
On a Parallel Extended Euclidean Algorithm

Sidi Mohammed SEDJELMACI
LIPN UPRES-A CNRS 7030

Université Paris Nord. Institut Galilée
Avenue. J.B.Clement. 93430. Villetaneuse. France.

E-mail : sms@lipn.univ-paris13.fr
Telephone : (+33) 01 49 40 35 95

Fax : (+33) 01 48 26 07 12.

Abstract

A new parallelization of Euclid’s greatest common divisor algorithm is proposed. It matches the best
existing integer GCD algorithms since it can be achieved in parallel Oε(n/log n) time using only n1+ε

processors on a Priority CRCW PRAM.

Keywords : Parallel complexity, parallel algorithms, Greatest Common Divisor (GCD), Euclid algorithm.

I. Introduction

The problem of the Greatest Common Divisor (GCD for short) of two integers is important for
two major reasons. First because it is widely included as a low level operation in several
arithmetic packages. On the other hand, despite of its amazing simplicity, the complexity of the
GCD problem in parallel is still unknown. We do not know if it is either in NC class or a P-
complete problem.

The advent of practical parallel computers has caused the re-examination of many existing
algorithms with the hope of discorering a parallel implementation. In 1987, Kannan, Miller and
Rudolph [5] gave the first sublinear time parallel integer GCD algorithm on a common CRCW
PRAM model (See [6] for PRAM’s models). Their time bound is O(nlog log n/log n) assuming
there are n2(log n)2 processors working in parallel. Since 1990, Chor and Goldreich [2]
currently have the fastest parallel GCD algorithm; it is based on the systolic array GCD
algorithm of Brent and Kung [1]. The time complexity of their algorithm achieves Oε(n/log n)
using only n1+ε processors on a CRCW PRAM. More recently (1994), Sorenson's right- and left-
shift k-ary algorithms [8] match Chor and Goldreich's performance.

Euclid’s algorithm is one of the simplest and most popular integer GCD algorithm. Its
exented version called Extended Euclidean Algorithm or EEA for short (see Knuth [7]) is
tightly linked with the continued fractions [3], [7] and is important for its multiple
appplications (cryptology, modular inversion, etc..). In [5], Kannan, Miller and Rudolph
proposed a first parallelization of E.E.A. Their algorithm was based on a reduction step which
finds a couple (p,q) s.t. : |p| ≤ kv/u, |q| ≤ 2k and the relation 0 ≤ pu - qv ≤ u/k, for a given
parameter k > 0 ; reducing therefore, at each step, the larger input u by O(log k) bits.

However, one of the major drawback of their algorithm is the computation of the couple
(p,q). As a matter of fact, in order to reach an O(1) time computation for their reduction step,
they must compare the O(n²) equations pu - qv all each other. Thus, by assigning O(log²n)
processors to each O(n²) equations, more than O(n²log²n) processors are needed (see [5] for
more details). The main results of the paper are summarized below:

• We show how to overcome this drawback and obtain a more accurate result with
only O(1) comparisons of O(log n) bit-numbers.

• A new GCD algorithm, based on this reduction step is designed, and its performance
matches the best known GCD algorithms, i.e. Oε(n/log n) time using at most n1+ε

processors on a Prioprity CRCW PRAM model, for any constant ε > 0.

• Moreover a compression method may be considered to improve the complexity.

In Section 2, we define our basic reduction which emphases the Kannan, Miller and
Rudolph’s one and parallelizes the Etended Euclidean Algorithm. As in [5] our reduction is
based on the computation of the remainders ri = (iu) mod v, 1 ≤ i ≤ k-1, for a given parameter
k>0. In Section 3, we set necessary conditions on the most significant O(log n) bits of ri, to find
all the remainders satisfying ri or v - ri < v/k. In Section 4, we show how to find such
remainders and a GCD algorithm based on this reduction step is designed. Section 5 is devoted
to the complexity analysis. Finally, we end with concluding remarks.

2. Basic Reduction Step

2.1 Notation

Throughout, we restrict ourselves to the set Ν* of positive integers. Let u and v be two such
integers such that u ≥ v > 0, u and v are respectively n-bit and p-bit numbers. Let k an integer
parameter, such that k = 2m, m > 0 and k = O(log n).

