLs+e€ L3(a, b) = aXLl(a, b) + b><L2(a, b) +1
1
lve: L b)= — Xxab
solve o(a,b) (s ) aba
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Generating Function of a Regular Expression
Chomsky-Schiitzenberger (1963)

The automaton accepts the words
P = A*aba = (a + b)*aba Hromaton P er

terminating with aba

that start at state ¢
and terminate in an accepting state

L; language of runs {

L1 = ba + a*ba + ba(ba)* + ...

Lo=aLli+0bLy Lo(a, b) = a><L1(a, b) + bXLg(a, b)
Li=aLlq+bLy Li(a,b) = ax Li(a,b) + bx Ly(a,b)
LQ = (L.£3 + b‘ﬁo LQ(G,, b) =a ><Lg(0,7 b) + bx LO ((L, b)
L3 =aLlq+bLs+e€ Lg(a, b) = aXLl(a, b) + b><L2(a, b) +1
1
solve:  Lo(a,b) = T—atD) x aba  F(z) =Y ppz" = Lo(P(a)z,P(b)z)
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Asymptotics of a rational expression

- if F(2) = % with P(p # 0), Q(p = 0)

» and p real, positive, dominant singularity of order k

Then,

fn=1"1F(z) = ZEZ; Xp "x(n—k+1)x(1+ A") (A<1)

Expand the polynomial P(z) at p
1
P(2) = P(p) + (2 = p)P'(p) + (2 = p)*P"(p) + ...

to get a full expansion
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Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton

2. The Chomsky-Schiitzenberger algorithm applies to any
regular expression.
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Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton

2. The Chomsky-Schiitzenberger algorithm applies to any
regular expression.

Theorem (Chomsky-Schiitzenberger 1963)

The generating function of a regular language is rational.

Corollary

Let R a regular language and R,, = RN A".
Ing, Yn>ng, |Ru| =pi1(n)A] + -+ pp(n)A}, with p;(n)
complex polynomials and \; € C
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An asymptotic test of non-regularity

For any regular language R, there exists a real positive number \
and a polynomial p(n) such that

lim r, = A" x p(n), Ty = ‘T\’,ﬂA"

n—o0

> The number of words of length 2n in Dyck Languages ((()(()))) is
47L
the Catalan number (*)/(2n + 1) asymptotic to

RN

Dyck languages are not regular and cannot be recognized by a
DFA; however they can be recognized by a push-down automaton,
and they have an algebraic generating function.

> Let w(x) be the number of prime numbers less than » € RY.

()

im
z—oo x/logx

There is no known generating function enumerating the
primes. Would one find one it would not be regular. It is not
possible to enumerate the primes by an automaton.
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Some classical pattern matching
algorithms
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

>/ :a
0(2,a) =2 wo.a =a.aa

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./

29—July 21, 2014



Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa

5(2,0) =3  wab=a.ab

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,0) =3  wab=a.ab

b 0(3,a) =1 ws.a=ab.a

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

|

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P = {a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 2

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 4 1

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Aho-Corasick (1975) - Finite Motif - Multiple Counting
P ={a,aa,ab,b}

0(2,a) =2 wo.a =a.aa
5(2,b) =3  wa.b=a.ab
0(3,a) =1 ws.a=ab.a
5(3,b) =4 ws.b=abb

for each specific match ring a bell

4 & & 12

» build a trie over the words of P
let () be the set of nodes of the trie: Q = {0,1,2,3,4}
Vg € @, let w, the word spelling the run from 0 to ¢ — (w3 = ab)
» for each node ¢ with a missing transition /
add a transition 6(¢, ¢) to state ¢/
such that w, is the longuest possible suffix of w,./
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

O——O——0——0O

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b

o« N b N a
8@@@

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b a

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

b a

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaaba
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabar
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbaba
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabas
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabarba
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabarbar
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Knuth-Morris-Pratt automaton (1977) - Only one word

P = aba

same construction as Aho-Corasick

for each match ring the bell

aaaaabarbbabaarbarbb
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Pattern matching and Statistics - Regular patterns

1. We learned how to compute the

» number of matches of a finite pattern
» in a particular text
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Pattern matching and Statistics - Regular patterns

1. We learned how to compute the

» number of matches of a finite pattern
» in a particular text

2. In a random text, what about

» finding the occurrences of a Regular Expression
(i.e, the number of positions at which a match
is found)

» and counting them
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Tools and Aim - Generating Functions

For a given pattern P, we want to compute

F(z,u) = Z Faguz"

n>0,k>0

PP occurs k times
where f, =P

in a random text of length n
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Tools and Aim - Generating Functions

