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Abstract—In the Relational Reinforcement learning frame-
work, we propose an algorithm that learns an action model
allowing to predict the resulting state of each action in any
given situation. The system incrementally learns a set of
first order rules: each time an example contradicting the
current model (a counter-example) is encountered, the model
is revised to preserve coherence and completeness, by using
data-driven generalization and specialization mechanisms. The
system is proved to converge by storing counter-examples only,
and experiments on RRL benchmarks demonstrate its good
performance w.r.t state of the art RRL systems.
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I. INTRODUCTION

Reinforcement Learning (RL) considers systems involved
in a sensori-motor loop with their environment, formalized
by an underlying Markov Decision Process (MDP) [1].
Usual RL techniques use propositional learning techniques.
Recently, we have observed a growing interest for RL algo-
rithms using a relational representation of states and actions.
These works lead to adaptations of regular RL algorithms to
relational representations. Instead of representing states by
valued attributes, states are described by relations between
objects (see [2] for a review). Relational representations
allow better generalization capabilities, improved scaling-
up and transfer of solutions since they neither rely on the
number of attributes nor their order.

Another way to improve a RL system is to learn and
use an action model of the environment in addition to
value/reward functions [3]. Such a model permits to predict
the new state after applying an action. In this paper, we focus
on incrementally learning a deterministic relational action
model in a noise-free context. Examples are available to the
system on line and only some of these examples are stored,
still ensuring the convergence of the learning process.

Our Incremental Relational Action Learning algorithm
(IRALe), starts with an empty action model and incremen-
tally revises it each time an example contradicts it (i.e., when
the action model does not exactly predict the actual effects
for a performed action in a given state) using data-driven
learning operators. IRALe can be seen as a theory revision
algorithm applied to action rule learning: starting from

scratch, it learns multiple action labels, where the labels are
the different possible effects – represented as conjunctions of
literals – observed after executing an action in a given state.
IRALe stores the examples that have raised a contradiction at
some point during the model construction; as a consequence
converges because the number of hypotheses to explore is
bounded and that the system will never select as a revision
the same hypothesis twice.

We first describe some related work in Section II. In
Section III, we settle our learning framework by describing
the relational first order representation of states and actions,
together with the subsumption relation. We then provide
an overview of the proposed incremental generalization
and specialization revision mechanisms that will be further
described in Section IV. In Section V, we show that our
revision algorithm converges under reasonable hypotheses.
Before concluding, in Section VI, the system is empirically
evaluated on regular RRL benchmark environments.

II. RELATED WORK

Learning planning operators has been studied intensively,
including the problem of learning the effects of actions, in
both deterministic and probabilistic settings, some in the
context of relational reinforcement learning (see [2] for a
review). The system mostly related to ours is MARLIE
[4], the first Relational RL system integrating incremental
action model and policy learning. MARLIE uses TG [5] to
learn relational decision trees, each used to predict whether
a particular literal is true in the resulting state. The decision
trees are not restructured when new examples appear that
should lead to reconsider the internal nodes of the tree. Other
systems [6] integrating such restructurations scale poorly.

In the planning field, several works aim at learning action
models but show limitations w.r.t. the RL framework. Ben-
son’s work [7] relies on an external teacher; EXPO [8] starts
with a given set of operators to be refined, and cannot start
from scratch; OBSERVER [9] knows in advance the number
of STRIPS rules to be discovered and which examples are
indeed relevant to each rule; LIVE [10] doesn’t scale up very
well: it proceeds by successive specializations but cannot
reconsider early over-specializations.



Several recent approaches learn probabilistic action mod-
els so as to take into account noise and/or non-deterministic
domains (see [11] among others). In this work, the structure
of the action model is learned first, before the probability
distribution, both in batch mode. To our knowledge, no
system is able to learn such models incrementally yet.

III. LEARNING PROBLEM

A. Action model and relational representation

Formally, a Markov Decision Process (MDP) is defined by
a 〈S,A, T ,R〉 t-uple. S is the space of possible states and
A is the space of possible actions. R denotes an immediate
reward function R : S ×A → R. T is a transition function
T : S × A → S . Functions may be stochastically defined
but in this paper, we only address the case of deterministic
environments.

