Active learning of relational action models

Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, Henry Soldano

L.I.LP.N, UMR-CNRS 7030, Université Paris-Nord,
93430 Villetaneuse, France

Abstract. We consider an agent which learns a relational action model
in order to be able to predict the effects of his actions. The model consists
of a set of STRIPS-like rules, i.e. rules predicting what has changed
in the current state when applying a given action as far as a set of
preconditions is satisfied by the current state. Here several rules can
be associated to a given action, therefore allowing to model conditional
effects. Learning is online, as examples result from actions performed by
the agent, and incremental, as the current action model is revised each
time it is contradicted by unexpected effects resulting from his actions.
The form of the model allows using it as an input of standard planners.
In this work, the learning unit IRALe ! is embedded in an integrated
system able to i) learn an action model ii) select its actions iii) plan to
reach a goal. The agent uses the current action model to perform active
learning, i.e. to select actions with the purpose of reaching states that
will enforce a revision of the model, and uses its planning abilities to
have a realistic evaluation of the accuracy of the model.

1 Introduction

Adaptive behaviour studies how an autonomous agent can modify its own be-
haviour so as to adapt to a complex, changing and possibly unknown environ-
ment. Any adaptive agent needs to simultaneously learn from its experience,
and act so as to fulfill various goals. Thus, an adaptive system needs to integrate
some kind of online learning together with action selection mechanisms. When
the agent’s knowledge is constantly revised as new examples are encountered,
rather than built from scratch, learning is stated as incremental.

In this work, the agent knows which actions it can perform and has a complete
representation of the current state, representing both his own state and the
environment state. He sequentially performs actions and each action applied
will change the current state into a new state, forming a trajectory in the space
of states. The difference between these two states is considered as the effect
of performing this action in the current state. Now, we would like the agent
to be able to rationally select actions, in order to reach goals. Then, there are
basically two ways for selecting actions: either, as in classical Reinforcement
Learning, by learning directly to predict in each state what should be the next

! This research was supported in part by the French ANR HARRI project
JC08_-313349.

action to perform (the most valuable action given the goal) or, as in indirect
Reinforcement Learning by learning and using separately an action model that
predicts the effect of applying a given action in the current state. Here, we adopt
the latter setting, so that the action model can be used by a symbolic planner
to build a plan to reach the goal. The learning task of the agent addressed here
is to revise and maintain along the trajectory of the agent an accurate action
model.

In this paper, states and actions are represented using restrictions of first
order languages. The corresponding relational action model has a concise repre-
sentation and does not assume that the number and the ordering of the objects in
the environment are known a priori. As a consequence, straightforward transfer
of the learned model from simple to complex problems is expected.

Adaptation within relational representations is primarily addressed by Rela-
tional Reinforcement Learning (RRL) [7] by extending the classical Reinforce-
ment Learning (RL) problem to first order representations. Indirect RL [25]
proved to be very efficient with relational representations [4].

We have recently proposed a relational revision algorithm implemented in
IRALe [22] which starts from a (usually) empty action model and performs online
learning of a deterministic conditional STRIPS-like model. More precisely, given
a state space S and an action space A, learning an action model T consists in
learning a transition function 7': § x A — S. In deterministic Markov Decision
Processes that we consider here, predicting the effect of performing action a in
state s results in a new state s/. In the following, we state the prediction as
correct whenever s’ = s'. When s/ # s’ we have a prediction error also denoted
as a mistake. Furthermore, we only consider the realizable case, i.e., the case
where a perfect action model T exists in the class of models 7 that the learning
procedure investigates. As a consequence, learning an action model comes down
to searching for an element in 7 that will never make any prediction error.

The main features of the learning algorithm in IRALe are as follows: i) T is
represented as a relational rule set, #) IRALe is a revision algorithm: it incre-
mentally revises the model 7" when T makes a prediction error iii) among all
the (s,a,s’") examples sequentially encountered by the agent, IRALe only mem-
orizes those, denoted as counter-examples, associated to a prediction error and
that have therefore enforced a revision of the model T. As mentioned in [22],
storing counter-examples is enough to guarantee that the number of mistakes is
bounded in the realizable case.

