
New fast euclidean algorithms

Marie-Françoise Roy∗

Sidi Mohamed Sedjelmaci †

May 18, 2012

Abstract

We give new simple algorithms for the fast computation of the quo-
tient boot and the gcd of two polynomials, and obtain a complexity
O(d(log2 d)

2), where d is the degree of the polynomials, similarly to [5, 4].
More precisely, denoting by M(d) the cost of a fast multiplication of poly-
nomials of degree d, we reach the complexity (9/2M(d) + O(d)) log2 d
where d is the degree of the polynomials in the non-defective case (when
degrees drop one by one), and (21M(d) + O(d)) log2 d+ O(M(d)) in the
general case, improving the complexity bounds (respectively (10M(d) +
O(d)) log2 d and (24M(d)+O(d)) log2 d+O(M(d))) previsouly known for
these problems [2] (see Exercise 11.7).

We hope that the simple character of our algorithms will make it easier
to use fast algorithms in practice for these problems.

1 Introduction

While the number of coefficients arising in the euclidean remainder sequence of
two polynomials of degre d is of order O(d2), the quotient boot, consisting of the
sequence of quotients and the gcd, contains only O(d) coefficients. Note that
the quotient boot provides the gcd as well as enough information to compute
in linear time the Cauchy index of a rational fraction with numerator and de-
nominator bounded by d, which is a basic computational task in real algebraic
geometry, [3, 1]. Our aim is to design an algorithm performing the quotien boot
in quasi-linear time.

Let us introduce some notation. Let P(0) be a polynomial of degree d0
and P(1) a polynomial of degree d1 < d0. Define the remainder sequence of
P(0),P(1) by

P(i+ 1) := Rem(P(i− 1),P(i)), (1)

∗IRMAR (URA CNRS 305), Université de Rennes, Campus de Beaulieu 35042 Rennes
cedex FRANCE, marie-francoise.roy@univ-rennes1.fr.

†LIPN (UMR 7030, CNRS), Université de Paris Nord, Av. J.-B. Clément, 93430, Villeta-
neuse France, sms@lipn.univ-paris13.fr.

1



stopping at the first n such that P(n+ 1) = 0. Thus, G = gcd(P(0),P(1)) =
P(n), and the remainder sequence is

P(0),P(1), . . . ,P(n).

We denote di = deg(P(i)) (by convention deg(0) = −∞).
Let

C(i) := Quo(P(i− 1),P(i)) (2)

be the quotient of P(i− 1) by P(i).
Denoting

M(i) :=

[
0 1
1 −C(i)

]
, (3)

V(i) :=

[
P(i)

P(i+ 1)

]
, (4)

we have
V(i) = M(i) ·V(i− 1). (5)

Let also

M(i, j) :=

i∏
k=i−2j+1

M(k), (6)

(note that M(i, 0) := M(i)).
Our aim is to compute the quotient boot of P(0) and P(1), i.e. the quo-

tients C(i), for i = 1, . . . , n, as well as the gcd G = P(n) in time O(d(log2 d)
2).

This paper contains three different algorithms for computing fastly the quo-
tient boot.

They are all based on two classical properties that are usually adopted to
design fast gcd algorithms (see [5, 4]):

• the leading part of two polynomials is enough to compute their quotient,

• some products of the form M(i, j), computed using fast multiplication,
can be used for intermediate computations.

The main difference between our approach and the existing litterature, based
on a Divide and Conquer approach, is that our algorithms proceed straightfor-
wardly, basing the computation on the dyadic valuation of the iteration index.

In Section 2, we give two different algorithms computing the quotient boot
when the degrees of the polynomials in the remainder sequence is known in
advance: the first A1 is particularly simple, and the second A2 avoids some
redundant computations. In Section 3 we describe our maint result, Algorithm
B giving the quotient boot when the degrees of the remainders are unknown.

The complexity analysis of Algorithm B is given in details in Section 4 both
in the non defective case (when the degrees of the quotients are equal to 1)
and in the general case. We obtain the complexity (9/2M(d) + O(d)) log2 d
in the non-defective case (when degrees drop one by one), and (21M(d) +
O(d)) log2 d + O(M(d)) in the general case, improving the complexity bounds
(respectively (10M(d) + O(d)) log2 d and (24M(d) + O(d)) log2 d + O(M(d)))
previsouly known for these problems [2] (see Exercise 11.7).

2



2 Computing the quotient boots when the de-
grees of the remainders are known.

We suppose in this Section that we know in advance the degree di of the poly-
nomials P(i) in the remainder sequence.

We first introduce notation that will be useful throughout the paper.
Given a polynomial

P =

deg(P )∑
`=0

p`X
`, (7)

we denote, if m ≥ n,

P]m···n] :=
m−1∑
`=n

p`X
`. (8)

(with the convention that a monomial above the degree, or with a negative
exponent has coefficient 0),

P]m··· ] :=

m−1∑
`=0

p`X
`. (9)

and

P]···n] :=

deg(P )∑
`=n

p`X
`. (10)

If

V =

[
P
Q

]
(11)

is a vector of two polynomials, we denote by

V]m···n] :=

[
P]m···n]
Q]m···n]

]
, (12)

V]m··· ] :=

[
P]m··· ]
Q]m··· ]

]
, (13)

and

V]···n] :=

[
P]···n]
Q]···n]

]
. (14)

The following obvious lemma will be very useful

Lemma 2.1 Let V be a vector of two polynomials and M a 2 × 2 matrix of
polynomials of degree at most d

(M · V )]···n+d] = (M · V]···n])]···n+d] .