Most of serial or parallel GCD algorithms use one or several transformations
(u,v)→(v,R(u,v)), which reduces the size of current pairs (u,v) till (u,0) is reached. The last
value u = gcd(u,v) is then the result we want to find. Such transformations R will be called
reductions. The number of significant bits of an integer x, not counting leading zeros is denoted
by l2(x):

l2(x) =  log2(x) + 1 for all x ≥ 1 and l2(0) = 1.

So n =  log2(u) + 1 and p =  log2(v) + 1. The number p satisfies 2p-1 ≤ v < 2p.
If we let ρ = l2(u) - l2(v) + 1 = n – p + 1, then 2ρ-2 < u/v < 2ρ. We assume that p – m > 3 and
consider the numbers V and Ri obtained by the (m+2) most significant leading bits of
respectively v and ri :

V =  v/2p-m-2 , Ri =  ri/2p-m-2 ,
as well as the number formed by the 2 most significant leading bits of v (or V), i.e. :
W =  v/2p-2 . Note that W = 2 or 3.

2.2 The Kannan-Miller-Rudolph Reduction

The Kannan Miller Rudolph (KMR for short) integer GCD algorithm is based on the following
reduction step [5, lemma 2, page 9] :

For all positive integers u, v and k with u ≤ kv, there exists a pair (p,q) ≠ (0,0) s.t.  p ≤ kv/u
and  q ≤ 2k which satisfies : 0 ≤  pu-qv ≤ u/k.

Remark : Since  pu-qv < v, then  pu-qv = (pu) mod v or v – (pu) mod v.

Thus any couple (p,q) found provides a reduction called KMR’s reduction. Kannan Miller
and Rudolph proposed to compute in parallel all the O(k²) numbers pu – qv, and select those for
which 0 ≤  pu-qv ≤ u/k. But this latter relation implies  pu-qv < v, thus a couple (p,q) must
be chosen from a set of O(k) numbers satisfying this relation. However, in the weak model of
parallel processing Common CRCW, simultaneous writes are allowed provided that all the
processors write the same value. Finally, in order to reach an O(1) time process, more than
O(n²log²n) processors are needed (see [5] for more details).

By contrast, in our reduction, we consider only the two remainders with the smallest index
and compare their O(log n) first leadind bits. Thanks to Priority CRCW model, these two
remainders can be easily reached because this model allows the write to the processor with the
smallest index (see Section 4.2).

2.3 Parallelized EEA

Let (ri) be the sequence of the remainders ri = (iu) mod v, for i = 1,..,k - 1. Applying a theorem
due to Hardy and Wright [3, theorem 36, p. 30] to u/v, we obtain a more accurate result than
KMR’s one : there exist an irreducible fraction (qi/i), s.t. 1 ≤ i ≤ k-1 and  iu - qiv  < v/k. Thus
for this such index i, we have :

ri < v/k or v - ri < v/k. (1)

Any remainder ri satisfying (1) will be called a solution of order k. Note that if ri is a
solution then qi/i is a continant fraction [3], [7] of u/v since

 u/v - qi/i  =  iu - qiv  / iv < (v/k) / iv = 1/ik < 1/i².

Thus the couple (i,qi) is also obtained by EEA and this is why the reduction defined by the
previous couple is a parallelization of EEA.

3. Finding Solutions

The aim of the next sections is to determine in parallel such solutions, i.e. the couples (i,qi)
satisfying relation (1) with only O(1) comparisons on O(log n) bit-numbers.

3.1 Trivial cases

It is easy to prove that the necessary conditions are the following :
i) ri < v/k ⇒ Ri ≤ W
ii) v - ri < v/k ⇒ V - Ri ≤ W + 1,

and the trivial cases are:
1) Ri < W ⇒ ri < v/k
2) V - Ri < W ⇒ v - ri < v/k
3) Ri > W ⇒ ri > v/k
4) V - Ri > W + 1 ⇒ v - ri > v/k.

By contrast there are some cases where no decision can be done from Ri. The latter will be
called doubtful cases. We identify two types:

Ri = W, (Type I)
V- Ri = W or W+1, (Type II).

