
The Mixed Binary Euclid Algorithm

Sidi Mohamed Sedjelmaci

LIPN CNRS UMR 7030
Université Paris-Nord

Av. J.-B. Clément, 93430, Villetaneuse, France
Email: sms@lipn.univ-paris13.fr

Abstract

We present a new GCD algorithm for two integers that combines both the Euclidean
and the binary gcd approaches. We give its worst case time analysis and we prove
that its bit-time complexity is still O(n2) for two n-bit integers in the worst case.
Our preliminar experiments show a potential speedup for small integers. A parallel
version matches the best presently known time complexity, namely O(n/ log n) time
with O(n1+ε) processors, for any constant ε > 0.

Keywords: Greatest common divisor (GCD); Parallel Complexity; Algorithms.

1 Introduction

Given two integers a and b, the greatest commun divisor (GCD) of a and b,
denoted gcd(a, b), is the largest integer which divides both a and b. Appli-
cations for GCD algorithms include computer arithmetic, integer factoring,
cryptology and symbolic computation.

Most of GCD algorithms follow the same idea of reducing efficiently u and
v to u′ and v′, so that GCD(u, v) = GCD(u′, v′) [6]. These transformations
are applied several times till a pair (u′, 0) is reached. Such transformations,
also called reductions, are studied in a general framework in [6].

Electronic Notes in Discrete Mathematics 35 (2009) 169–176

1571-0653/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2009.11.029

http://www.elsevier.com/locate/endm

For very large integers, the fastest GCD algorithms [2,5,9,10] are all based
on half-gcd procedure and computes the GCD in O(n log2 n log log n) time,
where n is the size of the larger input. Although the algorithm of T. Je-
belean [1] and K. Weber [11] is quadratic in time, it has proven to be highly
effecient for large and medium size integers. However, all these fast algorithms
fall down to more basic algorithms at some point of their recursion, so, other
algorithms are needed to medium and small size integers.

In this paper, we are interested in small and medium size integers. Usually,
the euclidean and the binary gcd works very well in practice for this range of
integers. We present a new algorithm that combines both the euclidean and
the binary gcd in a same algorithm, taking the most of them. We give its worst
case time complexity and we suggest a parallel version that matches the best
presently known time complexity, namely O(n

log n
) time with n1+ε processors,

ε > 0 (see [3,8,7]).

2 The Sequentiel Algorithm

2.1 Motivation

Let us start with an illustrative example. Let (u, v) = (5437, 2149). After one
euclidean step, we obtain the quotient q = 2 and the remainder r = 1139. On
the other hand, we observe that, in the same time, u−v = 3288 = 23×411 and
the binary algorithm gives u−v

8
= 411 which is smaller and easy to compute

(right-shift). The reverse is also true, Euclid algorithm step may perform
much more than the binary algorithm with some other integers, especially
when the quotients are large. So, the idea is that, instead of choosing one of
them, one may take the most of both euclidean and binary steps and combine
them in a same algorithm. Note that a similar idea was suggested by Harris
(cited by Knuth [4]) with a different reduction step.

Lemma 2.1 Let u and v be two integers such that v odd, u ≥ v ≥ 1 and let
r = u (mod v). Then we have

i) min { v − r, r, r
2

or v−r
2

} ≤ v
3

ii) gcd(r, v−r
2

) = gcd(u, v), if r is odd
gcd(r

2
, v − r) = gcd(u, v), if r is even.

Proof. Note that either r or v−r is even, so that either r
2

or v−r
2

is an integer.
The basic gcd property is ∀λ ≥ 0, gcd(u, v) = gcd(v, u−λv). Two cases arise:
Case 1: r is even then v − r is odd. If r ≤ 2v

3
then r

2
≤ v

3
, otherwise r > 2v/3

and v− r < v
3
. Moreover, gcd(r

2
, v− r) = gcd(r, v− r) = gcd(v, r) = gcd(u, v).

