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Abstract. SBmethod, Version 1.1, is an implementation of the spectral bundle
method for eigenvalue optimization problems of the form

m
yrgﬂig% @ Amax(C — ;Aiyi) +by.
The design variables y; may be sign constrained, C' and and A; are given real
symmetric matrices, b € R™ allows to specify a linear cost term, and a > 0 is
a constant multiplier for the maximum eigenvalue function Apa(-). The code
is intended for large scale problems and allows to exploit structural properties
of the matrices such as sparsity and low rank structure.

The manual contains instructions for installation and use of the program. It
describes in detail input format, options, and output. The meaning of the
variables and parameters is made precise by relating them to a mathematical
description of the algorithm in pseudocode.

Mathematics subject classification (MSC 2000). Primary 90-04; sec-
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1 Introduction

SBmethod implements the spectral bundle method of Helmberg and Rendl [2000]; Helmberg
and Kiwiel [1999] (see Helmberg [2000] for a self contained introduction) for large scale
eigenvalue optimization problems of the form

min @ Amax(C — ATy) +bTy. (1)
yey
The function Apmax(+) denotes the maximal eigenvalue and C € S,,, AT: R™ — S,,, b € R™,
and a € R with a > 0 are given data (S, denotes the set of symmetric matrices of order

n). The matrix C € S, is called the cost matriz and the linear operator A”: R™ — S, is
defined by

Aly =" yid;,
i=1

where the A; € S,, for i = 1,..., m are given symmetric matrices of order n. The matrices
C and A; should be well structured (sparsity and various low rank structures are supported
by the code, see Section 2).

The set Y C R™, over which is optimized, is a Cartesian product of real numbers
R, nonnegative real numbers R, = {z € R : > 0}, and nonpositive real numbers
R. = {z € R:z <0}, i.e, there is a partition (J=, J>, J<) of the index set {1,...,m}
with

Y={yeR": y;>0forie Js, y; <0forie Jc}.

The somewhat peculiar choice of Y was motivated by the following connection to
semidefinite programs with constant trace a > 0. The eigenvalue optimization problem (1)
is equivalent to the dual of the semidefinite program

(

(

(A, Xy =b; i€ J. )
(A, X)< b i€Js

(A, X)> b i€ Je

X =0,

where (A, B) = Z” a;;b;; denotes the inner product for matrices A, B € R™*" and X > 0
is short for requiring X to be positive semidefinite. Alternatively, we write X € S with S,
the set of symmetric positive semidefinite matrices of order n. If the equality constraints
for i € J_ already imply (I, X) = a then the equivalence of (1) to the dual of (2) is true
without the constraint (I, X) = a.

Semidefinite programs of type (2) arise frequently in semidefinite relaxations of combi-
natorial optimization problems (see, e.g., the survey of Goemans [1997]). In this context
any feasible solution of (1) yields an upper bound on the combinatorial optimization prob-
lem. The desire to compute such bounds quickly via approximate solutions to (1) for well



structured matrices A; has been the main motivation for writing this software. The com-
binatorial optimization background had a heavy influence on many design decisions. This
is maybe best visible in the input format, which is tailored for (2) rather than for (1) (see
Section 2).

Although the distribution-package contains the full source code, its end is only to
provide a compiled program sb for solving (1). Therefore, this manual concentrates on
explaining how to compile and use the program sb.

The source code is, unfortunately, the result of many years of experimentation in various
directions without proper documentation and cleaning, a fact, that I am not at all proud
of. Therefore, for the time being, the source code is best ignored.

For installation, get the gzipped tar-file SBm_v1.1.tar.gz from the URL

http://www.zib.de/helmberg/SBmethod
Execute

gunzip SBm_vl.1l.tar.gz

tar xvf SBm.vl.l.tar (creates subdirectory SBmethod and fills it)
cd SBmethod

more README

Follow the instructions of the README file in order to make the program sb (if you are us-
ing gnu-make and g++ then typing make should suffice with high probability). Installation
is complete if you find an executable program sb in the directory SBmethod.

The program sb reads the problem description either from the standard input or a
file. The format of the problem description is explained in Section 2. The code offers the
possibility (for better or for worse) to tune most of the algorithmic parameters to specific
needs via options or a parameter file, see Section 4. In order to explain the meaning of
these parameters I give a rough description of the algorithm in Section 3, but I sometimes
assume familiarity with Kiwiel [1990]; Helmberg and Rendl [2000]; Helmberg and Kiwiel
[1999].

Acknowledgment. I thank K. C. Kiwiel who not only contributed many ideas but
also improved the reliability of my code significantly. He pointed out many mistakes in an
earlier version of the code by miraculously spotting tiny inconsistencies in tons of logfiles
that I sent to him by email.

2 Input Format

The format of the problem description for (1) (either read from standard input or from a
file) is based on the primal problem (2) and is as follows

a
C
m



A =<|> bk

A, =|<|> by
The lines “A; = | < | > b represent constraints of the form (A4;, X) = b; (for =),
(A;, X) < b; (for <), or (A;, X) > b; (for >). The matrices C' and A; are specified by one
of the matrix formats listed below (CAUTION: the code uses the convention that indices
start at zero!). Before describing these formats in detail we give a tiny example.
Example: Max-cut relaxation for a graph on 5 nodes.

. . T
max {(C, X) min aAmax(C' — Diag(y)) + 17y Input:
s.t. diag(X)=1 Y
5
—
X - O’ SYMMETRIC_SPARSE
.. 5 10
a = 5 (multiplier for A\pay) 00 0.5
c Zoas 05 0 —o2s —oss 110.5
= —0.25 0 0.5 0 0
0 —0.25 0 0.5 0 220.5
L —0.25 —0.25 0 0 0.5 33 0.5
m = 5 (#constraints) 44 0.5
[1 0 0o 0o 07 01-0.25
00 0 0 0O
A= 00 0 0 0 02 -0.25
00 0 0 ©
Lo o o o o | 04 -0.25
= (equation) 1 (=b) 13 -0.25
fo o 0o o0 o0 14 -0.25
01 0 0 0
Ag= 0 0 0 0 O 5
00 0 0 ©
[ 0 0 0 0 0| SINGLETON
= (equation) 1 (=by) 5001
[0 o o o0 o017 =1
As— g g (1) g g SINGLETON
0 0 0 0 0 5111
Lo o o o o | -1
= (equation) 1 (= bs) SINGLETON
00 0 0 0 5991
00 0 0 ©
A= |2 oo oo - 1
Lo o o o o] SINGLETON
= (equation) 1 (=by) 5331
o o o o o7 =1
A= 0 0 0 0 0
5= 0 0 0 0 0 SINGLETON
Lo o o o 1 | 5441
= (equation) 1 (=bs) =1

2.1 Sparse Symmetric Matrices

Suppose the matrix A € S,, has k nonzero entries in the upper triangle (a;; with i < j).
Then the matrix is described by (NOTE: indices start at zero!)

SYMMETRIC_SPARSE
nk



11 J1 Q444

U Jk Qi

It does not matter if + < j or 4 > j. If several values are given for the same index pair then
these values are summed up.

