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Abstract

A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson
and Chor and Goldreich, since it can be achieved in Oε(n/ logn) time using at most n1+ε processors on CRCW PRAM. Sorenson
and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only
deals with the leading bits of the integers u and v, with u � v. This approach is more suitable for extended GCD algorithms since
the coefficients of the extended version a and b, such that au + bv = gcd(u, v), are deeply linked with the order of magnitude of
the rational v/u and its continuants. Consequently, the computation of such coefficients is much easier.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the Greatest Common Divisor (or GCD) of two integers is important for two major reasons. First
because it is widely included as a low operation in several arithmetic packages. On the other hand, despite its amazing
simplicity, the complexity of the GCD problem in parallel is still unknown. We do not know whether it belongs to the
NC class or if it is a P-complete problem.

The advent of practical parallel computers has caused the re-examination of many existing algorithms with the hope
of discovering a parallel implementation. In 1987, Kannan, Miller and Rudolph (KMR) [5] gave the first sub-linear
time parallel integer GCD algorithm on a common CRCW PRAM model. Their time bound was O(n log logn/ logn)

assuming there are n2(logn)2 processors working in parallel, where n is the bit-length of the larger input. Since 1990,
Chor and Goldreich [1] have the fastest parallel GCD algorithm; it is based on the systolic array GCD algorithm of
Brent and Kung. The time complexity of their algorithm is Oε(n/ logn) using only n1+ε processors on a CRCW
PRAM. In 1994, Sorenson’s right- and left-shift k-ary algorithms [10] match Chor and Goldreich’s performance.

The extended version of parallel GCD algorithms is also discussed in Sorenson and Chor and Goldreich papers [1,
10]. However, they only give the main ideas. Moreover, the parallel extended GCD algorithm of Sorenson still can be
achieved in Oε(n/ logn) time but it may require more than n1+ε processors on CRCW PRAM (see [10], Section 7.2,
p. 141, lines 1, 2 and 3).

✩ A preliminary version of this paper was presented at ISSAC’01 Conference, London Ontario, Canada, ACM Press, 2001, pp. 303–308.
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Euclid’s algorithm is one of the simplest and most popular integer GCD algorithm. Its extended version called
Extended Euclidean Algorithm or EEA for short [7] is tightly linked with the continued fractions [3,7] and is important
for its multiple applications (cryptology, modular inversion, etc.). In [5], Kannan, Miller and Rudolph proposed a first
parallelization of EEA. Their algorithm was based on a reduction step which uses a non-trivial couple (a, b) of integers
|a| � kv/u, |b| � 2k, s.t. 0 � au − bv � u/k for a given parameter k > 0; therefore, at each step, the larger input u is
reduced by O(logk) bits.

However, one of the major drawbacks of their algorithm is the expensive cost of the computation (a, b). As a matter
of fact, in order to reach an O(1) time computation for their reduction step, more than O(n2 log2 n) processors are
needed to compare in pairs the O(n) numbers au − bv of O(log2 n) bits (see [5] for more details). This paper focus
on parallel extended GCD algorithms and the main results of the paper are summarized below:

• We propose a new reduction step which is easily obtained from the O(logn) first significant leading bits of the
inputs. This reduction does not introduce any spurious factors to remove afterwards.

• Based on this reduction step, new sequential and parallel GCD algorithms are designed. The parallel algorithm
matches the best known GCD algorithms: its time complexity is Oε(n/ logn) using only n1+ε processors on a
CRCW PRAM, for any constant ε > 0.

• We also design a new parallel extended GCD with this time bound, where the cofactors a an b such that au+bv =
gcd(u, v), are easily computed.

• Our method can be generalized to all Lehmer-like algorithms and our algorithm may be modified to compute in
parallel the continuants of rationals.

This paper is an improved version of a paper presented in ISSAC’01 ACM conference, where we have added the
extended GCD versions of the sequential and parallel GCD algorithms.

In Section 2, we recall the basic reduction step used in Kannan, Miller and Rudolph’s algorithm [5]. In Section 3,
we define a new reduction which uses the same Lehmer idea [8]. Basically, with the O(logn) most significant bits of u

and v, we can easily find a couple (a, b) such that the associated reduction satisfies |au−bv| < 2v/k, with 1 � a � k,
for a given parameter k = O(n). A sequential as well as a parallel algorithms are designed to compute this reduction
and their correctness are discussed. Section 4 is devoted to the extended version of the reductions. A new parallel
extended GCD algorithm is described in Section 5. Complexity analysis is discussed in Section 6. We conclude with
some remarks in Section 7.

2. Basic reduction steps

2.1. Notation

Throughout this paper, we restrict ourselves to the set of non-negative integers. Let u and v be two such (non-
negative) integers, u and v are respectively n-bits and p-bits numbers with u � v. Let k be an integer parameter s.t.
k = 2m with m � 2 and m = O(logn).

EEA denotes the Extended Euclidean Algorithm. If many processors are in write concurrency then the Concurrent
Read and Concurrent Write model “CRCW” of PRAM is considered. There are many sub-models of CRCW PRAM
for solving the write concurrency. Most of the time the Common sub-model is considered, where each processor must
write the same value. However in order to allow the priority to the processor with the smallest index, one may choose
the Priority sub-model [6].

