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Abstract. Multi Agent Relational Action Learning considers a
community of agents, each rationally acting following some rela-
tional action model. The observed effect of past actions that led an
agent to revise its action model can be communicated, upon request,
to another agent, speeding up its own revision. We present a frame-
work for such collaborative relational action model revision.

1 Introduction
We have recently proposed a relational revision algorithm imple-
mented in IRALe [6] which performs online learning of a deter-
ministic conditional STRIPS-like model. In this paper, we study a
community of autonomous IRALe agents. Each agent acts in its en-
vironment following its relational action model, and exchanges infor-
mation with other agents following the general multi agent learning
protocol SMILE [3, 2]. Intuitively, the SMILE protocol is based on a
”consistency maintenance“ process: after revising its current model
in order to ensure that the revised model is consistent with the obser-
vations it has memorized, the agent communicates its revised model
to the other members of the community, and possibly receives past
observations they have memorized and that contradict the revised
model. After a number of such revision/criticism interactions, re-
sulting in a global revision, the revised model is stated as globally
consistent with the observations memorized by all the agents.

2 Relational Action Learning
IRALe learns online a STRIPS-like action model as a set of rules
from examples, i.e. state/action/effect triples it observes along its his-
tory. Learning consists in performing revisions whenever counter-
examples are encountered, i.e. examples that have provoked a pre-
diction error (the observed effect is not the predicted one). These
counter-examples are memorized and are the basis of further revi-
sions. In such a model, several rules can be associated to each ac-
tion, where each rule completely describes the effect of the action in
a given context, therefore allowing to represent conditional effects.
The revision process involves generalization and specialization steps
[6] and has been proven to tolerate a small amount of noise.

Examples are described as conjunctions of ground literals. State
literals that are not affected by the action are not described in the
effect part. The examples are denoted by x.s/x.a/x.e.add, x.e.del,
with x.s a conjunction of literals, x.a a literal of action and, regard-
ing the effect part, x.e.add a conjunction of literals added in the new
state and x.e.del a conjunction of literals deleted in the new state.
Some examples may have an empty effect list (i.e., x.del = x.add =
∅), accounting for illegal action applications.

IRALe builds an action model, made of a set of rules T according
to a set of memorized examples O. Each rule r is either an example or
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2 LIP6, UMR-CNRS 7606 Univ. Pierre et Marie Curie, Sorbonne Universités
3 LIPN, UMR-CNRS 7030, Univ. Paris-Nord, Sorbonne Paris Cité, France

a least general generalization of a subset of the examples memorized
by the agent with identical effects, up to some substitutions. A default
rule is implicitly added to T : for any action a, whenever no rule for
a applies, the action is predicted to have no effect, i.e. r.e.del =
r.e.add = ∅.

Rule matching definition relies on the definitions of pre-matching
and post-matching functions. Pre-matching checks whether a given
rule may apply to predict the effect of a given action in a given
state, and post-matching checks whether the rule accurately predict
the observed effect. Given an example and a rule pre-matching the
example, covering checks whether the effect part of the example is
accurately explained/predicted by the rule, while rule contradiction
appears whenever the rule incorrectly predicts the outcomes of the
action. The model T needs to be revised whenever the current ac-
tion model (including the default rule) fails to predict the observed
effect of some action in the current state. In case of failure, the
state/action/effect example is said to contradict the model, is stated
as a counter-example, and is then memorized in O. A model T is
consistent with respect to a set of examples O, denoted cons(T,O)
whenever no example in O contradicts the model.

3 Action Model Learning in a community of agents
Our approach for collective action model revision relies on the
SMILE framework [3, 2]. A community of agents, or n-MAS, is a
set of agents a1, ..., an. Each agent ai has a current model, here
a set of action rules Ti, and a set of internal counter-examples Oi.
The set of all counter-examples stored in the MAS is denoted by O
(O = ∪j∈{1,..,n}Oj). The a-consistency and mas-consistency prop-
erties are defined as follows.

- An IRALe agent ai is a-consistent iff Ti is consistent with re-
spect to Oi , i.e., the agent model Ti correctly predicts observed ef-
fects for all counter-examples in Oi.

- An IRALe agent ai is mas-consistent iff Ti is consistent with
respect to O, i.e., to all counter-examples stored by agents of the n-
MAS.

The global revision mechanism Ms is triggered by an agent ai

upon direct observation of a contradictory observation x, denoted
as an internal counter-example. This counter-example breaks a-
consistency, enforcing revision of Ti into T ′

i and is stored in Oi. An
interaction I(ai, aj) between the learner agent ai and another agent
aj , acting as a critic, is as follows:

1. Agent ai sends the revision T ′
i to aj ;

2. Agent aj checks the revision T ′
i . If T ′

i is not a-consistent with
respect to its set of counter-examples Oj , aj sends a counter-
example x′ ∈ Oj , denoted as an external counter-example for
ai, such that x′ contradicts T ′

i . Then, x′ is stored in Oi.