Example:
0 0 01 0 O SYMMETRIC_SPARSE
0 0 0 020 53
A=101 0 0 0 O 020.1
0 02 0 03 0 130.2
0o 0 0 0 0 330.3

2.2 Gram Matrices of Dense Matrices

Here, a Gram matrix has the form AAT with A € R™** a dense matrix (k should be small
to make this representation useful).

GRAM_DENSE
(Matrix)
The format of (Matrix) is explained in Section 2.9 below.
Example:
GRAM_DENSE
1 0 020 5 2
0 9 0 0 12 1.0
A=]10 0 0 0 O 0.3
2 0 04 0 0.0
0 12 0 0 16 2.0
0. 4

2.3 Gram Matrices of Sparse Matrices

Matrices AAT with A € R*** a sparse matrix.

GRAM_SPARSE
(Sparsemat)

The format of (Sparsemat) is explained in Section 2.9 below (NOTE: indices start at zero!).

Example:
1002 0 GRAM_SPARSE
09 00 12 25‘11
A=10 0 0 0 O 30 2
2 0 04 0 113
012 0 0 16 111



2.4 Low Rank Matrices Formed by Two Dense Matrices
Matrices ABT + BAT with A, B € R™** dense matrices.

LOWRANK_DENSE_DENSE

(Matrix A)
(Matrix B)
The format of (Matrix) is explained in Section 2.9 below.
Example:
LOWRANK_DENSE_DENSE
51
0.
1.
000O0O 0.
00123 0.
A=]101 000 0.
02000 51
03000 0.
0.
1.
2.
3.

2.5 Low Rank Matrices Formed by Sparse and Dense Matrices

Matrices ABT + BAT with A € R™* a sparse matrix and B € R*** a dense matrix.

LOWRANK_SPARSE_DENSE
(Sparsemat A)
(Matrix B)

The format of (Matrix) and (Sparsemat) is explained in Section 2.9 below (NOTE: indices
start at zero!).

Example:

LOWRANK_SPARSE_DENSE

511

00 0O0TO 011.

00123 51

A=101 000 0.

02000 0.

03 000 1.

2.

3.



2.6 Low Rank Matrices Formed by Two Sparse Matrices
Matrices ABT + BAT with A, B € R™* sparse matrices.

LOWRANK_SPARSE_SPARSE
(Sparsemat A)
(Sparsemat B)

The format of (Sparsemat) is explained in Section 2.9 below (NOTE: indices start at zero!).

Example:

LOWRANK_SPARSE_SPARSE

00 00O 51 1

0012 3 011

A=[01 0 0 0 513

02000 021

03 000 032

043

2.7 Matrices with a Single Nonzero Element

A Matrix A € S, with only one index pair ¢ and j satisfying a;; = a;; # 0 may be described
by (NOTE: indices start at zero!)

SINGLETON
n Z_] Q5
Example:

0 0 0 0 O
0 0 0 05 0

A=|0 0 0 0 0 SpeLEo
0 050 0 O '
0 0 0 0 O

2.8 Dense Symmetric Matrices

This class is only useful for testing purposes, it is not recommended to use the spectral
bundle method for dense problems. A dense symmetric matrix A € S, is given by specifying
the upper triangle row-wise (or the lower triangle column-wise).

SYMMETRIC_DENSE
n

ai1 @12 -..01(n—-1) Q1n
92 G923 ...0A9,

a'nn



Example:

0.1
0.2
A= 0.3
0.4
0.5

02 03 04 05
0.6 07 0.8 09
0.7 0.10 0.11 0.12
0.8 0.11 0.13 0.14
0.9 0.12 0.14 0.15

SYMMETRIC_DENSE

5

0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9
0.10 0.11 0.12

0.13 0.14

0.15

2.9 Building Blocks (Matrix) and (Sparsemat)

Now we explain the format of the two basic matrix classes (Matrix) and (Sparsemat).
A (Matrix) A € R*** is specified by giving its elements row-wise.

nk

a1 12 ...
91 Q99 . ..

Ap1 Ap2 ...

Example:

A=

A1k

A2k

Ak

0 0 0
0 0.11 0.12
0 0 0
03 O 0
0 041 O

A (Sparsemat) A € R"*F is specified by giving its h nonzero elements in any order
(NOTE: indices start at zero!).

nkh

11 J1 G4y 4,

U Jh Qi ),

If several values are given for the same index pair then these values are summed up.

Example:

[

A=

0 0 0 1
0 0.11 0.12
0 0 0
03 0 0

0 041 O

534

110.11
1 20.12
300.3
41 0.41



3 The Algorithm

3.1 Verbal Description

In order to explain the meaning of the parameters to be described in Section 4, we have
to introduce the algorithm in some detail. We start by extending the cost function of (1)
to R™ by
FW) == a Amax(C — A™y) + 0"y + 15 (y),
where 12y denotes the indicator function whose value is 0 for ¥y € Y and oo otherwise.
Instead of minimizing f directly we work with sequences of simpler cutting surface models
of f. We construct these model functions by the following two steps.
In the first step we minorize a Amay (C — ATy). It is well known that, for a > 0,

aAmax (C — ATy) = max{{C — AL ,W> ctr W =a,W = 0}.

Therfore, any W € W :={W = 0: tr W = a} gives rise to a linear function <C’ - AT, W>

minorizing the function aAyax(C — A”). A subset Wcw yields, as the pointwise maxi-
mum of the linear functions, a convex function minorizing aAyax(C — A”-). SBmethod uses
a subset of the form

W= {PVPT + oW : trV+a=a,V > 0,a >0}, (3)

where P is a given orthonormal matrix of size n x 7 and W € S is a given positive
semidefinite matrix of trace 1 (trtW = 1). We refer to P as the bundle, the number of
columns r of P as the size of the bundle, and to W as the aggregate; within a single
iteration of the algorithm P and W may be regarded as constant but both will be updated
at the end of each iteration.

In the second step we minorize 1y by a linear function —n?y, where 7 is any element
of the dual cone Y* to Y, 7.e.,

neY* = neR™: gy>0 VyeY}
= {nGRm: 771:0 V’iGJ:, 7’]120 V’L'EJz, ﬂzSO VZGJs}

Thus, for any fixed W € W and n € Y* we obtain a linear minorant of f by
fwaly) =(C - Ay, W)+ (b-n"y <fly) Vyev.
A subset W C W together with a fixed n € Y* yields a convex minorant of f,

fa) = Vrgg%(C Ay, W)+ -y <fly) VyevY

Since we will form W from accumulated local information, the model an can be expected
to be of reasonable quality only locally. Therefore we determine the next candidate as the
minimizer of

i u 112
_ Uy — 4
min max fi, (4) + 51y = 91l (4)

8



where ¢ is our current center of stability (the starting point or last successful iterate) and
the weight v is a parameter that allows some indirect influence on the distance of the
minimizer of (4) to 4. In the algorithm we restrict H € S,;/* to be a diagonal matrix, so
that it is equivalent to a scaling of the primal constraints. H is usually the identity but the
algorithm offers a scaling heuristic setting h; = 1/ max{1, 92} for i € {1,...,m}. Instead
of solving (4) we solve its dual,

. U -
max min (C — Ay, W)+ (b—n)"y+ |ly — 9l/%- (5)
WeW ey yER™ 2

The inner minimization over y is an unconstrained convex quadratic problem and can be
solved explicitly for any choice of W and 7,

