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Abstract. Recently Ehrhard and Regnier have introduced Differential
Linear Logic, DiLL for short — an extension of the Multiplicative Expo-
nential fragment of Linear Logic that is able to express non-deterministic
computations. The authors have examined the cut-elimination of the
promotion-free fragment of DiLL by means of a proofnet-like calculus:
differential interaction nets. We extend this analysis to exponential boxes
and prove the Cut-Elimination Theorem for the whole DiLL: every dif-
ferential net that is sequentializable can be reduced to a cut-free net.

Introduction

The cut-elimination procedure has been invented by Gentzen in order to prove
consistency of classical logic and Peano Arithmetics. First, he introduced the
sequent calculus LK, a proof system sound and complete with respect to classical
logic. In this system there is just one deductive rule – the cut – which might
prove absurdity, so that consistency can be deducted from the redundancy of such
rule. In order to achieve it, Gentzen defined then cut-elimination, a procedure
transforming a proof π into another one π′ of the same theorem where however
cuts in π′ are in “some sense” reduced. Redundancy of the cut rule is then
obtained by proving that iterating this procedure always terminates to a cut-
free proof – the Cut-Elimination Theorem.

Through the time the procedure of cut-elimination has acquired more and
more importance in proof theory, also independently from the question of con-
sistency. In particular in the 60’s, cut-elimination revealed a deep nexus between
logic and computer science, enabling a correspondence between the execution of
programs and the cut-elimination of proofs. This correspondence is called the
Curry-Howard correspondence, and allows to express termination properties of
programming languages as cut-elimination theorems in specific proof systems.

! Supported by a post-doc fellowship of Région Île de France and Italian MIUR Project
“CONCERTO”.
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Linear logic (LL, [Gir87]) has been build around cut-elimination: it splits
the connectives ”and”, ”or” of LK in two classes (the multiplicatives ⊗, `, and
the additives &, ⊕) depending on their behavior during cut-elimination, and it
introduces a new pair of dual connectives (the exponentials !, ?) giving a logical
status to the actions of erasing and duplicating whole pieces of a proof. Linear
Logic allows to express cut-elimination as a rewriting of proof nets – specific
graphs that give a sharper account of cut-elimination than LK. Indeed the proof
nets drastically decrease the types of commutative cuts, abounding instead in
sequent calculus.

In the syntax of proof nets the commutative cuts are due to the boxes – special
hyper-edges representing the sequent rules of LL that have some restriction on
the context (i.e. promotion, additive conjunction and universal quantification)1

A particular feature of these cuts is that they can be profoundly affected by
the reduction of other cuts, even changing their commutative nature: this may
considerably muddle the picture (see [PTdF07] for a more detailed discussion).

As far as one restricts to the box-free fragment of LL, the cut-elimination is
easily tamable, the reduction of a cut does not affect that of the others and a
parallel reduction can be defined straightforwardly. Starting from this remark,
Lafont has introduced interaction nets [Laf90] – a graph-rewriting paradigm of
distributed computation based on the box-free fragment of the proof nets.

The discovery of LL and proof nets has been a fundamental step towards
the extension of the Curry-Howard correspondence, that was at the beginning
restricted to the functional and sequential core of the programming languages. In
particular Ehrhard and Regnier [ER06] have recently achieved a significant step
towards a logical understanding of concurrency theory with the introduction of
differential linear logic (DiLL). This system extends linear logic with three new
rules handling the ! modality (codereliction, cocontraction and coweakening) and
allows to express a concurrent sharing of resources [EL08]. The codereliction in
particular creates data that can be called exactly once, so that a program made
of several subroutines is executed non-deterministically on ”coderelicted” inputs,
depending on which subroutine gains the unique available copy of the inputs.
Thus we have formal sums, where each addendum represents a possibility.

The cut-elimination of DiLL is analyzed with a proofnet-like calculus, called
differential nets. Actually, [ER06] considers only the promotion-free fragment
of DiLL, whose nets are without boxes and called differential interaction nets,
being a non-deterministic example of Lafont’s interaction nets. In that restricted
setting the authors prove the Cut-Elimination Theorem. In our paper, we extend
their result to the whole DiLL, using differential nets with exponential boxes.
The main difficulty in such an extension is to account for the exponential com-
mutative cuts, and specifically for the commutative cut between a codereliction
and a box, which has a completely non-standard behavior with respect to the
commutative cuts in linear logic proof nets (see the discussion on Figure 6).