An iteration of Ms is then composed of a local revision performed by
the learner agent ai, followed by a sequence of interactions I(ai, aj)
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with all critics until there is no contradiction to the current action
model found in the critics memories. This global revision mechanism
always terminates [3, 2].

We now consider a community of n agents, each equipped with
such a global revision mechanism and investigate resources needed
by the n-MAS both to perform local revisions and interactions. The
cost of a local revision c(m) depends on the example memory size
m = |Oi| of the learner agent. Hereunder, an interaction is stated
as contradictory when the critic answers by sending an external
counter-example.

Proposition 1 Let d be the cost of an interaction and c be the revi-
sion cost function. When an MAS of n agents has received ne exam-
ples, in the worst case:

1. The total number of local revisions performed during the history
of the MAS is less than ne ∗ n

2. The total cost of interactions is less than ne · (n+ 1) · (n− 1) · d
3. The total revision cost is less than ne · n · c(ne)

This means that, for a given ne, the learning cost (considering only
contradictory interactions) is linear with the number of agents n.

We consider in our experiments a community of agents each act-
ing in their own environment. These agents are said individualistic
as they never modify their own current hypothesis [2]. The behavior
of an agent i is as follows: at a given moment, the agent has its own
current action model Ti and corresponding counter-examples mem-
ory Oi. It is also provided with some random goal it has to reach.
The agent tries then to build a plan. If it succeeds, its current action
model predicts some effect ê of the first action a of the plan in the
current state s and the agent performs this action, observing the effect
e. If e = ê, the new current state s′ is as intended in the plan exe-
cution and the agent applies the next action of the plan. Otherwise,
this prediction error defines a new counter-example x, the current ac-
tion model is revised locally and the new model is transmitted to the
other agents, therefore triggering the Ms global revision process. If
planning fails, random actions are selected and performed (note that
illegal actions, i.e., actions that do not produce any observable effect
are not filtered out at that step) and planning is attempted again until
a new plan can be tentatively executed.

4 Experiments
We tested our approach on a variant of the blocks world domain in
which color predicates for blocks are introduced4. The 7 blocks with
2 colors domain (7b2c) requires learning seven rules for capturing
the impact of blocks color on the effect of the action move.

Experiments each consist of N runs and are performed for com-
munities of 1, 5 and 30 agents. For each agent, a run is divided into
episodes of at most 50 actions each. The agent starts the first episode
with an empty model and the current model at the end of an episode
is the starting model at the beginning of the next episode. During an
episode, the agent explores its environment, starting from a random
state, and tries to reach a random goal, both provided by some exter-
nal controller. FF is allowed a short time (2s) to find a plan or state
that planning has failed.

In previous work [5], we were interested by performance of the
n-MAS in terms of planning performance. Here, we first study the
predictive accuracy of an agent as a function of the total number t
of actions it has performed since the start from the empty model.
Predictive accuracy is computed on 100 random state/action pairs

4 A problem generator for the colored blocks world problem is available at
http://lipn.univ-paris13.fr/˜rodrigues/marilean.

whose effect is obtained using the correct model. Figure 1(a) displays
the averaged accuracies on 100 runs for communities of 1, 5 and 30
agents. In the same figure, we have also reported the predictive accu-
racy of a baseline relational action learning learner further referred
to as BL. BL closely follows the method implemented in MARLIE
[4], except that it uses the more stable state of the art batch relational
tree learner TILDE [1]. The example memory, as for IRALe, only
contains counterexamples. Clearly, BL starts with very low accura-
cies when compared to IRALe. This is because the IRALe learner
starts from the empty model, that always predicts an empty effect.
As many state/action pairs in the colored block world are illegal –
they do result in an empty effect, IRALe accuracy starts at a high
level. BL does not benefit from this bias and needs 400 actions to
reach the IRALe accuracy.
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(a) Predictive accuracy of an agent
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(b) Number of messages

Figure 1. Predictive accuracy and Number of messages exchanged vs
Number of actions performed, per agent (communities of 1, 5 and 30 agents)

Considering the communication costs with the n-MAS, Figure
1(b) displays the communication cost per agent, i.e. the number of
messages exchanged during its trajectory, as a function of the num-
ber of actions performed by the agent, for communities of 5 and 30
agents. In a community of 30 agents, the learned model of an agent
is accurate (at level 0.99) as soon as the agent performs 40 actions. It
has then exchanged in average 200 messages far from the worst case
SMILE bound (see proposition 1) of 40*31*29 messages. In a com-
munity of 5 agents, the same accuracy level needs about 100 actions,
and the agent has then exchanged 76 messages. Clearly, the commu-
nication cost does not explode when the number of agents increases.

As a conclusion, we have modeled and simulated a community of
agents which revise on-line their relational action model. Each agent,
when revising its current action model, benefits from past observa-
tions communicated by other agents on a utility basis: only observa-
tions contradicting the current model of the learner agent are trans-
mitted. The framework proposed here is a first step towards more so-
phisticated situations as the plain multi agent learning case, in which
agents interfere as they act in the same environment.
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