Most of serial integer GCD algorithms use one or several transformations (u, v) �−→ (v,R(u, v)) which reduce the
size of current pairs (u, v), until a pair (u′,0) is eventually reached. The last value u′ = gcd(u, v) is the result we want
to find. These transformations will be called Reductions if they satisfy the following two properties:

(P1) 0 � R(u, v) < v.

(P2) gcd(v,R(u, v)) = α gcd(u, v), with α > 0.

With (P1) and (P2), we are guaranteed that algorithms terminate and return the correct value gcd(u, v), up to a
constant factor α, called spurious factor, which can easily be removed afterwards [4,10,12]. Examples of such basic
reductions are given in Table 1.
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Table 1
Examples of reductions

Name Reduction Property

Euclid u − qv q = �u/v�
binary (u − v)/2 u and v odds
bmod |u − xv|/2ρ x = (u/v) (mod 2ρ)

Right-shift k-ary |au + bv|/k au + bv ≡ 0 (mod k)

Left-shift k-ary |kev − bu| |kev − bu| = O(u/k)

However, for extended GCD computations, we need matrix-vectors reductions defined by: (u, v) �−→ (u′, v′) =
M × (u, v), where u′ and v′ are two integers and M is a 2 × 2 integer matrix. The matrix M preserves GCD’s if
detM = ±1.

Given a non-negative integer x ∈ N , �2(x) represents the number of significant bits of an non-negative integer x,
not counting leading zeros:

�2(x) =
{ �log2(x)� + 1 if x � 1,

1 if x = 0.

So n = �2(u), p = �2(v) and p satisfies 2p−1 � v < 2p . We let ρ = ρ(u, v) = �2(u) − �2(v) + 1. Thus, we obtain
2ρ−2 < u/v < 2ρ . We assume that p > 2m + ρ + 1.

As noticed by many authors the main difficulty in GCD algorithms happens when the input data u and v are roughly
of the same size [4,5,12]. So we shall assume that when we apply our reduction: n−p < m−1 (or ρ < m). Otherwise,
we apply a more efficient reduction: the ρ-Euclid, defined in Section 5.1.

For any parameter λ s.t. 0 � λ � p we define u1 and v1 by:

u1 = �u/2p−λ� and v1 = �v/2p−λ�.
Let u2 = u mod 2p−λ and v2 = v mod 2p−λ, then u2, v2 < 2p−λ and

u = 2p−λu1 + u2 and v = 2p−λv1 + v2.

The numbers u1 and v1 are obtained with, respectively, the λ + n − p and the λ most significant leading bits of u

and v.

2.2. The Kannan, Miller and Rudolph reduction

The Kannan, Miller and Rudolph (KMR for short) integer GCD algorithm is based on the following lemma ([5],
page 9):

Lemma 1 (KMR lemma). For all positive integers u, v and k with u � kv, there exists a couple (a, b) 	= (0,0) s.t.
|a| � kv/u and |b| � 2k which satisfies 0 � au − bv � u/k.

Remark 2. Since |au − bv| � u/k � v, then |au − bv| = (au) mod v or v − au mod v.

Thus any couple (a, b) found provides a reduction step called a KMR’s reduction. Kannan, Miller and Rudolph
proposed to compute in parallel all the O(k2) numbers au−bv, and select those for which 0 � au−bv � u/k. But this
latter relation implies |au − bv| � u/k, thus the couple (a, b) must be chosen from a set of O(k) numbers satisfying
this relation. However, the pair (a, b) in [5] is not easily obtained. Although O(log2 n)-bit numbers are considered
at each step, O(n) numbers au − bv must be compared in pairs. Therefore, more than O(n2 log2 n) processors are
needed in order to compute their reduction in constant time.

3. The improved Lehmer–Euclid reduction

The main difficulty in EEA is the expensive cost of long divisions when we deal with large size inputs. In 1938,
Lehmer [8] suggested another way to compute the couple (a, b). Roughly speaking (see Knuth [7] for more details),
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working only with the leading bits of u and v, the author considers two single-precision rationals which approximate
the quotient u/v, namely u′/v′ < u/v < u′′/v′′. Thus if we carry out EEA simultaneously on the single-precision
rationals u′/v′ and u′′/v′′ until we get a different quotient, we obtain the same sequence of quotients had we applied
the multi-precision numbers u and v.

Let (a, b) be the last couple obtained by EEA. Then the transformation R(u, v) = au + bv is a reduction in the
sense of Section 2. However, for random inputs u and v, the sequence of same quotients seems to be equally random.
Although a first attempt was made by Sorenson [11] with a slightly modified version of Lehmer’s algorithm, no a
priori estimation of this reduction is known. The author only gave an asymptotic behavior of his reduction since he
obtained (with our notation) [11]:

R(u, v) = au + bv = O(u/2m).

The reduction we propose in this paper is also based on leading bits and continuants but, by contrast, our reduction
satisfies a tighter relation R(u, v) < 2v/k for any positive parameter k. We first specify how to compute the couple
(a, b) of the reduction then both a sequential and a parallel version of a GCD algorithm are proposed.

Lemma 3. For all positive integers u � v, k = 2m and p = �2(v) > 2m + ρ + 1, there exists a couple of integers
(a, b) 	= (0,0) s.t. 1 � a � k which satisfies 0 � |au − bv| < 2v/k.