We show in the next section that only Ri and Rj, the (m+2) first leading bits of the two solutions
with the smallest indexes are needed to determine a solution.

3.2 A solution

We assume that no solution ri is already known, and ri is not trivial. Let E be the set of doubtful
cases, i.e. E = { ri / Ri = W or V-Ri = W or W+1}. Thus, two cases arise :

Case 1 : E = {ri}, then ri is a solution if Ri = W, otherwise it is v- ri.
Case 2 : #(E) ≥ 2 (E has at least two different elements). Let I and J be the two smallest

indexes of the elements of E, i.e. : (I < J)
∀ λ ∈ {1,..,k-1} rλ ∈ E ⇒ λ = I or λ ≥ J.

We prove that rI and rJ are not of the same type and :
1) |v – (rI + rJ)| = rI+J or v - rI+J

2) |v – (rI + rJ)| is a solution if I+J <k, otherwise rI or rJ is a solution.

Examples :
• Case I+J < k : Let (u,v) = (316,269) and k = 8, r1 = 47 and v- r5 = 34 are doubtful

cases since R1 = V - R5 = W = 2 and |v – (r1 + r6) | = r6 = 13 is a solution.
♦ Case I+J ≥≥≥≥ k : Let (u,v) = (379,337) and k = 8, r1 = 42 and v - r7 = 43 are doubtful

cases since R1= W = 2 and V - R7 = W + 1 = 3. In this case r1 is a solution.
However |v – (r1 + r7) | = |v – r8| = 1 is a solution of order 2k = 16, at least.

4. The BA-GCD Algorithm

We let k = 2m, where m is a multiple of a memory word ω (ω = 16, 32 or 64 bits). The reduction
described in the previous section will be called the B.A reduction which stands to Best
Approximation reduction. Recall that we have assumed k = O(n) and m = O(log n) for
computing the remainders; this value yields O(n/log n) iterations at most.

4.1 High level description

We give below a top-down description of our a GCD algorithm based on BA reduction. Let
d=gcd(u,v).

Step 1: Find d1 s.t. d1 equals the product of all common divisors to u and v which are less than
k. (In the algorithm d:=d1 d)

Step 2: Perform reductions until v < k: if ρ ≤ m, then perform BAs; else, perform the
bmod reduction.
Compute d = gcd(u,v), where (u,v) is the last pair obtained from Euclid's algorithm.

Step 3: Remove all divisors < k from d.
Step 4: Perform the product d × d1.

The BA-GCD Algorithm.

Step 1, 3 and 4 are similar to the phases of KMR's gcd algorithm [5], while Step 2 is designed
below (Refer to [9] for the bmod). The computation of BA is done as follows :

Begin
Type_1 := - 1 ; Type_2 := - 1 ;
begin (Steps 1, 2 and 3 are done in parallel for i = 1,2,..,k – 1).

Step 1 : Compute ri (See Section 4.3) ;
Step 2 : Compute Ri, V and W (see notation 2.1).
Step 3 : /* Trivial cases */

If Ri < W then BA := ri ; Exit ; end.
Else

If V - Ri < W then BA := v - ri ; Exit ; end.
Else

If (Ri > W or V - Ri > W+1) then Exit ; end.
Else Step 4.

end
Step 4 : /* Doubtful cases */

If Ri = W then Type_1 := ri ; I := i
Else

If (V - Ri = W or W+1) then Type_2 := v - ri ; J := i ;
Case Type_1 > 0 and Type_2 < 0

BA := Type_1 ; Exit ; end.
Case Type_1 < 0 and Type_2 > 0

BA := Type_2 ; Exit ; end.
Case Type_1 > 0 and Type_2 > 0

If I + J < k then BA := |Type_1 – Type_2| ; Exit ; end.
Else Step 5.

Step 5 :
Let V’, R’I and R’J are the first leading (2m+2) bits of respectively v, rI and rJ.
Case V’ – R’J < R’I

B.A := Type_2 ;
Case R’I < V’ – R’J - 1

B.A := Type_1 ;
Case R’I = V’ – R’J or R’I = V’ – R’J – 1

B.A := |Type_1 – type_2| ; /* A solution of order k2.*/
End.