For a given pattern P, we want to compute

(z,u) Z fnku 2"

n>0,k>0

PP occurs k times
where f, =P

in a random text of length n

If X,, is the random variable
» counting the number of occurrences of P

> in a random text of size n

Z fn,kukz Z ZP n = k

n>0,k>0 n>0 k>0
The variables z and u are formal variables
» 2 is related to the length of the texts
» u is related to the number of occurrences of I°
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Counting with Regular Expressions - The right language

1. Input:

» a finite alphabet A
> a regular expression R

2. QOutput:
F(z,u) Z fnku 2"

n>0,k>0
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Counting with Regular Expressions - The right language

1. Input:

» a finite alphabet A
> a regular expression R

2. QOutput:
F(z,u) Z fnku 2"

n>0,k>0

» Method
1. Build the DFA recognizing A*. R

2. Use a variant of Chomsky-Schiitzenberger
to ring the bell and produce the variable «
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Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
oagbga@
b

a
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Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
0— (1 )— (2 ) (3)
b
a
L"O = (I,.,Cl + b-L"O LO((Z7 b ) = (1,><L1(ll, b ) + [)><LO((17 b )
Li=aLly+bLy Ll(a,b )=a,><L1(a,b )+b><L2(a,b )
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b

a

L"O = (I,.Ll + b-L"O
Li=aLly+bLy
Lo=a.L3 +b.Lo

LO((I7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

)+ bxLo(a,b
)+ bxLa(a,b

)
)
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Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b

0 1 2

a

b

L"O = (I,.,Cl + b-L"O
Li=aLly+bLy
Lo=a.L3 +b.Lo

LO((Z7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

b

) +bxLo(a,b
)+ bxLa(a,b

)
)
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Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b

0 1 2

a

b

L"O = (I,.,Cl + b-L"O
Li=aLly+bLy
Lo = a.L3a+b.Lo

LO((Z7 b
Ll(a, b

a
)=axLi(a,b
)=axLq(a,b

b

) +bxLo(a,b
)+ bxLa(a,b

)
)
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Counting the number of occurrences of ab*a
P =A*abta= (a+b)*aba

b a b
0— (1 )— (2 )
b
a
L"O = (I,.,Cl + b-L"O (a,b ) = (J,XLl(ll,b ) + [)XL()(G, b )
Li=aLly+bLy Ll(a,b )—a><L1(ab )+b><L2(ab )
Lo = a.L3r+b.Loy Ly(a,b ) =axuxLz(a,b )+bxLay(a,b )
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0— (1 )— (2 )
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)

34—July 21, 2014



Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2 )2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2 )2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve:
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2 )2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve:  Lo(a,b,u) = e
: ola, 0, u —1_a_2b+2ab+b2_ab2—u(ab—ab2)
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
0 — (1 (2 )2
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1

solve:  Lo(a,b,u) = e
: ola, 0, u —1_a_2b+2ab+b2_ab2—u(ab—ab2)

F(z,u) =3 fasrubz" = Lo(P(a)z, P(b)z,u)
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Counting the number of occurrences of ab™a
P =A*abta= (a+b)*aba

b a b
00— (1 )—L (o) —
b
a
Lo=a.Ly+bLy Lo(a,b,u) = axLi(a,b,u) + bx Lo(a,b,u)
Ly =a.Ly+bLsy Li(a,b,u) = ax Ly(a,b,u) + bx Lay(a,b,u)
Lo =a.L3s+b.Lo Lso(a,b,u) = axux Lz(a,b,u) + bx Lay(a, b, u)
Lz=aLly+bLy+e¢ Ls(a,bu) = ax Li(a,bu) + bx La(a,bu) + 1
1—-b+ab—uab
solve:  Lo(a,b,u) = Tavua

T 1—a—2b+2ab+ b2 —ab? — u(ab — ab?)
F(z,u) = Z,fn,kukzn = LO(P((I)27P<{))27U)

P(a) =P(b) =

F(z,u) 8 — 4z 4222 — 2uz?
’ 8 — 122 4 622 — 23 — (222 — 23)

N | =
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Exploiting the generating Function

8 — 4z + 222 — 2022

ft=abta, Flau) = g 62— 5 — a2 = 29)
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Exploiting the generating Function

B 8 — 4z + 222 — 2uz2?
81224622 — 23 — u(222 — 23)

R=abTa, F(z,u)

» Expand in series with respect to z in the neighborhood of 0
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Exploiting the generating Function

8 — 4z + 222 — 2uz2?
8 — 12z 4 622 — 23 — u(222 — 23)

R=abta, F(z,u)=

» Expand in series with respect to z in the neighborhood of 0
15

1
F(z,u) = l+z+zg+<§u+;>z +(£u—|— )z —1—(2—1—3271—&——11)25—&— 0(=%
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Exploiting the generating Function