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176170

Case 2: r is odd then v − r is even. If v − r ≤ 2v
3

then v−r
2

≤ v
3
, otherwise,

v − r > 2v/3 and r < v
3
. On the other hand, gcd(v−r

2
, r) = gcd(r, v − r) =

gcd(v, r) = gcd(u, v). �

We derive, from Lemma 2.1, the following algorithm.

Algorithm MBE: Mixed Binary Euclid

Input: u>=v>=1, with v odd

Output: gcd(u,v)

while (v>1)

r=u mod v; s=v-r;

while (r>0 and r mod 2 =0) r=r/2;

while (s>0 and s mod 2 =0) s=s/2;

if (s<r) {u=r; v=s; }

else {u=s; v=r; };

endwhile

if (v=1) return 1 else return u.

Example: With Fibonacci numbers u = F17 = 1597 and v = F16 = 987, we
obtain:

q r reduction

1597 u

987 v

1 610 r = u − qv

377 s = v − r

305 r/2

1 72 r

233 v − r

9 r/8

25 8 r

1 v − r

1 r/8 STOP

Note that Euclid algorithm gives the answer after 15 iterations, and its ex-

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176 171

tended version gives: −377 u + 610 v = 1 = gcd(u, v), while MBE algorithm
gives a modular relation (−55 u + 89 v) = 8 = 23 gcd(u, v), after 3 iterations.
Moreover, we observe that the coefficients −55 and 89 are smaller than −377
and 610. We know that the cofactors of Bézout relation are roughly as large as
the size of the inputs (consider successive Fibonacci worst case inputs). So an
interesting question is : What is the upper bound for the modular coefficients
a and b in the relation au + bv = 2t gcd(u, v) ?

2.2 Complexity analysis

First of all, thanks to Lemma 2.1, we have an upper bound for the number of
iterations of the main loop. We have (u, v) → (u′, v′), such that v′ ≤ v/3, so
after k iterations, we obtain 1 ≤ v/3k < 2n/3k or, 3k < 2n, hence a first upper
bound k ≤ �(log3 2) n�. So the algorithm is quadratic in bit complexity as the
binary or Euclidean algorithms. However, the following lemma proves that
the worst case provides a smaller upper bound for the number of iterations.

Lemma 2.2 Let k ≥ 1 and let us consider the sequence of vectors

⎛
⎝ rk

sk

⎞
⎠

defined by

∀k ≥ 1,

⎛
⎝ rk+1

sk+1

⎞
⎠ =

⎛
⎝ 2rk + 2sk

2rk + sk

⎞
⎠ and

⎛
⎝ r1

s1

⎞
⎠ =

⎛
⎝ 2

1

⎞
⎠ .

Then the worst case of algorithm MBE occurs when the inputs (u, v) are equal
to ⎛

⎝ uk

vk

⎞
⎠ =

⎛
⎝ 2rk + sk = sk+1

rk + sk = rk+1/2

⎞
⎠ ,

and the gcd is given after k iterations.

Proof. Roughly speaking, the worst case is reached when, at each time, the
quotient is 1 (the smallest), only one division by 2 occurs and the output is
the smallest one. We can easily prove by induction that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀k ≥ 1, rk is even, sk and rk

2
are odd

∀k ≥ 2, rk

2
< sk < rk

∀k ≥ 2, �uk

vk
� = 1.

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176172

We call an iteration, each iteration of the (while v > 1) loop. We prove by
induction that, at each iteration k, we have qk = 1 and the triplets (rk, sk,

rk

2
),

for k ≥ 2. After the first iteration with the inputs (uk = 2rk +sk, vk = rk +sk),
we obtain the triplet (rk, sk,

rk

2
) since rk is even and rk

2
is odd. The relation

rk

2
< sk < rk yields and the next quotient qk−1 will be qk−1 = � sk

rk/2
� = 1. We

repeat the same process with the new triplet(rk−1, sk−1,
rk

2
) until we reach the

triplet (r1, s1,
r1

2
) = (2, 1, 1) which is the smallest output triplet possible. �

Example: For k = 7 we have u7 = 9805 and v7 = 6279. We obtain 7 iterations.
Note that Euclid algorithm gives the answer after 12 iterations.