Step 2 of BA-GCD Algorithm.

If many remainders are sent as result then we take the remainder with the smallest index.
This choice is straightforward obtained by the Priority CRCW PRAM model [6]. We must
specify how to compute the couple (i,qi) and the remainders ri.

4.2 Computation of the Remaiders ri

BA reduction is performed in BA-GCD algorithm only when ρ < m (ρ = l2(u) – l2(v) + 1). For
each processor i, (1 ≤ i ≤ k – 1) an approximation of qi =  iu/v is found as follows.

Let l = l2(iu) – l2(v). With the (l + 2m) first leading bits of iu, denoted by (iu)1 and the first
2m bits of v denoted by v1, the quotient q’i =  (iu)1/v1 is computed. This approximation of qi is
very close to qi. More precisely we can prove (easy calculation) that q’i = qi or q’i = qi + 1. This

result generalizes a previous Kannan Miller and Rudolph‘s lemma [5], but their result was less
accurate since they obtain | q - q’| ≤ 3.

Moreover, we do not need to know exactly the quotient qi and the remainder ri, and it is
worth noting that if we use qi’ and ri’ instead of qi and ri, then the result of the following tests
remains the same :

 ri < v/k or v - ri <v/k.

5. Complexity Analysis.

Precomputation table look up can be used for multipying two m-bit numbers in O(1) time using
O(n22m) processors on a CRCW PRAM [8], [2]. Therefore, the computation of B.A can be
achieved in constant time with : O(k) + O(n22m) + O(n loglogn) = O(n22m) processors. Since
there is at most O(n/log n) iterations, and taking m = ½ ε log n, the complexity of the B.A-GCD
algorithm matches the best previous GCD algorithms with Oε(n/log n) time with n1+ε processors
on a CRCW PRAM.

Conclusion

Since this last decade, no major improvement has been done for the computation of the
integer GCD and the performance of Oε(n/log n) time with n1+ε processors on a CRCW PRAM
seems to be a « limit » not easy to overcome.

We have designed an integer GCD algorithm based on this reduction which matches the best
existing GCD algorithms [2] [8] without compression method. Our algorithm follows and
improves the same Most Significant digit First (MSF) approach of Kannan Miller and Rudolph.
Almost all the decisions are made with the first leading bits of the operands, thus, the
techniques used in our algorithm suits well for such compression method. We are currently
investigate this way with the hope of improving the best performance of parallel integer GCD
algorithms.

REFERENCES

[1] R.P. Brent and H.T. Kung. Systolic VLSI arrays for linear-time GCD computation, in
VLSI'83, Anceau and Aas eds., 1983, 145-154.

[2] B. Chor and O. Goldreich. An improved parallel algorithm for integer GCD, Algorithmica,
5, 1990, 1-10.

[3] G.H Hardy and E.M. Wright, “An Introduction to the Theory of Numbers”, 5th ed.,
Oxford Univ. Press, London, 1979.

[4] T. Jebelean. A Generalization of the Binary GCD Algorithm, in Proc. of the International
Symposium on Symbolic and Algebraic Computation (ISSAC'93), 1993, 111-116.

[5] R. Kannan, G. Miller and L. Rudolph. Sublinear Parallel Algorithm for Computing the
Greatest Common Divisor of Two Integers, SIAM J. on Computing, Vol. 16, No.1, 1987, 7-16.

[6] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J.
Van Leeuwen, editor, Algorithms and complexity. Elsvier and MIT Press, 1990. Handbook of
Theoretical Computer Science, volume A.

[7] D.E. Knuth. The Art of Computer Programming, Vol. 1-2, 2nd ed. Addison Wesley, 1981-
1982.

[8] J. Sorenson.Two Fast GCD Algorithms, J. of Algorithms,16, 1994, 110-144.

[9] K. Weber. Parallel implementation of the accelerated integer GCD algorithm, J. of
symbolic Computation (Special Issue on Parallel Symbolic Computation), 21, 1996, 457-466.

	On a Parallel Extended Euclidean Algorithm
	Sidi Mohammed SEDJELMACI

	I.	Introduction

