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Appendix 1: Algebraic formalisation for (minimal) regions

Additional figures

The lattice of regions (i.e., closed sequences) of the context defined in table 1 of the paper is given in
the figure 1.

Figure 2 illustrates the notions introduced in definition 10 of the paper.

Proofs of theorems

Proof of theorem 1.

Proof of →. Let us prove that a minimal region r starts with an in-breakpoint. We note in and out
the index of the first and last probe of the region (r = [in..out]). e denotes the extension of r.

Proof of (i). By contradiction. As in ∈ r, ∀oi ∈ e,M(oi, in) = 1. If in is not an in-breakpoint, then,
according to definition 6, ∀oi ∈ e,M(oi, in− 1) = 1. As a consequence, in − 1 may well be added to
the region, contradicting the statement that r is a closed sequence of probes. The demonstration that
a minimal region ends with an out-breakpoint is of course similar.

Now let us prove that there is no other breakpoint in ]in..out[.

Proof of (ii). We will prove that if a single breakpoint b exists such that in < b < out, then the region
r = [in..out] is not minimal. Let us assume, without loss of generality, that b is an in-breakpoint
(shift in(b) 6= ∅). The region [b..out] has the extension shift in(b)∪e and symmetrically, ext([in..b] =
shift out(b) ∪ e. At least one of these regions [in..b] and [b..out] has an extension strictly larger than
e, because shift in(b) ∪ e = ∅, and is a strict subsequence of r; according to definition 5, r is not a
minimal region (see fig 3).

This concludes the proof of the → part of theorem 1.

Proof of ←. Suppose that (1) r = [in..out], with in and in- and out an out-breakpoint, and e the
extension of r (2) there is no breakpoint in ]in..out[. First, let us prove that [in..out] is a region,
i.e., it is closed in M . It cannot be extended on the left, because ext(in − 1) ∩ e = e \ shift in(in)
with shift in(in) 6= ∅, by definition of an in-breakpoint (definition 6). Symmetrically, it cannot be
extended on the right either (ext(in+1)∩e = e\shift out(out)). Secondly, r is minimal: as there is no
breakpoint in ]in..out[, all probes between in and out have the same extension e, a strict subsequence
of r that cannot be closed.
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Figure 1: Lattice of closed sequences of probes according to table 1 of the paper. Each node of the
lattice is a pair, the first element of which denotes a region, and the second element of which denotes
the extension of the region. O denotes the set of all observations. Minimal regions are framed nodes.

Figure 2: Left and right margins of a region [in..out], given a bound b = 2. [in..out] is well fuzzy
bounded for bound 2 and for margin m.

Proof of Proposition 1. Each pair of closed sequences cs1 = [lb1, .., ub1] and cs2 = [lb2, .., ub2] has
a single least upper bound. This lub is cs1 ∩ cs2. cs1 ∩ cs2 = [max(lb1, lb2), ..,min(ub1, ub2)] if
max(lb1, lb2) ≤ min(ub1, ub2) is a closed sequence. cs1 ∩ cs2 is also the largest closed sequence
subsequence of both cs1 and cs2 (follows from the anti-monotonicity of support with respect to ⊆).

Each pair of closed sequences cs1 and cs2 has a single greatest lower bound. This glb is closureP (cs1∪
cs2). cs1 ∪ cs2 is [min(lb1, lb2), ..,max(ub1, ub2)] if its extension is not empty (its extension is upper
bounded by ext(cs1) ∩ ext(cs2)). This sequence is not necessarily closed and therefore a closure step
has to be applied.

Proof of theorem 2. This proof is based on the fact that procedure Next Cands, given a closed se-
quence r = [in..out] of R(P ) of extension e, generates all smallest closed supersequences of r. There
are two smallest supersequences of r = [in..out], namely [(in−1)..out] and [in..(out+1)]. None of these
sequences is closed in the general case, therefore it is necessary to apply a closure operator to ensure
that closed sequences are obtained. Let us name succl(r) = closureP ([(in− 1)..out]) = [in′..out′] and
succr(r) = closureP ([in..(out + 1)]). Note that the lowest bound of succl(r) is not necessarily the
closest in-breakpoint left of in, denoted lin: if shift in(lin∪ e) = ∅, [lin..out] is not a closed sequence
(see fig 4).
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Figure 3: A minimal region does not contain any breakpoint. The figure shows that there would
otherwise exist a smaller subregion of r = [in..out], which would be a candidate minimal region.
According to definition 6, shift in(in) = {o1, o2}, shift in(b) = {o3, o4}, shift out(b) = {o5},
shift out(out) = {o1, o2}. [in..out] has extension {o1, o2}, [in..b] has extension {o1, o2, o5}, [b..out]
has extension {o1, o2, o3, o4}.