In other words, M · V and M · V]···n] coincide up to degree n+ d.

3



2.1 Algorithm A1 (Quotient boot for known degrees)

We remark that the matrix M(i) depends only on the di−1−di+1 leading terms
of P(i− 1) and P(i), since the degree of C(i) is di−1 − di. As a consequence,

C(i) = Quo(P(i− 1)]···di]
,P(i)]···2di−di−1]

) (15)

We are going to define, by induction on i, a vector of two polynomials

V(i) =

[
P(i)
Q(i)

]
, (16)

which should be thought as an approximation of V(i): enough of the lead-
ing terms of V(i) coincide with the leading terms of V(i) to allow the correct
computation of C(i) as

Quo(P(i− 1)]···di]
,Q(i− 1)]···2di−di−1]

). (17)

The first steps of our method. In order to compute C(1) (thus M(1, 0))
correctly, we divide P(0)]···d1]

by P(1)]···2d1−d0]
and notice that with less leading

terms we would not get the right answer. Now rather than multiplying V(0)
by M(1, 0) to get V(1), we multiply enough leading terms of V(0) by M(1, 0) in
order to compute the correct C(2). Using our knowledge of d2, we define

V(1) := M(1, 0) ·V(0)]···2d2−d0]
,

and notice that, since C(1) is of degree d0 − d1, V(1) coincides with V(1) up
to degree 2d2 − d1, so that the quotient Quo(P(1)]···d2]

,Q(1)]···2d2−d1]
) coincides

with C(2). In other words M(1, 0) and M(2, 0) have been computed correctly
from V(0)]···2d2−d0]

.

So, in order to compute the correct M(3, 0) and M(4, 0), we need to compute
correctly V(2)]···2d4−d2]

, using our knowledge of d4. This is done by defining:

M(2, 1) := M(2, 0) ·M(1, 0)
V(2) := M(2, 1) ·V(0)]···2d4−d0]

.

Since the entries of M(2, 1) are polynomials of degree at most d0 − d2, it is easy
to check that V(2) coincides with V(2) up to degree 2d4 − d2. So V(2) can be
used to compute successfully M(3, 0), V(3) and M(4, 0). We define

V(3) := M(3, 0) ·V(2)]···2d4−d2]
.

Finally M(1, 0), M(2, 0), M(3, 0) and M(4, 0) have been computed correctly from
V(0)]···2d4−d0]

.

So in order to compute correctly M(5, 0), M(6, 0), M(7, 0) and M(8, 0), we
need to compute correctly V(4)]···2d8−d4]

, using our knowledge of d8. We define

M(4, 1) := M(4, 0) ·M(3, 0)
M(4, 2) := M(4, 1) ·M(2, 1)

V(4) := M(4, 2) ·V(0)]···2d8−d0]
.

4



Since the entries of M(4, 2) are polynomials of degree at most d0 − d4, V(4)
coincides with V(4) up to degree 2d8 − d4.

So we can proceed safely to compute M(5, 0), M(6, 0), M(7, 0) and M(8, 0).
We observe that the number of coefficients up to which V(i) has to coincide

with V(i) depends on the dyadic valuation of i, i.e. on the maximum power of
2 dividing i.

Notation 2.2 For every natural number i ≥ 0, we denote by v(i) the dyadic
valuation of i, i.e. the natural number such that i = 2v(i)j with j odd, with the
convention v(0) = +∞.

We note p(i) = i − 2v(i), f(i) = i + 2v(i) (p(i) stands for past and f(i) for
future), with the convention f(0) = +∞,p(0) = −∞, d∞ = −∞.

We define inductively p(`)(i) by p(0)(i) = i,p(`)(i) = p(p(`−1)(i)), until we
reach 0.

For example if i = 22, v(i) = 1, f(i) = 24,p(i) = 20,p(2)(i) = 16,p(3)(i) = 0.

The following lemma is immediate.

Lemma 2.3 For ` from v(i)− 1 to 0,

p(i− 2`) = i− 2`+1, f(i− 2`) = i.

In particular
p(i− 2v(i)−1) = p(i), f(i− 2v(i)−1) = i.

Description and correctness of Algorithm A1. We are now ready for the
description of Algorithm A1.

We define, by induction on i,

V(i) :=

[
P(i)
Q(i)

]
, (18)

as follows
V(0) = V(0),

C(i) := Quo(P(i− 1)]···di]
,Q(i− 1)]···2di−di−1]

), (19)

M(i) :=

[
0 1
1 −C(i)

]
, (20)

M(i, j) :=
i∏

k=i−2j+1

M(k), (21)

(note that M(i, 0) := M(i)) and

V(i) = M(i, v(i)) ·V(p(i))]···2df(i)−dp(i)]
. (22)

We now prove the following result, which is the key to the correctness of
Algorithm A1.

5



Proposition 2.4 For every i,

C(i) = C(i).

Note that f(i− 1) ≥ i , thus df(i−1) ≤ di, so that 2di−di−1 ≥ 2df(i−1)−di−1.
So, Proposition 2.4 is an immediate corollary of the following Lemma, taking
into account Equation (15).

Lemma 2.5 For every i,

V(i)]···2df(i)−di]
= V(i)]···2df(i)−di]

.

