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1 Notation and basic results

Let u > v > 1 be two odd integers, where 2" ! < v < 2" with n > 2 and v = ?;01 v;2" the
binary expansion of v. We consider the sequence (a) = (ay )y defined by ay = (2¥u) mod v,
for any integer k£ > 0, or equivalently by ax4+1 = 2a; mod v with ap = v mod v. Our start-
ing point is the following observation.

Lemma 1: Let v > 1 be an integer of n bits, i.e.: "=l <y < 27 with n > 2 and
v o= ?:_01 v;2". Then for any integer ag, such that 0 < ay < v, and the associated
sequence (a) = (a;); defined by a;+1 = 2a; mod v, for i > 0, we have

n—1
i) Zviai = 0 mod v.
=0
n—1
ii) Vk >0, ZviaHk = 0 mod v.
=0
Proof: Since vu = 0 mod v, then
n—1 ) n—1
vu = Zvﬂluz Zviai =0mod v,
i=0 i=0

hence 7). For 4i), just consider 2¥vu instead of vu, for k > 0.

Example: If (u,v) = (246,177) and ap = v mod v = 69, then n = 8 and the sequence a
is
a = {69,138,99,21,42, 84,168,159, -- - } .

Since v = 177 = 27 + 2° + 24 + 1, then

a7 +as + ag + ap = 159 + 84 4+ 42 + 69 = 354 = 0 mod 177.



Note that it si not necessary to take ayp = w mod v, any other choice of ag such that
0 < ap < v yields the relation modulo v: a7 + a5 + a4 + ap = 0 mod v.

Lemma 1 shows that for a fixed v and for any 0 < ag < v, we obtain a set of linear
recurrence modulo v. However, it is not always the smaller linear recurrence modulo v.
Let d = ged(u,v), M =wv/d. If d > 1 then 0 < M < v and let M = Zf;ol m;2¢, with
2 <p < n. Then

Muzgu:ngOmodv,
and as in Lemma 1, we obtain
p—1
vk >0, ZmiaiJrk =0modw,
i=0

which is a smaller linear recurrence modulo v. In the previous example, ged(246,177) = 3
and M =v/3=59=254244+234+2+1, 50

as+aq4+az+a+ag=84+42+ 21+ 138+ 69 = 354 =0 mod 177,

which a smaller linear recurrence modulo v, since its order is p = 6, which less than n = 8.

There is another important observation:

It is worth to note that, once v and 0 < ag < v are fixed, together with their associated
sequence (a), then for any k£ > 0, the remainder r; = ku mod v, can be expressed as
linear combination of the finite set of n special remainders a;. For this purpose the set
{ap,ai1,...,an,—1} will be called a basis of remainders for v.

Example: If v = 177, then n = 8 . We have a¢p = v mod v = 69 and the sequence a is
a = {69,138,99,21,42,84,168,159,--- },

but only the first 8 a;’s, i.e.: ag, a1, ...,ay are enough to represent all the remainders.

If £ =900, then 900 = 15 mod 177. We obtain rgpg = r15 and
T900 = T15 = a3 + as + a1 + ag mod v since 15=224+224+92+1.

As a matter of fact we have 15v mod v = 3690 mod 177 = 150 and 21 + 99 + 138 + 69 =
327 = 150 mod 177, as expected.

The aim of this paper is: For a given pair of positive integers (v, ag) and their associated
sequence (a) satisfying a linear recurrence modulo v of order n > 2, find a smaller linear
recurrence modulo v (if any) of order 2 < p < n, i.e.: Find an integer 2 < p < n — 1, such

that
p—1

ZciaZ-EOmodv , ¢ e{0,1}, with 2<p<n.

i=0
If such integer p exists then ged(u,v) > 1 and if M = Zf;ol ¢; 2%, then M = \v/d < v,
for some integer 0 < A < d, and most of the time v/M = ged(v, ap).



2 Hankel Matrices

Let (a) = (a;)i>0 be a sequence of integers. The Hankel matrix Hy(a) of order n associated
to the sequence (a) is defined by H,,(a) = (ai;) with a;; = a;j—o, for 1 <i,j <nie.

ao a -+ Gp-1
a1 a2 N Ay,
H, =
Gpn—1 Aan - G2pn—1

It is well know that Hankel matrices is a useful tool to detect linear recurrence relation
from a given sequence (a). Similarly, one can consider Hankel matrices associated to the
sequence (a), since we have :

voag + v1a1 + -+ + Up—10n—1 = 0 mod v
voai + vias + -+ + vp_1a, = 0 mod v

VoAp—1 + V16 -+ + Vp—102,—1 = 0 mod v.

However the main difficulty is that we do not have equalities but only equalities modulo
v, 1.e.: equality in the ring A = Z/vZ.

The advantage of this approach is that there is a link with Hankel matrices and it is well
known that all the matrix operations can be achieved in O(log?n) parallel time with a
polynomial of processors.

Proposition: If hy = det(Hy), for k > 2, then there exists some integer sj such that
1) by, = (—0)" " s

2) ged(v, ap) | sk -

Proof: For all i > 1, we have a; — 2a;_1 = 0 mod v and let’s define the integer \; by
Ai = (a; —2a;—1)/v. We have \; =0 if a;—1 <v/2 and \; = —1 if a;—; > v/2. Let L; be
the i-th row of the matrix Hy(a), then replacing the row L; by L; — 2L;_1 gives arow of
(=Xitjv);, for 0 < j < n —1. Then, for i > 2, each element of the i-th row is a multiple
of —v, so hy = det(Hy,) = (—v)*¥ sy, for some integer s; and 1) is proved.