Figure 4: Left expansion of region [in..out] into the region [in′..out′]

We need to prove the following lemma: crossing only one in-breakpoint (in) to expand r on the left
and one out-breakpoint to expand the region on the right generates all smallest closed supersequences
of r.

By contradiction for succl(r): let us assume that there is a closed sequence r ′ such that r ⊂ r′ ⊂
succl(r). All these sequences are closed, so they have different extensions. By definition of extension
ext(succl(s)) ⊂ ext(s′) ⊂ ext(s). If ext(succl(s)) ⊂ ext(s′), then there is necessarily an in-breakpoint
between in and in− 1 that defines an intermediate extension for r ′, which is impossible.

succl(r) and succr(r) are different in the general case (shift in(in) 6= shift out(out)). The
first part of the algorithm returns both succl(r) and succr(r) if ext(succl(r)) 6⊂ ext(succr(s)) and
ext(succr(s)) 6⊂ ext(succl(r)). Otherwise, it only returns the region with the largest extension (i.e.
the smallest region).

Appendix 2: Complexity of CMAR algorithm

All candidate regions at a given level L, namely Cand(L), are evaluated against the constraints. The
upper bound of |Cand(L)| is NP /2 for L = 1, and |Cand(L + 1)| ≤ 2 ∗ |FailedOC(L)| for L > 1.
If we assume that the context is a bit matrix of size NO ∗ NP , computing the frequency of a region
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r is in O(NO). The complexity of checking other constraints is negligible with respect to the cost of
frequency computation.

The procedure that generates next level candidates Cand(L + 1) performs two closure operations
for each region of FailedOC(L). Assuming that the context is represented as a bit matrix, computing
the closure of a region r is in O(NP ). Testing candidate regions against CMR and FailedAC is linear
in the size of CMR ∪ FailedAC.

More stringent pruning may take place, depending on the properties of constraints defining the
minimal region mining problem. For instance, constraints in OC can be such that two regions satisfying
OC necessarily have an empty intersection (this is the case for well boundedness and fuzzy well
boundedness). In this case, any candidate region in Cand(L + 1) that overlap with (rather than is a
superset of) a region of CMR can be safely pruned.

Appendix 3: Preprocessing - Gene and probe positioning

Preprocessing

Noise may originate from the label assignment step of GLAD for a region (see [3] for more details),
because it is difficult to detect the reference level (i.e., normal) in an array-CGH profile, especially for
high-grade, high-stage tumours. Assuming that probes labeled as normal follow a normal distribution
of mean µn and standard deviation σn (see appendix 4 and 5), regions with a smoothing value between
µn ± σn are assigned to normal, whatever the status assigned by GLAD.

In this set of experiments, as in [5], we have chosen to select gain outliers with high log2 ratio values
and symmetrically loss outliers with low log2 ratio values. More precisely, given the distribution of
gain and loss outlier values (see appendix 4 and 5), we have selected only those gain outliers such
that their log2 ratio value is greater than the third quartile of the observed gain outlier distribution.
Symmetrically, we have selected only those loss outliers such that their log2 ratio value is less than
the first quartile of the observed loss outlier distribution. Tuning the thresholds for selecting outliers
is very data dependent; therefore such thresholds are parameters of the preprocessing step and can
easily changed when running CMAR.

Probe and gene positioning

For assigning positions to the probes and genes on the human genome, the public databases used
in this study were the UCSC Human Genome Working Draft sequence and the annotation database
from the May 2004 freeze (hg17), the NCBI Homo sapiens Genome View build 35.1, the Homo sapiens
UniGene Build 177. Genomic positions of the CGH BAC clones were obtained by searching for their
accession ID or their associated STS or BAC End IDs in the UCSC annotation database tables and in
the NCBI genome view tables. The genomic positions of the IMAGE clones were obtained by assigning
them to a Unigene cluster using the Matchminer interface [1] and then looking for the position of the
corresponding Unigene cluster sequences in the NCBI Homo sapiens Genome View database. Probes
(i.e. BACs or cDNAs) that could not be positioned based on this Working Draft were ignored, as were
probes classified as unmeasured by GLAD in all profiles of a given dataset.