8 — 4z + 222 — 2022

R=abta, F =
av- a, (2,u) 8 — 122 + 622 — 23 — u (222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142z+=2 +< 11—1—7)2 +(£u—|— )z +(2+£71+—71>z5+(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern
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Exploiting the generating Function

8 — 4z + 222 — 2022

R=ab*ta, F =
W (2, ) 8 — 12z 4 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142+2 —|—< u+7>z +(£u—|— )z —1—(2—1—:1))271—&——11)25—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

_ n _ OF(z,u)
= ;E(Xn)z = ——

u=1
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Exploiting the generating Function

8 — 4z + 222 — 2022

R=abta, F =
av- a, (2,u) 8 — 122 + 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142z+=2 —|—< 11+7>z +(£u—|— )z —1—(2—1—;271—&——11)2'5—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

_ n _ OF(z,u)

u=1

> Get E(X,,)
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Exploiting the generating Function

8 — 4z + 222 — 2022

R=ab*ta, F =
W (2, ) 8 — 12z 4 622 — 23 — u(222 — 23)

» Expand in series with respect to z in the neighborhood of 0

F(z,u) = 142+2 —|—< u+7>z +(£u—|— )z —1—(2—1—:1))271—&——11)25—&—(9(26)

» Compute the generating function of the expectations of the number
of occurrences of the pattern

n_ OF(z,u) 122 1 2 1 22
~ Y E(X,)." = &5 - - -
Zn: (Xn)2 ou | T T2T—2Ta, 1 Ta(i-2p
57
> Get E(X,,)
1 | _
E(X,) = —§—|—2 + 1(77 -1) (n—3)+2
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Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=
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Exploiting the generating Function

8 —dz + 222 — 2uz?

R=abta, F =
abva,  Flzu) 8 — 122 + 622 — 23 — (222 — 23)

» Generating function of the Second Moment
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Exploiting the generating Function

8 — 4z + 222 — 2uz2?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n _ 2 )
Msy(z) = g E(X:)z" = 50 9u

n>0 u=1
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Exploiting the generating Function

8 —dz + 222 — 2uz?

R=abta, F =
abva,  Flzu) 8 — 122 + 622 — 23 — (222 — 23)

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n _ 2 )
Msy(z) = g E(X:)z" = 50 9u

n>0 u=1

C12%(2% - 2) B 122(22-1)  12%(22-2) 2

1
4 1-=z 4 (1-22 8 1-2 +§(1—Z)3
2

A@(@
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Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n ’
Msy(z) = g E(X:)z" = 0 Bn

n>0 u=1

C12%(2% - 2) B 122(22-1)  12%(22-2)

1
M. - = -
) =11 4 (1-22 8 {_Z% TR
2

» Extract the nth. Taylor coefficient

1
E(X?) = ["|My(2) = —n” — 3n + 5_ 27"
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Exploiting the generating Function

8 — 4z + 222 — 2uz?
8 — 122+ 622 — 23 — u(222 — 23)

R=ab"a, F(z,u)=

» Generating function of the Second Moment
0 OF(z,u)
_ 2\ n ’
Msy(z) = g E(X:)z" = 0 Bn

n>0 u=1

C12%(2% - 2) B 122(22-1)  12%(22-2)

1
M. - = -
) =11 4 (1-22 8 {_Z% TR
2

» Extract the nth. Taylor coefficient
1 5 5

E(X?) = [2"]|My(z2) = 1—677,2 — En + 3 27"

» Standard Deviation o,

1
o, = VE(X2) - E2(X,,) = Z\/n + 1= 27nh8p o 2703 g-n2
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Limit law

» Laplace transform L of a random variable X
L(X,t) = E(e'Y)
» Laplace transform of a standard Gaussian variable \/

tx ,—x /2dl‘ t2/2

L(N,t) = \/ﬁ/
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Limit law

» Laplace transform L of a random variable X
L(X,t) = E(e'Y)
» Laplace transform of a standard Gaussian variable \/

.2 2
el /2dl‘:6t /2

L(N,t) = \/ﬁ/

Theorem (Paul Lévy Continuity Theorem - 1925)
Iffort € [—a,+a] lim E(e"") = L(V) = et’/?

then X, — N (convergence in distribution or law)

7w2/2
nh_)n(}OP(X <) \ﬁ/ dw
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Limit law of the occurrences of ab™a

8 — 4z + 222 — 2uz?
8 — 12z + 622 — 23 — u(222 — 23)

1—u 1++u 1-Vu

=- +

T IO (R ESTY WY (R B2

F(z,u) =
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Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1—u 1++u 1-Vu

=- +

T IO (R ESTY WY (R B2

n+1
U, (u) = [2"]F(z,u) = % (H—iu) +0 (i) for u close of 1

F(z,u) =
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Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1w 1++/u 1—u