N
Ymin(W,n) =9 + EH HAW = b+ 7). (6)
Substituting this for y into (5) we obtain

N . 1
max (€= AT W)+ (b= 1) — oo | AW = bl (7

Wew,ney*

In order to further reduce the complexity of solving this subproblem we solve it by a
sequence of coordinatewise optimization steps. In particular, we first fix 7 and solve (7)

over W € W\yielding an optimal W7, then we fix W and solve (7) over n € Y* and iterate

this if necessary. Optimizing over W € W for fixed 7 results in a small dimensional (“small”
depending on the bundle size r) convex quadratic semidefinite programming problem in V

and « (see the definition of w (3)) that can be solved efficiently by interior point methods,

1
Wt € Argmax (C — A"y, W)+ (b—9)"9 — —||AW — b+ 4|[%. (8)
wWew 2u

See Helmberg and Rend] [2000]; Helmberg and Kiwiel [1999] for a description of the interior
point code. Optimizing (7) over n for some fixed W is separable convex; the optimal
argument 7ax (W) is determined by

max {0, —hiu [@ + ﬁ(AW - b)]z} ieJs
(W)l = min {0, =higu |5+ (AW = )] b i€ (9)

i

0 1€ J-.

Therfore we set
77+ = nmaX(W+)- (10)
Observe that nt also ensures feasibility and complementarity of yu,i, (W, n™) (6),

v = Y (W) €Y and  (n7)"y" =0. (11)



The pair (W', n") is, in general, not an optimal solution of (7) but a only an approxima-
tion. We regard this approximation as not sufficiently accurate if

T W) = S ) > 6 [F (@) = S (7)) (12)

for a model-precision parameter ky € (0,00), i.e., if the gap at y™ between the model value
fiwe + (yT) and its linear minorant fy+,+(y™) is too big in comparison to the gap between
the old function value f(§*) and the linear minorant. In this case, the two coordinatewise
steps are repeated, now fixing 7 to the new n™.

Otherwise the solution of the model is considered sufficiently accurate and y™ is the
new candidate at which the function is evaluated. We do this by a Lanczos method (see
also Section 3.3) which generates a sequence of normalized vectors v whose Ritz-values
v (C' — ATy™)v yield successively better estimates of A\yax(C —.ATy™) till either the function
values turn out to be too high for sufficient decrease in objective value or the vectors have
converged to an eigenvector of A,... More formally, the Lanczos process continues to
generate better and better Wy := avv? € W till

(a) f(9) = fweu+(y™) S RLF(@) = fw+pr (yT)], or
(b) fwsar (") = f(y™) and f(§) — f(y™) = £[f(9) = fw+ar (7))

where the descent parameter € (0,1) controls the necessary progress relative to the gap

(@) — fw+.+(yT) for accepting descent steps to y™, and the null step parameter & € [k, 1)

controls the level for accepting a null step. At a descent step the algorithm moves the

center of stability § to y*, at a null step § remains unchanged. In both cases the model

W is updated so that W and W are both contained in W+ and the algorithm iterates.
The algorithm stops as soon as

F@) = fwe e () <e(lf @) + 1) (13)

for a termination precision parameter € > 0, i.e., when the maximal progress of the next
step (fw+,+(y*) may be regarded as a lower bound for this) is small in comparison to the
absolute value of the function.

We now give the algorithm in detail, superscripts & are used to indicate iteration indices.

3.2 The Main Loop in Pseudo-Code

Algorithm 3.1 (Spectral Bundle Method with Bounds)
Input: y° € R, £ >0, k € (0,1), & € [k, 1), kar € (0,00], K, € [0,1], a weight u® > 0.

1. Set k=0, 9°=14° n° =0, compute f(y°) and WO, choose W° € WP.
2. (Trial point finding). Compute ) = (1 — k,)n* + Kk (WF), see (9).

(a) Find W+, n*, y* by (8), (10), and (11) in this sequence.

10



(b) (Stopping criterion). If f(9%) — fw+,+ () <e(|f(9%)| + 1) then stop.
(¢) If fope o (WF) = v (yF) > k| f(G%) = fw+ - (yT)] then set n = nT and goto
a).

(d) Set y*t! =yt W = W pbtt =pt.
3. (Descent test). Find Wit € W such that either

(a') .f(gk) - fw§+1mk+1(yk+1) <K [f(@)k) — fwk+1’77k+1(yk+1)] , or
(6) fyier s (FF) = F(FHY) and f(5%) = F*) > 8 [(GF) = faeon oo (55H)].

~k+1

In case (a), set §**1 = g% (null step), otherwise set 5! = y*+1 (descent step).

4. (Weight updating). Choose a new weight u**' (not explained here).
5. (Model updating). Choose a Whtl 5 {WkL WETL of the form (3).

6. Increase k by one and goto 2.

The following theorem holds for ¢ = 0 and H* = I.

Theorem 3.2 Helmberg and Kiwiel [1999]
Either 9* — 4 € Argmin f, or Argmin f = () and ||§*¥|| — oco. In both cases f(§*) | inf f.

The efficiency of the algorithm is governed by the parameters controlling the eigenvalue
computation in the Lanczos method and the parameters determining the size and com-
position of the bundle in W. Therefore we will describe these two aspects briefly in the
following.

3.3 Eigenvalue Computation

We implement step 3 of Algorithm 3.1 by computing, by means of the Lanczos method, an
eigenvector v to the maximal eigenvalue of the matrix C' — A™y* and setting W& = avo™.

The Lanczos process is an iterative method that generates, from a series of matrix vector
multiplications, a partial tridiagonalization of the matrix. Each iteration, called a Lanczos
step, increases the order of the tridiagonal matrix by one. The eigenvectors and eigenvalues
of the tridiagonal matrix are used to generate approximations to the eigenvectors and
eigenvalues of the original matrix; slightly deviating from the usual terminology we call
these approximations Lanczos vectors and their Ritz values. See Golub and van Loan
[1989] for an introduction and Parlett [1998]; Saad [1992] for a detailed description of the
Lanczos method.

Our algorithm uses complete orthogonalization and restarts the Lanczos process after
nr Lanczos steps using the Lanczos vector corresponding to the maximal eigenvalue of
the tridiagonal matrix as new starting vector. Before each restart we check the null step
criterion of step 3(a) of Algorithm 3.1.

11



A large parameter n; enhances the convergence of the Lanczos process, but also in-
creases computation time significantly (as well as memory consumption) because of the
complete orthogonalization of the vectors. If the matrix vector multiplication is computa-
tionally expensive, then we prefer to choose a large parameter ny, say 150.

If the matrix vector multiplication is very cheap (extremely sparse matrices), then it
may be worth to apply at each Lanczos step a spectral transformation to the matrix.
The code offers the possibility to compute a Chebychev polynomial transformation by a
series of matrix vector multiplications. A parameter ne allows to specify the degree of the
Chebychev polynomial (we use odd degrees only to preserve the ordering of the eigenvalues
outside the Chebychev interval). In our experience this parameter should by either 0 (to
be read as no spectral transformation) or above 21. If ng > 0 each restart of the Lanczos
process requires roughly ny - ne matrix vector multiplications. Therefore, we recommend
not to choose ny very large in this case, e.g., between 20 and 50.