Proposition 2.3 Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer.
If k is the number of iterations when algorithm MBE is applied then

k ≤ � n

log2 λ
	, with λ =

3 +
√

17

2
.

Proof. Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer, so that

2n−1 ≤ u < 2n. Let us denote A =

⎛
⎝ 2 2

2 1

⎞
⎠, so, for each k ≥ 1,

⎛
⎝ rk+1

sk+1

⎞
⎠ = A

⎛
⎝ rk

sk

⎞
⎠ .

Let λ1 = 3+
√

17
2

and λ2 = 3−√
17

2
be the enginevalues of A. Then the worst case

occurs after k iterations with u ≤ C (λ1)
k < 2n, where C is some positive con-

stant. As a matter of fact we prove easily by induction or by diagonalization
of matrix A, that ∀k ≥ 1 :⎧⎨

⎩
rk = 2√

17
(λk

1 − λk
2)

sk = (
√

17−1
2
√

17
) λk

1 + (
√

17+1
2
√

17
) λk

2 .

Then, after a bit of calculation, we obtain

k = � n

log2(λ1)
� + 1.

�

Remark: Note that k ∼ (log 2
log λ

) n ∼ 0, 54 n, while, when euclidean algo-
rithm is applied to n-bit integers, the number of iterations is bounded by
k′ ≤ (log 2

log φ
) n ∼ 1, 44 n, where φ = 1+

√
5

2
is the golden ratio. Indeed, a

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176 173

first experiment on 1000 pair of 32-bit integers shows that our algorithm is
about 3 time faster than Euclid algorithm. Other experiments, kindly done
by Ken Weber, show a clear speed up at least for single precision with 32 bits
and double precision with 64 bits (i.e.: 128 bits). A complete study of these
experiments will appear later in a long version of this paper.

3 The Multi-precision Algorithm

In order to avoid long divisions, we must consider some leading bits of the
inputs (u, v) for computing the quotients and some other last significant bits
to know if either r = u mod v or s = v − r is even. The algorithm is based
on the following multi-precision reduction step (sketch) called MP-MBE. The
integer m is a parameter choosen as in [6].

M = Id;
Step 1: Consider u1 and v1 the first 2m leading bits of respectively u and v.
Similarly, u2 and v2 are the last 2m significant bits of respectively u and v.

Step 2: By Euclid algorithm, compute q1 = �u1/v1�. Compute r1 = |u1−q1v1|
and s1 = v1 − r1. Similarly, compute r2 = |u2 − q1v2| and s2 = v2 − r2 (see [6]
for more details).

Step 3: Compute t1 and p1 such that r2/2t1 and s2/2p1 are both odd.

Step 4: Save the computations: M ← M × N , where N is defined by:
Case 1: r2 is even. If r1/2t1 ≥ s1 then

N =

⎛
⎝ 1/2t1 −q/2t1

−1 q + 1

⎞
⎠, otherwise N =

⎛
⎝−1 q + 1

1/2t1 −q/2t1

⎞
⎠.

Case 2: s2 is even. If s1/2p1 ≥ r1 then

N =

⎛
⎝−1/2p1 (q + 1)/2p1

1 −q

⎞
⎠, otherwise N =

⎛
⎝ 1 −q

−1/2p1 (q + 1)/2p1

⎞
⎠.

Example: Let u and v be two odd integers such that: u = 1617 . . . 309, and v =

1045 . . . 817. We obtain, in turn, N1 =

⎛
⎝−1 2

1/4 −1/4

⎞
⎠ and N2 =

⎛
⎝−1 5

1/4 −1

⎞
⎠.