_“(1_%) Zu(l—z1+2\/a> +2u<1—z1_2\/a>

n+1
U, (u) =[2"]F(z,u) = % (#) +0 (2%) for u close of 1

F(z,u) =

. X - Mn
We consider ¥,,(e') = E(e'*") and the normalised law =" "
on

D, (t) =T, (tiX" ICUR R ;) [exp <7t(X" — 'u")>} = exp <—’l;"t) E {exp (ff”)}
0—77/ 0—77/ n n
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Limit law of the occurrences of ab™a

8 — 4z + 22° — 2u2®
8 — 12z + 622 — 23 — u(222 — 23)

1w 1++u 1-Vu

_“(1_%) Zu(l—z1+2\/a> +2u<1—z1_2\/a>

n+1
U, (u) =[2"]F(z,u) = 1 (#) + 0 (2%) for u close of 1

F(z,u) =

U
H t tX . Xn — Un
We consider ¥,,(e") = E(e’*") and the normalised law —————
On
X'n - HMn n — Hn n v An
P, (t) =V, (ti’u) =E [exp <M>:| = exp <—'u t) E |:exp (fX >:|
0’77/ 0-77/ 0-’"/ O’n,
We substitute: i, = - 3 +02™), on= ntl +0(2™)

4 4
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Limit law of the occurrences of ab™a

8 — 4z + 22% — 2uz?

Fzu) = 8 — 12z + 622 — 23 — u(222 — 23)
o lew 1+vu N 1-Vu
Z _
(R AW (W R com vy
n+1
U, (u) =[2"]F(z,u) = 1 (#) + 0 (QL) for u close of 1
u n

. . X - Mn
We consider ¥,,(e') = E(e'*") and the normalised law =" "

On

D, (t) =W, (tM) =E [exp <M>} = exp <_,unt) E {exp (tX">}
0—77, O—'Il 0—’", O—n,

) — < vn+1
We substitute: i, = 1 3 +02™), on= n4+ +0(2™)

In a neighborhood of ¢ = 0, we expand log(®,, (1))
2 el

Nt 1 nooo t°
e( ) =5 " mrn T9\e) T 2
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The Gaussian law is general
R=ab"a P=A%abta

b a b
g % a Q b Q a
© w\%ly@

a

Lo(z,u) =Ly = zpoLl1 + zpyLo + 1, Lo

L1 =zpyls +2zp.Li+1, _ _
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zpal1 +z2plo+1 Ln
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The Gaussian law is general
R=ab"a P=A%ab"a

b a b
g % a Q b Q a
© w\%ly@

a

Lo(z,u) = Lo = zpal1 + zppLo + 1, Lo
Ly =zpyle + 2p.Li1+1, N I
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zp.L1 +zpla+1 Ln

general case: T(u) positive n x n matrix for u >0
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The Gaussian law is general
R=ab"a P=A%ab"a

b a b

a

Lo(z,u) = Lo = zpal1 + zppLo + 1, Lo
Ly =zppyle + 2paln+1, N R
Ly = zpguls + zpyLo + 1 L=11: [=#TuL+1
Ly =zpal1 +z2plo+1 Ln
general case: T(u) positive n x n matrix for u >0

Theorem (Perron-Frobenius, 1907-1912)

If T(u) is positive, irreducible and aperiodic, the dominant eigenvalue is
unique, real and positive.
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The Gaussian law is general
R=ab"a P=A%ab"a

b a b

a

Lo(z,u) =Ly = zpoLl1 + zpyLo + 1, Lo
Ly =zpyLo + zpeli+1, ) /
Lo = zpquLs + zppyLo + 1 L=|: | =2T(u)L+1
Ly =zpal1 +zppla+1 L,

general case: T(u) positive n x n matrix foru >0
Theorem (Perron-Frobenius, 1907-1912)

If T(u) is positive, irreducible and aperiodic, the dominant eigenvalue is

unique, real and positive.

P(zu) _ P(z,u)

Qzu)  (I—2hi(u)---(1-
1 < 1 <

M)l [Aelw)] =

Lo(z,u) =

An (1))

A1(u) dominant =
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Perron-Frobenius conditions
R=ab"a P = A*aba

b a b

a

In the context of automata,
» irreducibility: from any state, any other state can be reached
(The above automaton is not irreducible)
> primitivity: there exists a large enough e such that any state can be
reached by any other state in exactly e steps
Remarks
»> The above automaton with initial state 1 and states 1,2, 3, is irreducible
and primitive
Ly 1
+
1—2zpy 1—2py

» The automaton with states 0, 1,2, 3 is such that Lo =

> Foru=1,wehave Lo =Li =La=L3=1/(1—2)