In other words, V(i) and V(i) coincide up to degree 2df(i) − di.

Proof : By induction on i. The claim is obviously true for i = 0. We suppose
by induction hypothesis that the claim is true for every j < i. In particular for
j = p(i) < i,

V(p(i))]···2df(p(i))−dp(i)]
= V(p(i))]···2df(p(i))−dp(i)]

.

By definition of V(i), since the degree of the entries of M(i, v(i)) are at most
dp(i) − di, and using Lemma 2.1,

V(i)]···2df(p(i))−di]
= V(i)]···2df(p(i))−di]

.

It remains to notice that, since v(p(i)) > v(i),

f(p(i)) = p(i) + 2v(p(i)) = i− 2v(i) + 2v(p(i)) ≥ i+ 2v(i) = f(i),

and df(p(i)) ≤ df(i). QED

The input of Algorithm A1 is P(0),P(1) and the degrees di of P(i). Its
output is the quotient boot.

Algorithm 2.6 (A1, Quotient boot for known degrees)

• Initialize V(0) := V(0), i := 1.

• While Q(i− 1) 6= 0, with

V(i− 1) :=

[
P(i− 1)
Q(i− 1)

]
,

– Define

C(i) := Quo(P(i− 1)]·di]
,Q(i− 1)]···2di−di−1]

),

M(i, 0) :=

[
0 1
1 −C(i)

]
.

6



– If i is even, compute for ` = 0 · · · v(i)− 1,

M(i, `+ 1) := M(i, `) ·M(i− 2`, `).

– Compute

V(i) := M(i, v(i)) ·V(p(i))]···2df(i)−dp(i)]
.

– Replace i by i+ 1.

• EndWhile

• Define G := P(i− 1).

The correctness of Algorithm A1 follows from Proposition 2.4.

2.2 Algorithm A2: Improved quotien boot for known de-
grees.

It is possible to improve the preceding algorithm by taking into account the
partial computation already performed in the computation of V(i).

The first steps of our method. We explain how Algorihm A2 works for the
first values of i.

The first change in Algorithm A2 with respect to Algorithm A1 appears
when we compute V(2). Rather than computing V(2) as M(2, 1) ·V(0)]···2d4−d0]

,
we compute it as

M(2, 0) ·V(1) +M(2, 1) ·V(0)]2d2−d0···2d4−d0]
.

Indeed

V(2) = M(2, 1) ·V(0)]···2d4−d0]

= M(2, 1) ·V(0)]···2d2−d0]
+M(2, 1) ·V(0)]2d2−d0···2d4−d0]

= M(2, 0) ·M(1) ·V(0)]···2d2−d0]
+M(2, 1) ·V(0)]2d2−d0···2d4−d0]

= M(2, 0) ·V(1) +M(2, 1) ·V(0)]2d2−d0···2d4−d0]
.

The advantage of this new method for computing V(2) is that we use more
extensively the previously computed data, namely V(1), rather than starting
directly from V(0), and this saves some computation.

The next change with respect to Algorithm A1 is the computation of V(4).
Rather than computing V(4) as M(4, 2) ·V(0)]···2d8−d0]

, we compute it as

M(4, 0) ·V(3) +M(4, 1) ·V(2)]2d4−d2··· ] +M(4, 2) ·V(0)]2d4−d0···2d8−d0]
.

7



It is easy to check that

V(4) = M(4, 2) ·V(0)]···2d8−d0]

= M(4, 2) ·V(0)]···2d4−d0]
+M(4, 2) ·V(0)]2d4−d0···2d8−d0]

= M(4, 1) ·M(2, 1) ·V(0)]···2d4−d0]
+M(4, 2) ·V(0)]2d4−d0···2d8−d0]

= M(4, 1) ·V(2) +M(4, 2) ·V(0)]2d4−d0···2d8−d0]

= M(4, 1) ·V(2)]···2d4−d2]
+M(4, 1) ·V(2)]2d4−d2··· ]

+M(4, 2) ·V(0)]2d4−d0···2d8−d0]

= M(4, 0) ·M(3) ·V(2)]···2d4−d2]
+M(4, 1) ·V(2)]2d4−d2··· ]

+M(4, 2) ·V(0)]2d4−d0···2d8−d0]

= M(4, 0) ·V(3) +M(4, 1) ·V(2)]2d4−d2··· ] +M(4, 2) ·V(0)]2d4−d0···2d8−d0]
.

The advantage of this new method for computing V(4) is that we use more
extensively the previously computed data, namely V(2) and V(3), rather than
starting directly from V(0), and this saves some computation.

Description and correctness of Algorithm ”Improved quotien boot for
known degrees”

Algorithm 2.7 (A2: Improved quotient boot for known degrees)

• Initialize V(0) := V(0), i := 1.

• While Q(i− 1) 6= 0, with

V(i− 1) :=

[
P(i− 1)
Q(i− 1)

]
,

– Define

C(i) := Quo(P(i− 1)]···di]
,Q(i− 1)]···2di−di−1]

),

M(i, 0) :=

[
0 1
1 −C(i)

]
.

– If i is even, compute for k = 0 · · · v(i)− 1,

M(i, k + 1) := M(i, k) ·M(i− 2k, k),

– If i is odd, compute

V(i) := M(i, 0) ·V(i− 1)]···2di+1−di−1]
.