1 In this paper, indeed, we consider only the exponential boxes. Up to now, differential
nets are restricted to the multiplicatives and exponentials; besides, there are specific
notions of LL proof nets able to avoid the boxes for additives and quantifiers.
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ax

! A, A⊥

! Γ, A ! A⊥, ∆
cut

! Γ, ∆

! Γ, A,B, ∆
ex

! Γ, B, A,∆

! Γ, A,B
`

! Γ, A ` B

! Γ, A ! B, ∆
⊗

! Γ, A ⊗ B, ∆

! Γ
?w

! Γ, ?A
! Γ, ?A, ?A

?c
! Γ, ?A

! Γ, A
?d

! Γ, ?A

! ?Γ, A
p

! ?Γ, !A

!w
! !A

! Γ, !A ! !A, ∆
!c

! Γ, !A, ∆

! Γ, A
!d

! Γ, !A

0
! Γ

! Γ ! Γ
sum

! Γ
empty

!
! Γ ! ∆

mix
! Γ, ∆

Fig. 1: sequent calculus rules for differential linear logic.

1 Preliminaries

1.1 Differential Nets

We recall differential nets and their cut-elimination: first, we introduce the
promotion-free nets, called differential interaction nets in [ER06], then we add
boxes to accommodate promotion. In the sake of brevity, the presentation is kept
informal, and we refer to [ER06,Vau07] for a more detailed one. We denote sets
with braces { }, and sequences by angles 〈 〉. Boldface letters a, b etc. range over
sequences, and for i ≤ length(a), ai denotes the i-th element of a.

Types of DiLL. The formulas of DiLL are generated by the following grammar,
where X , X⊥ range over a fixed set of propositional variables:

A, B ::= X | X⊥ | A ⊗ B | A ` B | !A | ?A.

Linear negation is involutional (A⊥⊥ = A) and defined through De Morgan laws:
(X)⊥ := X⊥, (A ⊗ B)⊥ := A⊥ ` B⊥, (!A)⊥ := ?A⊥.

Variables and their negations are atomic, ⊗, ` are multiplicative, while
!, ? are exponential. For brevity, we omit to consider multiplicative units 1,
⊥, however all the results in this paper can be extended to the general case
straightforwardly. A sequent Γ is a finite sequence of formulas A1, . . . , An.
Capital Greek letters Γ, ∆ range over sequents. Fig. 1 gives the rules of DiLL
sequent calculus. The calculus is extended with the rule mix and its zeroary
version empty— this is needed to have a fair correctness criterion (Prop. 1).

Differential interaction nets. A simple interaction net α is the union of a
graph and an hyper-graph on a given set of nodes, respecting the following
constraints (see Figure 5(a) for examples).

– The nodes of α are called ports, they are crossed exactly by one edge and at
most by one hyper-edge. In the figures, the ports are not explicitly depicted,
as they correspond to the extremities of the edges.
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Fig. 2: cells for differential interaction nets, together with their typing rules.

– The edges of α are called wires, they are undirected, possibly loops; a wire
{a, b} between two distinct ports a, b has two orientations: from a to b,
denoted 〈a, b〉, and from b to a, denoted 〈b, a〉; with each orientation is as-
sociated a formula of DiLL in such a way that the formula associated with
〈a, b〉 must be the linear negation of the formula associated to 〈b, a〉.2

– The hyper-edges of α are called cells, and they are sequences of the ports
they cross; the first port crossed by a cell is called principal, the other
ones (if any) are called auxiliary; every cell is labelled by a symbol that
determines the arity of the cell and the types of the wires incident to it, as
it is depicted in Figure 2. We require also that cells are not incident to loops.

The type of a port a of α is the type of 〈b, a〉, where {a, b} is the unique wire
of α crossing a; in particular this means that the ports connected by a wire have
dual types. The ports of α which are crossed by no cell nor loop, are called free.
We require that α is given with an enumeration p of its free ports, called the
interface of α. The sequent conclusion of α is Γ = A1, . . . , An, where n is
the length of p and for every i ≤ n, Ai is the type of pi.

A differential interaction net with sequent conclusion Γ is a finite multi-
set3, possibly empty, of simple interaction nets with the conclusion Γ .

The loops must be admitted, as they can be produced by cut-elimination.
However, they do not appear in the differential nets that are sequentializable,
and so they are voluntarily left out of the discussion the most of times.

Adding boxes. Boxes are a special kind of cells parameterized by a net, this
last one standing for a proof of the premise of the corresponding promotion
rule. Formally, the sets dN of differential nets and sN of simple nets are
defined simultaneously, by induction on the exponential depth. This means that
we define sNd and dNd for every d ∈ N and then we set:

sN :=
∞
⋃

d=0

sNd , dN :=
∞
⋃

d=0

dNd .

sN0 (resp. dN0) is the set of the simple interaction nets (resp. differential inter-

2 Loops are intentionally considered untyped.
3 In a general setting, differential nets are finite linear combinations of simple nets

with coefficients in a commutative semiring R with units. In this paper however we
will consider only the case R = N, and in such a case the differential nets are the
finite multisets of simple nets.
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·
·
·

!π
?Cn

?Cn

!A

(a) a box

β·
·
· P

β∈π

?Cn

?C1

A
!A

·
·
·

?Cn

?C1

(b) a box with its contents inside

Fig. 3: a box of type !π can be also presented with its contents depicted inside.

action nets). A simple net of sNd+1 is a simple net α defined from the cells of
Fig.2 and 3(a), such that every box o of α is labelled by a symbol !π, where π is
a differential net of dNd, called the contents of o. Moreover, together with o it
is given a fixed correspondence between the free ports of every simple net β ∈ π
and the ports of o: for every port a of o we denote by aβ the correspondent free
port of β. This correspondence enjoys the typing conditions sketched in Fig.3(b).