> by continuity, A1(u) is close of 1 for u € [1 —€,1 + €]
1 1

» for Lo, we have —— < —

’ (W) p
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Uniform Separation Property with respect to n

1/Xq(u)
(@]
I
R=1/A
@]
1/X3(u)
(]
1/X5(u)
1 dz
pal) = V) = 5= § PG,

1 c(u)
- %jg (= M) 9z dz,

=c(uAi(W)"(1+0(4")  (A<1)
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Uniform Separation Property with respect to n

1/Xq(u)
o
r
R=1/A
o
1/As(u)
(©)
1/X5(u)
1 dz
pali) = ["IF ) = 5 f S F )

1 c(u)
- %jg (= M) 9z dz,
=c(uA(W)"(1+0(4")  (A<1)

Hwang's quasi-power theorem — limiting Gaussian distribution
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Uniform Separation Property with respect to n

1/Xq(u)
o
r
R=1/A
o
1/As(u)
(©)
1/X5(u)
1 dz
pali) = ["IF ) = 5 f S F )

1 c(u)

= %im fi—‘ z"+1(1 — )\1(’[1,)2) + ot Q(Z,u) dZa

= c(u)A(w)"(1 4+ O(A™)) (A<
Hwang's quasi-power theorem — limiting Gaussian distribution
Variability condition: \”(1) + X (1) — X' (1)2£0 (A(u) = A(u))
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Statistics of one regular motif

Let X,, count the number of occurrences of a regular motif R in a
random text of length n.

c(u)

Tz I

F(z,u) = ZP(Xn = k)uF2" =
n,k

Theorem (N, Salvy, Flajolet - 1999)

Both in the Bernoulli and Markov model, with T(u) the fundamental
matrix, and A(u) its dominant eigenvalue,

1. F(z,u) is rational and can be computed explicitly
2 E(X,) =XN(n+c+0A"), (a=d(1))
Moments { Var(X,) = (\/(1)+ N (1)~ N(1)*)n+ e + O(A")
(co=c"(1)+ (1) = (1)?)

.. . X, — un 1 /”J 2
3. Limit Gaussian law: Pr — e 2 qt
( o\/n ) V21 J

[Bourdon, Vallée - 2006] Extension to dynamical sources
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Counts of R =ab"a

1
> Pa)=P(h) =,
» X,, number of occurrences of R in a random text of size n
2V 1
» 0, =/ Var(X,) = n4—|— +0(2™)

Variability condition:
Var(X,) = (N (1) + N(1) = N(1)?)n+ cs + O(A™) = O(n)

We have Var(X,,) = ©(n) = normal limit law
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Counts of R = ab*

Pla) =P(b) = -

Flzu)=>» ) P(X,=k

n>0 k>0

lim Var(X,)=2

n—oo

uz/2—1

- 1—2/2—uz+ uz?

E(X,)=n—-1+2""
E(X2) =n?—-2n+3—-3x27"
Var(X,) =2— (2n+1)27" —4™"

» The variation condition is not verified

» The limiting law is not normal
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Hwang's Quasi-Power theorem - Gaussian form

_ M (W)
=T (f(l))

£
@y’

Theorem (Hwang 1994)

Notation: m(f) =

Let the X, be non-negative discrete random variables (supported by Z~ ) with probability generating
function py, (u). Assume that, uniformly in a complex neighborhood of u = 1, for sequences
Bn, kn — oo, there holds

pn(u) = A(u).B(u)r (1 +0 (i)) ,

Rn
where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies the

so-called “variability condition”,
v(B(u)) = B"(1) + B'(1) — B'(1)2 # 0.

Under these conditions, the mean and variance of X, satisfy

P = E(Xn) = Brm(B(1)) +m(A(1) + O (r, )
o2 = Var(X,) = Brv(B(1)) +v(A(1) + O (k1) .

The distribution of X, is, after standardization, asymptotically Gaussian,

Xo—B(Xn) _ | _ 1,1
PT{ Var(X,) = } N()+O(Hn+\/E)’

45— July 21, 2014



What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie
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What about counting with several motifs simultaneously?

P ={a,aa,ab,b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie

Not so easy for a general regular motif
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Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})
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Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})

Prod(AutoU, AutoV) = (A7 0,0,QCRxQAF=Q,
]\[m‘k] = {(27 2)7 (37 0)7 (37 3)}>
Mark, = {(2,2),(3,3)}

A((gi, 4), (01, 65)) = (8(gi, 1), 0(q;. £2))

47—July 21, 2014



Product of Marked Automata
U=aa+b V = braab*;
AutoU = (A4,0,Q,4, F = Q, Mark = {2,3}) AutoV = (A4,0,Q,0, F = Q,Mark = {2,3})