Moreover, the couple (a, b) is only obtained from the first 2m + 2ρ leading bits of u and the first 2m + ρ + 1
leading bits of v respectively.

Proof. Let λ = 2m+ρ +1 and u1 and v1 as previously defined in Section 2. Note that u1 and v1 exist since p−λ � 0.
Applying Hardy and Wright’s theorem [3] (Theorem 36, p. 30) to the rational v1/u1 with k′ = 
ku1/v1�, we obtain a
couple (a, b) of integers s.t.

1 � a, b � k′ − 1 and |v1/u1 − a/b| � 1/k′b

hence

|au1 − bv1| � u1/k′ = u1


ku1/v1� � v1/k.

We let R = |au − bv|. We obtain

R = |au − bv| � |au1 − bv1|2p−λ + |au2 − bv2|
then R < 2p−λv1/2m + 2p−λk′ � v/2m + 2p−λ+m+ρ . From λ = 2m+ρ + 1, we obtain R < 2v/k. Moreover we have
|a − bv1/u1| � 1/k′ so a � bv1/u1 + 1/k′, but b � k′ − 1 < ku1/v1 so a < k + 1/k′ and

a � �k + 1/k′� = k. �
Remarks.

• Note that b � 
ku1/v1� − 1 < ku1/v1. The previous reduction satisfies R = |au − bv| = (au) (mod k) or v −
au (modk) since R < 2v/k < v; m � 2.

• The constant 2 in the inequality is less precise and our first experiments show that, most of the time, we have
R < v/k.

Definition 4. Let (a, b) be one of the couples defined in Lemma 3. The RILE transformation is defined by

RILE(u, v)
def= |au − bv|.

Many such couples can be found and RILE depends on the couple (a, b) considered (see examples in Section 4.2),
but for any one of them, RILE is a reduction satisfying RILE(u, v) = |au− bv| < 2v/k. We propose in the next section
an easy way to compute one of these couples (a, b) and the reduction RILE .
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3.1. ILE reductions

We give below a sequential and a parallel algorithm for computing our reduction RILE .

The Sequential algorithm for computing RILE: Seq-ILE.
Input: u � v > 0, k = 2m s.t. ρ = n − p + 1 < m and p > 2m + ρ + 1.
Output: RILE(u, v) = |au + bv| < 2v/k.
Step 1

p := l2(v);
λ := 2m + ρ + 1;
u1 := �u/2p−λ�; v1 := �v/2p−λ�;

Step 2 Run EEA with the couple (u1, v1) and compute successive triplets (r, b, a), where r = au1 +bv1 until |a| > 2m.
Save the previous triplet (r, a, b). Note that ab < 0;

Step 3 Compute RILE = |au + bv|;
Return RILE .

All the triplets (r, a, b) computed in EEA satisfy r = |a|u1 mod v1 or r = v1 − (|a|u1 mod v1) and the previous
algorithm is easily parallelized as follows.

The Parallel algorithm for computing RILE: Par-ILE.
Input: u � v > 0, k = 2m s.t. ρ = n − p + 1 < m and p > 2m + ρ + 1.
Output: RILE(u, v) = |au + bv| < 2v/k.
Step 1 Compute p, λ, u1, v1 as in Seq-ILE;
Step 2 For i = 1,2, . . . ,2m Do in parallel

qi := �iu1/v1�; ri := iu1 − qiv1;
if ri < v1/k then (a, b) := (i,−qi);
if v1 − ri < v1/k then (a, b) := (−i, qi + 1);

End Do
Step 3 Compute in parallel RILE = |au + bv|;
Return RILE .

If many processors are in write concurrency in Step 2 then we can use the Priority sub-model of CRCW-PRAM.
With this sub-model, we choose the reduction RILE given by the smallest index i s.t.: 1 � i � k, ri < v1/k or v1 − ri <

v1/k. Actually, the Priority is a strong sub-model of CRCW-PRAM. The most used sub-model is the Common sub-
model of CRCW-PRAM where all the processors must write the same value. We show below how to modify Par-ILE
algorithm in order to compute the GCD in the same parallel performance on the Common CRCW-PRAM sub-model.
We only have to change the Step 2 as follows:

Modified Step 2
For i = 1,2, . . . ,2m Do in parallel A[i] := v1; B[i] =: 1; End Do
For i = 1,2, . . . ,2m Do in parallel

qi := �iu1/v1�; ri := iu1 − qiv1;
if ri < v1/k then (A[i],B[i]) := (i,−qi);
if v1 − ri < v1/k then (A[i],B[i]) := (−i, qi + 1);

End Do
Compute in parallel j := MIN{|A[i]|, i = 1,2, . . . ,2m};
(a, b) := (A[j ],B[j ]);

Note that the minimum finding MIN of the array A (or B) of O(2m) integers of O(m) bits A[i], i = 1,2, . . . ,2m,
can be achieved in parallel in O(1) time with O(m log logm22m) processors, on the Common CRCW-PRAM. As
a matter of fact, we need O(22m) processors to compute, in parallel, a 2m × 2m matrix. Each term of the matrix
compare in pair, two O(m) bits integers A[i] and A[j ], in O(1) time with O(m log logm) processors. This will not
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affect our general parallel time bound since, if we choose m = 1/2ε logn, then the number of processors needed is
O(nε logn log log logn) = O(n) (see Section 6).