A differential net π of dNd with sequent conclusion Γ is a finite multiset,
possibly empty, of simple nets of sNd with sequent conclusion Γ .

Initial Greek letters α, β, γ (resp. final Greek letters π, σ, ρ) range over
simple nets (resp. differential nets). We use the additive notation for multisets:
0 is the empty multiset, π + σ is the disjoint union of π and σ (repetition does
matter); a differential net π can also be written as

∑

α∈π α.
The depth of a simple net α (resp. differential net π) is the minimal d

such that α ∈ sNd (resp. π ∈ dNd). Many definitions are done by induction on
the depth: let us skip to mention it explicitly, when evident. So, we say that a
cell/wire w is at depth d of a differential net π, denoted w ∈d π, whenever
w ∈d α for a simple net α of π; and we say that w ∈d α whenever either d = 0
and w is a cell/wire of α, view as an interaction net, or there is a box !ρ ∈0 α
and w ∈d−1 ρ. We write w ∈! π meaning w ∈d π for a d ∈ N.

Switching acyclicity. Every proof in the sequent calculus of DiLL can be trans-
lated in a differential net with the same sequent conclusion. This translation is
defined by induction on the size of the proof and can be easily deduced from
the sequent rules of Figure 1. The translation is not surjective (neither injective)
over dN and we call sequentializable the differential nets that are images of it.
Purely graph-theoretical conditions, called correctness criteria, have been pre-
sented in order to characterize the set of sequentializable differential nets. We
give here one among the most celebrated of such correctness criteria, switching
acyclicity, presented originally by Danos and Regnier [DR89] for the multiplica-
tive fragment of linear logic, and then extended to DiLL in [ER06].4

A switching of a cell c is an undirected graph σ whose nodes are the ports
of c and whose edges are defined depending on the label of c: in case c is of
type ` or ?c, σ has exactly one edge, crossing the principal port and one chosen
auxiliary port of c (so c has two possible switchings); otherwise σ is unique and it
has one edge for each auxiliary port of c, if any, wiring that port to the principal
one. A correctness graph of a simple net α is an undirected graph σ having

4 To be precise, [ER06] introduces switching acyclicity in the promotion-free fragment
of DiLL, however its generalization to exponential boxes is straightforward.
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as nodes the ports of α and as edges the wires of α plus the edges obtained
substituting every cell with one among its switchings.

A differential net π is switching acyclic if every simple net of π is switching
acyclic; a simple net α is switching acyclic if every correctness graph of α is an
acyclic graph and for every box !ρ ∈0 α, ρ is switching acyclic.

Proposition 1. A differential net π is sequentializable iff it is switching acyclic.

Proof. Standard generalization of the technique developed in [DR89,Dan90].

1.2 Cut-Elimination

A port is active whenever it is the principal port of a cell or it is an auxiliary
port of a box. A cut is a wire connecting two active ports. A differential net is
cut-free if it has no cut at any depth.

The reader should notice the difference with respect to the differential inter-
action nets: in that restricted setting the only active ports are the principal ones.
Exponential boxes add commutative cuts, that are wires between the principal
port of a cell and an auxiliary port of a box.

Interaction. We denote αa the pair of a simple net and a sequence a of the free
ports of α. Let αa and βb be such that a and b have the same length n and
for every i ≤ n, ai and bi have dual types, we call the interaction between αa

and βb the simple net 〈αa|βb〉 obtained by equaling for every i ≤ n the port ai

of α with the port bi of β, and then by merging the wires that have a port in
common5:

〈

. . .
a1:A1

. . .
an:An

αa ∣

∣

∣

b1:A⊥
1

. . .
bn:A⊥

n

. . .

βb 〉

:= . . .. . . . . .

αa βb

An

A1

. . .

We can omit the superscripts a, b if they are clear or unimportant. The writing
〈αaa

′

|βb, γc〉 means 〈〈αa|βb〉a
′

|γc〉, where a and a′ are sequences of distinct free
ports of α with the lengths and the dual types of resp. b and c. Interaction is
extended to differential nets by bilinearity:

〈
∑

i≤l

αa
i |

∑

j≤m

βb
j 〉 =

∑

i≤l
j≤m

〈αa
i |β

b
j 〉 .

Reductions. Let R be a binary relation over differential nets with the same se-
quent conclusion, the context closure of R is the smallest relation R◦ s.t.