Here, we focus on learning a model of the T function.
An example x for the learning process is composed of a
given state, a chosen action and the resulting new state.
We respectively note them as x.s, x.a and x.s′. We call
an effect x.e the description of what changed in the state
after applying the action, i.e. x.e = δ(x.s, x.s′). Rather than
strictly learning a model of the transition function, we model
what changes when the action applies. Let us note this model
M .

States and actions are depicted using objects of the
environment as well as relations between them. Relations
between objects are described using predicates applied to
constants. For instance, in a blocks-world, if a block a is
on top of a block b, it is denoted by the literal on(a, b).
Let us introduce the notions of fist order logic used in
this paper. Objects are denoted by constants, denoted by
a lower-case character (a, b, f ,. . .), and variables, denoted
by an upper-case character (X , Y , . . .), may instantiate to
any object of the domain. A term is here a constant or a
variable. Actions and relations between objects are denoted
by predicate symbols. An atom is a predicate symbol applied
to terms (eg move(a,X), on(b, Y )). An instantiated atom
is a fact, i.e. an atom without any variable. A literal is an
atom or the negation of an atom.

B. Examples

Examples are described in a Datalog-like language (no
function symbol but constants). As usual, we assume that
when an agent emits an action, state literals that are not
affected by the action are not described in the effect part. The
examples can be noted x.s/x.a/x.e.add, x.e.del, with x.s,
x.a, x.e.add described as conjunctions of positive literals
and x.e.del described as a conjunction of negated literals,
as usual in a STRIPS-like notation. Fig. 1 shows the example
on(a, f), on(b, f), on(c, a)/move(c, b)/on(c, b),¬on(c, a).

Within the RL framework, the learning process has to be
incremental, i.e. each time step the agent performs a new
action, the system receives a new example x, which must

Figure 1. Example of a move action in a simple blocks-world

be taken into account for potentially revising M into M ′,
here described as a set of action rules.

C. Action Rules

Most works in RRL use instance based methods [12]
or decision trees [5] for representing action rules. Existing
instance based methods require an ad hoc distance suited to
the problem. Decision trees are top-down methods which –
in the incremental case — highly rely on the order of presen-
tation of the examples, thus leading to over-specializations.
This problem may be addressed by online re-structuring the
tree, but this is a difficult issue.

In this paper, we propose a rule based action model. This
choice is motivated by the fact that reconsidering a previous
generalization or specialization choice is easier in a rule
based model than in a tree structured model. This backtrack
feature is critical in our incremental RL framework, where
examples are drawn from actual experience, and may be
presented to the system in a misleading order. Furthermore
no ad hoc prior knowledge is needed as opposed to an
instance-based action model.

So, the model M is composed by a rule set. Each rule r,
just like an example, is composed of a precondition r.p, an
action r.a and an effect r.e, and is denoted as r.p /r.a /r.e.
The precondition is represented by a conjunction of positive
literals, which have to be satisfied so as to apply the rule. The
action is a literal defining the performed action. The effect
is composed of two literals sets: r.e.add is the set of literals
getting true when the rule is applied, and r.e.del is the set of
literals getting false when the rule is applied. According to a
rule r, an action r.a has no other effects but those described
by r.e. In order to be well formed, a rule r must be such
that i) r.e.del ⊆ r.p ii) r.e.add ∩ r.p = ∅ iii) r.a ∪ r.e must
be connected1. Finally, all variables occurring in r.a should
also occur in r.p and r.e, but r.p and r.e may reference
objects/variables not occurring in r.a (see deitic references
in [11]). For instance, a well-formed rule is the following :
on(X,Z) /move(X,Y ) /on(X,Y ),¬on(X,Z).