Remark 5. Let m = O(logn). Even when u and v are very large numbers in size (up to 65,536-bits, n,p � 216)
the computations in Step 1 and 2 can be performed in constant time with a single precision since logn � 16 (see
Section 6).

3.2. Example of RILE

Let u = 1,759,291 and v = 1,349,639. Their binary representations are respectively:

11010110 1100000111011 = 1,759,291
10100100 1100000000111 = 1,349,639

We obtain n = p = 21 so that ρ = 1. If we take m = 3, we obtain λ = 2m+ 2 = 8, u1 = 214 and v1 = 164 (the bits
representing u1 and v1 are in bold). Applying the EEA to u1 and v1 yields the first successive integers q , r , b and a

(r = au + bv).

q r b a

214 0 1
164 1 0

1 50 −1 1
3 14 4 −3
3 8 −13 10

In our example we obtain a = −3, b = 4, r = 14 < v1/k = 164/8 = 20.50 and

RILE = |−3u + 4v| = 120,683.

Note that RILE < v/k = 168,704.88. On the other hand the computation of the bmod reduction and that of Sorenson
RS yield.

bmod(u, v) = |u − v|/2 = 204,826 and

RS = |7u + 5v|/64 = 297,863, with k = 64,

RS = |u + 3v|/16 = 363,013, with k = 16.

3.3. Correctness of Seq-ILE and Par-ILE

Proposition 6. The sequential algorithm Seq-ILE ends with r and RILE satisfying

(i) r = |au1 + bv1| < v1/k,
(ii) RILE = |au + bv| < 2v/k.

Proof. Consider EEA (Extended Euclidean Algorithm) applied to the pair (u1, v1). Let (as, bs, rs) and (as+1, bs+1,

rs+1) be the two consecutive triplets such that |as | � k = 2m < |as+1|. Then r = rs = asu1 +bsv1 and rs+1 = as+1u1 +
bs+1v1. Solving this system, we obtain v1 = |asrs+1 − as+1rs | = |as+1|rs + |as |rs+1 since |asbs+1 − as+1bs | = 1 and
asas+1 < 0. Hence r = rs = (v1 − rs+1|as |)/|as+1| < v1/|as+1| < v1/k and (i) is proved. Moreover,

RILE = |asu + bsv| � |asu1 + bsv1|2p−λ + |asu2 + bsv2| < 2p−λv1/k + 2p−λ|bs |
but 2p−λv1/k < v/k and |bs | = |(rs − asu1)/v1| � rs/v1 +|as |(u1/v1) < 1/k + k(u1/v1). But since u1/v1 < 2ρ then
|bs | < 1/k + 2m+ρ and |bs | � 2m+ρ , so

RILE < v/k + 2p−λ+m+ρ.

From λ = 2m + ρ + 1, we obtain R < 2v/k and (ii) is proved. �
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Proposition 7. The output RILE of the parallel algorithm Par-ILE satisfies RILE(u, v) < 2v/k.

Proof. In Step 2 (or Modified Step 2), we select the value r with the smallest index i satisfying r = ri < v1/k or r =
v1 − ri < v1/k with 1 � i � k. Then the output RILE = |au + bv| of step 3 satisfies RILE(u, v) � |au1 + bv1|2p−λ +
|au2 + bv2| < 2p−λv1/k + 2p−λ|b|. But, as proved previously in Proposition 6, the inequality |au1 + bv1| < v1/k

gives |b| � 2m+ρ and RILE(u, v) < 2v/k. �
4. Extended reductions

Extended GCD algorithms compute the GCD of two integers u and v and also supplies integers a and b such that
au + bv = gcd(u, v) = d . They also play a key role in many applications in computer algebra systems [2]. The fastest
presently known parallel GCD algorithms are those of Chor and Goldreich [1], Sorenson [10] and Sedjelmaci [9].
They all compute parallel integer GCD in Oε(n/ logn) time using at most n1+ε processors on CRCW PRAM, for any
constant ε > 0. However, the algorithms described in [1] and [10] follow a Least Significant digit First approach (LSF).
Although possible, this approach is not well suited for computing extended version of GCD since these algorithms
end with three integers α, β and p satisfying the modular relation

αu + βv = 2pgcd(u, v).

So some extra computations are necessary to recover the Bezout cofactors (a, b) satisfying

au + bv = gcd(u, v) = d with |a| � v/2d, |b| � u/2d.

By contrast, the parallel GCD algorithm described in [9] follows a Most Significant digit First approach (MSF) which
is more suitable to compute extended GCD versions. In this Section, we show how to slightly modify the previous
algorithms Seq-ILE and Par-ILE to easily derive sequential and parallel extended ILE reductions.

First, we slightly modify the algorithm Seq-ILE as follows.

The Sequential Extended RILE algorithm: Seq-Ext-ILE.
Input: u � v > 0, k = 2m s.t. ρ = n − p + 1 < m and p > 2m + ρ + 1.