To the best of our knowledge no satisfactory heuristics are known for choosing the
parameters ny; and ne in an automatic way. In lack of a reasonable approach, SBmethod
provides the following very naive heuristic as default. Based on a rough estimate of the flops
of the matrix vector operation it decides whether to use ng = 0 or ng > 0. If it decides in
favor of nc = 0 then (assuming n is sufficiently large) it sets ny, = min{50|#restarts/2 +
1],200}. Otherwise, for nc > 0, it first computes a guess of the interval [Amax, Amin] by ten
Lanczos steps for block size two (the interval is needed to set up the Chebychev polynomial;
starting vectors are generated randomly or from previous vectors). It then uses blocksize
one and begins with n;, = 15 and n¢ = 20 so as to quickly eliminate poor candidates at the
end of this cycle by criterion 3(a) of Algorithm 3.1. After this second restart it continues
with np = 25 and ne = min{20 + 10| #restarts/2],200}.

3.4 Model Updating

The model W of (3) is completely determined by the choice of the bundle P and the

aggregate W. In updating P and W to P+ and W' we have to ensure that the new
model W+ contains {W*, Ws = vv™'} (v denoting the new Lanczos vector), see step 5 of

Algorithm 3.1. In SBmethod the construction of the new bundle P for W+ from P of W
and the new information obtained from Lanczos vectors is controlled by four parameters
Nk, Nmin € Noy NE > Npin (Mmaximum and minimum subspace dimension to keep), ny € N
(maximum number of Lanczos vectors to add), and ¢, € (0,1) (aggregation tolerance).
These are used as follows.

Let W+ = PV*PT 4+ o*W denote the computed solution of (8) and let V+ = QAQT
be an eigenvalue decomposition of V+ with QTQ = I, and A = Diag(\,, ..., \,) a diagonal
matrix with Ay > Ay > .- > \.. For

Tl max{i € {1,...,nk}: X\ >t MU {nmin}  otherwise

let ()1 contain the r; first columns of () and () the last » — r; columns and let A; and
A5 denote the corresponding diagonal matrices. Furthermore, let ny denote the number of

12



Lanczos vectors returned by the eigenvalue computation routine and let L be the matrix
formed by the min(ny,n4) Lanczos vectors with largest Ritz-values. Then the new model

WH is determined by

Pt = orth([PQ:, L))

— PQQAQ(PQQ)T + O!+W
W = ,
tr A2 =+ at

where orth() constructs a matrix whose columns form an orthonormal basis of the space

spanned by the columns of the argument. This construction ensures Wt > {W*, Ws} (see
Helmberg and Rendl [2000]).

Remark 3.3 As shown in Helmberg and Rendl [2000] it is not necessary to store and
update W itself, but only AW and <C, W> Note, however, that the matrix W+ may
be interpreted as an approximate primal solution X (and the n variables as primal slack
variables). If full knowledge about W+ is desired, then W should be stored explicitly and
SBmethod offers this possibility.

Again no reasonable guidelines are known for choosing these parameters. In the hope
to make first experiments with the code easier, SBmethod offers a heuristic that adapts
these parameters dynamically (in this case the input parameters should be understood as
upper bounds on the possible values). It starts with 7y, = 0. In each iteration it adds
up to n4 new vectors if their Ritz value is above a bound that is determined relative to
the largest Ritz value and its gap to estimates of the Ritz values of the vectors already in
P. P is then updated as explained above. As long as the accumulated time required for
solving the quadratic semidefinite model is less than half the time spent in the eigenvalue
routine, nmi, is increased in each iteration by one; this rule is intended for situations where
t, is too restrictive and not enough columns are maintained in P. If, however, an iteration
is encountered where o > %a and solving the augmented model takes ten times as long
as computing the eigenvalues, then evidence is high that a sufficiently large bundle would
be inefficient and, in this case, nk is set to zero and n, to seven for all further iterations.
This heuristic cannot be expected to deliver optimal choices for the bundle parameters; In
addition, its dependence on time accounting information has the undesirable effect that
running the same algorithm with the same input twice may result in different output (even
though convergence to an [existing] optimal solution is guaranteed). Yet, it should perform
reasonably well if no better setting from related problems is at hand.

4 Options and Parameters

When sb is called with the help option -h or an unknown option it prints (an error message
and) a short description of all options (see below) and exits:

usage: sb [options] default input for problem description: stdin
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options: [-te Real]l [-tt Integer] [-td Integer]
[-bu Integer] [-bk Integer] [-ba Integer] [-bm Integer] [-bt Reall
[-1n Integer] [-lc Integer]
[-sh 0/1] [-si 0/1] [-sc 0/1]
[-k Real] [-ki Real] [-km Real] [-ke Real] [-e Integer] [-c 0/1]
[-u Integer] [-uk Real] [-uf Real] [-umin Real] [-umax Real]
[-f filename] [-fp filename] [-fs filename]
[-oy filename] [-ol filename] [-om filename] [-oP filename]
[-oas filename] [-oad filename] [-oXs filename] [-oXd filename]
[-oprob filename]
[-op 0/1] [-ob 0/1] [-ot Integer]
[-rf filename]
(for repeated or contradicting options the last specification is used)

termination paramters:

-te ... relative precision (termination epsilon) [default=1e-5]

-tt ... timelimit in seconds [default=-1 for no limit]

-td ... maximum number of descent steps [default=-1 for no limit]
bundle parameters:

-bu ... method for bundle update [default heuristic=0]

-bk ... maximum number of vectors kept [default=45]

-ba ... maximum number of vectors added [default=10]

-bm ... maximum for minimum number of vectors kept [default=30]

-bt ... relative aggregation threshold [default=.01]
Lanczos eigenvalue computation:

-1ln ... number of Lanczos steps per Lanczos restart [default=-1]

-lc ... degree of Chebychev polynomial in matrix multiplication [default=-1]
starting point and scaling heuristics:

-sh ... use the starting point heuristic [default=0 nol

-si ... scale constraint matrices to norm one on input [default=0 no]

-sc ... use a scaling heuristic during computation [default=0 no]
step acceptance/rejection parameters:

-k ... factor for descent steps [0.1]

-ki ... factor for inexact null steps [0.1]

-km ... model precision (for inequalities only) [default=.6]

-ke ... convex combination factor for guessing new multipliers [1.]