Genomic positions of known genes (19,218), that we will refer to as our reference gene set, were
obtained using the knownGene table from the UCSC annotation database. As the BAC coverage of
the genome in the datasets handled was incomplete, each gene may or may not overlap a BAC. Based
on known BAC positions and gene positions, we generated lists of genes located within a region. For
a region defined by probes [in..out], the genes located in this region are those located between the end
position of probe in− 1 and the start position of probe out + 1.
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Appendix 4: Nakao et al. dataset characteristics

Gain and loss outlier selection

Figure 5 gives the distribution of gain and loss log2 ratios for outliers in the Nakao et al. dataset. By
selecting the nth and (100−n)th percentile of the gain and loss outlier distributions, we therefore select
gain and loss outlier that exhibit significantly high and low log2 ratios, respectively. Therefore, in the
Nakao et al. dataset, we chose as thresholds the 90th and 10th percentiles for gain and loss outliers’
log2 ratio distribution (i.e., 0.65 and -0.62). Note that these thresholds are less restrictive than those
set in [4] (0.9 and -0.75 for amplification and homozygous deletion).

Histogram of log2 ratios for gain outliers, Nakao dataset
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Histogram of log2 ratios for loss outliers, Nakao dataset
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Figure 5: Distribution of log2 ratio values for gain and loss outliers, Nakao et al. dataset

Normal probes distribution

Figure 6 shows the distribution of log2 ratios for BACs flagged as normal in the Nakao et al. dataset.
This distribution is a normal law, of s.d. 0.06.

Histogram of log2 ratios for normal probes, Nakao dataset
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Figure 6: Distribution of the log2 ratio values for normal probes, Nakao et al. dataset

Tuning the gain and loss margins

Figures 7 and 8 give the distribution of distances (in Mbp) between two consecutive breakpoints
occurring on the same chromosome in the Nakao et al. dataset for gain and loss regions. This
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distribution has been observed on the dataset after selection of gain and loss outliers, as described in
the above section.

Histogram of in−breakpoint distances, gain regions, Nakao dataset
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Histogram of out−breakpoint distances, gain regions, Nakao dataset
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Figure 7: Distribution of the distances between two consecutive in-breakpoints (left curve) and between
two consecutive out-breakpoints (right curve) occurring on the same chromosome, gain regions, Nakao
et al. dataset

We distinguished, when computing these distributions, in- and out-breakpoints, and gain and loss
regions. However, we did not observe a significant difference between left and right margins, computed
as the 25th percentile of in- and out- consecutive breakpoint distance distribution, for a given status
(gain or loss). Therefore, for regions of a given status, we have computed a single margin, denoted
mg and ml. Each margin stands for both left and right margins for regions of a given status, and is
computed as the maximum of both first quartiles of in- and out-breakpoint distance distributions for
that status. This gives mg = 17.1 Mbp (see fig. 7) and ml = 15.7 Mbp (see fig. 8).

Histogram of in−breakpoint distances, loss regions, Nakao dataset
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Histogram of out−breakpoint distances, loss regions, Nakao dataset
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Figure 8: Distribution of the distances between two consecutive in-breakpoints (left curve) and between
two consecutive out-breakpoints (right curve) occurring on the same chromosome, loss regions, Nakao
et al. dataset
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Appendix 5: Pollack et al. dataset characteristics

Gain and loss outlier selection

Figure 9 gives the distribution of gain and loss log2 ratios for outliers in the Pollack et al. dataset. As
for the Nakao dataset, we are interested in gain and loss outliers that exhibit significantly high and
low log2 ratios, respectively. However, selecting the 90th and 10th percentiles for gain and loss outliers
for tumoural profiles was far too restrictive, as we obtained after selection too few and small regions.
Therefore, we chose to set the pruning threshold to the 10th percentile of the log2 ratio distribution
for loss outliers in normal profiles, namely -1.13. This value corresponds to approximately the 20 th

percentile of the loss outlier distribution in tumoural samples. Symmetrically, we selected the 90 th

percentile of the log2 ratio distribution of gain outliers in normal profiles (0.94), which corresponds
roughly to the 80th percentile of the log2 ratio distribution of gain outliers in tumoural samples.