We study in this work an extension of IRALe, consisting in providing the
agent with active learning capabilities (see the recent survey by [23]), allowing
it to select actions to perform in order to improve its action model. The main
motivation for introducing active learning in online action model learning is that
when the action model becomes accurate, the probability to encounter counter-
examples when performing random actions, and therefore to revise the model,
severely decreases. However, if the agent is able to select an action that could
result in an unexpected effect, then, while the correct model is expected to be
reached after a number of mistakes similar to pure random exploration, this

number of mistakes will be encountered after much less actions have been per-
formed. We propose in the following such an active action selection mechanism.
Overall, the agent trajectory depends then on how each action is selected. Here,
with probability (1 — €,), the action is randomly selected, and with probability
€, the action is selected following the active action selection mechanism.

A second contribution of this paper concerns the integration of online learn-
ing and planning. By introducing planning capabilities, we intend to allow the
agent to build plans relying on the current action model, in order to reach goals
expressed as goal states or as conjunctions of constraints on the final state. Our
autonomous agent has been provided with planning capabilities allowing to eval-
uate the quality of the current action model by its ability to generate plans to
reach variable goals interactively provided to the agent.

Section 2 summarizes the online action model learning mechanism of IRALe.
Section 3 provides details on the main components of this architecture, namely
the active exploration mechanism added to the basic random exploration mech-
anism. Finally, in section 4 we experiment our integrated agent and discuss the
results of experiments concerning various benchmark action models.

2 On-line Learning of a Relational Action Model

In this section, we first investigate related work concerning the task of learning
an action model, and then we summarize the IRALe revision algorithm [22].
IRALe is a theory revision algorithm dedicated to relational action rule learning.
Overall, the STRIPS-like resulting action model is a set of rules. Several rules
are associated to each action, each rule predicting all the effects of the action
when triggered in some particular conditions regarding the current state. In
this way, the model allows to represent conditional effects. IRALe only stores
counter-examples, namely examples that have provoked a prediction mistake at
some point during the model construction, and may be therefore considered as
a partial memory incremental learner [15].

2.1 Related work

Learning planning operators has been studied intensively, including the problem
of learning the effects of actions in the context of RRL. The RRL system most
closely related to ours is MARLIE [4], the first Relational RL system integrating
incremental action model and policy learning. MARLIE uses TG [6] to learn
relational decision trees, each used to predict whether a particular literal is true
or false in the resulting state. The decision trees are not restructured when
new examples appear that should lead to reconsider the internal nodes of the
tree. Other systems [5] integrating such restructuring operators scale poorly.
Moreover, this kind of representation of an action model is not very concise and,
above all, does not allow direct integration with a symbolic planner: given a
state s, and the set of trees induced by TG, it is indeed an expensive process to
predict what is the resulting state after applying an action a.

In the planning field, several works aim at learning action models but show
limitations w.r.t. the autonomous and adaptive agent framework. Benson’s work
[2] relies on an external teacher; EXPO [9] starts with a given set of operators to
be refined, and cannot start from scratch; OBSERVER [28] knows in advance the
number of STRIPS rules to be discovered and which examples are indeed relevant
to each rule; LIVE [24] doesn’t scale up very well: it proceeds by successive
specializations but cannot reconsider early over-specializations.

In the ILP context, learning relational action rules has been studied by Otero
et al. in the context of monotonic learning [17,18]. Action rules in these works
predict as in [4] a single effect literal (positive or negative). After a logical for-
malization for the frame problem, authors restrict examples to predict changes
between consecutive states (for instance, a false effect literal in state s; becom-
ing true in state s;41 forms a positive example for the effect literal). They show
that this way of modeling allows to learning action rules in a standard ILP
monotonic setting. We address the same problem by restricting action learning
to learning the preconditions associated to the DEL and ADD effects in an ex-
tended STRIPS like formalism. Note that the ramification problem addressed in
[18] does not occur with our action model as triggering one rule predicts all the
effects of the corresponding action.

Other works [20, 19, 29] address stochasticity, but are limited to batch learn-
ing. Based on the KWIK framework [14], [27] addresses stochastic problems but
can hardly be considered as incremental: all examples are stored and a new
batch-learning is performed each time. Finally, another line of research is the
PELA architecture, which integrates components that learn and use probabilis-
tic action models [11]. In PELA, an initial action model is learned with the
TILDE algorithm, a batch relational decision tree.

On the side of ILP revision, there have been quite a number of relational
theory revision systems [21, 1], the closest to IRALe being the Inthelex system
[8]. Inthelex and IRALe have similar ascending operators, and differ substan-
tially concerning other operators, in particular specialization. Moreover, except
the work described in [3], Inthelex uses a full memory storage, and up to our
knowledge, has not been adapted to action learning problems.