– R◦ is closed by sum: πR◦π′ implies (π + ρ)R◦(π′ + ρ), for ρ ∈ dN; and
– R◦ is closed by interaction: πR◦π′ implies 〈α|π〉R◦〈α|π′〉, for α ∈ sN; and
– R◦ is closed by promotion: πR◦π′ implies !πR◦!π′.
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⊗ ` ⊗/`
−−−→ ?d!π

·
·
· p/?d

−−−→ π !π

·
·
·

!d
!d/p
−−→ !w

P

β∈π

P

α∈π

·
·
·

β

!c

·
·
·

α
!d

·
·
·

!d

·
·
·

?c

?c

∗w ∗d ∗w/∗d
−−−→ 0 ?d!d !d/?d

−−−→ ∗d ∗c ∗d/∗c
−−−→

∗w

∗w
+

∗d

∗d

!π

·
·
·

·
·
·

$
$/p
−−→

·
·
·

·
·
·

·
·
· α∈π

·
·
·

α
$

P

?c$

·
·
· $/?c

−−−→

?c

?c $

$

·
·
·

·
·
·

·
·
· ?w$

·
·
· $/?w

−−−→
?w

?w

·
·
·

Fig. 4: elementary reduction steps (ers) for differential nets, where ∗ (resp. ∗) is
? (resp. !) or ! (resp. ?), and $ is !w, or !c, or !π. In the !w/?w ers the contractum
is the empty graph.

In Figure 4 we define specific relations called elementary reduction steps,
ers for short. The net at left of an ers is the redex, that at right the contractum

of the ers. For any union R among them we define a reduction, denoted
R
−→, as the

context closure of R. We write by
R∗
−→ the reflexive and transitive closure of

R
−→.

In particular, we define the cut-elimination
cut
−−→ as the context closure of the

whole Figure 4, and the exponential reduction
e
−→ as the context closure of all

the ers of Figure 4 but the ⊗/` ers. We say that a differential net π enjoys the

cut-elimination if there is a cut-free differential net π0 such that π
cut∗
−−−→ π0.

Notice that the redex of every ers in Fig. 4 is a simple net; also the contractum
is simple except for !w/?d, !d/?w, !d/?c, !c/?d, !d/p, and p/?d. In particular !w/?d
and its symmetric !d/?w yield the empty sum 0. Also the steps !d/p and p/?d
yield 0, in case the content of !π is 0.

Proposition 2. Let π
cut
−−→ π′. If π is switching acyclic, then so it is π′.

Proof. [ER06] gives the proof for the box-free case: the generalization is easy.

?X⊥!X
?c !c!X !c/?c

−−−→
?X⊥

!c?c
?c!c !X!X !c/?c

−−−→ · · ·

(a)
(b)

Fig. 5: a simple net not enjoying cut-elimination, nor switching acyclicity.

5 Although intuitively clear, the operation of merging wires should be handled with
care because each of the two interfaces a and b may contains pairs of ports wired
together and then loops can be produced. We refer to [Vau07] for a formal definition.



8 Michele Pagani

Examples. Figure 5 depicts a (typed) simple net not enjoying cut-elimination nor
switching acyclicity (Figure 5(b) gives its cyclic correctness graph): as known,
switching acyclicity is an hypothesis needed to prove6 cut-elimination. Notice
that replacing the !c-cell of Fig. 5(a) with a box gives a counter-example to the
cut-elimination for switching cyclic LL nets.

!d

?d ?d

?c

X

!X

!!X

!X!X

(a)

p/?c
−−−→

!d
?c

?d ?d

(b)

!d/?c
−−−→

!d !w

?d?d

!d !w

?d?d

+

(c)

p/?d
−−−→

!d

?d !w

+ · · ·

(d)

!d/p
−−→

!d

!w!d

?d !w

!c + . . .

(e)

cut∗
−−→

!w

+
XX

!d !w !d

!X !X !X !X

(f)

Fig. 6: example of a reduction to a cut-free differential net.

Figure 6 gives an example of reduction from the (switching acyclic) simple net
in Fig. 6(a) to the cut-free differential net in Fig. 6(f); by the way, notice that the
sequent conclusion X⊥, !X, !X is provable in DiLL but not in LL. Let us comment

the main ers. In the step (a)
p/?c
−−−→(b) the size of the reduced net is increased since

a box is duplicated; moreover, the reduction affects the commutative cut incident
to the duplicated box, changing its type from !d/p to !d/?c. The fact that the
reduction of a cut may affect other cuts takes away from the interaction net

paradigm. The step (b)
!d/?c
−−−→(c) creates a sum and duplicates cuts even outside

boxes. This duplication is closed to the additive duplication in the sliced proof-
nets of LL, but the acquainted reader should observe that in the sliced proof-nets
the sums cannot be created (see [PTdF07] for more details). The reduction then
focuses on the left addendum of the sum, and reduces a p/?d redex, getting the

differential net in (d). The step (d)
!d/p
−−→(e) is the real crucial one, and shows

the main oddities of the cut-elimination of DiLL with boxes. As in the p/?c
ers, the size of the reduced net is increased and the reduction affects other cuts,
but now among the affected cuts there is the one crossing the principal port of

6 Actually, one can weaken switching acyclicity into visible acyclicity [Pag06], keeping
cut-elimination.
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the box involved in the reduction, which can be non commutative. Having ers
affecting non commutative cuts is a peculiarity of DiLL with boxes and makes
subtle importing techniques developed in LL.