-e ... compute ’number’ exact eigenvalue(s) for null steps [default=0 nol

-c ... use cutval instead of linval for acceptance criteria [default=0 no]
weight updating:

-u ... choice of u: 0 Kiwiel/1 Helmberg/4 HelmbergKiwiel [4]

-uk ... factor for criterion for decreasing u [0.5]

-uf ... fix value of u for entire algorithm

-umin.. min value of u for entire algorithm, <=0 for default bound
-umax.. max value of u for entire algorithm, <=0 for default bound
input files:

-f ... file for problem description

-fp ... parameter file (format: list of command line optiomns)

-fs ... starting point file (feasible!), format: m 1 y11 y21 ... yml
output files:

-0y ... store best y at termination in filename

-0l ... store computed Lanczosvalues/vectors of this y in filename
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-om ... store last Lagrange multipliers for y in filename

-oXs... store sparse (pattern of cost matrix) approx of primal X in filename
-oXd... store dense approximation of primal X in filename

-oP ... store eigenvalues/vectors of last QSDP solution in filename

-oas... store sparse aggregate matrix of last solution in filename

-oad... store aggregate matrix of last solution in filename

—oprob. .write problem description to file
detail of log output:

-ob ... write log info for bundle method [default=0 no]

-op ... write log info for problem specific routines [default=0 no]

-ot ... termination: output at O final precision/1 precision levels [0]
resume file name:

-rf ... name of the ’save’-file for resuming in case of interruption
or

sb -resume filename
. resumes an old process that has been terminated prematurely
filename has to refer to the corresponding ’save’-file

SIGTERM (15) save resume info, output summary and option files, exit
SIGUSR1 (10) output summary and option files, exit

SIGUSR2 (12) output summary and option files and continue

SIGKILL (9) kill without any further output

In order to facilitate locating the description of an option I stick to this order in the
following. Yet I would like to emphasize that the order is not related to the importance of
the parameters. In my experience the most important parameters are, in this sequence,

1. the relative precision for termination (-te, Section 4.1.1),

2. the size of the bundle (the number of columns in P) controlled by setting the maxi-
mum number of vectors kept (-bk, Section 4.2.2) and the maximum number of vectors
added (-ba, Section 4.2.3) (sometimes it is helpful to also specify a minimum number
of vectors to keep,-bm, Section 4.2.4).

3. the parameters guiding the eigenvalue computation by the Lanczos method, 7.e., the
number of Lanczos steps within each restarting cycle (-1n, Section 4.3.1) and the
degree of the Chebychev polynomial applied to the matrix for each matrix-vector
multiplication (-1c, Section 4.3.2).

4. unfortunately, the time limit in seconds (-tt, Section 4.1.2).

We now explain the options in the sequence given by the code.

4.1 Termination Parameters
4.1.1 [-te Reall

specifies the relative precision € required for termination, see (13) and Algorithm 3.1, step
2(b), page 10, for the stopping criterion.
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4.1.2 [-tt Integer]

specifies the number of seconds (measured in user time) after which the algorithm stops
the first time it checks the termination criterion (Algorithm 3.1, step 2(b), page 10). A
negative number is interpreted as no time restriction; this is also the default.

4.1.3 [-td Integer]

specifies an upper bound on the number of descent steps. If this number is reached, the
algorithm terminates. A negative number is interpreted as no bound; this is also the
default.

4.2 Bundle Parameters

For an overview of the bundle updating process see Section 3.4.

4.2.1 [-bu Integer]

specifies the method used for updating the bundle. The default choice zero uses the heuris-
tic described at the end of Section 3.4, the value one is used for the version described in
in the beginning of Section 3.4, without dynamic update of ng, ns and ny;,.

4.2.2 [-bk Integer]

gives the maximum number ng of columns to be kept in the bundle P (see Section 3.4).

4.2.3 [-ba Integer]

gives the maximum number n,4 of new Lanczos vectors to be added to the bundle P (see
Section 3.4).

4.2.4 [-bm Integer]

gives Ny, the minimum number of columns kept in the bundle P (see Section 3.4). The
number is less or equal to ng (set by bk, Section 4.2.2). The algorithm keeps nmin columns
in P even if the aggregation tolerance ¢, (set by -bt, Section 4.2.5) would lead to fewer
columns. This parameter may come in handy if the size of the eigenvalues of V1 (see
Section 3.4) decreases too fast. In the case of the default dynamic parameter update rule
-bu 0 (see Section 4.2.1) the number only acts as an upper bound on the actual minimum
number.

4.2.5 [-bt Reall

specifies the relative aggregation tolerance t, for keeping and aggregating columns (see
Section 3.4). The default value is 0.01.
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4.3 Lanczos Eigenvalue Computation

For a rough description of the Lanczos algorithm and its parameters see Section 3.3.

4.3.1 [-1n Integer]

specifies the number ny, of Lanczos steps before the algorithm is restarted (see Section 3.3).

My current implementation of the Lanczos method uses complete orthogonalization, so
a large number of steps does not only consume more memory, it is also computationally
expensive. On the other hand, for a large parameter convergence is significantly faster.
Thus, if matrix-vector multiplications are very expensive, a value of up to 200 may be
worth trying (consult Golub and van Loan [1989] for an introduction and Saad [1992];
Parlett [1998] for an in-depth treatment of Lanczos methods).

4.3.2 [-1c Integer]

specifies the degree ne of the Chebychev polynomial applied to the matrix in each matrix-
vector multiplication (see Section 3.3). This spectral transformation helps to enlarge the
spectral separation (the gap between largest and second largest eigenvalue) in order to
speed up convergence of the Lanczos method. Since it requires degree many matrix-vector
multiplications it is of use only if matrix-vector multiplications are cheap in comparison
to the dense linear algebra employed inside the Lanczos method (in principle the Lanc-
zos method produces the best polynomial for a given number of iterative matrix-vector
multiplications and, thus, the fastest convergence).

4.4 Starting Point and Scaling Heuristics
4.4.1 [-sh 0/1]

When this option is set (value 1, this is the default), then the algorithm initially performs
up to five steepest descent steps as long as the gap between maximal and second largest
eigenvalue is “large”. The stepsize is determined by linearly interpolating the increase of
the second smallest eigenvalue. This can be regarded as a starting point heuristic.

4.4.2 [-si 0/1]

When this option is set (value 1; default is 0), then the constraints are scaled on input so
that the constraint matrices have Frobenius norm 1. In some cases this may yield a better
scaling of the problem.

4.4.3 [-sc 0/1]

When this option is set (value 1; default is 0), the algorithm employs a simple diagonal
scaling heuristic. Essentially, the y; with |y;| > 1 are scaled to |y;| = 1, see the description
of H after (4) on page 8.
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4.5 Step Acceptance/Rejection Parameters
4.5.1 [-k Reall]

This sets the factor k € (0, 1) for accepting descent steps in step 3(b) of Algorithm 3.1 on
page 10. The default value of 0.1 should be fine.

4.5.2 [-ki Real]

This sets the factor & € [k, 1) for accepting null steps without computation of the exact
maximal eigenvalue, see step 3(a) of Algorithm 3.1 on page 10. The default value of & = &
should be fine. To force exact eigenvalue computations for null steps, use option -e (Section
45.5).

4.5.3 [-km Real]

This sets the factor ki € (0,00] for accepting an inexact model value, see step 3(c) of
Algorithm 3.1 on page 10 and (12) on page 10. A small value requires high accuracy. A
large value reduces the number of inner iterations (without endangering convergence), but
may lead to unnecessary additional function evaluations. This cannot happen if k), < 1—k.
The default value of 0.6 should be fine.

4.5.4 [-ke Real]

This sets the factor «,, € [0, 1] for computing a new initial guess 7 after a descent step in
step 2 of Algorithm 3.1 on page 10. It forms a convex combination of the old n* and the
new maximizing choice nt_ (W*) (see (9)) for the new §*. For a null step, §* = 9*~!, both
are equal and the result is independent of «,. The current default setting x, = 1 (take the
new value) should be fine.