2.2 Incremental Relational Action Model Learning

States, actions, examples and rules States and actions are represented
by objects and relations between them. Examples are provided online to the
agent which minimally revises the action model when needed. Relations between
objects are described using predicates applied to constants. In the following,
objects are denoted by constants, denoted by a lower-case character (a, b, f,
...). Variables are denoted by an upper-case character (X, Y, ...), and may
instantiate to any object of the domain. A term is here a constant or a variable.
Actions and relations between objects are denoted by predicate symbols. For
instance, in a blocks world, if a block a is on top of an unknown block X, this
is denoted by the literal on(a, X).

Examples are described as sets of conjunctions of ground literals. As usual,
we assume that when the agent performs an action, state literals that are not
affected by the action are not described in the effect part. The examples are
denoted by z.s/x.a/x.e.add, z.e.del, with x.s a conjunction of literals discribing
the state, x.a a literal of action and finally an effect part with x.e.add a con-
junction of positive literals and x.e.del a conjunction of negated literals, as usual
in a STRIPS-like notation. For instance, in the blocks world, Fig..1 shows an
example of the action move:
on(a, f),on(b,), on(c,a)/move(c,b)/on(c,b), mon(c, a).

Fig. 1. Example of a move action in a simple blocks world

IRALe builds an action model T represented as a set of rules T.R and a set of
counter-examples T. X that have been memorized during the agent history. Each
rule r is composed by a precondition r.p, an action r.a and an effect r.e, and is
denoted as r.p / r.a / r.e. The precondition is a conjunction of positive literals,
which have to be satisfied so as to apply the rule. The action is a literal defining
the performed action. The effect is composed of two sets of literals: r.e.add is
the set of literals getting true when the rule is applied, and r.e.del is the set of
literals getting false when the rule is applied. According to a rule r, an action
r.a has no other effects but those described by r.e.

In order to be well formed, a rule r must be such that i) r.e.del C r.p ii)
r.e.add N r.p = () iii) 7.a U r.e must be connected?. Finally, all variables oc-
curring in r.a should also occur in 7.p and r.e, but r.p and r.e may reference
objects/variables not occurring in r.a. (see deitic references [19]). For instance,
a well-formed rule is the following;:
on(X, Z),on(Y,W)/move(X,Y)/on(X,Y), —on(X, Z).

This formalism, to which we refer as Extended Deterministic STRIPS (EDS),
is more expressive than Deterministic STRIPS, considered for instance in [26]:
a given action may be represented by several rules.

Rule covering and contradiction Matching operations between rules and
examples rely on a generality relation frequently used in the Inductive Logic
Programming (ILP) framework: subsumption under Object Identity, denoted as
OI-subsumption [8]. Given the OI Bias, different constants or variables must
be distinct. This assumption is natural when learning action rules for planning

2 Any variable occurring in r.e (resp. r.p) should be linked through a path of literals
to a variable occurring in the literal of action r.a.

[19]. A formula G OlI-subsumes a formula S iff there exists an injective sub-
stitution®s such that Go C S. Two formulas may have several least general
generalizations (lgg’s) under Ol-subsumption, each corresponding to a largest
common substructure between the input formulas.

Rule matching is defined as follows.

Definition 1 (pre-matching %X and post-matching 95) For any rule r,
state s, action a and effect e,

— 1 X (s,a) iff there exists two injective substitutions o and 6 such that i)
(r.a)o = a, and ii) (r.p)od C s.

— 1 X (a,e) iff there ewists two injective substitutions o and 6 such that i)
(r.a)o =a i) (r.e)od =e.

Pre-matching ~ checks whether a given rule may apply to predict the effect of
a given example, and post-matching ~ checks whether a given rule may explain
a given state modification when a given action is performed.

The question of whether the action model contradicts or is consistent with
an example is addressed through the following definitions.

Definition 2 (covering ~ and contradiction ~). For any rule r and example
x7

—rrriffr X (s 2.a) and r < (z.a,2.€) for the same injective substitutions
o and 6.

—xoorifr X (x.s,x.a) for some injective o and 6 substitutions, and r not
ae . . .
~ (z.a,xz.€) with the same substitutions.