2 The Cut-Elimination Theorem

We prove our main result: switching acyclic differential nets enjoy the cut-
elimination (Theorem 1). This result is achieved by purely combinatorial means,
specifically by induction on the pair 〈grade(π), count(π)〉, lexicographically or-
dered, where grade and count are measures defined in Definition 1.

We actually guess that
cut
−−→ is also strongly normalizing7, but its proof should

be quite hard and it deserves further research.

Definition 1. The grade of a formula A is the number grade(A) of connectives
occurring in A; the grade({a, b}) of a wire {a, b} is the grade of the type of 〈a, b〉
(or equivalently of the type of 〈b, a〉). The grade(π) of a differential net π is the
maximum grade of the cuts at any depth of π, if any, otherwise it is 0. The
count of a differential net π is the number count(π) of the cuts at any depth of
π having grade equal to grade(π).

Notice that π is cut-free iff grade(π) = 0 iff count(π) = 0. Moreover, consider
two differential nets ρ and ρ′ s.t. 〈grade(ρ′), count(ρ′)〉 < 〈grade(ρ), count(ρ)〉,
and a differential net π having a box o ∈! π of type !ρ and grade(π) = grade(ρ),
then the differential net π′ defined from π by replacing o with a box o′ of type
!ρ′, enjoys 〈grade(π′), count(π′)〉 < 〈grade(π), count(π)〉.

Recall Figure 4 and remark that the pair 〈grade(π), count(π)〉, lexicographi-
cally ordered, shrinks whenever an ers of type among ⊗/`, p/?d, !d/?d, !w/?w,
!d/?w, !w/?d, p/?w is applied to a cut of π with maximal grade. This is not the
case for the other types of ers: they are indeed handled by Lemma 1, stating
that any cut with exponential type can be reduced into several (possibly 0) cuts
with strictly lesser grade. Lemma 1 is proved by induction on the rank a measure
defined as follows.

Definition 2. We define simultaneously the rank of a cell and the rank of a
differential net, by induction on the depth. The rank(π) of a differential net π is
the maximum rank of its simple nets; the rank of a simple net is the sum of the
ranks of its cells; the rank of a cell c is the number

rank(c) :=

{

(n + 1)(rank(ρ) + 2 + n) if c is a box !ρ crossing n + 1 ports,

1 otherwise.

Recall Figure 4 and notice that the rank of every simple net in the contractum
of a !d/p ers is strictly smaller than that of its redex, so justifying Definition 2.

7 For every π switching acyclic there is no infinite {πi}i∈N
s.t. π0 = π and πi

cut
−−→ πi+1.
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!A

a !d
!A

a !w
!A

a !π
!A

.
.
.

a

·
·
·

α1

·
·
·

α2

!c
a

!A

!A

!A

Fig. 7: inductive definition of the !-trees; the ?-trees are defined similarly, using
?-types and ?-cells, except for the !π-case, which does not yield a ?-tree.

Definition 3. A !-tree (resp. ?-tree) is a simple net α with a distinguished
free port a of type !A (resp. ?A), for a suitable A, called the root of α, and such
that one of the following inductive conditions hold (see Figure 7):

– α is a wire crossing a;
– α is a !d-cell or a !w-cell (resp. ?d-cell or ?w-cell) with its incident wires

and a is the free port wired to the principal port of this cell;
– (only for the !-trees) α is a box !π with its incident wires and a is the free

port wired to the principal port of the box;
– α is made of a cocontraction (resp. contraction) l, its incident wires and two

!-trees (resp. ?-trees) having their roots auxiliary ports of l, and a is the free
port wired to l

Notice a ?-tree is cut-free and switching acyclic; the same holds for !-trees,
supposed that the contents of their boxes are resp. cut-free and switching acyclic.

Lemma 1 (Exponential Lemma). Let !A be a formula, αa = 〈αa1

1 , . . . , αan
n 〉

be a sequence of n ≥ 1 !-trees having the root ai of type !A, and let βb be a sim-
ple net with b = 〈b1, . . . , bn〉 distinguished free ports of type ?A⊥. Suppose also
grade(β) < grade(!A) and for every i ≤ n, grade(αi) < grade(!A). The interac-
tion 〈βb|αa〉 e-reduces to a differential net π such that grade(π) < grade(!A):

〈βb|αa〉 := · · ·

β

· · · · · ·

d1 dn

c1 cn

!A!A

α1 αn

e∗
−→ π, with grade(π) < grade(!A) .