2) Let d = ged(v, ag). The first row of the the matrix is formed by ag,aq,- -, ag_1, so its
determinant si is a linear combination of the a;’s, namely s, = Zf:_ol ¢; a;, for some integers
o, €1, "+, Ck—1. Moreover, a; = 0 mod d, for each 0 <i < k — 1, then d = ged(v,r1) | sg.

Corollary:

1) If there exists an index j such that a; is small enough say the bit-size of v is reduced
by at least log?™¢n, for € > 0, then we return a;. The whole parallel complexity for com-
puting d = ged(v, ag) will be n/log? n which is better then the best known upper bound
n/logn.



2) Similarly, if s;, is small enough say the bit-size of v is reduced by at least log>™n,
for € > 0, then we return such sy since d | sg.

3) If sg+1 = 0 and s; # 0, then there exists a linear recurrence of order k, i.e.:
;:01 a;a; =0. Let M = Zf;ol a; 2%, If M is even then M := M /2! such that M is odd.
Then M = Av/d and v and ag are not coprime, i.e.: d = ged(v,ag) > 1.

4) If k is the smallest index such that hi;q = 0 and hg # 0 for some k > 2, then there
exists a linear recurrence for the the sequence (a). i.e.: moag +mia; + - --mg_1a;_1 = 0.
So let M = Ef:_ol ¢; 28 If 2 < k < n, then M = M\v/d and v and ag are not coprime, i.e.:
d = ged(v, ap) > 1.

2.1 Some examples:

Recall that det(Hy) = hi(a) = (—v)*"!s; and we only compute the determinant s, of the
matrix Sj where all the factor —v are removed from each j-th row, 2 < j <k.

Example 1:

With (v,a9) = (13,5), we have n = 4 and d = ged(v,ap) = 1, we obtain the sequence of
remainders a = {5,10,7,1,2,4,8,3,6,12,11,9,3, - - } and respectively

sg = —2, 84 =1, s5 =0, so by the previous Corollary, d|ss and d =1 :

5 10 7
s3 = det S3 = 0 1 1 = -2
1 1 0
5 10 7 1
s4 = det Sy = (1) 1 (1] 8 =1
1 0 00
5 10 7 1 2
0O 1 100
s5 = det S5 = 1 1 00 0 =0
1 0 0 0 1
0O 0 01 O0



Example 2:

For (v, ag) = (289,65), we have n = 4 and d = ged(v, ag) = 1. We obtain the sequence
a = {65,130, 260,231,173,57,114,228,167,45,90, 180, 71, 142,184, - - - } and obtain
s4 =36, s5 =29, ss = =5, s = —1 and sg = 1:

65 130 260 231
0 0 1 1
sq4 = det Sy = 0 1 1 1 = 36

1 1 1 0

65 130 260 231 173
0 0 1 1 1

S5 = det 55 = 0 1 1 1 0 =29
1 1 1 0 0
1 1 0 0 1
65 130 260 231 173 57
0 0 1 1 1 0
S — det S6 = (1] 1 i (1) 8 (1) =-5
1 1 0 0 1 1
1 0 0 1 1 0
65 130 260 231 173 57 114
0 0 1 1 1 0 0
0 1 1 1 0 0 1
s7 = det S7 = 1 1 1 0 0 1 1 =-1
1 1 0 0 1 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
5 130 260 231 173 bH7 114 228
0 0 1 1 1 0 0 1
0 1 1 1 0 0 1 1
1 1 1 0 0 1 1 0
ss=detSs =1t 9 o 1 1 o o |[7!
1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 0
0 1 1 0 0 1 0 0




Example 3:

With (v,ap) = (299, 65), we have n = 9 and d = ged(v, ag) = 13, we obtain the sequence
of remainders a = {65, 130, 260, 221, 143, 286, 273, 247,195,91, - - - } and respectively
s4=—-389, s5 =0, s =39, sy =—26 and sg =0 :

65 130 260 221
0 0 1 1
s4 = det Sy = 0 1 1 0 = -39

1 1 0 1

65 130 260 221 143
0 0 1 1 0

S5 = det S5 = 0 1 1 0 1 =—-104
1 1 0 1 1
1 0 1 1 1
65 130 260 221 143 286
0 1 1 0 1
S — det 56 = =39

O R = OO

1
0
1
1

—_ == O

1
1
1
1

= O = =
O = = =

65 130 260 221 143 286 273

0 O 1 1 0 1 1
0 1 1 0 1 1 1
s7 =det Sy = 1 1 0 1 1 1 1 = —-26
1 0 1 1 1 1 0
0 1 1 1 1 0 1
1 1 1 1 0 1 0
65 130 260 221 143 286 273 247
0 O 1 1 0 1 1 1
0 1 1 0 1 1 1 1
sedasi=| oYy 1o |7
0 1 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 1 0 0 1

Note that M = v/(ged(v,ap) = 299/13 = 23 and d| (s7/2) = —13.