– If i is even, compute

V(i) = M(i, 0) ·V(i− 1)

+
∑v(i)−1

k=1 M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
.

8



– Replace i by i+ 1.

• EndWhile

• Define G := P(i− 1).

We now prove the correctness of Algorithm A2 , which is a consequence of
the following result and of the correctness of Algorithm A1.

Lemma 2.8 When i is even

V(i) = M(i, 0) ·V(i− 1)

+
∑v(i)−1

k=1 M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
.

Proof : We prove by induction on ` from v(i)− 1 to 0 that

V(i) = M(i, `) ·V(i− 2`)

+
∑v(i)−1

k=`+1 M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
.

Using Lemma 2.3,

p(i− 2`) = i− 2`+1, f(i− 2`) = i.

In particular
p(i− 2v(i)−1) = p(i), f(i− 2v(i)−1) = i.

If ` = v(i)− 1,

V(i) = M(i, v(i)) ·V(p(i))]···2df(i)−dp(i)]

= M(i, v(i)) ·V(p(i))]···2di−dp(i)]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]

= M(i, v(i)− 1) ·M(i− 2v(i)−1, v(i)− 1) ·V(p(i))]···2di−dp(i)]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]

= M(i, v(i)− 1) ·V(i− 2v(i)−1)
+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]

Suppose now by induction hypothesis that

V(i) = M(i, `) ·V(i− 2`)

+
∑v(i)−1

k=`+1 M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
.

.

9



The claim for `− 1 follows from

M(i, `) ·V(i− 2`) = M(i, `) ·V(i− 2`)]···2di−d
i−2`

]

+M(i, `) ·V(i− 2`)]2di−d
i−2`

··· ]

= M(i, `− 1) ·M(i− 2`−1, `− 1) ·V(i− 2`)]···2di−d
i−2`

]

+M(i, `) ·V(i− 2`)]2di−d
i−2`

··· ]

= M(i, `− 1) ·V(i− 2`−1) +M(i, `) ·V(i− 2`)]2di−d
i−2`

··· ].

.

QED

Remark 2.9 Algorithm A1 and Algorithm A2 are half-gcd algorithm in the
following sense. Let ν the number of bits of d, and 2ν−1 the biggest power of 2
stricty smaller than d. At step 2ν−1, Algorithm A1 (resp. A2) compute

V(2ν−1) = V(2ν−1) = M(2ν−1, ν − 1) ·V(0)

and then calls itself with input V(2ν−1) = V(2ν−1), without needing to record
any of the preceeding computations.

3 An algorithm computing the quotient boot

The main difficulty we have to face now is that contrarily to what we supposed
in the last section, we do not know the degree di of the successive remainders.

We are going to define for every i a vector of two polynomials Ṽ(i) =

[
P̃(i)

Q̃(i)

]
,

with the property that enough of the leading terms of Ṽ(i) coincide with the
leading terms of V(i) to allow the correct computation of C(i) as

Quo(P̃(i− 1)]···di]
, Q̃(i− 1)]···2di−di−1]

). (23)

As before, the main idea is that since the leading part of V(i− 1) only is nec-
essary to compute C(i), we an postpone the multiplication of the part of lower
degree of V(i− 1) by M(i), which makes it possible to group the matrices M(i)
before performing these postponed computations.

Since we do not know the di, we are going to compute non definitive Ṽ(i) that
will be updated during the computation. The idea is to start the computation as
if the new degrees were decreasing as the old ones and to update the necessary
Ṽ(i) if it is not the case, i.e. if the drop of degree is bigger than expected.

The first steps of our method. We explain how the algorithm works for
the first values of i.

? For i = 1, reading V(0) gives the correct value of d1, and we can compute
C(1) but in order to compute V(1) the value of d2 is necessary. Since we do

10



not know yet d2 we start by acting as if d1 − d2 ≤ d0 − d1. We initialize δ1 to
2(d0 − d1) and define δ̄1 := δ1 + 2(d0 − d1). We define

Ṽ(1) := M(1) ·V(0)]···d0−δ̄1]
.

We note that Ṽ(1)]···d1−δ1]
= V(1)]···d1−δ1]

, using Lemma 2.1 and check whether

δ1 ≥ d1 or Q̃(1) is a non zero polynomial of degree d2 such that δ1 ≥ 2(d1−d2).
If not, we try increasing values of δ1 (and δ̄1), by steps of 2(d0−d1), and update

Ṽ(1) by

Ṽ(1) := Ṽ(1) +M(1) ·V(0)]d0−δ1···d0−δ̄1]
,

until δ1 ≥ d1 or Q̃(1) is a non zero polynomial of degree d2 such that δ1 ≥
2(d1−d2). Since Ṽ(1) coincides with V(1) up to degree d1−δ1, which is smaller
than 2d2 − d1, we can compute C(2) as

Quo(P̃(1)]···d1]
, Q̃(1)]···2d2−d1]

). (24)

? For i = 2, since we do not know yet d4, we start by acting as if d2 − d4 ≤
d0−d2. We initialize δ2 to 2(d0−d2) and define δ̄1 := δ1+2(d0−d1). We define

Ṽ(2) := M(2, 1) ·V(0)]···d0−δ̄2]
.