Proof. The proof is by induction on the pair 〈maxi≤n(rank(αi)), rank(β)〉, lex-
icographically ordered. If no wire {ci, di} linking β to the !-trees is a cut, then
we simply set π = 〈β|α〉 (in the sequel we will omit the superscripts b and
a). Otherwise, suppose w.l.o.g. that the wire {c1, d1} is a cut. The proof splits
in several cases, depending on the type of the ers associated with {c1, d1}. We
consider only the most delicate cases, the others being straightforward or easy
variants of those presented here. In the sequel, α′ denotes 〈αa2

2 , . . . , αan
n 〉.

Case i (p/?d). If α1 is a box o of type !ρ and c1 is the principal port of a

?d-cell k (see the leftmost net of Fig. 8), then 〈β|α〉
p/?d
−−−→

∑

δ∈ρ γδ, where γδ
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is obtained from 〈β|α〉 by replacing the redex made of o and k with δ (see the
rightmost net of Figure 8). Call β′ the subnet of β not containing the ?d-cell k.

β′

· · ·

αn

A

α2

· · ·

· · · · · ·

!A
d1
c1

!ρ

k
?d

p/?d
−−−→

β′

· · ·

αn

A

α2

· · ·

· · ·

δ

· · ·
P

δ∈ρ

Fig. 8: case p/?d.

Consider 〈β′|α′〉, which is a subnet of every γδ, for δ ∈ ρ. Obviously we have
max2≤i≤n(rank(αi)) ≤ maxi≤n(rank(αi)) and rank(β′) = rank(β)− 1, hence we
can apply the induction hypothesis to 〈β′|α′〉 and get a differential net π′ such

that 〈β′|α′〉
e∗
−→ π′ and grade(π′) < grade(!A). From the hypothesis we have also

for every δ ∈ ρ, grade(δ) < grade(!A).
Define π as the interaction 〈π′|ρ〉 between the A⊥ free port of (every sim-

ple net of) π′ and the A free port of (every simple net of) ρ. Conclude that

grade(π) < grade(!A) and 〈β|α〉
e∗
−→ π.

Case ii (!c/?d). If α1 is a cocontraction l wired to two !-trees αl and αr and the
port c1 of β is the principal port of a dereliction k (see the leftmost net of Fig. 9),
then 〈β|α〉 !c/?d-reduces to γl+γr, where γl (resp. γr) is obtained by erasing the
!-cell l and by wiring its left (resp. right) auxiliary port, denoted al (resp. ar),
with the principal port c1 of the dereliction k, and its right (resp. left) auxiliary
port with the principal port cw of a new weakening cell (see the differential net
at the middle of Figure 9, where one must think that the sum distributes). Call

ar

?d β′

· · ·

αn
· · ·

· · ·

k

αl αr

!c

!A

l

d1
c1

A

α2
al

!c/?d
−−−→

ar

?d?w β′

· · ·

αnα2

· · ·

· · ·

k
A

αl αr

+

al

e∗
−→

A

· · ·

· · ·

ε

δP

ε∈π′

δ∈πl+πr

Fig. 9: case !c/?d.

β′ the subnet of β not containing the ?d-cell k, and notice γl (resp. γr) can
be decomposed into the subnet 〈β′|α′〉 and the subnet 〈βc1cw

0 |αal

l , αar
r 〉 (resp.

〈βc1cw
0 |αar

r , αal

l 〉), where β0 denotes the simple net formed by the ?d-cell k and
the weakening created by the ers.



12 Michele Pagani

First, consider 〈β′|α′〉: we have max2≤i≤n(rank(αi)) ≤ maxi≤n(rank(αi))
and rank(β′) = rank(β) − 1, hence we can apply the induction hypothesis and

get a differential net π′ s.t. 〈β′|α′〉
e∗
−→ π′ and grade(π′) < grade(!A). Second,

consider the simple net 〈βc1cw
0 |αal

l , αar
r 〉: we have max(rank(αl), rank(αr)) <

rank(α1) ≤ maxi≤n(rank(αi)), hence we can apply the induction hypothesis

and get a differential net π′
l satisfying 〈βc1cw

0 |αal

l , αar
r 〉

e∗
−→ π′

l and grade(π′
l) <

grade(!A). Similarly we get a differential net π′
r satisfying 〈βc1cw

0 |αar
r , αal

l 〉
e∗
−→ π′

r

and grade(π′
r) < grade(!A).

Finally, we define π as the interaction between the A⊥ free port of (every
simple net of) π′ with the A free port of (every simple net of) π′

l + π′
r, see

Figure 9. We have 〈β|α〉
!c/?d
−−−→ γl + γr

e∗
−→ π and grade(π) < grade(!A).