This formalism, we refer to as extended deterministic
STRIPS (EDS for short) in the following, is more expressive
than the deterministic STRIPS, considered for instance in
[13]. For a given action and effect, it is possible to have
several preconditions, each expressed as a conjunction of

1Any variable occurring in r.e should be linked through a path of literals
to a variable occurring in the action literal r.a.



literals. The system can learn several rules matching differ-
ent preconditions to a given action-effects pair, extending
the classical STRIPS formalism. It is not the case in [13],
which only accepts conjunctive preconditions for an action.
However, we can always express an action model in EDS
as an action model in deterministic STRIPS, thus allowing
to use any STRIPS planner, in the following way:
• For each rule ri = (ri.p/ri.a = A/ri.e) for a given

action A, build a STRIPS action Ai associated to the
unique rule r′i = (r′i.p = ri.p/r

′
i.a = Ai/r

′
i.e = ri.e)

• For each rule r′i add to r′i.a the variables that appear
in r′i.p and r′i.e but not in r′i.a.

Example 1: Consider the following EDS action model:
M = {
r1 : w(X), w(Y ), on(X,Z)/move(X,Y )/on(X,Y ),¬on(X,Z),
r2 : w(X), b(Y ), on(X,Z)/move(X,Y )/w(Y ),¬b(Y )} stating
that moving X on Y results either in placing X on Y ,
whenever X and Y are white blocks, or in only changing
the color of Y to white, whenever Y is black. The resulting
translation to STRIPS is as follows: M ′ = {
r′1 = w(X), w(Y ), on(X,Z)/move1(X,Y, Z)/on(X,Y ),¬on(X,Z)

r′2 = w(X), b(Y ), on(X,Z)/move2(X,Y, Z)/w(Y ),¬b(Y )}
Pragmatic actions as known by the agent before learning

are denoted as p-actions, and the resulting STRIPS actions
are denoted as s-actions. This means that learning in EDS
consists in learning a set of (preconditions, p-action, effects)
triples that will be further translated in a deterministic
STRIPS action model2. As a result, learning here includes
learning the ”schema” of STRIPS s-actions (number of rules,
exact variables involved in the action), and we argue this is
difficult for an expert to accurately provide such a schema
before learning takes place.

D. Subsumption

We define in the following three matching operators
between rules and examples. All such matching operations
rely on a generality relation frequently used in the Inductive
Logic Programming (ILP) framework: subsumption under
Object Identity (OI-subsumption) [14].

A formula G OI-subsumes a formula S iff there exists a
substitution σ such that Gσ ⊆ S where σ is an injective
substitution (two different variables of the domain of σ are
assigned to different terms): for instance, p(X,Y ) does not
OI-subsume p(a, a) because X and Y can’t be assigned to
the same constant. It has been showed [14] that the set of
OI-generalizations of a conjunction of literals is the set of
its subsets (up to a renaming of variables) and a complete
generalization operator drops literals, which is indeed a
very intuitive interpretation for generalization in our context.
Note that computing the least general generalization (lgg)
of two formulas under OI may produce several lggs, each

2A translation preserving p-actions as modelized actions could be ob-
tained by allowing conditional effects in STRIPS.

corresponding to a largest common substructure between the
input formulas.

E. Coverage, contradiction, completeness, coherence

We define three matching operators.
Definition 1 (pre-matching sa∼): For any rule r, state s

and action a, r sa∼ (s, a) iff there exists injective substitutions
σ and θ such that i) (r.a)σ = a ii) (r.p)σθ ⊆ s.
This operator permits to decide whether a given rule may
apply to predict the effect of a given example.

Definition 2 (post-matching ae∼): For any rule r, and ac-
tion a and effect e, r ae∼ (a, e) iff there exists an inverse
substitution ρ−1, and two injective substitutions σ and θ
such that i) (r.a)ρ−1σ = a ii) (r.e)ρ−1σθ = e.
This operator allows to decide whether a given rule may
explain a given state modification when a given action is
performed. The inverse substitution enables generalization
of constants in the action and effect parts of examples/rules.

Definition 3 (covering ≈): For any rule r and example x,
r ≈ x iff r sa∼ (x.s, x.a) and r

ae∼ (x.a, x.e) for the same
injective substitutions σ and θ.
This operator checks whether an example can be accurately
predicted by the model.

Example 2: The rule on(X,Z) /move(X,Y )
/on(X,Y ),¬on(X,Z) pre-matches example of Fig.
1, with substitution σ = {X/c, Y/b} and θ = {Z/a}.
This rule also post-matches the example with the same
substitutions.