We note that Ṽ(2)]···d2−δ2]
= V(2)]···d2−δ2]

, using Lemma 2.1 and check whether

δ2 ≥ d2 or Q̃(2) is a non zero polynomial of degree d3 such that δ2 ≥ 2(d2−d3).
If not, we try increasing values of δ2 (and δ̄2) by steps of 2(d0−d2), and update

Ṽ(2) := Ṽ(2) +M(2, 1) ·V(0)]d0−δ2···d0−δ̄2]
,

until δ2 ≥ d2 or Q̃(2) is a non zero polynomial of degree d3 such that δ2 ≥
2(d2−d3). Since Ṽ(2) coincides with V(2) up to degree d2−δ2, which is smaller
than 2d3 − d2, we can compute C(3) as

Quo(P̃(2)]···d2]
, Q̃(2)]···2d3−d2]

). (25)

? For i = 3, a new phenomenon occurs, since f(3) = f(2) = 4. We initialize δ3
to 2(d2 − d3) and define δ̄3 := δ3 + 2(d2 − d3). We wish to define

Ṽ(3) := M(3) · Ṽ(2)]···d2−δ̄3]
.

This is possible only if d2 − δ̄3 ≥ d2 − δ2 i.e. δ2 − δ3 ≥ 2(d2 − d3). If not, we
store δ̄2 in δ̃2 and define

δ2 := 2(d0 − d2) d
2(d2 − d3) + δ3

2(d0 − d2)
e

Before defining Ṽ(3), we update Ṽ(2) i.e. we compute

Ṽ(2) := Ṽ(2) +M(2, 1) ·V(0)]d0−δ̃2···d0−δ̄2]
.

11



We then define
Ṽ(3) := M(3) · Ṽ(2)]···d2−δ̄3]

,

and check whether δ3 ≥ d3 or Q̃(3) is a non zero polynomial of degree d4 such
that δ3 ≥ 2(d3 − d4).

If not we increase δ3 (and δ̄3) by 2(d2 − d3) and wish to update

Ṽ(3) := Ṽ(3) +M(3) ·V(2)]d2−δ3···d2−δ̄3]
.

This is possible only if 2d2 − δ̄3 ≥ d2 − δ2 i.e. δ2 − δ3 ≥ 2(d2 − d3). If not,
we store δ̄2 in δ̃2 and define

δ2 := 2(d0 − d2) d
2(d2 − d3) + δ3

2(d0 − d2)
e

Before updating Ṽ(3), we update Ṽ(2) i.e. we compute

Ṽ(2) := Ṽ(2) +M(2, 1) ·V(0)]d0−δ̃2···d0−δ̄2]
.

We then update

Ṽ(3) := Ṽ(3) +M(3) ·V(2)]d2−δ3···d2−δ̄3]
,

and check whether δ3 ≥ d3 or Q̃(3) is a non zero polynomial of degree d4 such
that δ3 ≥ 2(d3 − d4).

Note that at the end of this loop Ṽ(3) coincides with V(3) up to degree
d3 − δ3, which is smaller than 2d4 − d3. So, we can compute C(4).

Description and correctness of Algorithm B. In the general case we have
the following algorithm.

Algorithm 3.1 (B, Quotient boot)

• (?0) Initialize Ṽ(0) := V(0), i := 1.

• While Q̃(i− 1) 6= 0, with

Ṽ(i− 1) :=

[
P̃(i− 1)

Q̃(i− 1)

]
,

– Define

di := deg(Q̃(i− 1))

C̃(i) := Quo(P̃(i− 1)]···di]
, Q̃(i− 1)]···2di−di−1]

),

M̃(i, 0) :=

[
0 1

1 −C̃(i)

]
.

12



– If i is even, compute for ` = 1 · · · v(i)− 1,

M̃(i, `+ 1) := M̃(i, `) · M̃(i− 2`, `),

– Initialize δi := 2(dp(i) − di)

– Repeat (Loop i)

∗ δi := δ̄i, δ̄i := δi + 2(dp(i) − di)

∗ I := ∅, j := i, ` := p(j), m := p(`),

∗ While ` > 0 and δ` − δj < 2(d` − dj)

· Update
δ̃` := δ̄`
δ` := 2(dm − d`) d 2(d`−dj)+δj

2(dm−d`)
e,

δ̄` := δ` + 2(dm − d`).

· I := `, I; j := `, ` := m, m := p(`).

∗ EndWhile

∗ While I 6= ∅
· Remove from I its first element j.

· (?a) For δ from δ̃j to δj by steps of 2(dp(j) − dj), and δ̄ =

δ + 2(dp(j) − dj) update Ṽ(j) by adding

M̃(j, v(j)) · Ṽ(p(j))]dp(j)−δ···dp(j)−δ̄]

∗ EndWhile

∗ (?b) If δi = 2(dp(i) − di)

· If di = di and i is even, define Ṽ(i) as

M̃(i, 0) · Ṽ(i− 1)

+
∑v(i)−1

k=1 M̃(i, k) · Ṽ(i− 2k)]d
i−2k

−δ̄
i−2k−1 ··· ]

+M̃(i, v(i)) · Ṽ(p(i))]dp(i)−δ̄
i−2v(i)−1 ···dp(i)−δ̄i]

.

· Otherwise, define Ṽ(i) as

M̃(i, v(i)) · Ṽ(p(i))]···dp(i)−δ̄i]
(26)

∗ (?c) Otherwise update Ṽ(i) by adding

M̃(i, v(i)) · Ṽ(p(i))]dp(i)−δi···dp(i)−δ̄i]
.