Case iii (!c/?c). If α1 is a cocontraction l wired to two !-trees αl and αr

and the port c1 of β is the principal port of a contraction k (see the left-
most net of Figure 10) then 〈β|α〉 !c/?c-reduces to the net γ in the middle
of Figure 10. Let β′ be the subnet of β not containing the contraction k, let

al

?c β′

· · ·

αn
· · ·

· · ·
αl αr

!c

!A

l

d1
c1

k
clcr

α2
ar

!c/?c
−−−→

cl

!c!c

?c ?c

β′

· · ·

αnα2

· · ·

· · ·
αl αr

aral

cr

e∗
−→

ε+

?c ?c

αl αr

· · ·

ε

al ar
P

ε∈π′

Fig. 10: case !c/?c.

cl, cr be the two auxiliary ports of k and let al, ar be the two auxiliary ports
of l, which are also the roots of resp. αl and αr. Finally, let ll, lr be the two
copies of l created by the reduction of {c1, d1}: notice ll, lr are !-trees hav-
ing rank equal to rank(l) = 1. Consider 〈β′|ll, lr, α′〉, which is a subnet of
γ. Observe that max{rank(l), rank(α2), . . . , rank(αn)} ≤ maxi≤n(rank(αi)) and
rank(β′) = rank(β) − 1, hence we can apply the induction hypothesis and get a

differential net π′ such that 〈β′|ll, lr, α′〉
e∗
−→ π′ and grade(π′) < grade(!A).

For every ε ∈ π′, let ε+ be the net formed by ε and the two copies of the
contraction k created by the reduction of {c1, d1} (see the rightmost simple
net of Figure 10). Let us consider the interaction 〈ε+|αl, αr〉 and notice that
max(rank(αl), rank(αr)) < rank(α1) ≤ maxi≤n(rank(αi)). We thus apply the

induction hypothesis, getting a differential net πε s.t. 〈ε+|αl, αr〉
e∗
−→ πε and

grade(πε) < grade(!A). Define π =
∑

ε∈π′ πε and conclude: 〈β|α〉
!c/?c
−−−→ γ

e∗
−→ π

and grade(π) < grade(!A).

Case iv (!d/p). If α1 is a codereliction l and the port c1 of β is an auxiliary
port of a promotion o of type !ρ (see the leftmost net of Figure 11), then 〈β|α〉
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!d/p-reduces to the differential net
∑

δ∈ρ βδ, where βδ is obtained from β by
replacing o with the simple net δ′ outlined at the right of Figure 11. For every

!dl

β′

· · ·

αnα2

· · ·

· · ·

!ρ

c1

o

!A
· · ·

· · ·

d1
!d/p
−−→ !ρ

w
o!c

δ!d

P

δ∈ρ

β′

· · ·

αnα2

· · ·

· · ·

·
·
·

δ′ !d
l

?c
?c

Fig. 11: case !d/p.

δ ∈ ρ, we have rank(βδ) = rank(β′) + rank(δ′), where β′ is the subnet of β not
containing o; we have also rank(δ′) < rank(!ρ), in fact the rank has been suitably
defined to have any contractum of a !d/p ers strictly smaller than the rank of
its redex (Definition 2). Hence we conclude rank(βδ) < rank(β). We apply the

induction hypothesis to 〈βδ|α〉 getting a differential net πδ s.t. 〈βδ|α〉
e∗
−→ πδ

and grade(πδ) < grade(!A). We define π =
∑

δ∈ρ πδ and we conclude 〈β|α〉
!d/p
−−→

∑

δ∈ρ βδ e∗
−→ π and grade(π) < grade(!A).

Case v (Otherwise.). The case !d/?c is an easy variant of the case !c/?d. The
case !c/p is similar to the case !c/?c: indeed, adopting the notation of Fig. 10,
one has to apply three times the induction hypothesis — once applied to 〈β′|α′〉,
once to the contents of the box involved in the !c/p ers, and a last time to the
interaction with the !-trees residue of αl and αr. The p/?c, and p/p cases are
variations of the case !c/p. The other cases are obvious.

,-

Let us stress that in general the count of the differential net π mentioned
in Lemma 1 may be greater than count(〈βb|αa〉): what decreases is the grade.
This motivates the introduction of two distinct measures, grade and count.

Theorem 1. For every switching acyclic π, there is a cut-free π0 s.t. π
cut∗
−−−→ π0.

Proof. The proof is by induction on the pair 〈grade(π), count(π)〉, lexicographi-
cally ordered. Let {a, b} ∈! π be a cut having maximal grade, i.e. grade({a, b}) =
grade(π), and having maximal depth among the cuts with maximal grade in π.
Let α be the simple net of π or of the contents of a box in π, having {a, b} at
depth 0. Our goal is to prove that:

(∗) there is a cut-free differential net ρα such that α
cut∗
−−−→ ρα.