Definition 4 (contradiction �): An example x contra-
dicts a rule r (x � r) if r pre-matches (x.s, x.a) for σ and
θ substitutions, and r doesn’t post-match (x.a, x.e) with the
same substitutions.
In such a case, the rule incorrectly predicts the outcomes
of the action. The model M includes a set of rules denoted
by M.R. We say that a rule set M.R or a model covers
an example x when there exists a rule r in M.R such that
r ≈ x. Similarly, we say that a rule set M.R or a model
rejects an example when no rule of M.R covers it.

The above definitions can be extended for defining match-
ing and covering between rules. The model M also includes
a set of counter-examples which have been met since the
beginning of the learning session, denoted by M.X .

Definition 5 (counter-example): xu is a counter-example
for M iff there is no rule r ∈M.R, such that r ≈ x.
Any uncovered example xu may be a counter-example
either for a completeness issue (no pre-matching) or for a
coherence issue (pre-matching without post-matching). In
both cases, the model M needs to be updated to M ′ in
order to preserve coherence and completeness w.r.t. xu and
other past counter examples in M.X , as defined below.

Definition 6 (completeness): We say that M is complete
iff ∀x ∈ M.X , there is at least one r ∈ M.R such that
r

sa∼ (x.s, x.a). This means that the set of rules permits to
make a prediction for any past counter-example.



Definition 7 (coherence): We say that M is coherent iff
∀x ∈ M.X , there is at least one r ∈ M.R such that r sa∼
(x.s, x.a) ⇒ r

ae∼ (x.a, x.e). This means that for any past
counter-example, if the set of rules can make a prediction,
then this prediction is accurate.

IV. INCREMENTAL RELATIONAL LEARNING OF AN
ACTION MODEL

There are few theory revision systems in ILP and to our
knowledge, none learns action rules. The system mostly
related to ours is INTHELEX [15] that also uses a lgg-based
operator under OI-subsumption. INTHELEX specializes a
clause by adding literals to reject a negative example, and
so faces the difficult choice of selecting the best literal to
add when there are several candidates. Our specialization
algorithm is simpler as it specializes a rule by backtracking
on previous generalizations until it finds a coherent one.
As a consequence, search will take place during further
generalization steps to integrate uncovered examples without
introducing any contradiction.

Our algorithm, described Sec. IV, performs a revision
M ′ of the model M whenever a newly encountered ex-
ample contradicts either completeness or coherence. Each
such counter-example xu is stored in the set M.X , and
every subsequent update will guarantee completeness and
coherence w.r.t. M.X , thus preventing to ever reconsider M .
This way, we can ensure convergence by storing counter-
examples only.

A. Sketch of the algorithm

The system takes examples as defined in Sec. III. The
examples are presented incrementally, each one possibly
leading to an update of the action model. The method
we propose is example-driven and bottom-up. The starting
point is thus an empty rule-set; the interactions between the
system and its environment produce rules by computing least
general generalization (lgg) between examples, and between
rules and examples.

x1 w(a), w(b), on(a, f), on(b, f) move(a, b) on(a, b)
¬on(a, f)

x2 w(b), w(a), on(b, f), on(a, f) move(b, a) on(b, a)
¬on(b, f)

x3 b(c), b(d), on(c, f), on(d, f) move(c, d) on(c, d)
¬on(c, f)

x4 w(a), b(c), on(a, f), on(c, f) move(a, c) b(a)
¬w(a)

Table I
RELATIONAL REPRESENTATION OF EXAMPLES OF MOVE ACTIONS IN

THE COLORED BLOCK-WORLD DESCRIBED IN SEC. VI.

When a new counter-example xu is identified, two kinds
of modifications may occur:
• Specialization: xu may contradict one or several rules

of M.R (such a rule necessarily pre-matches xu). In

Figure 2. x1 and x2 are generalized into r1; then r1 and x3 are
generalized into r2; x4 leads to a backtracking specialization

that case, the preconditions of each such rule must
be specialized in order to reject xu, so as to preserve
coherence.

• Generalization: If no rule M.R pre-matches xu, the
algorithm (preserving completeness) then searches for
a generalization of a rule of M.R post-matching xu
that does not contradict any example in M.X (pre-
serving coherence). If no such generalization exists, xu
becomes a rule and is added as such to M.R.