Covering checks whether the effect part of an example is accurately predicted by
a rule of the model, and contradiction appears when a rule applies but incorrectly
predicts the outcomes of the action. A default rule is implicitly added to T
whenever no rule applies, the prediction is that the action produces no effect,
i.e. e.del = e.add = 0.

The model T" needs to be revised whenever the current action model fails to
predict the effect part of some incoming example. In order to ensure convergence
of the action model, the model includes a subset T..X of the examples which have
been met since the beginning of the learning session. These examples, denoted
as counter-examples and defined hereunder, are all those that have previously
enforced a revision of the model:

Definition 3 (counter-example). x,, is a counter-example and is said to con-
tradict the model T iff either there is no rule r € T.R, such that v =~ x or there
is some rule v’ contradicted by x,,.

3 Two different variables of the domain of o are assigned to different terms: for in-
stance, p(X,Y’) does not Ol-subsume p(a,a) because X and Y can’t be assigned to
the same constant.

Any incoming example z,, may be a counter-example either because no rule
pre-matches it (completeness issue) or because there are rules that pre-match
the counter-example, but do not post-match it (coherence issue). In both cases,
the model T needs to be updated to 1" in order to preserve coherence and
completeness w.r.t. z,, and other past counter-examples in 7.X.

Online revision of the action model At first, the action model is an empty
rule-set. The interactions between the agent and the environment produce ex-
amples, and when an example contradicts the model, the latter has to be revised
by modifying or adding one or several rules.

More precisely, when such a new counter-example z, is encountered, two
kinds of modifications may have to be performed, either generalization or spe-
cialization. Specialization is not central to this work, we therefore refer to [22]
for further details. As far as generalization is concerned, it takes place in order
to preserve completeness of the model if no rule of T.R pre-matches x,. The
rules r of T.R which are candidates for generalization are such that r, up to
an inverse substitution p~!, post-matches z,. The role of p~! is to generalize
constants that occur in r and more precisely in effects of r into variables, if nec-
essary. Preconditions of r.p~! are then generalized with z, using a least general
generalization under OI subsumption operator, denoted as lgg. If such general-
ization does not contradict any example in T.X (preserving coherence), r is thus
replaced by the new minimally generalized rule, otherwise backtracking takes
place as several minimal generalizations may exist under Ol-subsumption. If no
consistent generalization exists, x,, becomes a rule and is added as such to T.R.
Note that x,, as a counter-example, is stored in T.X.

When a generalization is performed, the resulting generalization keeps track
of which rules/examples it comes from. This way, each rule in T. R is the top node
of a memory tree. This structure is used during specialization which consists in
backtracking on ancestors of over-generalized rules.

x1|boxInCity(bi, c1), truckInCity(ti, c1) | load(b1,t1) | boxOnTruck(b1,t1)

=boxInCity(b1,c1)
xa| truckInCity(t1, c1), boxInCity(bi, c2) |drive(ti, c2)| truckInCity(ti, c2)
—truckInCity(t1,c1)
x3|boxInCity (b1, c2), truckInCity(t1, c2),| load(b1,t1) | boxOnTruck(b1,t1)
boxOnTruck(bz,t1) =boxInCity(b1, c2)
Table 1. Relational representation of actions examples in a logistic problem described
in Section 4.

In Example 1, we illustrate the revision process with a sequence of actions
and revisions in a small logistic problem composed of one truck, two boxes and
two cities (for the sake of readability, types predicates are omitted here and
states are simplified).

Example 1 Referring to the examples of Table 1, the agent starts with an empty
model. When the example x1 is encountered, r1 is added as a rule 1 in T.R, and
added to the counter-example memory T.X. Later, the example x2 is encountered, the
model is unable to cover this example because xro doesn’t post-match r1. x2 is then also
added to the counter-example memory T.X and in T.R as rule r2. Then, x3 occurs and
there is no rule in T.R that pre-matches this example, and therefore the model cannot
predict the effects of xs. However, turning some constants of x1 into variables (with
the inverse substitution p~' = {c1/C}), and applying a least general generalization on
pre-conditions (forgetting boxOnTruck(bz,t1)) generates the generalized rule v} , that
post-matches xs with empty substitutions o and 0. x2 also pre-matches x3 and is stored
as the rule ro (see Table 2). After these three examples have been handled, the model
is composed of the rules v} and ra. All met examples are stored as counter-examples.

r1|boxInCity (b1, C), truckInCity(t1, C)| load(b1,t1) | boxOnTruck(bi,t1)
=boxInCity(b1,C)
ro|truckInCity(ti, c1), boxInCity(b1, c2)|drive(t1, c2)| truckInCity(t1, cz)
—truckInCity(ti,c1)
Table 2. x1 and x5 are generalized into r; x> is incorporated in the model as ra.