4.5.5 [-e Integer]

This option specifies the number of exact eigenvalues to be computed at each evaluation
and admits inexact evaluation for null steps if the value is zero (see step 3(a) of Algorithm
3.1 on page 10). If the value is at least one then inexact evaluation is switched off. Although
the maximal eigenvalue is among these eigenvalues with probability one, it may happen
that not all eigenvalues are largest possible (the starting vectors for additional eigenvalues
are no longer random in general). The default value is zero.

4.5.6 [-c 0/1]

If this option is set (value 1, default is 0) then the exact value of the cutting model
Sk (y™) is used instead of the linear minorant fy+ ,+(y*) in the stopping criterion of
step 2(b) and the descent test of step 3 of Algorithm 3.1 on page 10. In the case of sign
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constraints on y the value of the cutting model is usually somewhat larger than the latter
value. The option seems to be of little relevance.

4.6 Weight Updating
4.6.1 [-u Integer]

specifies one of several rules for updating the weight u in step 4 of Algorithm 3.1 on page
10, see also (4) on page 8 and the explanations thereafter. If an option -uf (Section 4.6.3)
is specified afterwards, then this option is ignored.

In the following ¢ is the initial subgradient, ¢ = b — aAvv”, with v a normalized
eigenvector to the maximal eigenvalue in the starting point.

0 rule of Kiwiel [1990] with starting value ug = ||g||
rule of Helmberg with starting value uy = ||g||/v/m
rule of Helmberg with starting value uy = ||g||
rule of Kiwiel [1990] with starting value uy = ||g||/v/m
rule of Kiwiel [1990] with level updates, uy = ||g||
rule of Kiwiel [1990] with level updates, ug = ||g]|/v/m
The level updates are described in Helmberg and Kiwiel [1999], but the “Helmberg”-rule
has not appeared (and most likely will not appear) in the literature. It is a modification
of the rule of Kiwiel [1990] that is a bit more aggressive in decreasing u, but less likely to
increase u in a series of null steps. My personal favorite is 4 but sometimes it increases
u too much which may lead to premature termination. In this case, rule 1 might be an
alternative, or even setting an upper bound with —umax, see Section 4.6.5.

All current strategies seem to run astray if the starting point is bad, i.e., the maximal
eigenvalue is well separated from the remaining eigenvalues (consider, e.g., starting the
spectral bundle method on the Lovasz 9 function with C' = ee” and all variables zero). In
this case the u-value is constantly decreased in the first few iterations and usually does not
increase sufficiently afterwards. The starting point heuristic -sh (Section refS-sh) should
help to skip this initial phase and was included for this very purpose.

Tt i W N~

4.6.2 [-uk Real]

We call this factor kg € (k, 1) (it is called mpg in Kiwiel [1990]) or kg € (k, 1). It determines
whether after a descent step and some additional conditions the weight u is decreased in
step 4 of Algorithm 3.1 on page 10. The central condition (see Kiwiel [1990] for a precise
description and additional restrictions) is that after a descent step model and function
value are close in the sense of

F@F) = FFT) > Kr[F(GF) = forrer o (¥FT)]

The default value of 0.5 should be fine.
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4.6.3 [-uf Reall

This option fixes the weight u at the given value for the entire algorithm. If an option -u
(Section 4.6.1) is specified afterwards, then this option is ignored.

4.6.4 [-umin Reall]

This option sets a lower bound on the weight u for the entire algorithm and any choice of
a dynamic weight updating strategy. A value less or equal to zero results in the default
choice.

4.6.5 [-umax Reall]

This option sets an upper bound on the weight u for the entire algorithm and any choice
of a dynamic weight updating strategy. A value less or equal to zero results in the default
choice.

4.7 Input Files

4.7.1 [-f filename]

specifies the file from where the problem description should be read (see Section 2 for the
format description). If this option is not set, the description is read from standard input.
4.7.2 [-fp filename]

specifies a file that contains personal preferences for standard parameter settings. Simply
collect your favorite command line options in an ASCII-text file in arbitrary order and
include it with this option. Any options specified afterwards will override these settings.

4.7.3 [-fs filename]

specifies a file that contains the starting point. The starting point must be a vector given in
the format (Matrix) (see Section 2.9) and must be feasible! If no starting point is specified
the algorithm starts at zero.

4.8 Output Files
4.8.1 [-oy filename]

specifies a file for writing the center of stability ¢ at termination in step 2(b) of Algorithm
3.1 on page 10. Without this option, ¢ is lost on termination.
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4.8.2 [-0l1 filename]

specifies a file for writing the Lanczos values and Lanczos vectors corresponding to the
center of stability § at termination in step 2(b) of Algorithm 3.1 on page 10. Without this
options, these values are lost on termination.

4.8.3 [-om filename]

specifies a file for writing the multipliers n* at termination in step 2(b) of Algorithm 3.1
on page 10. Without this option, n* is lost on termination.

4.8.4 [-0Xs filename]

specifies a file for writing a sparse subset of matrix elements of W™ (an approximation to
the primal solution matrix X) at termination in step 2(b) of Algorithm 3.1 on page 10.
The sparsity pattern is taken from the cost matrix and the output format is as used in the
description of SYMMETRIC_SPARSE, Section 2.1. This option implies that the aggregate W
is also updated in sparse form and thus induces some overhead per iteration. If the cost
matrix is not sparse, the option switches automatically to -oXd (Section 4.8.5) using the
same filename. Without this option and without -oas (Section 4.8.7) the aggregate W is
not stored in sparse form and the data is not available.

4.8.5 [-0Xd filename]

specifies a file for writing the matrix W (an approximation to the primal solution matrix
X) at termination in step 2(b) of Algorithm 3.1 on page 10. The output format is dense
symmetric as used in the description of SYMMETRIC_DENSE, Section 2.8. This option implies
that the aggregate W is also updated in dense form which may slow down the algorithm
substantially and may entail a significant increase in memory consumption. Without this
option and without -oad (Section 4.8.8) (or possibly -oas for dense cost matrices, see
Section 4.8.7) the aggregate W is not stored in dense form and the data is not available.

4.8.6 [-oP filename]

specifies a file for writing the eigenvalue and eigenvector matrices diag(A) and P of the
matrix W+ = PAPT + oW at termination in step 2(b) of Algorithm 3.1 on page 10.
The output format is in dense (Matrix) form (see Section 2.9) in this sequence. This
information always exists (see —bk, Section S-bk) but is lost on termination without this
option.

4.8.7 [-oas filename]

specifies a file for writing a sparse subset of matrix elements of W and its multiplier at at
termination in step 2(b) of Algorithm 3.1 on page 10 (W = PVTPTa™W). The sparsity
pattern is taken from the cost matrix and the output format is as used in the description
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of SYMMETRIC_SPARSE, Section 2.1. This option implies that the aggregate W is updated
in sparse form and thus induces some overhead per iteration. If the cost matrix is not
sparse, the option switches automatically to —oad (Section 4.8.8) using the same filename.
Without this option and without —oXs (Section 4.8.4) the aggregate W is not stored in
sparse form and the data is not available.

4.8.8 [-oad filename]

specifies a file for writing the dense aggregate W and its multiplier o™ at termination
in step 2(b) of Algorithm 3.1 on page 10 (W* = PVTPTa*W). The output format is
dense symmetric as used in the description of SYMMETRIC_DENSE, Section 2.8. This option
implies that the aggregate W is updated in dense form which may slow down the algorithm
substantially and may entail a significant increase in memory consumption. Without this
option and without -o0Xd (Section 4.8.5) (or possibly -oas for dense cost matrices, see
Section 4.8.7) the aggregate W is not stored in dense form and the data is not available.