Histogram of log2 ratio values for gain outliers, normal profiles, Pollack dataset
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Histogram of log2 ratio values for loss outliers, normal profiles, Pollack dataset
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Histogram of log2 ratio values for gain outliers, tumoral profiles, Pollack dataset
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Histogram of log2 ratio values for loss outliers, tumoral profiles, Pollack dataset
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Figure 9: Distribution of the outlier log2 ratio values for gain and loss outliers in normal (top curves)
and tumoural profiles, Pollack et al. dataset.

Normal probes distribution

Figure 10 shows the distribution of log2 ratios for probes flagged as normal in the Pollack et al. dataset.
This distribution is a normal law, of s.d. 0.14.
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Histogram of log2 ratio values for normal probes, tumoral profiles, Pollack dataset
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Figure 10: Distribution of the log2 ratio values for normal probes, Pollack et al. dataset.

Tuning the gain and loss margin

Figures 11 and 12 give the distribution of distances (in Mbp) between two consecutive in- and out-
breakpoints occurring on the same chromosome in the Pollack et al. dataset, after selection of outliers
as described above.

Histogram for in breakpoint distances, gain regions, Pollack dataset
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Histogram for out breakpoint distances, gain regions, Pollack dataset
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Figure 11: Distribution of the distances between two consecutive in-breakpoints (left curve) and be-
tween two consecutive out-breakpoints (right curve) occurring on the same chromosome, gain regions,
Pollack et al. dataset.

Computing the margin for gain and loss regions as described in appendix 4 gives the following
values for gain and loss margins within the Pollack et al. dataset: mg = 2.3 Mbp (see fig. 11) and
ml = 9.3 Mbp (see fig. 12).

Appendix 6: De Leeuw et al. dataset characteristics

We have provided GLAD with the raw data as distributed by authors of [2], without probe realignement
nor selection.
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Histogram for in breakpoint distances, loss regions, Pollack dataset
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Histogram for out breakpoint distances, loss regions, Pollack dataset

Out breakpoint distances, loss regions

F
re

qu
en

cy

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
5

10
15

Figure 12: Distribution of the distances between two in-breakpoints (left curve) and between two
out-breakpoints (right curve) occurring on the same chromosome, loss regions, Pollack et al. dataset.

Normal probes distribution

Figure 13 shows the distribution of log2 ratios for probes flagged as normal in the De Leeuw et al.
dataset. This distribution is a normal law, of s.d. 0.07.

Histogram of log2 ratios values for normal probes, De leeuw dataset
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Figure 13: Distribution of the log2 ratio values for normal probes, De Leeuw et al. dataset

Outlier selection

Dealing with noise (and therefore selecting outliers) is a less crucial issue here, because of the tiling
technology used for the array: every isolated outlier can be safely smoothed. We have adopted the
same parameters as in the publication of [2]: CMAR parameters were set to look for minimal regions
that occurred in at least three out of the eigth samples, with a bound of 2.

Tuning the gain and loss margins

Figures 14 and 15 give the distribution of distances (in Mbp) between breakpoints occurring on the
same chromosome in the De Leeuw el al. dataset for gain and loss regions. This distribution has been
observed on the dataset after selection of gain and loss outliers, as described in the above section.

As for the previous datasets, we have set the margin parameter to the 25th percentile of consecutive
breakpoint distances distributions for gain and loss regions, namely about 1.5 Mbp for both gain and
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loss margins.

Histogramme for in−breakpoint distance distribution, gain regions, De Leeuw dataset
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Histogramme for out−breakpoint distance distribution, gain regions, De Leeuw dataset
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Figure 14: Distribution of the distances between two in-breakpoints (left curve) and between two out-
breakpoints (right curve) occurring on the same chromosome, gain regions, De Leeuw et al. dataset
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Histogramme for out−breakpoint distance distribution, loss regions, De Leeuw dataset
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Figure 15: Distribution of the distances between two in-breakpoints (left curve) and between two out-
breakpoints (right curve) occurring on the same chromosome, loss regions, De Leeuw et al. dataset
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