3 Active Learning as action selection

At any moment, the agent is in a given state s and then performs an action a
that will have some effects resulting in a new state s’. In this work, we consider
that the agent is in an exploration mode, which goal is to acquire a correct and
complete action model. We study here e-active exploration: with probability
1 —¢€,, the action to perform is chosen randomly, otherwise the action is selected
following an active exploration process. In the random mode, as in MARLIE [4],
in a given state, any syntactically correct action can be selected and performed
by the agent, and not only the legal ones. We consider as legal an action that has
observable effects (for example, moving a clear block on another clear block),
while an illegal action has no observable effects, i.e. is such that s = s’. Note
that so-called illegal actions for a given state are numerous (such as stacking
a block on a non clear block, or stacking the floor on a block). Learning an
action model is much more difficult when the agent does not know which actions
are legal in a given state. In the following, a syntactically correct action is an
action instantiated with any object of the world satisfying type constraints (when
available).

In the active mode, the agent chooses an action that it expects to lead to a re-
vision/generalization of the model. Hopefully, this should help increasing the ra-
tio of the informative state; /action;/state; 1 examples (i.e. counter-examples as
previously defined) within the sequence of state/action/state; /action, /states/
.../ state,, representing the trajectory of the agent in the state space.

Intuitively, our active exploration strategy uses the current action model to
select an action a which is not applicable, according to the current model, to the
current state s but which effects are, in a sense defined below, compatible with
s. If this action is successfully applied, it will generate an example (s, a, s’) that
is expected to yield a generalization of one action rule for a. As IRALe is mainly
bottom-up, founding new opportunities for generalizing the model will decrease
the number of examples necessary to converge to the correct model.

More precisely, in the current state s, and given the current action model T,
we consider an action a such that no rule about action a applies to (pre-matches)
the current state. This means that, following the model, we expect no effect when
applying a in the current state, i.e. we expect that, applying a, the agent would
observe the example s, a, s. However, applying a could result in an effect, i.e. in
an example s, a,s’ with s’ # s, that would then be a counter-example enforcing
a revision of the model. This leads to select an action associated to a rule in
the model whose preconditions are almost satisfied in the current state. This
basically means that we hope that the observed effects will be those predicted by
the rule whereas the preconditions turned to be overspecific. This expectation
relies on the fact that the precondition part of such a rule is built by least
general generalization, and therefore the preconditions are almost never more
general than necessary (except if alternative generalization paths are possible).
Of course, such an attempt can fail: possibly the effects in s’ are not those
expected, meaning that the rule cannot be generalized.

Algorithm 1 ACTIVE-SELECT(T,s)

Require: An action model T, and a state s
Ensure: An action a likely to yield a generalization of some rule in T'
1: LA+ 0
2: for all r € T.R s.t r.p does not OI subsume s do
3: for all (injective) post-matching substitutions p;l and o; such that

(r.e.del)p;laj Csdo

4: Compute lgg; = lggOI((r.p)pj_l7 s) a random lgg given o; (lggjo;0; C s)
5: if r.a.p;lojej is ground then

6: LA+ LAU{((r.a)o;0;,size(lgg;))}

T end if

8: end for

9: end for

10: if LA = () then

11: Randomly select an action a to apply to s

12: else

13: Select a; such that (a;, size;) € LA and size; is max in LA
14: end if

Technically, in the current state s, the method considers all rules r such that
r.p does not OI-subsume s (the corresponding action is therefore not applicable

to state s) and that post-matches s, i.e. such that r.e.del, generalized with inverse
substitution pj_l, is included in the current state s up to an injective substitution

oj. ACTIVE-SELECT then computes, for all corresponding pj_laj, a random
least general OlI-generalization of preconditions of with s (therefore igg;0;6; C
s).

The candidate action to apply to state s is therefore (r.a)pj_lajﬁj, provided
that r.ap~! is grounded by ¢;6;. Among all candidate actions (computed for
all rules r and for all pj_laj, the action generated with the longest lgg is then

selected.