Output: M =
(

c d
a b

)
and

(
R

RILE

)
= M

( u
v

)
with |cb − ad| = 1, GCD(u, v) = GCD(R,RILE), RILE < 2v/k;

Step 1
n := l2(u); p := l2(v);
λ := 2m + ρ + 1;
u1 := �u/2p−λ�; v1 :=�v/2p−λ�;

Step 2 Run EEA with (u1, v1) and compute successive triplets (rs, as, bs), until |as | � 2m < |as+1|;
Step 3 Compute R = |as−1u + bs−1v|; RILE = |asu + bsv|;
Return M =

(
as−1 bs−1

as bs

)
and

(
R

RILE

)
.

It is worth to note that algorithm Seq-ILE introduces spurious factors (see Section 2.1), while Seq-Ext-ILE
does not and the transformation (u, v) ← (R,RILE) preserves the GCD property (see Section 4.1).

The parallel algorithm described in Par-ILE does not return the smallest reduction RILE as the example of
Section 4.2 shows. Moreover, we need to store a matrix in order to compute the Bezout cofactors. Hence some
modifications are needed to design a parallel extended GCD. We suggest the following.

The Parallel Extended RILE algorithm: Par-Ext-ILE
Input: u � v > 0, k = 2m s.t. ρ = n − p + 1 < m and p > 2m + ρ + 1.

Output: M =
(

c d
a b

)
and

(
R1

R2

)
with 1 � R1 � v, 0 � R2 < 2v/k, |bc − ad| = 1 and GCD(R1,R2) = GCD(u, v).

Step 1 Compute p, λ, u1 and v1 as in Seq-ILE algorithm.
Step 2 /* Computation of (a, b) and R2 */

X := v1; Y := v1;
For i = 1,2, . . . ,2m Do in parallel

qi := �iu1/v1�; ri := iu1 − qiv1; si := v1 − ri ;
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If (ri < v1/k) X := ri ; (a, b) := (i, qi);
If (si < v1/k) Y := si ; (c, d) := (−i, qi + 1);

EndFor
If (X > Y) (a, b) := (c, d);
R2 := au + bv;
if R2 < 0 then (a, b) := (−a,−b); R2 := −R2;

Step 3 /* Computation of (c, d) and R1 */
(c, d) :=Bezout(a, b); R1 := cu + dv;
if R1 < 0 then (c, d) := (−c,−d); R1 := −R1;
if ac < 0 then t := 1; else t := −1;
(c′, d ′) := (c + ta, d + tb); R′

1 := c′u + d ′v;
if R′

1 < 0 then (c′, d ′) := (−c′,−d ′); R′
1 := −R′

1;
if R′

1 < R1 then R1 := R′
1; (c, d) := (c′, d ′);

Return M =
(

c d
a b

)
and

(
R1

R2

)
.

If many processors are in write concurrency in Step 2, then we may use the Priority sub-model of CRCW-PRAM,
which select the smallest index i s.t.: 1 � i � k, ri < v1/k or si = v1 − ri < v1/k. However, similarly, as we did for
Par-ILE in Section 3.1, we can easily modify the parallel loop of Step 2, to obtain the same parallel performance
with the Common sub-model of CRCW-PRAM (we also need to store the respective values of ri and si in two arrays).

Given two integers (a, b), such that GCD(a, b) = 1, the function Bezout(a, b) returns the unique pair (c, d) such
that |c| � |a|/2, and c|b| + d|a| = 1. It can be computed by EEA or in parallel as follows:

The Bezout Algorithm.
Input: A pair of integers (a, b), with |b| � |a| and GCD(a, b) = 1.
Output: A pair of integers (c, d) s.t.: c|b| + d|a| = 1 with |c| � |a|/2.

For i = 1,2, . . . , �|a|/2� Do in parallel
αi := i|b| mod |a|; βi := |a| − αi ;
if αi := 1 Return (i,−� i|b|

|a| �);
if βi := 1 Return (−i, � i|b|

|a| � + 1);
EndFor

This pair (c, d) can be computed in O(1) parallel time (see Section 6) with |a|/2 = O(k) processors in a weaker
PRAM model CREW (Concurrent Read Exclusive Write), since only one index i, 1 � i � |a|/2, satisfies αi = 1 or
βi = 1, so no write concurrency could happen. Note that |cb − ad| = 1 since cd < 0 and c|b| + d|a| = 1.

4.1. Correctness of Seq-Ext-ILE and Par-Ext-ILE

Lemma 8. If M =
(

c d
a b

)
with |cb − ad| = 1 and

(
R1

R2

)
= M

( u
v

)
, then GCD(R1,R2) = GCD(u, v).

Proof. Let α = GCD(u, v) and β = GCD(R1,R2) then(
R1

R2

)
= M

(
u

v

)
= αM

(
u/α

v/α

)
and β � α.

Moreover, since |cb − ad| = 1, M−1 exists and has integers entries so(
u

v

)
= M−1

(
R1
R2

)
= βM−1

(
R1/β

R2/β

)
,

hence α � β and the result α = β . �
Lemma 9. Let u > v � 1 be two positive integers. Let (a, b) be the pair given by EEA, satisfying au + bv =
gcd(u, v) = d and let (α, β) be any other pair of integers such that αu + βv = gcd(u, v) = d . Then:
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(1) There exists an integer A such that

α = a + A(v/d) and β = b − A(u/d).