First we show that (∗) entails that π enjoys the cut-elimination. Indeed since
grade(α) = grade(π), the differential net π′ obtained from π by substituting
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α with ρα meets 〈grade(π′), count(π′)〉 < 〈grade(π), count(π)〉. Since π
cut∗
−−−→ π′

and π′ is switching acyclic (Proposition 2), we conclude by induction hypothesis.
So let us prove (∗). The multiplicative case is straightforward. Then suppose

{a, b} has an exponential type, let a : !A and b : ?A⊥. Let α! be the maximal
!-tree of α with root a, and let α? be the maximal ?-tree of α with root b. Let
moreover o1, . . . , on, for n ≥ 0, be the boxes of α having one, or more, auxiliary
port !A as free port of α?, and let α?+ be the simple net made of α? and of
these boxes o1, . . . , on. Notice that there is no cut between α? and any box oi:
indeed, α? is a ?-tree, hence none of its free ports is connected to an active port,
but b. By the switching acyclicity of α, the !-tree α! and the simple net α?+ are
disjoint, i.e. the sets of the ports in resp. α! and α?+ are disjoint. This means
that α may be expressed as the interaction among three simple nets: α!, α?+

and a simple net β, as follows

α = 〈β|〈α?+|α!〉〉 =

o
n

o
1

α
?

I
˘

β

α?+

!A
b

aα!

· · ·

· · ·

· · ·

·
·
·

·
·
·

· ·
·

,

where we denote by I the set of wires, possibly empty, shared between β and
〈α?+|α!〉. Notice that each wire {c, d} ∈ I, d denoting the free port for β, meets
exactly one of the following three conditions:

i. either d is an auxiliary port of a !d-cell in α! (resp. ?d-cell in α?), and c has
type A⊥ (resp. A);

ii. or d is an auxiliary port of a !c-cell in α! (resp. ?c-cell in α?), and c is of type
?A⊥ (resp. !A) and it is not active (i.e. nor principal port, neither auxiliary
port of a box): in fact if c were the principal port of a cell, then this cell
should be a !-cell (resp. ?-cell), and α! (resp. α?) would not be maximal,
while if c were the auxiliary port of a box then c would be a free port of α?

and this box would be one oi added to α?+;
iii. or d is an auxiliary port of a box in α! or an auxiliary or principal port of a

box oi in α?+.

By hypothesis, the contents of every box of α have a strictly smaller grade
than grade(α), and so it is in particular for the boxes in α! and those in α?+.
We then deduce grade(α?+), grade(α!) < grade(α) = grade({a, b}). This means
we can apply Lemma 1 to 〈α?+|α!〉, and get a differential net ρ′ such that

〈α?+|α!〉
e∗
−→ ρ′ and grade(ρ′) < grade({a, b}). For every γ ∈ ρ′, the interac-

tion 〈β|γ〉 is the result of replacing in α the subnet 〈α?+|α!〉 with γ. So we have

α
e∗
−→

∑

γ∈ρ′〈β|γ〉.
For every γ ∈ ρ′ we prove 〈grade(〈β|γ〉), count(〈β|γ〉)〉 < 〈grade(α), count(α)〉.

Clearly we have grade(〈β|γ〉) ≤ grade(α), so assume grade(〈β|γ〉) = grade(α)
and let us prove count(〈β|γ〉) < count(α). This amounts to count the cuts with
grade grade(α) in 〈β|γ〉 and those in α = 〈β|〈α?+|α!〉〉. Let us start with 〈β|γ〉:
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none of these cuts can be in γ, since by hypothesis grade(γ) < grade({a, b}) =
grade(α), then these cuts are either cuts in β or they are in the set I of wires
shared by β and γ. So count(〈β|γ〉) = nβ + nI , where nβ is the number of cuts
in β, nI that of cuts in I. As for α, we have count(α) = nβ +n′

I +1, where n′
I is

the number of the wires of I which are cuts in 〈β|〈α?+|α!〉〉 with grade equal to
grade(α) (in general n′

I .= nI), and the number 1 is associated with {a, b}. We
prove nI ≤ n′

I , that clearly implies count(〈β|γ〉) < count(〈β|〈α?+ |α!〉〉).
Consider a wire {c, d} ∈ I, d denoting a free port for β, with grade equal

to grade(α). Assume {c, d} is a cut in 〈β|γ〉, we prove {c, d} is also a cut in
〈β|〈α?+|α!〉〉. Recall that {c, d} meets exactly one among the above conditions
(i)-(iii). Since we suppose grade({c, d}) = grade(α), cond. (i) fails, since we
suppose {c, d} is a cut in 〈β|γ〉, c is active in β and so cond. (ii) fails. It remains
condition (iii) which entails that {c, d} is a cut also in 〈β|〈α?+|α!〉〉, d being
active in 〈α?+|α!〉.

We eventually conclude 〈grade(〈β|γ〉), count(〈β|γ〉)〉 < 〈grade(α), count(α)〉,
for every γ ∈ ρ′. However this does not mean that the pair 〈grade, count〉 shrinks
also in

∑

γ∈ρ′〈β|γ〉, since the count of
∑

γ∈ρ′〈β|γ〉 is the sum of the counts of
each 〈β|γ〉. So we first apply the induction hypothesis to each 〈β|γ〉 (notice 〈β|γ〉

is switching acyclic by Proposition 2 and α
e∗
−→

∑

γ∈ρ′〈β|γ〉), getting a cut-free

differential net ργ such that 〈β|γ〉
cut∗
−−−→ ργ , and then we define ρα =

∑

γ∈ρ′ ργ .
,-
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