Example 2 We consider here the Logistics domain. Let us suppose we have a
world composed of three trucks, three boxes and three cities and a current action
model T'. Let r € T.R be the following rule:

boxOnTruck(bs, ca), boxInCity(by, ca), truckInCity(Ty, ca)/

load(b1, Ty) /boxOnTruck(by, Ty), ~box InCity(b1, ca)

and suppose that the agent is in the following state s:

boxInCity(by, cp), truckInCity(ts, ey), boxInCity(ba, cq).

The rule v does not apply because there is no literal boxOnTruck(ba,cy) in
the current state s (condition line 2 of Alg.1 is true). The del list of the rule,
{boxInCity(by,ca)}, generalized with inverse substitution py* = {cq/X} is in-
cluded in the current state with substitution on = {X/cp}. For these substitutions,
Algorithm 1 computes a random least general generalization under Object Iden-
tity, namely lggr = boxInCity(by, X), TruckInCity(Ty, X) with 61 = {Tp/ts}.
Substituting r.a with p1_10191 yields the ground action load(by,t,) added to LA.

There is another couple of post-matching substitutions, pgl = {b;/Y} and
oo = {Y/by}. For these substitutions, the following random lgg is computed:
lggo = boxInCity(Y, c,) with oy = 0. Substituting r.a with py *o20s yields a non
ground action load(bs, Tp), which is not added to LA. The agent applies the ac-
tion load(by, tp) and the resulting state s' = boxOnTruck(b1,ty), truckInCity(ty, cb),
boxInCity(bs, ca) leads to an example which, as expected, is not covered by the
current action model. The revision then consists in generalizing the rule r: the
literal boxOnTruck(ba, c,) is dropped from the preconditions of r.

The closest related work concerning active learning in the context of a RRL
system is [13]. This work focuses on the adaptation of the E3(Ezplicit Explore or
Ezploit) [12] algorithm for the relational case. In order to realize this adaptation,
the batch system [19] is used to learn a stochastic action model. This work shows
the importance of active exploration in relational worlds. Our work mainly differs
from this one because: i) it is fully online and incremental while restricted to
a deterministic context; ii) it does not rely on any estimation of how much a
relational state is known (fully or partially) or new, which can be quite complex
to evaluate in a relational context. We do not either use planning capabilities for
our active learning strategy, which is quite simple : a state s is known by a rule
r if the rule preconditions Ol-subsume s and it is useful to apply action a in a
state s if we expect that applying a to s will generate a state s’ such as (s, a, s')

may yield generalizing of a rule r of action a in the model. This strategy proves
to be quite efficient in the following section.

4 Experiments

The TRALe approach has already been shown more effective than MARLIE [4]
when measuring the prediction errors of the current model w.r.t. the number
of actions performed by the agent, i.e. the total number of examples encoun-
tered [22] which is considered here as a time scale. By integrating learning with
planning we can evaluate the model with respect to the actual purpose of such
agents, i.e. acting so as to fulfill assigned goals. In this paper, we generate ran-
dom goals so as to evaluate learned models not only using classification error
rate, but also considering the accuracy of the model with respect to planning
tasks: during the trajectory, the agent periodically builds a plan from the cur-
rent state to a random goal, using the current action model and the planner
FF [10], and then the experimental device simulates the application of the plan
and checks whether the plan has succeeded or failed. For that purpose, the goal,
domain and action model are translated into an equivalent PDDL [16] planning
task. Note that, as in each rule of the action model, all the effects are predicted
as a whole, and the translation is straightforward. In systems like [4], a tree is
built for each predicate symbol and then the translation into an explicit action
model useful for a planner is an open problem.

4.1 Problems

We provide experimental results* for both blocks world and Logistics domain, as
in [4] and [22]. We consider a variant of the blocks world domain in which color
predicates as b(X) (black) and w(X) (white) are introduced. This domain is
more challenging, it requires learning disjunctive rules for capturing the impact
of color on action move. In the colored-blocks world, when move(X,Y') is chosen,
X is actually moved on top of Y only if X and Y have the same color. Otherwise,
X is not moved and its color shifts to the same color as Y. For instance, the
2-colors 7-blocks world is more challenging to learn than the 7-blocks world as
the action model needs 7 rules to model the action move.