In both cases, xu is stored in M.X . Examples satisfied by the
current hypothesis are not stored. They could later contradict
a new hypothesis obtained after generalization. This is the
price to pay so as to avoid memorizing all the examples (see
Sec. V for a convergence analysis and discussion).

Example 3 (generalization): Referring to the examples of
Tab. I, the system starts with an empty model. When x1 is
presented to the system, x1 is learned and added as such
in M.R. Then, example x2 is presented, x1 does not pre-
match x2, but x2 post-matches x1 (with inverse substitution
ρ−1 = {b/X, a/Y } and substitution σ = {X/a, Y/b}): the
system thus computes the least general generalization of x1
and x2, producing rule r1 (see Tab. II). When x3 is presented
to the system, it is not covered by the current model: r1
post-matches x3, but without pre-matching it. IRALe thus
computes the least general generalization of r1 and x3, by
dropping the color literals to build the resulting rule r2.

In order to ensure convergence M.X stores every past
counter-example encountered. They are used to prevent
repeating past over-generalizations, thus preserving the co-
herence of M . Let us now introduce data structures allowing
to store counter-examples in rules.

Definition 8 (ancestors r.anc): Each rule r has a list of
ancestors r.anc, each of them possibly having ancestors as
well.

r1 w(X), w(Y ), on(X, f), on(Y, f) move(X,Y ) on(X,Y )
¬on(X, f)

r2 on(X, f), on(Y, f) move(X,Y ) on(X,Y )
¬on(X, f)

Table II
CREATION OF r1 , AS THE lGG OF x1 AND x2 . REPLACEMENT OF r1 BY

r2 , COMPUTED AS THE lGG OF r1 AND x3

rules/examples. When a lgg takes place, the resulting
generalization keeps track of which rules/examples it comes



from. This way, each rule in M.R is the top node of a
memory tree as in Fig. 2. This structure is used during
specialization.

Example 4 (specialization): Starting from r2 as stated in
Tab. II, if x4 of Tab. I is presented to the system, x4
contradicts r2 (given the pre-matching substitution σ =
{X/a, Y/c}), x4.e is not on(a, c),¬on(a, f). The special-
ization process recursively backtracks to ancestor general-
izations of r2, until it reaches one that does not contradict
x4 anymore, in our example r1. This specialization replaces
r2 by r1 in M.R, and makes x3 uncovered.

Nodes are generalized rules, and leafs of the tree are the
counter-examples in M.X .

Example 5 (revision): Following example Fig. 2, both
x4 and x3 have to be integrated to the revised model
r1, coherent with x3. Neither x4 nor x3 can be used to
generalize r1, and they cannot form together a general rule.
The final version of the action model is therefore r1, x3 and
x4.

B. Detailed algorithm

Algorithm 1 is used only if the provided example x is not
covered by the model M . If x contradicts at least one rule of
M.R, a specialization algorithm (see Alg. 2) is first applied.
This specialization algorithm updates the rule model so that
x does not contradict a rule anymore, possibly rejecting a list
of examples Lxu

(line 3, Alg. 1). After specialization, the
obtained model is coherent, but it is still incomplete w.r.t.
x and also possibly w.r.t. any formerly identified counter-
examples in Lxu . These have to be (re-)integrated to M.R
using the Algorithm 3 (line 6, Alg. 1), starting by x, and
providing alternative generalization possibilities for M.R.

Algorithm 1 REVISION(M ,x)
Require: An example x uncovered by a action model M
Ensure: A revised coherent/complete model M covering x

1: Lxu
← []

2: for all r ∈M.R such that x � r do
3: Lxu

← Lxu
+ SPECIALIZE(r, x,M)

4: end for
At this point, M coherence is ensured, but not com-
pleteness

5: for all xu ∈ [x] + Lxu
do

6: GENERALIZE(M,xu)
7: end for

Given an overly-general rule r and a counter-example xu,
Alg. 2 recursively looks for the hypothesis closest to r (eg a
most general specialization of x) which is not contradicted3

by xu. Each time a backtracking step is performed, an over-
general rule is replaced by its ancestor (more specific) rule.