Prod(AutoU, AutoV) = (A7 0,0,QCQxQ,AF=Q,
]\[m‘k] = {(27 2)7 (37 0)7 (37 3)}>
Mark, = {(2,2),(3,3)}

A((gi,q5), (01, 62)) = (8(qi, €1), (a5, (2))

Mark; = Q) (qu\lzuk qx Q) Marks = Q0 (UVGMWQ x q)
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Getting the Multivariate generating Function

U=aa+Db, V = b aab*
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Getting the Multivariate generating Function

a

U =aa+0, V = b aab*

Chomsky-Schiitzenberger again

Loy = mazLyy +mpzulsy +1
Lll = ﬂaZIll,‘Ln —+ 7T'bZIIL30 + 1
L30 = ’/TaZLll + ’/TbZU,L30 +1
Loo = mazuv Log + mpzuvLag + 1
L33 = mezLlyy + mpzuvlag + 1

Pla)=m, P@O)=m
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Getting the Multivariate generating Function

a

U =aa+b, V = b aab*

Chomsky-Schiitzenberger again

L()g = 71'aZL11 + 71'1,2/[[/30 +1
Lll = 7TaZIll,‘L22 —+ 7T'bZIIL30 + 1
L30 = 7raZL11 + ’/TbZH,L30 +1
Loo = mazuv Log + mpzuvLag + 1
L33 = mezLlyy + mpzuvlag + 1
Pla)=m, P@O)=m

UU,, number of occurrences of [ in texts of length n

Assume 1, = 1, =

2 V,, number of occurrences of V' in texts of length n
F(z,u,v) g E PU,=mrV,=su"’
n>0 u>0
v>0

8+ 42 — Suvz — 2uv(1 — uv)2?
T 8— duz — Suvz — 2u(1 — 2uv — uv?) 22 — w2 (1 4 u)23

48—July 21, 2014



Covariance of U,, and V,,

F(z,u,v) Z ZP U, =r,V,=s)u"v*

n>0 u>0
v>0

B 8 + 42 — 8uvz — 2uv(l — uv)2?
T8 — 4duz — Suvz — 2u(1l = 2uv — uv?)z? — u?v?(1 4+ u)23
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Covariance of U,, and V,,

F(z,u,v) Z ZP n=1,V, = s)u"v®

n>0 u>0
v>0

8 + 42 — 8uvz — 2uv(l — uv)2?
T 8~ duz — Buvz — 2u(1l = 2uv — uv?)z? — u?v?(1 4+ u)23
By differentiation:

0 0
E(U, V)" = — —
D B(ULVn)2" = oo F(z,u,0)

£x8+8271422+5z37754
18 (1-2)3(2—2)2

n>0 =1
3n—1
E(U,) =
3 3 1 "
(( 11‘/n) g 2 n: +2 n’I’L 42
E(‘/n) = z 9 + 27"
—4 1
COV((/VIH ‘/n) = E([’Tn ‘/n) - E([vu)E(‘/n) = n + 27”71] +

8 4
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Correlation of U,, = aa + b and V,, = b*aab*

Cov(U,,V,) EU,V,)-E(U,)E(,)
v, 0v, ou,ov,
n—4+4+2"0""D(n41)
V(n+1)(B3n —6 — 271 (4n — 12) — 4-(n—1))

Cor(UVH ‘/n) -

071 Cor(U,, Vy,)

0.6

Sl

0.54
0.4+
0.3+

0.2

0.14 weak correlation

T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
”
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Correlation of U,, = aa + b and V,, = b*aab*

Cov(U/,,V,) E(U,V,)—EU,)E(V,)
ou,ov, ou,ov,
n—4+4+2"0""D(n41)
V(n+1)(B3n —6 — 271 (4n — 12) — 4-(n—1))

Cor(UVH ‘/n) =

071 Cor(U,, Vy,)

0.6

Sl

0.5
0.44
0.3

0.2

Remark:

9100 o, 197 % 1030 014 weak correlation
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More on Marked-Automata

1. The Marked-States have the same properties as the
Accepting-States, with respect to

» determinization of NFAs
» minimization of DFAs
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More on Marked-Automata

1. The Marked-States have the same properties as the
Accepting-States, with respect to

» determinization of NFAs
» minimization of DFAs

2. It is possible to make the product of any finite number of
automata; this is not limited to the product of two automata.
The automata need only be complete.
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Reg-Exp to NFA by Glushkov (1961) or Berry-Sethi (1986)
algorithm

R = (a+b)*aba

1. Index the occurrences of letters R = (a1 4 by)*asboas

2. Use the constructors first, last, follow
first(R') = {a1,b1, a2}
last(R') = {as}
fOHOW(R/, bl) = {al, bl, ag}

3. Automaton
» indexed letters — states
» suppression of the indices — transitions

5(()17&) = {CLl,CLQ}, (5(b1,b) = {bl}, etc.
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Glushkov and Berry-Sethy algorithm