– Until δi ≥ 2(di − deg(Q̃(i))) or δi ≥ di

– i := i+ 1

• EndWhile

13



• Define G := P̃(i− 1).

Remark 3.2 Note that if for every i from 0 to n, dp(i) − di = di − df(i), which
is always the case in the non defective case where n = d, di = d− i, Algorithm
B coincides with Algorithm A2.

We now prove the correctness of Algorithm B which is the following result:

Proposition 3.3
C̃(i) = C(i).

Let us denote by γi the value of δi at the end of Loop i. Since γi ≤ 2(di+1−
di), we have

di − γi ≤ 2di+1 − di,

and taking into account Equation 15, the proposition is a consequence of the
following technical lemma:

Lemma 3.4 After step (?0), V(0) = Ṽ(0).
At the end of each step (?a) in Algorithm B

Ṽ(j)]···dj−δj ]
= V(j)]···dj−δj ]

.

At the end of each step (?b) and (?c) in Algorithm B

Ṽ(i)]···di−δi]
= V(i)]···di−δi]

.

As a consequence at the end of Loop i, Ṽ(i) and V(i) coincide up to degree
di − γi and Proposition 3.3 holds.

Lemma 3.5 Throughout Algorithm B, for every j > 0,

Ṽ(j) = M(j, v(j)) · Ṽ(p(j))]···dp(j)−δ̄j ]
.

Proof : We prove that the claim holds by induction on the successive definitions
and updates of the various Ṽ(j) throughout Algorithm B.

• (?a): After the update,

Ṽ(j) = M(j, v(j)) · Ṽ(p(j))]···dp(j)−δ̄j ]
,

since before the update

Ṽ(j) = M(j, v(j)) · Ṽ(p(j))]···dp(j)−δ̄j ]
.

• (?b) The claim is true by Equation (26), and if i is even and di = di, bt
Lemma 2.5.

• (?c) The proof is similar to (?a).

14



QED

Proof of Lemma 3.3: We prove that the claim holds by induction on the
successive definitions and updates of the various Ṽ(j) throughout Algorithm B.

• (?0) The base case is clear since Ṽ(0) = V(0).

• (?a) By induction hypothesis

Ṽ(p(j))]···dp(j)−δp(j)]
= V(p(j))]···dp(j)−δp(j)]

.

Noticing that
δp(j) ≥ δ̄j ,

since the condition

δp(j) − δj ≥ δ̄j − δj = 2(dp(j) − dj)

is ensured, we obtain

Ṽ(p(j))]···dp(j)−δ̄j ]
= V(p(j))]···dp(j)−δ̄j ]

.

Note that
V(j) = M(j, v(j)) ·V(p(j)),

and that, by Lemma 3.5,

Ṽ(j) = M(j, v(j)) · Ṽ(p(j))]···dp(j)−δ̄j ]
.

Since, by induction hypothesis,

C(k) = C̃(k) = Quo(P̃(k − 1)]···dk]
, Q̃(k − 1)]···2dk−dk−1]

)

for every k ≤ j, the degree of the entries of M(j, v(j)) are dp(j) − dj , and
using Lemma 2.1,

Ṽ(j)]···dj−δj ]
= V(j)]···dj−δj ]

,

since dj − δj = dp(j) − dj + dp(j) − δ̄j .

QED

Remark 3.6 a) In the non defective case (i.e. when di = d − i for all i),
Algorithm B coincides with Algorithm A2.

b) Algorithm B is a half-gcd algorithm in the following sense. Let ν the
number of bits of n, and 2ν−1 the biggest power of 2 stricty smaller than n. At
step 2ν−1, Algorithm B compute

Ṽ(2ν−1) = V(2ν−1) = M(2ν−1, ν − 1) ·V(0)

and then calls itself with input V(2ν−1) = Ṽ(2ν−1), without needing to record
any of the preceeding computations.

15



4 Complexity analysis

4.1 Notation and preliminary remarks

Let M(n) be the cost of a multiplication of two polynomials of degree n i.e.
the maximum number of arithmetic operations performed in the base field by
a given multiplication algorithm over any input polynomials of degree n. Note
that if M(n,m) is the cost of a multiplication of a polynomials of degree n by
a polynomial of degree m, then M(n,m) ≤ M(max(n,m)).

We suppose that the function M(n) satisfies the following properties

i) M(2k)
2k

≤ M(n)
n whenever 2k ≤ n

ii)
∑ν−1

k=1 M(2k) ≤ M(2ν)

iii)
∑ν−1

k=1
M(2k)

2k
≤ ν−1

2
M(2ν)

2ν

iv)
∑n

i=1 M(max(ai, bi)) ≤ M(d), whenever
∑n

i=1 ai +
∑n

i=1 bi ≤ d .
v)

∑n
i=1 M(max(ai, bi)) ≤ M(d), whenever max(ai, bi) ≤ ci,

∑n
i=1 ci ≤ d.

These properties are easy to check for the functions n log n and n log n log log n
which correspond to the cost of FFT multiplication in a field supporting FFT
and general FFT multiplication in any field [2].