(2) (a, b) is the unique pair such that: |a| � v/2d and |b| � u/2d .
(3) |a| = min{|α| mod (v/d), v/d − |α| mod (v/d)}.

Proof. If there is only one iteration in EEA then u = qv with q � 2 because u > v. So we take (a, b) = (0,1).
Otherwise we assume that there is at least two iterations in EEA and the last quotient must satisfy q � 2. Let (a′, b′)
and (a, b) be the two last cofactors of EEA and q be the last quotient then:

|a′| + q|a| = v/d � q|a|,
|b′| + q|b| = u/d � q|b|.

Hence |a| � v/qd � v/2d and |b| � u/qd � u/2d . Moreover, if (α,β) is another pair of integers such that αu+βv =
d , then

(α − a)u/d + (β − b)v/d = 0, with gcd(u/d, v/d) = 1.

Thus v/d divides (α − a)u/d but gcd(u/d, v/d) = 1, so v/d divides α − a and there exists an integer A such that
(α − a) = A(v/d) and (β − b) = −A(u/d), with |a| � v

2d
, |b| � u

2d
and (1) is proved. Let us prove the unicity of the

pair (a, b) satisfying:

au + bv = gcd(u, v) = d with |a| � v

2d
.

In fact, if we suppose that there are two such pair (a, b) and (α,β) then |a| � v
2d

, |α| � v
2d

so |α − a| � v
d

. Hence
A = 0 or A = 1. If A = 1 then |a| = v

2d
and au + bv = ε vu

2d
+ bv = d , with ε = ±1. Then v( εu

2d
+ b) = d and v = d .

So b = −ε u
2d

and a = v
2d

= 1/2, which is impossible. Hence A = 0 and (2) is proved. The equality (3) is proved as
follows:

Case 1: α = a. Obvious, since |α| � v
2d

, then |α| mod v/d = |α| = |a|.
Case 2: α > a. We have α = a + |A|(v/d). If a � 0 then a = α mod v/d . If a < 0 then α = |A|(v/d) − |a| > 0

because |A| � 1, since α 	= a. Hence α = (|A| − 1)(v/d) + (v/d) − |a|, with v
2d

� (v/d) − |a| < (v/d) then (v/d) −
|a| = α mod v/d and |a| = (v/d) − α mod v/d � v

2d
.

Case 3: α < a. We have α = a −|A|(v/d). If a < 0, then |α| = |a|+|A|(v/d) and |α| mod v/d = |a|. If a > 0 then
α < 0 because |a| � v

2d
. Thus |α| = |A|(v/d) − |a| = (|A| − 1)(v/d) + (v/d) − |a|, with v

2d
� (v/d) − |a| < (v/d),

so (v/d) − |a| = α mod v/d � v
2d

, hence |a| = v
2d

− α mod v/d � v
2d

and (3) is proved. �
Definition 10. Let u > v � 1 be two non-negative integers. The unique pair of integers such that au + bv = gcd(u, v)

with |a| � v/2d and |b| � u/2d is called the Bezout cofactors of (u, v).

Lemma 11. Let i be the smallest index in Step 2 of Par-Ext-ILE algorithm such that 1 � i � k and iu1 − qiv1 <

v1/k or (qi + 1)v1 − iu1 < v1/k, then GCD(i, qi) = 1 or GCD(i, qi + 1) = 1 respectively.

Proof. Let GCD(i, qi) = δ. If we assume δ � 2, then i = δi′ and qi = δq ′
i for some non-negative integers i′ and q ′

i .
Hence iu1 −qiv1 = δ(i′u1 −q ′

iv1) < v1/k. So i′u1 −q ′
iv1 < v1/kδ < v1/k which is impossible since i is the smallest

index such that 1 � i � k and iu1 − qiv1 < v1/k. The other case is similar. �
Lemma 12. Let (a, b) and (c, d) be the two pair of integers obtained in Par-Ext-ILE such that GCD(a, b) = 1
and (c, d) = Bezout(a, b), then

1) |ad − bc| = 1 with |c| � |a|/2.
2) |cu1 + dv1| � v1, with equality if |a| = 1.
3) |cu + dv| � v, with equality if |a| = 1.
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Proof. Since GCD(a, b) = 1, then EEA applied to (|b|, |a|) returns a pair (c, d) such that c|b| + d|a| = 1 with
|c| � |a|/2 (Lemma 9). Moreover, since only one index i, 1 � i � |a|/2, satisfies αi = 1 or βi = 1, then (i, qi)

or (−i, qi + 1) coincides with (c, d), hence 1). If |a| = 1 then |c| � |a|/2 = 1/2, so c = 0 and |d| = 1. Hence
|cu1 + dv1| = v1. If we assume |a| � 2, then we obtain |a(cu1 + dv1)| = |c(au1 + bv1) ± v1| � |c||au1 + bv1| + v1

since ad = bc ± 1. From Proposition 7, we have |au1 + bv1| � 2v1/k and since k � 2m � 4:

|cu1 + dv1| �
(

2|c|
|a|k + 1

|a|
)

v1 �
(

1

k
+ 1

2

)
v1 < v1.