Recursive definition of first, last, follow and nullable
nullable(R) = true if e € language of R

ﬁI‘St(RlRQ) =
first(R;) Ufirst(R2) if nullable(Ry),
first(Ry) otherwise

fOHOW(RlRQ, l‘) =
follow(Ra,z) if x € Ry,
follow(Ry, z) Ufirst(Re) 1if « € last(Ry)

follow(R1,z) otherwise

1,

follow (R*, x
x)Ufirst(R) if « € last(R),
x

)
follow (R,
follow(R,x) otherwise

Technical Condition = quadratic complexity
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Fast exact extraction of Taylor coefficients
P(z,u) U(z)
Q(z,u) V(z)
E(X,) = ["]|E(z), E(X;)=["]|Ma(2)

Aim: fast extraction of the nth Taylor coefficient of a rational function

H(z)

F(z,u) = K()

= FE(z) =

A{Q(Z') =

Method

= emVo + em—-1V1 + -+ €m_rvp =0 (m>j)

—v1/vg —v2/vo ... —vE/vo

En = (@7717 Cm—T1y.+n, e'mfk)
{ with A — 1 0 . 0 square

Efn,+1 =AxE!, 0 1 0 matrix
Et _ Am—kEt
m k

binary exponentiation to compute A™~F: A1 = (A2)2 , A% = (A4)2 yee
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Example - R = aba, P(a) = P(b) = 0.5 - E(400000)7

3
2°/2
E(X,)z" =
Z (Xn) 4—82+ 522 — 2234 24
n>0
5
en =26ep_1— —€n_2+ —€p_3— —€n_
n n—1 41L2 21L3 4IL4
399997
f 750/4 1(/)2 73/4 1(/)8 399997
El o000 = 0 1 0 0 0 = 1100001101001111101
0 0 1 0 0 (base 2) (19 bits)

19 matrix products, 11 matrix by vector products (number of bits equal to 1)

399998 3999998

E(X400000) = 3 (()()()1 sec), E(X4000000) = 3

(0.002sec)

Complexity O(logn) number of operations for the computation
of the nth coefficient

1log(4000000)/ 1og(400000) ~ 1.179 beware of -bit complexity
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Automatic computations - Lib. regexpcount (N.-Salvy)

:> with(regexpcount) :
> GRAM:={a=Atom,b=Atom,R=Prod(a,Sequence(b),a)};
GRAM = { R= Prod (a, Sequence (b)), a), a= Awom, b= Adrom }

E autoR:=regexptomatchesgram(GRAM, S, [[R,u, 'overlap']]);

autoR = { 5= Union (E, Prod (a, w3 ), Prod (5, 8) ), a= Atom, b= Atom, u=E, w2

= Union (E, Prod (a, u, w2 ), Prod (b, w3 ) ), wi = Union(E, Prod (a, i, w2, Prod (5,
wi) )}

B EQS:={seqg(eval (subs(Pred="*",Union="+",Epsilon=1,Atom=var,i)),i=

autoR) };
EOS={S=1+awitbS a=var. b=var.u=1, w2=1+auwwl+ bwi wi=1
+ awwl + b wd}
> for i in {u,p} do EQS:=EQS minus {i=1} end do:for i in {a,b} do
EQS:=EQS minus {i=var} end do:EQS;
{(S=lt+aw?+sSw2=1+auww2+bwiwi=1+aun?+hbwi}

> vaR:=(seq(op(1,1),i=E0S)};
VAR = {8 w2 wi}

.> SOLabu:=subs (solve(EQS,VAR) ,S);

a1+ At
SOLabw = —”—f:”
aub+1—256+0" —au

> SoLzu:=subs(a=2/2,b=2/2,S0Labu);

-]+;—:1¢
SOLzu = - 1 1
?:’{f+l—:+ I:’—?:u
B E(z):=subs(u=1,diff(SOLzu,u));

1 1, 1
i P "+?-'][?-‘ ‘E-‘]

FE)= g Tt - —

P 2" [E: +|—?:J
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Automatic computations - Lib. gfun (Salvy-Zimmerman)

> E(z):=subs(u=1,diff(50Lzu,u));

1 [ |
. | P "+Z-‘] (?-‘ ‘z-’]
vl -4 - - +
“ 201 3 1, 3 °
7 - 2 - [?: +1- ?:]
:> with(gfun):
> rec:=diffeqtorec(E(z)-¥(z),y(z),u(n));

rec={-2ula)+adu(l+a)—mu(0)=0,u(1)=0,u(2)= l—]

PROC:=rectoproc(rec,u(n)):
time();