In the logistics domain, the predicates city/1, truck/1 and box/1 indicate
the type of the objects. In the (b,c,t)-Logistics setting, a state of the world
describes b boxes, c cities, and t trucks. Available actions are load/2 (load a box
on a truck), unload/2 (unload a box in a city) and drive/2 (move a truck to
a city), states are defined using the predicates boxOnTruck/2, truckInCity/2
and boxInCity/2.

4.2 Experimental set-up and results

In what follows, each experiment is averaged over 100 runs. A run consists in
performing an exploration of the environment starting from a random state

4 we use the same domains as MARLIE since this system isn’t available

and an empty model. During the run, the action model is periodically tested
by executing 20 trials. Therefore, each test corresponds to a certain number of
actions performed. For each trial, start and goal states are drawn at random,
ensuring that a path with less than 20 actions exists between them. The FF
planner is then allowed a short time (10s) to find a plan. The trial is stated as a
success if applying the plan results in reaching the goal state. Each test returns
the wariational similarity vs computed as the average ratio of the number of
successful plans obtained using the current model, to the number of successful
plans using the perfect (hand coded) model.

For each experiment, we display the average variational distance (1 — vy)
versus the number of actions performed for various exploration modes. The
random exploration mode (e, = 0) is compared to the e,-active exploration
(where an action is actively explored with probability €, or randomly chosen
with probability 1 — ¢,).

In Figures 2 and 3, we experiment with IRALe extended with the active
exploration strategy and we display the variational distance versus the number
of actions performed by the agent during his trajectory. Two active exploration
rates ¢, = 0.25 and ¢, = 0.5 are investigated.

Logistics(5,5,5)

Variational Distance

Actions

Fig. 2. Experiments in the Logistics(5,5,5) problem with increasing values of €,

2Colors-7Blocks World

EaQ —

Variational Distance

0 -
0 100 200 300 400 500
Actions

Fig. 3. Experiments in the 2-Colors 7-blocks problem with increasing values of ¢,

In both domains, adding active learning results in faster convergence to a null
variational distance. Even a low proportion of active learning (e, = 0.25) shows
a clear improvement over pure random exploration. However a larger proportion
of active learning (¢, = 0.5) does not improve the convergence speed.

The memory of the model contains all the counter-examples encountered
during learning. In Figures 4 and 5, we show the amount of counter-examples
in the model after each action step. This results are for the same problems and
active exploration rates as in Figures 2 and 3.

For a fixed learning step (i.e. action), the number of counter-examples in
the model is always higher when active learning is used. This means that active
learning influences positively space exploration in focusing the action choice on
areas where the model is supposed to be incomplete. This results in a gain in
action steps for increasing the quality of the model.

Logistics(5,5,5)

Counter-examples

o N A O O O

0 50 100 150 200 250 300
Actions

Fig. 4. Experiments in the Logistics(5,5,5) problem with increasing values of €,

2Colors-7Blocks World

Counter-examples

0 100 200 300 400 500
Actions

Fig. 5. Experiments in the 2-Colors 7-blocks problem with increasing values of €,

5 Conclusion

In this paper, we propose an integrated system implemented in an autonomous
agent situated in an environment. The environment is here supposed to be de-
terministic: in a given state, the effects of a given action are unknown but deter-
mined. The agent uses the revision mechanism of the IRALe system to perform
online action model learning as it explores the environment by repeatedly se-
lecting and applying actions. The main contribution of this paper is the action
selection strategy. Random selection is replaced, with probability €,, with an
active selection mechanism that selects actions expected to enforce a modifica-
tion of the current model. As a second contribution of the paper, the agent is
equipped with planning capabilities, so as to evaluate the quality of the current
action model in a realistic way: after the agent has performed a given number of
actions, plans are build to reach random state goals and estimate the proportion
of plans that succeed using the current model.

Experimental results show that active learning, as implemented here, actu-
ally improves learning speed in the following sense: an accurate action model is
obtained after performing much less actions than when using only random ex-
ploration. Regarding future works, active learning is limited here by the states
accessible from the current state. Better active learning can be achieved by en-
abling the agent to plan experiments, i.e. to plan to reach some desirable, infor-
mative state. Finally, an important perspective is to extend the system to handle
noisy or indeterministic environments, using noise-tolerant revision algorithms.

References

1. H. Ade, B. Malfait, and L. De Raedt. Ruth: an ilp theory revision system. In
Zbigniew Ras and Maria Zemankova, editors, Methodologies for Intelligent Systems,
volume 869 of Lecture Notes in Computer Science, pages 336—345. Springer Berlin
/ Heidelberg, 1994.