4.8.9 [-oprob filename]

specifies a file for writing the problem description. In the current setting this is useful only
for debugging purposes.

4.9 Detail of Log Output
4.9.1 [-ob 0/1]

flag for printing detailed log information on the progress of the spectral bundle algorithm,
switched on with 1 and off with 0. This is not intended for general use. If in trouble, please
send me the problem description, your parameter files, and a log file with this option and
-op (Section 4.9.2) switched on. I will do my best, but I can give no guarantee on my reply
time nor on success.

4.9.2 [-op 0/1]

flag for printing detailed log information on the eigenvalue computation, switched on with
1 and off with 0. This is not intended for general use. If in trouble, please send me the
problem description, your parameter files, and a log file with this option and -ob (Section
4.9.1) switched on. I will do my best, but I can give no guarantee on my reply time nor
on any success.

4.9.3 [-ot Integer]

specifies the routine for checking termination. Value 0 gives a summary output only at
termination, value 1 provides intermediate summaries at the respective first iteration when
the next precision level is reached with respect to the termination criterion of step 2(b) of
Algorithm 3.1 on page 10. The precision levels are e = 1072, 5-1072, 1073, ...
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4.10 Resuming after SIGTERM
4.10.1 [-rf filenamel]

specifies a file for writing a complete dump of all variables and accounting information for
continuing some later time. These files may get huge, so be sure to have an appropriate file
size limit installed on your system. The saving process is invoked by the first termination
check after sending SIGTERM to the job. To resume, execute sb -resume filename
without any other parameters (see next Section 4.10.2).

4.10.2 [-resume filename]

specifies a file that contains a dump of all variables as created by -rf (see previous Section
4.10.1) and may only be used in the form sb -resume filename without any parameters.
It then continues the run saved in this file.

4.11 Signals
4.11.1 SIGTERM

Sending SIGTERM to sb (e.g., by executing kill %job) results in saving a default resume
file named sb_resume.dat at the first termination check after the job received the signal.
Furthermore the code prints a summary of the performance so far to standard out and
writes all information requested by options to the appropriate files.

4.11.2 SIGUSR1

Upon the first termination check after receiving the signal SIGUSR1 (e.g., after ki1l -10
%job), the code prints a summary of the performance so far to standard out, writes all
information requested by options to the appropriate files, and ezits.

4.11.3 SIGUSR2

Upon the first termination check after receiving the signal SIGUSR2 (e.g., after ki1l -12
%job), the code prints a summary of the performance so far to standard out, writes all
information requested by options to the appropriate files, and continues.

4.11.4 SIGKILL

Since this signal cannot be caught, the process may be terminated without any output by
means of kill -12 %job.

5 Explanation of the OQutput

The basic structure of the log output of sb is
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1. actual parameter settings,

2. the time the clock is started (after the problem has been read),
3. problem dimensions n and m,

4. initial eigenvalue and objective value (line endit 0)

5. one line per descent step,

6. Ritz-values obtained in the eigenvalue computation for the last serious step before
termination

7. final line repeated with “>>>” in front
8. some time accounting information and possibly warnings
9. the time the clock is stopped (before writing output files)

We illustrate this by means of the following example.

SBmethod version 1.1, Copyright (C) 2000 Christoph Helmberg
SBmethod comes with ABSOLUTELY NO WARRANTY

Parameter settings:

-te : termeps = le-05
-tt : timelimit = -1 (no timelimit)
-td : maxiter = -1 (no limit on descent steps)

-bu : bundleupd = 0 -> heuristic choice of bundle size, uses dual cost elimination
-bk : maxkeepv = 45

-ba : maxaddv = 10

-bk : minkeepv = 30

-bt : aggregtol = 0.01

-1n : lanczosst = -1
-lc : chebits = -1
-sh : usestarth =1
-si : initialsc = 0
-sc : do_scaling= 0
-k : kappa 0.1
-ki : bar kappa = 0.1
-km : kappa M = 0.6
-ke : kappa_eta = 1
-e : exacteigs = 0
-c : usecutval = 0

-u : u method = 4 -> Kiwiel90 with bar f_k™*

-uk : kappa_ R = 0.5

-umin: umin = -1

-umax: umax = -1

-f : prob-file = stdin

-fs : start-y = O-vector

-ot : terminat = 0 -> Kiwiel90

elapsed time: 00:00:00.00 -—— Wed Oct 4 23:51:10 2000

dim=800 nr_constraints=800
00:00:00.27 endit O 1 0.86545 (692.36386)

00:00:00.42 endit 1 3 171. 46.5 0.84762 675.39134 (678.09842)
00:00:00.51 endit 2 4 171. 36.7 0.83987 668.20836 (671.89476)
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00:00:00.63 endit 3 5  128. 29.6 0.82994 662.56035 (663.94839)
00:00:00.72 endit 4 6 37.9 24.0 0.82732 647.15163 (661.85486)
00:00:00.82 endit 5 7 37.9 19.7 0.81539 640.15321 (652.31038)
00:00:00.96 endit 6 8 37.9 16.5 0.81150 637.02990 (649.20232)
00:00:01.12 endit 7 9 37.9 13.9 0.80448 634.76097 (643.58574)
00:00:01.48 endit 8 11 19.0 9.40 0.79801 631.78281 (638.40834)
00:00:01.90 endit 9 13 19.0 6.93 0.79263 630.53142 (634.10560)
00:00:02.30 endit 10 15 19.0 5.31 0.79197 629.64586 (633.57903)
00:00:03.06 endit 11 18 19.0 3.88 0.78983 629.62585 (631.86629)
00:00:03.63 endit 12 20 19.0 3.03 0.78853 629.38053 (630.82206)
00:00:04.87 endit 13 25 9.49 2.01 0.78772 629.27400 (630.17604)
00:00:06.03 endit 14 30 9.49 1.52 0.78753 629.17847 (630.02066)
00:00:07.02 endit 156 34 9.49 1.20 0.78728 629.11700 (629.82706)
00:00:07.94 endit 16 37 9.49 0.992 0.78714 629.08999 (629.71024)
00:00:08.75 endit 17 40 9.49 0.857 0.78704 629.07695 (629.62960)
00:00:10.14 endit 18 46 9.49 0.630 0.78687 629.11406 (629.49898)
00:00:10.97 endit 19 50 9.49 0.502 0.78679 629.12518 (629.43186)
00:00:11.40 endit 20 52 9.49 0.459 0.78675 629.11969 (629.39954)
00:00:12.64 endit 21 59 9.49 0.385 0.78664 629.13792 (629.31373)
00:00:13.30 endit 22 62 9.49 0.340 0.78660 629.13459 (629.27610)
00:00:15.08 endit 23 74 9.49 0.276 0.78657 629.15129 (629.25767)
00:00:16.83 endit 24 88 4.74 0.169 0.78654 629.15146 (629.23065)
00:00:19.05 endit 25 105 4.74 0.121 0.78652 629.156589 (629.21896)
00:00:20.98 endit 26 120 4.74 0.0992 0.78651 629.15813 (629.21066)
00:00:23.55 endit 27 139 4.74 0.0768 0.78649 629.16005 (629.19464)
00:00:26.29 endit 28 160 4.74 0.0634 0.78649 629.16228 (629.18990)
00:00:29.01 endit 29 182 4.74 0.0541 0.78647 629.16336 (629.17826)
00:00:35.79 endit 30 237 4.74 0.0517 0.78647 629.16510 (629.17256)
00:00:41.35 endit 31 272 4.74 0.0502 0.78646 629.16528 (629.17157)
00:00:43.31 endit 32 281 4.74 0.0494 0.78646 629.16492 (629.17069)
00:00:43.35 endit 33 281 4.74 0.0508 0.78646 629.16445 (629.17069)