VI\/I

28.099

> t:=time():evalf(PROC(4000));time()-t;
1999000000
0.017
> t:=time():evalf(PROC(40000));time()-t;
1999900000
0.050
> evalf(log(40000)/log(4000));
1.277618919
> BITS_NUMER_4000:=evalf(log(numer (PROC(4000)))/log(10));
BITS NUMER 4000 = 1207.420796
> BITS_NUMER_40000:=evalf (log(numer (PROC(40000)))/log(10));
BITS NUMER 40000 = 12045.50083
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Automatic computations - Lib. gfun (Salvy-Zimmerman)

rec:=diffeqtorec(E(z)-y(z),y(z),u(n));
PROC:=rectoproc(rec,u(n}):
PP[4000] : =PROC (4000) ;

g™

26350899827684352571076756986789461 35004854303025452265416514097033272099297556075760842449422107 1944248 740572204952929253855 18857078692 1982 1 8039384257185
930508042143293910237016123149012158661431363192935747794631755343954422489188643985605602952832739661189294017486176163962476680465 148128629219226693451F
T616564579653326533152116751987169088120903711326493141941024724576377193712598746393325621172177608837740203359481 599889055366167377732651823103641252735
3414595947305921 11204790941 564752043 19528599141 17438 164391026906958 299508 2098496259868 2496559536491 13971 743294709168 79684875 148 580824268¢
72413752231537403993608303334745961 48 1203652 12952448 1426 10805 840455064559 134667030298 31279070468 7079353 1354824541 75849720688 5640931 74157630595 50400063544¢
6T21T6191011511331013580343939476962503713 147630469877423113567606335900780902993 13664684231393397949869929643078593616544758290908 10870106378 7860954672032
0588031354659109364559093701888447103900767515491 18851727041 14540033852844839313698622453705624017678 1373287638192394840336169737245595546693897583441229:
6996981 873RR03GI255494851728608601169229313937152127802599162360457889640974096533205528 730408 2286646838 1 14987802625 f

1318204093430943 100103889794236591363 15401916 1093272769092803450241 756928 112834455 1079752123 172122033 1409407564807 1682303844681 769424058 128173 106245251215
3B5446° 5632897064277199393003638653529242495144 888321833894 158323756200092849226089461 1 1038378734077913265440918583 12558605043 164728460363649081
500078268 116724689002 106891 044880894853471921527088201197650061259448583977618746693012787452335047965869945140544352170538037327032402834008 159261 693483¢
994727160945 76894007243 168662 568 8B66030658324868 30606 1250176433 56469732407252874567217733694824236675323341 75568 18392219546938204560720202538843 7122682684
S8636194212875139566587445390068014747975813971 7481 14770439248826688667129237954 1 2855584 1 87446066572963049263 86001 79338272579 1 L002088 1228767361 20060347897
2016889399757435372763399896922309279823570166606797269890623692 1628 76477283791 3526086464389161370534616936703744840302973527909408738729896842351633 16260¢
983893514490200568512210790489667 188 7894330923207 1978575639877208621237040940126912767610658 14107937875804340361 14254547441 8057T15085520493716346090251272
5126053963922 145700597724 72666763440 181556475095 1539671 13514875460624794445927790555554213627225045 757069 10949376

> evalf(logl0(numer(PP[4000]))};
1207 420796
[> evalf(logl0(denom(PP[40001}));

1204.119983
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An application to biology - Protein Motifs Statistics
Motif PS00844 (1998): DALA DALA LIGASE 2
[LIV]-x(3)-[GA]-x- [GSAIV]-R-[LIVCA]-D-[LIVMF](2)-x(7,9)-[LI]-x-
E-[LIVA]-N-[STP]-x-P-[GA]

» A: alphabet of the proteins (20 letters)
s LV]=L+T1+V

[LIVMF](2) = (L+1+V + M + F)?

» x=A

» x(3) =x3

> x(7,9) = x7 +x® +x?

v

The automaton recognizing A*.PS00844 and counting the
matches of the motif in a random non-uniform Bernoulli text
has 946 states while the number of words of the finite
language generated by the motif is about 2 x 10%°
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Comparison of Observed and Predicted Counts

_ log(0)
5ﬁy ~ log(10)
2]

3,

71 Motifs with Expectation > 2
in a Database of 6.75 million positions

For these motifs, o =~ /F (Poisson-like)

Curves: +3c

_ log(E)
log(10)

x

EE 5

From [N.,Salvy,Flajolet] - Motif Statistics, TCS2002
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Open problems

» Definition of a random model of NFA

» Limit distribution of the number of occurrences of two
regular expressions (use Heuberger's theorem)

» Generalization of Hwang's Large Powers theorem to
dimensions larger than two

» Limit distribution when the number of occurrences is O(1)

(one regular expression) - Conjecture: Poisson
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