Moreover |cu + dv| � |cu1 + dv1|2p−λ + |cu2 + dv2| and similarly to the proof of Proposition 6, we obtain
|cu + dv| � ( 1

2k
+ 1

|a| )v12p−λ + v/k � ( 1
2k

+ 1
|a| + 1

k
)v < v since k � 4 and |a| � 2. The case |a| = 1 gives c = 0,

|d| = 1 and |cu + dv| = v. �
Proposition 13. The outputs (R,RILE) of Seq-Ext-ILE satisfy GCD(R,RILE) = GCD(u, v) and RILE < 2v/k.

Proof. The entries of matrix M are obtained by EEA, so they satisfy the relation |cb − ad| = 1. The first property
derive from Lemma 8 and the second one from the proof of Proposition 6. �
Proposition 14. The outputs M and (R1,R2) of Par-Ext-ILE satisfy 1 � R1 � v, 1 � R2 < 2v/k, |bc − ad| = 1
and GCD(R1,R2) = GCD(u, v).

Proof. Straightforward from Lemmas 11, 12 and 8 and the observation that the transformations (a, b) := (−a,−b),
(c, d) := (−c,−d) and (c, d) := (a + c, b + d) preserve the relation |bc − ad| = 1 as well as GCD(R1,R2). �
4.2. Example of Par-Ext-ILE

If (u1, v1) = (1137,1001) and k = 8, we obtain in turn

i ri si = v1 − ri

1 136 865
2 272 729
3 408 593
4 544 457
5 680 321
6 816 185
7 952 49
8 87 914

and X = 87, Y = 49, then (a, b) = (−7,8) and (c, d) = (1,−1). The parallel algorithm Par-Ext-ILE returns

(R1,R2) = (136,49) and the matrix M =
(

1 −1
−7 8

)
. Note that v1/k = 1001/8 = 125.125, so there are two possible

values for RILE , namely 49 and 87. However, it may be the case where the smallest index do not give the smallest
reduction with Par-Ext-ILE. Consider for example (u1, v1) = (747,403) with k = 8.

5. Par-Ext-GCD: The parallel extended GCD algorithm

Given integers u � v > k > 0 s.t. gcd(v, k) = 1, we assume that when the algorithm starts, u is n bits large. Recall
that the parameter m is such that m = O(logn) for RILE thus this value yields at most O(n/ logn) iterations. As to the
stop test in the routine, we use v � 8k2 (RILE is undefined when v < 8k2). In case the difference of bit size between
u and v is large, i.e.: ρ > m, we choose another Euclid-like reduction called the ρ-Euclid. We find it easier to take
m as a “threshold” (the borderline choice between RILE and the ρ-Euclid reductions); likewise, we might choose a
varying threshold, depending upon v and experimental data [4,12].
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5.1. The ρ-Euclid reduction

Proposition 15. Let u � v > 0 and q = �u/v�. We consider a parameter λ s.t. 0 � λ � p. We define u1 and v1 by:
u1 = �u/2p−λ� and v1 = �v/2p−λ�. We let q ′ = �u1/v1�, then:

(λ � n − p + 2) ⇒ (q ′ = q or q + 1).

Proof. v2 = v mod 2p−λ, so that

u = 2p−λu1 + u2 and v = 2p−λv1 + v2.

We have q ′v12p−λ +u2 � u12p−λ +u2 � ((q ′ +1)v1 −1)2p−λ +u2. So q ′(v −v2) � u < (q ′ +1)v since u2 < 2p−λ.
Let A = q ′v2/v, then A < 2n−p−λ+2 and

q ′ − 2n−p−λ+2 < q ′ − A � u/v < q ′ + 1,

hence the result for λ � ρ + 1 = n − p + 2. �
Remark 16. Note that it is very easy to compute u1 and v1: u1 is the number obtained by the (n − p + λ) first
significant leading bits of u while v1 is the number obtained by the λ first leading bits of v. This result generalizes and
improves a previous lemma of Kannan, Miller and Rudolph in [5] (p. 9). They took λ = n−p and obtain |q ′

i −qi | � 3.

Applying the previous result to the smallest λ, i.e.: λ = ρ + 1 = n − p + 2, we obtain a new reduction.

Definition 17. With the notation described in Seq-ILE, if u and v are such that 2p � n + 2 and λ = n − p + 2, the
ρ-Euclid reduction is defined by

Rρ(u, v)
def= |u − q ′v|.

Remark 18. A new integer GCD algorithm similar to Euclid’s one can be designed with the ρ-Euclid reduction Rρ

and this algorithm avoids many long divisions. Moreover, if we store the matrices M =
(

0 1
1 −q ′

)
at each step, then we

obtain another extended GCD algorithm, i.e.: we find a pair of integers (a, b) s.t.: au + bv = gcd(u, v), but this pair
may differ from that of EEA. Note that a similar algorithm is proposed in [7] (p. 376, exe. 30).

Example. Let u = 26,977 and v = 8,737, we have

1101 00101100001 = 26,977
100 01000100001 = 8,737.

We obtain λ = n − p + 2 = 3, u1 = 13 and v1 = 4 (the bits of u1 and v1 are written in bold). Thus q ′ = �u1/v1� = 3
and Rρ = |u − 3v| = 766.

5.2. High level description

The following algorithm computes the parallel extended GCD of two integers u and v.