3Such an ancestor of r necessarily exists since the leafs of the tree are
examples (eg Fig. 2), and we assume that the observation set is consistent.

The associated counter-examples at the same hierarchical
level are possibly not covered by M anymore. Thus they are
stored in a list Lxu . No formerly stored counter-example is
lost at that step.

Algorithm 2 SPECIALIZE(r,x,M ):Lxu

Require: An example x contradicting a rule r ∈M.R
Ensure: A specialized model M coherent with x, a list Lxu

of counter-examples not covered by M.R anymore
1: M.R←M.R \ {r}
2: Lxu

← []
3: for all a ∈ r.anc do
4: if a is a leaf of M then
5: Lxu

← Lxu
+ [a]

6: else if a � x then
7: Lxu

← Lxu
+ SPECIALIZE(a, x,M)

8: end if
9: end for

The generalization algorithm (Alg. 3) has to deal with two
kinds of examples. The first loop of the algorithm handles
counter-examples x coming from Lxu

(line 3, Alg. 1), i.e.
examples rejected after a specialization step of the model
M , which are still covered by the model M ; in this case,
they should not be dropped (in case of potential further
specialization steps), but rather be added to the ancestors’
list of the most specific ones that cover them. Other counter-
examples of Lxu

, which are not covered by M , are either
generalized by means of the lgg algorithm, or added as such
to the model, in case there is no well formed and coherent
generalization of any rule of M that covers them. No
counter-example is lost during the generalization algorithm,
as they are either i) indexed as an ancestor of an existing
rule ii) stored as an ancestor of a new general rule iii) added
to M .

V. CONVERGENCE

Our revision algorithm memorizes each counter-example
xu in M.X and revises the current action rule set M.R
so that the revised action rule set M ′.R is coherent and
complete with respect to M.X , i.e. the whole set of counter-
examples met so far. We call here an EDS algorithm any
learning algorithm satisfying the above prerequisites, and we
show that any EDS algorithm converges to an exact solution
as far as i) either the hypothesis space H or the instance
space I = S×A is finite, and ii) there exists a solution M∗

in H that is correct and complete w.r.t. the labeled instance
space IL where each instance (s, a) is correctly labeled by
the unique resulting effect e possibly made of a conjunction
of literals. This means that we consider any example x as
an instance/label pair (i = (x.p, x.a)), l = x.e) and that the
learning purpose is to find a hypothesis M such that M.R
always predicts the correct label of any instance i in I, i.e.
M.R(i) = l(i).



Algorithm 3 GENERALIZE(M ,x)
Require: An example x possibly uncovered by M , an

action rule r ∈M.R
Ensure: A generalization r′ of r which covers xu while

preserving coherence. r′ is inserted in M.R
1: mod← false
2: for all most specific r ∈M.R such that r ≈ x do
3: r.anc← r.anc ∪ {x}
4: mod← true
5: end for
6: if mod = false then
7: for all r ∈M.R do
8: mod← mod ∨ lgg(x, r,M)
9: end for

10: end if
11: if mod = false then
12: M.R←M.R ∪ {x}
13: end if

Algorithm 4 lgg(xu,r,M ):mod
Require: An example x uncovered by M , an action rule

r ∈M.R such that r ae∼ (x.a, x.e) given ρ−1, σ and θ
Ensure: A generalization r′ of r which covers xu while

preserving coherence (r′ is inserted in M.R), a boolean
mod stating if M is modified

1: mod← false;
2: plgg ← lggOI((r.p)ρ−1, x.s), given σ and θ
3: r′ = (plgg, (r.a)ρ−1, (r.e)ρ−1)
4: if well− formed(r′) and there is no x ∈ M.X, x �
r′ then

5: mod← true
6: M.R←M.R ∪ {r′}
7: r′.anc← {r, x}
8: end if

Proposition 1: Any EDS algorithm finds an exact solution
M after i) less than |I| and ii) less than |H| revisions.