2. S. Benson. Inductive learning of reactive action models. In ICML 1995, pages
47-54, 1995.

3. Marenglen Biba, Stefano Ferilli, Floriana Esposito, Nicola Di Mauro, and Teresa
Maria Altomare Basile. A fast partial memory approach to incremental learning
through an advanced data storage framework. In Proceedings of the Fifteenth
Ttalian Symposium on Advanced Database Systems, SEBD 2007, pages 52-63, 2007.

4. T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe. Online learning
and exploiting relational models in reinforcement learning. In IJCAI, pages 726—
731, 2007.

5. W. Dabney and A. McGovern. Utile distinctions for relational reinforcement learn-
ing. In IJCAI, pages 738-743, 2007.

6. K. Driessens, J. Ramon, and H. Blockeel. Speeding up relational reinforcement
learning through the use of an incremental first order decision tree algorithm. In
ECML, LNAI 2167, pages 97-108, 2001.

7. S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.
Machine Learning, 43:7-52, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Floriana Esposito, Stefano Ferilli, Nicola Fanizzi, Teresa Maria Altomare Basile,
and Nicola Di Mauro. Incremental learning and concept drift in inthelex. Intell.
Data Anal., 8(3):213-237, 2004.

Y. Gil. Learning by experimentation: Incremental refinement of incomplete plan-
ning domains. In ICML, pages 87-95, 1994.

Jorg Hoffmann. Ff: The fast-forward planning system. The AI Magazine, 2001.
S. Jiménez, F. Fernandez, and D. Borrajo. The pela architecture: integrating plan-
ning and learning to improve execution. In 23rd national conference on Artificial
intelligence - Volume 3, pages 1294-1299. AAAT Press, 2008.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49, 2002.

T. Lang, M. Toussaint, and K. Kersting. Exploration in relational worlds. In
ECML/PKDD (2), pages 178-194, 2010.

L. Li, M. L. Littman, and T. J. Walsh. Knows what it knows: a framework for
self-aware learning. In ICML, pages 568-575, 2008.

Marcus A. Maloof and Ryszard S. Michalski. Incremental learning with partial
instance memory. Artif. Intell., 154(1-2):95-126, 2004.

Drew McDermott. The 1998 ai planning systems competition. AI Magazine,
21(2):35-55, 2000.

Ramoén P. Otero. Induction of the effects of actions by monotonic methods. In
Inductive Logic Programming: 13th International Conference, ILP 2003, volume
2835 of Lecture Notes in Computer Science, pages 299-310. Springer, 2003.
Ramén P. Otero. Induction of the indirect effects of actions by monotonic methods.
In Stefan Kramer and Bernhard Pfahringer, editors, Inductive Logic Programming,
15th International Conference, ILP 2005, Bonn, Germany, August 10-13, 2005,
volume 3625, pages 279-294, 2005.

H. M. Pasula, L. S. Zettlemoyer, and L. Kaelbling. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research (JAIR), 29:309-352,
2007.

H. M. Pasula, L. S. Zettlemoyer, and Pack Kaelbling L.. Learning probabilistic
planning rules. In ICAPS, pages 146-163, 2004.

B. L. Richards and R. J. Mooney. Automated refinement of first-order horn-clause
domain theories. Machine Learning, 19:95-131, 1995.

C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Incremental learning of
relational action rules. In /ICMLA, 2010.

Burr Settles. Active Learning Literature Survey. Technical Report Technical Re-
port 1648, University of Wisconsin-Madison, 2009.

W. M. Shen. Discovery as autonomous learning from the environment. Machine
Learning, 12(1-3):143-165, 1993.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bull., 2:160-163, July 1991.

T. J. Walsh and M. L. Littman. Efficient learning of action schemas and web-
service descriptions. In AAAI pages 714-719, 2008.

T. J. Walsh, I. Szita, M. Diuk, and M. L. Littman. Exploring compact
reinforcement-learning representations with linear regression. In UAI pages 714—
719, 2009.

X. Wang. Learning by observation and practice: An incremental approach for
planning operator acquisition. In ICML, pages 549-557, 1995.

Q. Yang, K. Wu, and Y Jiang. Learning action models from plan examples using
weighted max-sat. Artificial Intelligence, 171(2-3):107 — 143, 2007.