The cost of the multiplication of two 2×2 matrices with entries polyniomials
of degree n takes 7 multiplications and a fixed number of additions of polyno-
mials of degree n, and costs 7M(n)+O(n) using Strassen fast multiplication of
matrices [6, 2]. The cost of the multiplication of a 2 × 2 matrix by a vector of
length two with entries polyniomials of respective degree n is 4M(n)+O(n). The
cost of the multiplication of a 2×2 matrix by a vector of length two with entries
polyniomials of respective degree n and 2n is 7M(n) + O(n), since the vector
can be split in two parts of degree n and we can perform the multiplication of
two 2× 2 matrices and a few additions.

We denote by n + 1 the number of elements in the remainder sequence of
P(0) and P(1), by ν the number of bits of n, ν = blog2 nc+1, i.e. 2ν−1 ≤ n < 2ν .

4.2 Complexity analysis in the non-defective case

This is the case where di = d− i and n = d.

Proposition 4.1 The complexity tA1 of Algorithm A1, in the non-defective case
is

tA1(d) =

(
21

4
M(d) +O(d)

)
log2 d+O(M(d)).

Proof : Let k be an integer between 1 and ν − 1.
The cost of the computation of all the C(i), 1 ≤ i ≤ d takes O(d) multipli-

cations and divisions in the base field.
For every multiple i of 2k, i < d the computation of M(i, k) as

M(i, k − 1) ·M(i− 2k−1, k − 1)

16



takes 7 multiplications and a fixed number of additions of polynomials of degree
2k−1.The number of multiples of 2k which are less than d is

bd− 1

2k
c < d

2k
.

So the complexity of the computation of all the M(i, k), i < d, k ≤ v(i) is

7
d

2

ν−1∑
k=1

M(2k−1)

2k−1
= 7

d

2

ν−2∑
k=1

M(2k)

2k
+O(d) ≤ 7

d

2

ν − 2

2

M(2ν−1)

2ν−1
+O(d)

which is smaller than
7

4
(ν − 2)M(d) +O(d).

using i) and iii).
For every i ≤ n such that v(i) = k < ν − 1, the computation of

V(i) := M(i, v(i)) ·V(p(i))]···2df(i)−dp(i)]

takes 14 multiplications and a fixed number of additions of polynomials of degree
2k, since 2(df(i) − dp(i)) = 4 × 2k. The number of natural numbers i < d such
that v(i) = k is at most

d+ 2k − 1

2k+1
.

So the complexity of the computation of all the V(i), i ≤ d, v(i) < ν − 1 is

14

(
d

2

ν−2∑
k=1

M(2k)

2k
+

1

2

ν−2∑
k=1

M(2k)

)
≤ 7 d

ν − 2

2

M(2ν−1)

2ν−1
+ 7M(2ν−1)

whihch is smaller than
7

2
(ν − 2)M(d) + 7M(d),

using i), ii) and iii).
Finally, for i = 2ν−1, p(i) = 0, and the computation of

V(i) := M(i, ν − 1) ·V(0)

takes 7 multiplications and a fixed number of additions of polynomials of degree
2ν−1, since d ≤ 2× 2ν−1.
The cost of the polynomial multiplications performed evaluated in the base field
is bounded by

(ν − 2)

(
21

4
M(d) +O(d)

)
+ 14M(d) ≤ (ν + 1)

(
21

4
M(d) +O(d)

)
.

QED

17



Proposition 4.2 The complexity tA2
of Algorithm 2.7 in the non-defective case

is

tA2(d) =

(
9

2
M(d) +O(d)

)
log2 d.

Proof : Let k be an integer between 1 and ν − 1.
The complexity of the computation of all the M(i, k), i ≤ d, k ≤ v(i) is

(ν − 2)

(
7

4
M(d) +O(d)

)
,

as in the proof of Proposition 4.1.
For every i such that k < v(i) ≤ ν − 1, the computation of the matrix-vector
multiplication

M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

costs 4 multiplications and a fixed number of additions of polynomials of degree
2k, since di−2k+1 − di−2k = 2k.

So the complexity of the computation of all the M(i, k)V(i− 2k)]2di−d
i−2k

··· ]
is

(ν − 2) (M(d) +O(d)) ,

similarly to the proof of Proposition 4.1.
For every i ≤ d such that v(i) = k < ν − 1, the computation of

M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]

takes 7 multiplications and a fixed number of additions of polynomials of degree
2k, since 2(df(i) − di) = 2× 2k.

So the complexity of the computation of all the

M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
,

i ≤ n, v(i) < ν − 1 is
7

4
(ν − 2)M(d) +

7

2
M(d),

similarly to the proof of Proposition 4.1.
Finally, for i = 2ν−1, p(i) = 0, and the computation of

V(i) := M(i, ν − 1) ·V(0)]2di−d0··· ]

takes 4 multiplications and a fixed number of additions of polynomials of degree
2ν−1, since n ≤ 2× 2ν−1, as in the proof of Proposition 4.1.

The cost of the polynomial multiplications performed evaluated in the base
field is bounded by

9

2
(ν − 2) (M(d) +O(d)) +

15

2
M(d) ≤ 9

2
ν (M(d) +O(d)) .

18



It is finally easy to see that the total cost of the additions for computing

V(i) = M(i, 0) ·V(i− 1)

+
∑v(i)−1

k=1 M(i, k) ·V(i− 2k)]2di−d
i−2k

··· ]

+M(i, v(i)) ·V(p(i))]2di−dp(i)···2df(i)−dp(i)]
.

for every i such that v(i) = k is bounded by O(d). QED

Since Algorithm 3.1 and Algorithm 2.7 coincide in the defective case, we
have

Corollary 4.3 The complexity tB of Algorithm 3.1 in the non-defective case is(
9

2
M(d) +O(d)

)
log2 d.