The Parallel Extended GCD Algorithm Par-Ext-GCD.
Step 1. Perform reductions until v < 8k2: if ρ < m, then perform Par-Ext-ILE reduction; else, perform the

ρ-Euclid reduction. Store each matrix Mi in an array A of O(n)-bits in size, i.e.: A[i] := Mi ;
Step 2. Compute d = gcd(u, v) and the matrix of cofactors N with EEA, where (u, v) is the last pair satisfying

v < 8k2.
Step 3. Compute M = N × ∏

i Mi .
Step 4. (a, b) := Recover(α,β, d).
Step 5. Return d and (a, b).
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Note that there are no spurious factors to remove at the end of the GCD algorithm [4,10,11] because all the matrices
have a determinant equal to ±1. In case the pair (α,β) of the second line in the output matrix M is not the Bezout
cofactors, we can easily recover them thanks to Lemma 9, as follows:

The Bezout recovering cofactors function Recover.
(a, b) := (α,β);

If |α| > v/2d

a := |α| mod v/d ;
If a > v

2d
then a := v/d − a;

If au mod v 	= d then a := −a;
A := (α − a)/(v/d); b := β + A(u/d);

Return (a, b).

This determination of the Bezout cofactors is correct since (au) mod v = d or (au) mod v = v − d and, a parallel
computation will require O(logn) time with O(n logn log logn) number of processors.

6. Complexity analysis

Recall that parallel multiplication of two n bits integers can be achieved in O(logn) time with O(n logn log logn)

processors. The parallel addition/subtraction of two n bits integers can be achieved in O(1) time with O(n log logn)

processors. The complexity analysis of Par-Ext-GCD is given below.

Lemma 19. The computation of M = ∏
i Mi can be achieved in parallel in O(log2 n) time with O(n logn log logn)

processors.

Proof. Multiplying in parallel each pair of consecutive matrix M2i+1 × M2i+2, i = 1,2, . . . , I for some index I ,
requires O(logn) time with a total of O(n logn log logn) processors. Repeating this process to each new pair of
consecutive matrix requires at most O(logn) steps of a binary tree computation of depth O(logn), thus the total
parallel time is O(log2 n) with O(n logn log logn) processors. �
Theorem 20. The algorithm described in Par-Ext-GCD can be achieved in parallel in Oε(n/ logn) time with
O(n1+ε) processors on a CRCW PRAM.

Proof. First note that the computation of �2(u) and �2(v) can be computed in O(1) time in parallel with O(n)

processors in CRCW. Observe that u1 and v1 can be found by extraction; 2p−λ is not needed, nor is the multiprecision
division.

We compute ri = iu1 − qiv1 and test if ri < v1/k or v1 − ri < v1/k to select the index i (either by Step 2 or
Modified Step 2). Then RILE = |iu − qiv| is computed in parallel. All these computations can be done in O(1) time
with O(n22m) + O(n log logn) processors. Indeed, precomputed table lookup can be used for multiplying two m-bit
numbers in constant time with O(n22m) processors in CRCW PRAM model, providing that m = O(logn) (see [10]
or [1] for more details).

Precomputed table lookup of size O(m22m) can be carried out in O(logm) time with O(M(m)22m) processors,
where

M(m) = m logm log logm

(see [10] or [1] for more details).
The computation of RILE = |iu − qiv| requires (see Par-ILE) only two products iu and qiv with the selected

index i. Thus RILE can be computed in parallel in O(1) time with: (ρ < m)

O(n22m) + O(n log logn) = O(n22m) processors.

The parallel computation of M = ∏
i Mi can be achieved in O(log2 n) time with O(n logn log logn) processors

(Lemma 19). RILE reduces the size of the smallest input v by at least m−1 bits. Hence the Par-Ext-GCD algorithm
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runs in O(n/m) iterations. For m = 1/2 ε logn, (ε > 0) the parallel Par-Ext-GCD algorithm matches the best
previous GCD algorithms in Oε(n/ logn) time using only n1+ε processors on a CRCW PRAM. Recovering the
Bezout cofactors costs O(logn) in time with O(n logn log logn) = O(n1+ε) processors. �
7. Conclusion

Since Chor and Goldreich’s paper [1] in 1990, no major improvement has been made for parallel complexity of
integer GCD computation and a performance of Oε(n/ logn) time with n1+ε processors on a CRCW PRAM seems
to be a “limit” not easily surpassed.

Based on a new reduction step, new sequential and parallel GCD algorithms are designed. The parallel algorithm
matches the best known GCD algorithms. This paper focuses on the parallel extended version of the GCD. We de-
signed a new parallel extended GCD with the same parallel performance.

The cofactors a an b such that au+bv = gcd(u, v), are easily computed and do not introduce any spurious factors.
This algorithm is described in detail with correctness proofs and complexity analysis.

Our method can be generalized to all Lehmer-like algorithms and our algorithm may be modified to compute in
parallel the continuants of rationals.

Although its complexity remains the same, a compression method may be suggested [1,5]. It is worth noting that,
as far as RILE reduction is considered, all the decisions are made only from the first O(m) leading bits of the current
couple (u, v) at each step. Thus our algorithm adapts for such compression methods and we are currently investigating
this idea with the hope of improving the performance of parallel integer GCD algorithms.
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