matrix 1 (10,1)
columns O to O
0.78646336
. 78646155
. 78645772
. 78644290
. 78643372
. 78641804
. 78632739
. 78597501
.78581918
0.78542066
>>>00:00:43.35 endit 33 281 4.74 0.0508 0.78646 629.16445 (629.17069)
eigvaltime=00:00:22.78 reltime=52.55 maxPrank=19
gspsolves : 281 2930 00:00:07.66 00:00:08.61
gspresolves: 0 0 00:00:00.00 00:00:00.00
augmod=00:00:17.25 eval=00:00:24.24 update=00:00:01.49 choose=00:00:00.09
termination status: 1, relative precision criterion satisfied
elapsed time: 00:00:43.35 ---- Wed Oct 4 23:52:37 2000

(el elNeNeNe N N e

We explain the entries of the following sample line

00:00:26.29 endit 28 160 4.74 0.0634 0.78649 629.16228 (629.18990)

00:00:26.29: User time since the clock was started in hours:minutes:seconds.hundreds.

endit if the log includes options -ob or -op (sections 4.9.1 and 4.9.2), then endit is
convenient for grep.

28 number of completed descent steps.
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160 number of function evaluations (currently equal to the number of iterations of the
bundle method plus one for the initial computation; the start heuristic is not con-
tained in the count).

4.74 value of the weight u (not shown in line endit 0).

0.0634 Euclidean norm of the subgradient ¢ = b—n— AW that gave rise to this candidate
via y* = § — g/u (not shown in line endit 0).

0.78649 maximal eigenvalue at this descent step
629.16228 model value used (see option -c, Section 4.5.6) (not shown in line endit 0).

(629.18990) objective value.

Finally, consider the summary giving the accounting information.

eigvaltime=00:00:22.78 reltime=52.55 maxPrank=19

gspsolves : 281 2930 00:00:07.66 00:00:08.61

gspresolves: 0 0 00:00:00.00 00:00:00.00

augmod=00:00:17.25 eval=00:00:24.24 update=00:00:01.49 choose=00:00:00.09
termination status: 1, relative precision criterion satisfied

eigvaltime time spent in the Lanczos routine (the time for building the matrix is not
included).

reltime percentage of eigvaltime with respect to overall computation time.

maxPrank gives the maximum number of columns used in P for model computations (not
during updating).

gspsolves This line gives, in this sequence: total number of calls to the interior point
code for solving the quadratic semidefinite subproblem, total number of interior
point iterations over all calls, overall time needed to compute the cost coefficients
of the quadratic semidefinite subproblem, overall time spent in actually solving the
quadratic semidefinite subproblem for precomputed cost coefficients.

gspresolves This line is nonzero only if there were additional updates of n in the in-
ner loop (see Helmberg and Kiwiel [1999] and option -km, Section 4.5.3). The line
displays, in this sequence: total number of calls to the interior point code for solv-
ing the quadratic semidefinite subproblem with restart heuristic, total number of
interior point iterations over all such calls, overall time needed to update the lin-
ear cost coefficients of the quadratic semidefinite subproblem, overall time spent in
actually solving the quadratic semidefinite subproblem for updated cost coefficients.
(Every 50 iterations, within a direct sequence of inner iterations, the full coefficient
computation and interior point code without restarting is called).

augmod time spent in solving the augmented model, :.e., in computing the next candidate.
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eval time spent in function evaluation.
update time spent in updating the bundle.
choose time spent in choosing the weight w.

termination status gives the termination code and its translation.
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A General Notation

N (No)

R

RTL

Sn

Sk, Ax 0
ST A-0

Ai(A)
)\min (A) ) )\max (A)
Ay

AT
tr(A)
(4, B)
1Al
||yl
Diag(v)
diag(A)
argmin
Argmin

nonnegative integers (with zero)

real numbers

real column vector of dimension n

n X n symmetric real matrices

n X n symmetric positive semidefinite matrices
n X n symmetric positive definite matrices
identity of appropriate size or of size n

vector of all ones of appropriate dimension
symmetric matrix with 7j-entry equal to one and zero otherwise
i-th eigenvalue of A € M,,, usually Ay > Xy > ... > ),
minimal and maximal eigenvalue of A

diagonal matrix with (A4); = \i(A)

transpose of A

trace of A € M, tr(A) = > a; = Y oy Ni(A)
inner product in M, ,, (4, B) = tr(BT A)
Frobenius norm of A, ||Al|z = v/ (4, A)

H-norm of y € R™ for H € S;I*; ||y||3 = (y, Hy)
diagonal matrix with v on its main diagonal

the diagonal of A € M,, as a column vector
minimizing argument

set of minimizing arguments
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B Variables, Functions, Definitions

n size of the matrix variable

m number of primal constraints/dual design variables

C cost matrix € S,

A; primal constraint matrix i, 4; € S,

AT linear combination of constraint matrices, ATy = 3~ A;y;

primal constraint operator, [AX]; = (4;, X)

primal right hand side, dual linear cost coefficients

constant trace size, a > 0, dual factor of A\

index sets of equality and inequality constraints, partition {1,...,m}
dual design variables, y € Y C R™

feasible set for y and its dual,

Y=Y*={yeR": y;>0forie Js, y; <0forie J.}

@ e o
i~
v

R

n Lagrange multipliers for sign constraints on y, primal slacks
X primal matrix variable, X € S,
w positive semidefinite matrices with trace a, W ={W = 0:tr W = a}
w subsetofW,)7\/\:{PVPT—i-aW:trV—i-a:a,VtO,aEO}
P orthonormal n X r matrix, the bundle
w element of W, the aggregate
V,« variables from S;" and R, spanning w
r number of columns of P, the size of the bundle
1y indicator function for Y, 1y (y) =0fory € Y, co fory ¢ Y
f eigenvalue/objective function extended to R™,
fW) = admax(C — ATy) + 0"y + v (y) = sup  (C—Ay, W)+ (b—n)"y
WeW, ey
fwin linear minorant of f, fw,(y) = <C — AT ,W> +(b-n)Ty
i convex minorant of f, fW,n(y) = maXy, (C— ATy, W)+ (b—n)"y
0 center of stability for augmented model maxyey+ fi; (v) + 5|y — 7l1%
U weight of augmenting/prox term
H diagonal scaling matrix € S;t*, usually H = I

Ymin(W,n) optimal y for given W and 7, Ymin(W,n) = § + +H (AW — b+ 1)
Nmax(W)  optimal n for given W
iteration index
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