Proof: i) Here we suppose |I| is finite and that there is
an exact solution in the hypothesis space |H|. As counter-
examples are memorized in M.X , the current hypothesis M
is never revised into a hypothesis M ′ incorrectly predicting
the labels of the counter-examples met so far. As there are
less counter-examples than instances in |I| (i) is proved ii)
each counter-example (i, l) prohibits all the revisions that
incorrectly predict l, so as we suppose that an exact hypoth-
esis M∗ exists and all counter-examples are memorized, it
follows that M∗ will be found in less than |H| revisions.

Memorizing counter-examples is the cheapest way to
allow both examples and hypotheses enumeration: a) An
algorithm that doesn’t memorize counter-examples should
memorize hypotheses in some way in order to enumerate
them (as for instance, by maintaining as its current hy-

pothesis the set of all the most general clauses consistent
with the examples [16]) b) An algorithm that memorizes
all examples met so far needs a memory size much larger
than the number of revisions, and each revision is much
more expensive. When storing counter-examples, the main
complexity parameter is the number of counter-examples,
i.e. the number of revisions.

Clearly, here counter-examples represent mistakes, and
mistake bound analysis [17] is appropriate as examples are
organized in episodes and depend on the learner activity, and
so we cannot consider examples as drawn following some
probability distribution.

VI. EMPIRICAL STUDY

In order to compare our system IRALe with MARLIE
[4] on its action model learning feature, we provide exper-
imental results for both the blocks-world and the Logistics
domains. Examples are generated in episodes: each episode
starts from a random state and 30 sequential actions are
then randomly performed. In order to estimate the accuracy
of the model, classification error is measured as in MARLIE
experiments: for a given number of learning episodes, a false
positive rate FP , and a false negative rate FN are computed
on 100 random test (s, a, s′) triples. FP and FN represent
the rate of atoms that were incorrectly predicted as true
and false respectively in the resulting state when using the
current action model. When performing an action in a given
state, predictions are made by triggering a pre-matching rule
and comparing its add and del effects to the observed effects.
Among pre-matching rules, one rule with the lowest number
of counter-examples is randomly selected. In a given state,
several actions could be considered as illegal, meaning that
in the true action model, performing this action fails and
has no effect. However the learner is not aware of that. So
in a given state, the learner randomly chooses among all
possible instantiated actions. Each experiment consists of
10 trials and results are mean values on these trials.

A. Domains

Regular blocks world : In the blocks world, objects are
either blocks (a, b ...) or the floor f . The predicates are
on(X,Y ), clear(X), block(X), move(X,Y ). Three rules
are necessary to represent the model of action move(X,Y ).
The move action is legal whenever both objects are clear.
Our experiments consider 7-blocks worlds.

Colored blocks world: We now introduce color predicates
as b(X) (black) and w(X) (white) in the regular blocks
world. When move(X,Y ) is chosen, X is actually moved
on top of Y only if X and Y have the same color. Otherwise,
X is not moved but its colors shifts to the same color as
Y . The 2-colors 7-blocks world is more challenging to learn
as it contains 7 rules to model the action move, and leads
IRALe to inadequate generalization choices, so enforcing



many revisions requiring its backtracking ability. Colors are
uniformly distributed among the examples.

Logistics: In the (b, c, t)-Logistics setting, a state of the
world describes b boxes, c cities, and t trucks. Available
actions are load(X,Y ), unload(X,Y ) and drive(X,Y ),
states are defined using the predicates ontruck(X,Y ),
truckin(X,Y ) and boxin(X,Y ), as described in [4]. We
report results regarding the hardest setting experimented in
MARLIE, i.e. (5, 5, 5)-Logistics as well as results regarding
the (10, 10, 10)-Logistics setting, in which the same action
model has to be learned in a much larger state space.

B. Experimental results

Regular 7-blocks world and (5,5,5)-Logistics: Here, we
compare our results with those of MARLIE in its action
model learning experiments, as presented in [4] (Fig. 2).
Figure 3 plots the classification errors FP and FN vs the
number of learning episodes, in the 7-blocks world and
in the (5,5,5)-Logistics domains. In both cases, the action
model is almost always perfectly learned after less than 35
episodes, each producing 30 sequential examples. We note
that i) FP and FN errors of IRALe are balanced, which is
not the case of those obtained by MARLIE ii) MARLIE
needs about 50 episodes to learn a good 7-blocks world
action model (both FP and FN error < 1%) where IRALe
needs 10. MARLIE learns an accurate model but never
reaches an exact action model in the (5,5,5)-Logistics case.
To summarize, IRALe needs less examples than MARLIE to
converge to an accurate action model. However, it happens
that IRALe, as MARLIE, does not quickly reach the correct
model. A better exploration, applying some kind of active
learning, would certainly help to fine-tune the action model
faster.