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176174

Then the two steps are saved in the matrix M = N2×N1 =

⎛
⎝ 9/4 −13/4

−1/2 3/4

⎞
⎠.

4 The Parallel Algorithm:

A parallel GCD algorithm can be designed based on the following Par-MBE

reduction:
Begin (k = 2m is a parameter)
Step 1 : (in parallel)

For i = 1 to n R[i] = v, S[i] = v; qi = �ui/vi�; (as in Step 2 of MP-MBE)
For i = 1 to n ri = |iu − qiv| and si = v − ri; (see [7])

Step 2 :
While (ri > 0 and ri even) Do ri ← ri/2;
If (ri < 2v/k) then R[i] = ri, in parallel.

Step 3 :
While (si > 0 and si even) Do si ← si/2;
If (si < 2v/k) then S[i] = si, in parallel.

Step 4 :
r = min {R[i]}; s = min {S[i]}; in O(1) parallel time;

If r ≥ s Return (r, s) Else Return (s, r).
End.

4.1 Complexity Analysis

The complexity analysis of the parallel GCD algorithm based on Par-MBE

reduction is similar to that of Par-ILE in [7]. We compute in turn qi, ri = |iu−
qiv|, si = v − ri and test if ri < 2v/k or si = v − ri < 2v/k to select the index
i. Note that there is no write concurrency. Recall that k = 2m is a parameter.
All these computations can be done in O(1) time with O(n22m)+O(n log log n)
processors. Indeed, precomputed table lookup can be used for multiplying two
m-bit numbers in constant time with O(n22m) processors in CRCW PRAM
model, providing that m = O(log n) (see [7,8]).

Precomputed table lookup of size O(m22m) can be carried out in O(log m)
time with O(M(m)22m) processors, where M(m) = m log m log log m (see [8]
or [3] for more details). The computation of ri = |iu − qiv| and si = v − ri

require only two products iu and qiv with the selected index i. Thus the
reduction Par-MBE can be computed in parallel in O(1) time with:

O(n22m) + O(n log log n) = O(n22m) processors.

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176 175

Par-MBE reduces the size of the smallest input v by at least m − 1 bits.
Hence the GCD algorithm based on Par-MBE runs in O(n/m) iterations. For m
= 1/2 ε log n, (ε > 0), this parallel GCD algorithm matches the best previous
GCD algorithms in Oε(n/ log n) time using only n1+ε processors on a CRCW
PRAM.

Acknowledgement: The author would like to thank Professor Ken Weber
for experimenting the algorithm MBE.

References

[1] T. Jebelean, A Generalization of the Binary GCD Algorithmin Proc. of the
International Symposium on Symbolic and Algebraic Computation (ISSAC’93),
1993, 111-116

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison Wesley, 1974

[3] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD,
Algorithmica, 5, 1990, 1-10

[4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 3rd ed., Addison
Wesley, 1998

[5] A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta
Informatica, 1, 1971, 139-144

[6] S.M. Sedjelmaci, A Modular Reduction for GCD Computation, Journal of
Computational and Applied Mathematics, Vol. 162-I, 2004, 17-31

[7] S.M. Sedjelmaci, A Parallel Extended GCD Algorithm, Journal of Discrete
Algorithms, 6, 2008, 526-538

[8] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

[9] D. Stehle, and P. Zimmermann, A Binary Recursive Gcd Algorithm, in Proc. of
ANTS VI, University of Vermont, USA, June 13-18, 2004, 411-425

[10] J. von zur Gathen, and J. Gerhard, Modern Computer Algebra, 1st ed.
Cambridge University Press, 1999

[11] K. Weber, Parallel implementation of the accelerated integer GCD algorithm,
J. of symbolic Computation (Special Issue on Parallel Symbolic Computation)
21, 1996, 457-466

S.M. Sedjelmaci / Electronic Notes in Discrete Mathematics 35 (2009) 169–176176