Note that the constant 9/2 that we obtain for Algorithm 3.1 improves sig-
nificantly the previously known constant which was 10 [2].

4.3 Complexity analysis of Algorithm B (Algorithm 3.1).

Proposition 4.4 The complexity of Algorithm 3.1 is 21 (M(d)+O(d)) log2 d+
O(M(d)).

The proof of Proposition 4.4 uses the following Lemma

Lemma 4.5 Denoting by ∆i the end value of δi computed in Algorithm 3.1,

∆i ≤ 2(dp(i) − df(i))

Proof : Let j be the biggest number such that δi is modified during the part
Loop j of Algorithm 3.1. It is clear that i ≤ j ≤ f(i)− 1.

We first prove that denoting by γj the value of δj obtained at the end of
Loop j of Algorithm 3.1

γj < 2(dj − dj+1) + 2(dp(j) − dj) (27)

Indeed if γj ≥ 2(dj − dj+1) then deg(Q̃(j)) = dj+1, because Ṽ(i)coincides with
V(i) up to degree dj − γj ≤ 2dj+1− dj ≤ dj+1. But it was not the case that the

previous value of δj , γj − 2(dp(j) − dj) was strictly less than 2(dj − deg(Q̃(j)),
since the Loop j did not stop at δj = γj − 2(dp(j) − dj).

Let ` ≤ v(i) be such that p(`)(j) = i and let, for n ≤ `, γ̄p(n)(j) be the value
of δp(n)(j) obtained at the end of Loop j of Algorithm 3.1. It follows clearly
from Algorithm 3.1 that

γ̄p(j) − γj ≤ 2(dp(j) − dj) + 2(dp(p(j)) − dp(j))
. . .

∆i − γ̄p(`−1)(j) ≤ 2(di − dp(`−1)(j)) + 2(dp(i) − di)

19



Summing, we get

∆i − γj ≤ 2(di − dj) + 2(dp(i) − dp(j))

and taking into account Inequality 27 we get

∆i ≤ 2(di − dj+1) + 2(dp(i) − dj).

The claim follows immediately noticing that, since i ≤ j ≤ f(i)− 1,

∆i ≤ 2(di − df(i)) + 2(dp(i) − di)

QED

Proof of Proposition 4.4: • Using property ii) and fast division with re-
mainder (see [2] page 247), the computation of C(i− 1) for every i ≤ k costs∑k

i=1 6M(di−1 − di) ≤ 6M(d) +O(d), since
∑k

i=1(di−1 − di) ≤ d.

• For every ` less than ν − 1, the computation of all the

M(i, `) := M(i, `− 1) ·M(i− 2`−1, `− 1),

for every multiple i of 2` less than n costs 7M(d) +O(d).
Indeed, for every multiple i of 2` the computation of

M(i, `) := M(i, `− 1) ·M(i− 2`−1, `− 1),

takes 7 multiplications and a fixed number of additions of polynomials of degree
di−2k−1 − di by polynomials of degree di−2k−1 − di−2k . The claim follows, using
iv).
• For every ` less than ν − 1, the computation of all the

Ṽ(i) := M(i, v(i)) · Ṽ(p(i))]···2di−dp(i)−Γi]

for every i of such that v(i) = ` costs 14M(d) +O(d). Indeed, for every i such
that v(i) = `, the computation of

M̃(i, v(i)) · Ṽ(p(i))]···2di−dp(i)]

in (?)b costs 7 multiplications and a fixed number of additions of polynomials
of degree dp(i) − di if di 6= d− i. Moreover the computation of

M̃(i, v(i)) · Ṽ(p(i))]2di−dp(i)···2di−dp(i)−∆i]

costs 7 multiplications of polynomials and a fixed nomber of additions of poly-
nomials of degree dp(i) − df(i) since Γi ≤ 2(dp(i) − df(i)). So the computation
of

Ṽ(i) := M(i, v(i)) · Ṽ(p(i))]···2di−dp(i)−Γi]

20



costs at most 14 multiplications of polynomials of degree dp(i)−df(i) . If i is even
and di = d − i, the result is also true by the complexity analysis of agorithm
A2.

The claim follows from iv) and v).
• Finally since ν ≤ log2 d+ 1 the cost of the multiplications is bounded by

21 (M(d) +O(d) ) log2 d+O(M(d)),

while the number of additions is O(d) log2 d. QED

Note that the constant 21 that we obtain for Algorithm 3.1 improves slightly
the previously known constant which was 24 [2].

References

[1] S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry,
Springer (2003), revised version http://name.math.univ-rennes1.fr/marie-
francoise.roy/bpr-posted1.html, (2005)

[2] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge
University Press (1999)

[3] T. Lickteig, M.-F. Roy, Sylvester-Habicht sequences and fast Cauchy index
computation, Journal of Symbolic Computation, 31 315-341 (2001)

[4] R. T. Moenck, Fast computation of GCDs, Proc. STOC ‘73, 142–151 (1973)

[5] A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta
Informatica, 1, 139-144 (1971)

[6] V. Strassen, Gaussian elimination is not optimal, Numerische mathematik,
13, 354-356 (1969)

21