2-colors 7-blocks world and (10,10,10)-Logistics: The
curves of the classification errors in the two domains are
presented in Fig. 4. As the model to learn is more complex,
IRALe needs more episodes to reach an accurate model
when blocks are colored. Model size optimality is not a
primary goal here, however a small number of rules indicates
that an adequate level of generalization has been reached.
Here, after few episodes, 3 rules are learned for the regular
blocks world problem (lowest is 3) and 7 to 10 have
been learned for the 2-colors problem (lowest is 7). This
means that IRALe continuously restructures its action model
all along the incremental learning process. Regarding the
(10, 10, 10)-Logistics domain, the action model is learned
as fast as in the (5, 5, 5)-Logistics domain despite the much
higher number of possible states.

Learning activity and counter-example memory size: For
the four domains, Fig. 5 displays the number of counter-
examples stored by the learner vs the number of learning
episodes. On the one hand, we note that the colored blocks
world curve is much higher than the regular blocks world
one, so confirming that the learning activity is related to

Figure 3. Classification error (FP, FN) in the 7-blocks world
(in grey) and in the (5-5-5)-Logistics domains (in black).

Figure 4. Classification error (FP, FN) in the 2-colors 7-blocks
world (in grey) and in the (10-10-10)-Logistics (in black).

the complexity of the model to learn, here estimated as the
number of rules representing a same action. On the other
hand, the (10,10,10)-Logistics curve is quite similar to the
(5,5,5)-Logistics, again confirming that despite the increase
in the state space, IRALe does not consider the learning task
harder when the number of objects represented increases.
As each episode represents 30 examples, the number of
examples encountered before convergence is less than 600
examples, with less than 15 counter-examples stored for the
three easiest problems, and less than 2400 examples, with
less than 45 counter-examples stored for the hardest prob-
lem. Overall, these experiments show that storing counter-
examples may help to reduce memory requirements a lot,
while ensuring convergence in the deterministic case.

Learning a non determinist model: IRALe is designed to
learn deterministic action models, and does not include any
feature to handle noise or address overfitting. Nevertheless,
we test here its ability to cope with some limited non-
determinism in the effects of action. After [11], we consider
the following noise in the 7-blocks world: whenever the
action is to stack a block on top of another block, the
action fails with probability p, and the block falls on the
table. We then say that we apply a p ∗ 100 % noise rate
to this action. As a consequence, one of the three rules
modeling move cannot be discovered by our deterministic
learner, and so the complete action model is unreachable.
Fig. 6 represents the global classification error of the move



model, mixing here false positive and false negatives, when
learning with 10, 20 and 30 % noise rates. IRALe shows
to be resistant to moderate levels of noise. Note that the
number of counter-examples continuously increases as the
model is never perfectly learned, and that the size of the
model increases with the noise rate (data not shown).

Figure 5. Counter-examples vs episodes in the four domains.

Figure 6. Classification error in the 7-blocks world domain with
various noise rates.
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VII. CONCLUSION

We have proposed an incremental relational revision al-
gorithm IRALe that learns an action model as a set of
rules. We have also provided a convergence proof for this
algorithm, setting a loose upper bound on the number of
counter-examples necessary to reach a complete and coher-
ent action model in the deterministic case. We have also
provided an empirical evaluation that shows the convergence
of IRALe, with a number of counter-examples several order
of magnitude smaller than the theoretical bound, suggesting
that tighter bounds can be obtained when restricting the
state space and the complexity of the class of models to be
searched. Experiments of IRALe in the blocks world domain
also show that it efficiently learns action models even when
facing some limited non determinism in the action effects.
We are currently including specific mechanisms to cope with
noise and non determinism both in the effects of the actions
and in the perceptions of the learner.
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